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ABSTRACT: In this work, a multiscale finite element scheme is proposed for the nonlinear dynamic analy-
sis of structures based on the hysteretic finite element method. Through this approach, an advanced non-linear
multiscale formulation is derived where the state matrices, namely the mass and stiffness matrix of the mi-
crostructures, need to be evaluated only once at the beginning of the analysis and remain constant throughout
the analysis procedure. Nonlinearity is accounted for at the microlevel by defining additional hysteretic degrees
of freedom that evolve according to properly defined evolution equations such as the Bouc-Wen model or the
Preisach model of hysteresis. Since the nature of composite materials comes with significant uncertainties as
to the properties of the individual constituents the validity of the model is confirmed through a Monte Carlo
simulation, comparing the sensitivity of the proposed hysteretic scheme to that of a detailed fine mesh FE sim-
ulation, with regard to the coefficients of variation of the elastic properties of the constituents. The latter is of
great importance considering the stochasticity involved in defining the properties of such complex materials.

1 INTRODUCTION

The applicability of composite materials spans a large
area including, though not limited to, the space,
aerospace, automobile and sports industries (Her-
akovich 2012). This is attributed to their excellent me-
chanical properties, such as high strength to weight
ratio, high stiffness to weight ratio, high damping,
negative Poisson’s ratio and high toughness. Research
efforts are oriented towards further improving the me-
chanical properties of composites while at the same
time alleviating some of their disadvantages such as
high production/ implementation costs and damage
susceptibility (Strong 2008). Composites are mixtures
of two or more mechanically separable solid mate-
rials. As such, they exhibit a heterogeneous micro-
structure whose specific morphology affects the me-
chanical behaviour of the final product. Within this
framework, composites are considered multiscale in
nature, i.e. the scale of the constituents is of lower
order than the scale of the resulting material. Thus,
the required modelling approach has to account for
such a level of detailing that spreads through scales
of different magnitude. Modelling of structures that
consist of composites could be accomplished using
the standard finite element method (Zienkiewicz et al.
2005). However, a finite element mesh accounting

for each microstructural heterogeneity requires sig-
nificant computational resources. Therefore, the finite
element scheme is usually restricted to small scale
numerical experiments of a representative volume el-
ement (RVE) (Aghdam et al. 2001, Taliercio 2007).
Thus, multiscale techniques have been developed that
render a robust and computationally efficient method-
ology for the analysis of heterogeneous structures.
In general, multiscale methods can be separated in
two groups, namely multiscale homogenization meth-
ods and multiscale finite element methods (MsFEMs).
Within the framework of the averaging theory for or-
dinary and partial differential equations, multiscale
homogenization methods are based on the evaluation
of an averaged strain and corresponding stress ten-
sor over a predefined space domain denoted as Rep-
resentative Volume (RVE) (Babuška 1975). Amongst
the various homogenization methods proposed (Geers
et al. 2010), the asymptotic homogenization method
is proven to be efficient in terms of accuracy and re-
quired computational cost (Yu & Fish 2002). An ex-
tensive review on the subject can be found in Kanouté
et al. 2009. Nevertheless, homogenization methods
rely on two basic assumptions, namely the full separa-
tion of the individual scales and the local periodicity
of the RVEs. In practice, the heterogeneities within
a composite are not periodic as in the case of fiber-



reinforced matrices. In order to adapt to general het-
erogeneous materials, the size of RVE must be suffi-
ciently large to contain enough microscopic heteroge-
neous information (Terada et al. 2000) which results
in increase of the computational cost. Furthermore,
in an elasto-plastic problem, periodicity on the RVEs
also dictates periodicity on the damage induced which
could result in erroneous results. To overcome this de-
ficiencies the multiscale finite element method relies
on the numerical evaluation of a set of micro-scale ba-
sis functions that are used to map the micro-structure
information onto the larger scale. MsFEMs have been
extensively used in linear and nonlinear flow sim-
ulation analysis (Efendiev et al. 2005, He and Ren
2005). Recently, the Enhanced Multiscale Finite El-
ement method (EMsFEM) has been proposed for the
linear and nonlinear static analysis of heterogeneous
structures (Zhang et al. 2012). EMsFEM introduces
additional coupling terms into the fine-scale interpo-
lation functions to consider the coupling effect among
different directions in multi-dimensional vector prob-
lems. In this work, a modified multiscale finite ele-
ment analysis procedure is presented for the nonlinear
static and dynamic analysis of heterogeneous struc-
tures. In this, the evaluation of the micro-scale ba-
sis functions is accomplished within the hysteretic fi-
nite element framework (Triantafyllou & Koumousis
2012). In the hysteretic finite element scheme, inelas-
ticity is treated at the element level through properly
defined evolution equations that control the evolution
of the plastic part of the deformation component. Us-
ing the Principle of Virtual Work, the tangent stiffness
matrix of the element is replaced by an elastic stiff-
ness matrix and a hysteretic stiffness matrix that both
remain constant throughout the analysis. The plastic
deformation evolution is defined through a multi-axial
smooth hysteretic model. This model is derived on
the basis of the Bouc-Wen model of hysteresis (Wen
1976) but accounts for any kind of yield criterion
and hardening law within the framework of classical
plasticity (Lubliner 2008). Smooth hysteretic mod-
elling has proven very efficient with respect to classi-
cal incremental plasticity in computationally intense
problems such as nonlinear structural identification
(Chatzi et al. 2010) and stochastic dynamics (Spanos
& Kougioumtzoglou 2011).

2 THE ENHANCED MULTISCALE FINITE
ELEMENT METHOD

2.1 Overview

In the Multiscale Finite Element Method (MsFEM)
the structure consists of two layers, namely a fine-
meshed layer up to the scale of the heterogeneities
and a coarse mesh of the macro-scale were the
solution of the discrete problem is performed. In
Figure 1, a fine element mesh is presented con-
sisting of 54 quadrilateral micro-elements and 70

micro-nodes. The corresponding coarse mesh con-
sists of 6 quadrilateral macro-elements and 12 macro-
nodes. Furthermore, two displacements fields are es-
tablished corresponding to each level of discretiza-
tion. Thus, in the fine mesh the displacement of a mi-
cro point p is described by the micro-displacement
vector field { um (x, y) vm (x, y) }T . On the op-
posite, in the macro-scale the macro-displacement
field is described by the macro-displacement field
{ uM (x, y) vM (x, y) }T . In general, throughout
this work the subscript m is used to denote a micro-
measure while the capital M is used to denote a
macro-measure of the indexed quantity.

Instead of implementing a one-step approach, solv-
ing the fine meshed FEM model, a two-step so-
lution procedure is performed. In the first step, a
mapping is numerically evaluated that maps the fine
mesh within each coarse-element to the correspond-
ing macro-nodes. Next, the solution procedure is per-
formed in the coarse mesh. Finally, the fine-mesh
stress and strain history is retrieved by implementing
the inverse micro-mapping procedure onto the results
obtained on the coarse-mesh.

2.2 Numerical evaluation of micro-scale basis
functions

The numerical mapping is established by considering
each type of coarse element and the corresponding
fine mesh within this element as a representative vol-
ume element (RVE). For each RVE a homogeneous
equilibrium equation is established considering spe-
cific boundary conditions. The solution of this equi-
librium problem forms a vector of base functions that
maps the displacement components of the fine mesh
within the element to the macro-nodes of the RVE.
EMsFEM is based on the assumption that the dis-
crete micro-displacements within the coarse element
are interpolated at the macro-nodes using the follow-
ing scheme:

um (xj, yj) =

nMacro∑
i=1

NijxxuMi
+

nMacro∑
i=1

NijxyvMi

vm (xj, yj) =

nMacro∑
i=1

NijxyuMi
+

nMacro∑
i=1

NijyyvMi

(1)

where um, vm are the horizontal and vertical com-
ponents of the micro-nodes, j = 1...nmicro is the
number of micro nodes within the coarse element,
nMacro is the number of macro-nodes of the coarse
element, (xj, yj) are the local coordinates of the
micro-nodes, uMi

, vMi
are the horizontal and verti-

cal displacement components of the macro-nodes and
Nijxx = Nixx (xj, yj), Nijxy = Nixy (xj, yj), Nijyy =
Niyy (xj, yj) are the micro-basis functions. In MsFEM



Figure 1: Multiscale Finite Element procedure.

the interpolated displacement fields are considered
uncoupled. However in EMsFEM the coupling terms
Nixy are introduced that are more consistent with the
observation that a unit displacement in the boundary
of a deformable body may induce displacements in
both directions within the body.

Equation (1) can be cast in the following matrix
form:

{d}m(i) = [N ]m(i) {d}M (2)

where {d}m(i) is the nodal displacement vector of the
ith microelement, [N ]m(i) is a matrix containing the
micro-basis shape functions evaluated at the nodes
of the ith micro-element while {d}M is the vector
of nodal displacements of the corresponding macro-
nodes. Densoting as {d}m the (2nmicro × 1) vector of
nodal displacements of the micro-mesh, the following
relation is established:

{d}m = [N ]m {d}M (3)

where [N ]m in equation (3) is a 36× 8 matrix con-
taining the components of the micro-basis shape func-
tions evaluated at the nodal points (xj, yj) of the
micro-mesh. Each column of matrix [N ]m corre-
sponds to a deformed configuration of the RVE where
the corresponding macro-degree of freedom is equal
to unity and all the rest macro-degrees of freedom are
equal to zero.

Deriving micro-basis functions with these proper-
ties can be accomplished by considering the following
boundary value problem

[K]RV E {d}m = {/0}

{d}S =
{
d̄
} (4)

where [K]RV E is the stiffness matrix of the RVE,
{/0} is a vector containing zeros while {d}S is a vec-
tor containing the nodal degrees of freedom of the

boundary S of the RVE and
{
d̄
}

is a vector of pre-
scribed displacements. The RVE stiffness matrix is
formulated using the standard finite element method
(Zienkiewicz et al. 2005). In this work, the solution
of the boundary value problem established in equa-
tion (4) is performed using the Lagrange multiplier
method (Belytschko et al. 1994).

The choice of the values of the prescribed boundary
displacements is an assumption of the EMsFEM and
plays a key part on the accuracy of the macro-scale
solution. Three different types of boundary conditions
are established in the literature namely linear bound-
ary conditions, periodic boundary conditions and os-
cillatory boundary conditions with oversampling. In
the first case, the displacements along the boundaries
of the coarse element are considered to vary linearly.
Periodic boundary conditions are established by con-
sidering that the displacement components of periodic
nodes lying on the boundary of the coarse element
differ by a fixed quantity that varies linearly along
the boundary of the coarse element. The oscillatory
boundary condition method with oversampling con-
siders a superelement of the coarse element whose ba-
sis functions are evaluated using the linear boundary
condition approach. The derived basis functions are
then used as the boundary conditions of the coarse
element to derive the micro basis functions. An il-
lustrative presentation on the subject can be found in
(Efendiev & Hou 2009).

3 FINE SCALE MODELING

3.1 Multiaxial modelling of hysteresis

The material model implemented in this work is
a generic rate-independent hysteretic model. It ac-
counts for any type of yield criterion and hardening
law either isotropic, kinematic or combined. Both the



case of linear and nonlinear kinematic hardening is
considered.

The model is defined on the grounds of two rate
equations. The first equation controls the evolution of
the stress field with respect to the strain field and as-
sumes the following form

{σ̇} = [D] ([I]−H1H2 [R]){ε̇} (5)

where {σ} is the stress tensor, [D] is the elastic con-
stitutive matrix, [I] is the identity matrix while (·)
denotes differentiation with respect to time while H1

and H2 are smoothened Heaviside functions that will
be defined later on. Matrix [R] in equation (5) is a
strain interaction matrix defined through the follow-
ing relation

[R] = {α}J {α}T [D] (6)

where

J =
(
−{b}T G ({η} ,Φ) + (α)T [D]{α}

)−1

(7)

while {α} = (∂Φ/∂ {σ})T , {b} = (∂Φ/∂ {η})T and
G ({η} ,Φ) is a hardening function corresponding to
the kinematic hardening rule considered.

The second equation of the constitutive model used
in this work defines the evolution of the back-stress
with respect to the strain field and assumes the fol-
lowing form:

{η̇} = H1H2G ({η} ,Φ)
[
R̃
]
{ε̇} (8)

where
[
R̃
]

is the corresponding hardening interaction
matrix defined by the following relation

[
R̃
]

= J {α}T [D] (9)

The smoothed Heavised functions H1 and H2 in-
troduced in relations (5) and (8) assume the following
form

H1 =

∣∣∣∣Φ ({σ} ,{η})
Φ0

∣∣∣∣N , N ≥ 2 (10)

and

H2 = β + γsgn
(
{ε}T {σ̇}

)
(11)

where Φ = Φ ({σ} ,{η}) is a yield criterion, Φ0 the
yield limit, N a material parameter that determines
the rate at which the yield criterion reaches its maxi-
mum value while β and γ are material parameters that
control the stiffness at the moment of unloading.

The material response is elastic when either H1 in
equation (10) or H2 in equation (11) is equal to zero.
Therefore, elastic material behaviour corresponds to
either small values of the ratio Φ/Φ0 or unloading (in
which case {ε}T {σ̇} < 0). On the other hand, when
both H1 = 1 and H1 = 1 plastic deformations occur.

3.2 The hysteretic finite element scheme

Based on the additive decomposition of the total strain
rate into elastic and plastic parts (Nemat-Naser 1982),
the material model presented in Section 3.1 can be im-
plemented to derive a computationally efficient finite
element formulation. The additive decomposition of
the total strain rate is expressed as:

{ε̇} =
{
ε̇el
}

+
{
ε̇pl
}

(12)

where {ε} is the tensor of total strain,
{
εel
}

is the
tensor of the elastic, reversible, strain and

{
εpl
}

is the
tensor of the inelastic, irreversible strain whereas the
vectorial notation of the stress and strain tensors is
used in this work. The (.) symbol denotes differen-
tiation with respect to time. Using equation (12) the
elastic Hooke’s stress-strain law is cast into the fol-
lowing form

{σ̇} = [D]
{
ε̇el
}

= [D]
(
{ε̇} −

{
ε̇pl
})

(13)

where {σ} is the stress tensor and [D] is the elastic
material constitutive matrix (Den Hartog 1999). Com-
paring equations (5) and (13) the following expres-
sion for the evolution of the plastic strain component
is readily derived:

{
ε̇pl
}

= H1H2 [R]{ε̇} (14)

where the interaction matrix [R] is introduced in equa-
tion (6). The following rate form of the principle of
virtual displacements is introduced (Washizu 1983)
over the finite volume Ve of a single element:

∫
Ve

{ε}T {σ̇}dVe = {d}T
{
ḟ
}

(15)

where {d} is the vector of nodal displacements over
the finite mesh and {f} is the corresponding vector
of nodal forces. For the sake of the presentation, only
nodal loads are considered herein, however the eval-
uation of body loads and surface tractions can be de-
rived accordingly. Substituting equation (13) into the
variational principle (15) and considering an isopara-
metric, displacement based interpolation field

{d} = [N ]{u} (16)

where [N ] is the shape function matrix, the following
equilibrium equation is derived in rate form[
kel
]{
ḋ
}
−Ih

{
ε̇pl
}

=
{
ḟ
}

(17)



where[
kel
]

=

∫
Ve

[B]T [D] [B]dVe

{
ḋ
}

(18)

and

Ih =

∫
Ve

[B]T [D]
{
ε̇pl
}
dVe (19)

Furthermore, introducing an interpolation scheme for
the plastic part of the strain

{
εpl
}

, namely:{
ε̇pl
}

= [N ]e
{
ε̇plcq
}

(20)

where
{
εpl
}
cq

is the vector of stains measured at prop-
erly defined collocation points, the following relation
is finally derived:[
kel
]{
ḋ
}
−
[
kh
]{
ε̇plcq
}

=
{
Ṗ
}

(21)

where the hysteretic matrix
[
kh
]

is defined as

[
kh
]

=

∫
Ve

[B]T [D] [N ]e dVe (22)

Both
[
kel
]

and
[
kh
]

are constant and inelasticity is
controlled at the collocation points through the ac-
companying plastic strain evolution equations defined
in equation (14).

4 THE HYSTERETIC MULTISCALE
ANALYSIS SCHEME

4.1 Equilibrium in the fine scale

In this work, equation (21) is used as the constitutive
relation of the micro-element. Considering zero ini-
tial conditions for brevity, rates in equation (21) are
dropped and the following relation is established

[
kel
]
m(i)
{d}m(i) −

[
kh
]
m(i)

{
εplcq
}
(i)

= {f}m(i) (23)

where the index m (i) denotes the corresponding
measure of the ith micro-element. Substituting equa-
tion (2) into equation (23) and pre-multiplying with
[N ]Tm(i) the following relation is derived:[
kel
]M
m(i)
{d}M −

[
kh
]M
m(i)

{
εplcq
}
(i)

= {f}Mm(i) (24)

where[
kel
]M
m(i)

= [N ]Tm(i)

[
kel
]
m(i)

[N ]m(i) (25)

is the elastic stiffness matrix of the ith micro-element
mapped onto the macro-element degrees of freedom

while
[
kh
]M
m(i)

is the hysteretic matrix of the ith
micro-element, evaluated by the following relation:[
kh
]M
m(i)

= [N ]Tm(i)

[
kh
]
m(i)

(26)

Finally, {P}Mm(i) in equation (24) is the equivalent
nodal force vector of the micro-element mapped onto
the macro-nodes of the coarse element.

{f}Mm(i) = [N ]Tm(i) {f}m(i) (27)

Equation (24) is a multiscale equilibrium equa-
tion involving the displacement vector evaluated at
the coarse-element nodes and the plastic part of the
strain tensor evaluated at collocation points within the
micro-scale element mesh.

4.2 Micro to Macro scale transition

Having established the micro-element equilibrium
in terms of macro-displacement measures using the
micro-basis mapping introduced in equation (2), a
procedure is needed to formulate the global equilib-
rium equations in terms of the macro-quantities. De-
noting with a subscript M the corresponding macro-
measures over the volume V of the coarse element
equation (15) is re-written as:

∫
VM

{ε}TM {σ̇}M dVM = {d}TM
{
ḟ
}

M
(28)

where {f}M is the vector of nodal loads imposed
at the coarse element nodes. Equivalently to relation
(21) the variation principle of equation (28) gives rise
to the following equation:∫
VM

{ε}TM {σ̇}MdVM = [K]MCR(j)

{
ḋ
}

M

−
[
Kh
]M
CR(j)

{
ε̇plcq
}
M

(29)

where [K]MCR(j),
[
Kh
]M
CR(j)

are the equivalent stiff-
ness matrix and the equivalent hysteretic matrix of the
jth coarse element respectively that need to be evalu-
ated. This is accomplished assuming that the strain
energy of the coarse element is additively decom-
posed into the contributions of each micro-element
within the coarse-element. Thus, the following rela-
tion is established:∫
V

{ε}TM {σ}M dV =

mel∑
i=1

∫
Vmi

{ε}Tmi {σ}mi dVi (30)

where {ε}mi, {σ}mi are the micro-strain and micro-
stress field defined over the volume Vmi of the ith



micro-element. Substituting equation (29) into rela-
tion (30) and using relation (2) the following multi-
scale equilibrium equation is derived at the coarse el-
ement:

[K]MCR(j) {d}M = {f}M − {fh}M (31)

where the equivalent stiffness matrix of the coarse el-
ement is evaluated as

[K]MCR(j) =
i∑
1

[
kel
]M
m(i)

(32)

and {fh}M is a nonlinear correction to the external
force vector arising from the evolution of the plas-
tic strains within the micro-structure that is evaluated
through the following equation

{fh}M =

mel∑
i=1

[
kh
]M
m(i)

{
εplcq
}
m(i)

(33)

while the plastic strain vectors
{
εplcq
}
m(i)

are consid-
ered to evolve according to relation (14). Equations
(31) and (33) are used to derive the equilibrium equa-
tion at the structural level as will be described in the
next Section.

4.3 Solution in the macro-scale

Considering the general case of a coarse mesh with
ndofM free macro-degrees of freedom and using
equation (31), the global equilibrium equations of the
composite structure can be established in the coarse
mesh. In the dynamic case the following equation is
established:

[M ]
{
Ü
}

M
+ [C]

{
U̇
}

M
+ [K]{U}M = {P}M (34)

where the coarse mesh load vector is evaluated using
the following relation

{P}M = {F}M + {Fh}M (35)

In equation (34), [M ], [C], [K] are the
(ndofM × ndofM) macro-scale mass, viscous
damping and stiffness matrix respectively. The mass
matrix can be formulated following either the lamped
or distributed mass approach while the viscous damp-
ing can be of either the classical or non-classical type
(Chopra 2006). The global stiffness matrix of the
composite structure is formulated through the direct
stiffness method by additively appending the contri-
butions of the coarse elements equivalent matrices
defined in equation (32). The (ndofM × 1) vector
{U}M consists of the nodal macro-displacements.
Furthermore, vectors {F}M and {Fh}M in equation

(35) correspond to the externally applied nodal loads
and the hysteretic nodal loads respectively. These
vectors are assembled at the coarse nodal points,
considering the equilibrium of the corresponding
elemental contributions {f}M and {fh}M , defined in
equations (28) and (33) respectively.

Equation (31) expresses the nodal equilibrium of
the coarse element mesh. The coarse element equiv-
alent stiffness matrices [K]MCR(j) can be assembled
through the direct stiffness method to derive the stiff-
ness matrix of the composite structure.

Equations (34) are supplemented by the evolu-
tion equations of the micro-plastic strain components
defined at the collocation points within the micro-
elements. These equations can be established in the
following form:

{
Ėpl

cq

}
m

= [G]{ε̇cq}m (36)

where the vector

{
Ėpl

cq

}
m

=
{ {

ε̇plcq
}
m(1)

· · ·
{
ε̇plcq
}
m(mel)

}T

(37)

holds the plastic strain components evaluated at the
collocation points of its micro-element and{
Ėcq

}
m

=
{
{ε̇cq}m(1) · · ·

{
ε̇cq
}
m(mel)

}T

(38)

Matrix [G] in relation (36) is a band diagonal matrix
that assumes the following form

[G] =

 A(1) [0]

[0]
. . .
A(mel)

 (39)

where A(1) = H1m(1)H2m(1)[R]m(1) and A(mel) =

H1m(mel)H2m(mel)[R]m(mel)

Equations (36) are independent and thus can be
solved in the micro-element level resulting in an im-
plicitly parallel scheme. Furthermore, relation (39)
depends on the current micro-stress state within each
micro-element. Thus, a procedure needs to be es-
tablished that downscales the macro-displacements
{U}M .

4.4 Downscale Computations

Considering that the value of the coarse mesh dis-
placements {U}M is known, the interpolation scheme
introduced in relation (1) can be used to derive the
micro-displacement components within each coarse
element. Extracting the nodal macro-displacements
{d}M of a macro-element from {U}M the corre-
sponding micro-displacement vector of the ith micro-
element {d}m(i) is derived through relation (2).



Figure 2: Composite Beam

Figure 3: Finite Element Model

The total strain vector at the collocation points
is then evaluated by using the following strain-
displacement relation:

{εcq}iqm(i) = [B]iqm(i) {d}m(i) , iq = 1...ncq (40)

where ncq is the number of collocation points within
the element and [B]iqm(i) is the strain-displacement ma-
trix evaluated at each collocation point iq. The rate of
total strains is derived accordingly through

{ε̇cq}iqm(i) = [B]iqm(i)

{
ḋ
}

m(i)
, iq = 1...ncq (41)

The total stresses at the collocation points are eval-
uated using relation (13) and the plastic strain com-
ponent is evaluated using relation (14). Therefore, the
following equations are derived:

{σ̇cq}iqm(i) = [D]m(i)

(
{ε̇cq}iqm(i) −

{
ε̇plcq
}iq
m(i)

)
(42)

and

{
ε̇plcq
}iq
m(i)

= H1m(i)Hm(i) [R]m(i) {ε̇cq}
iq
m(i) (43)

Since the current micro-stress state is required
to evaluate the Heaviside functions H1m(i), H2m(i)

(equations (10) and (11)) and the interaction matrix
[R]m(i) (equation (6)) an iterative procedure is re-
quired at the micro-element level.

5 EXAMPLES

5.1 Sensitivity Analysis of a heterogeneous
structure

In this example, a sensitivity analysis on the stochas-
tic dynamics of a heterogeneous structure is per-
formed considering the case of a fine meshed Finite
Element model and a HMsFE (Hysteretic Multiscale
Finite Element) model using the proposed formula-
tion. For the purpose of this parametric analysis the
case of an aluminum sheet is considered, reinforced

with two steel strips (Fig. 2). The length, width and
height of the beam are Lm = 200cm, bm = 0.5cm
and hm = 50cm respectively. The height of the steel
strips is hf = 5cm . The constituents are assumed to
be elastic-perfectly plastic with deterministic Poisson
ratios νa = 0.33 and νs = 0.3 for the aluminum and
steel respectively. The elastic moduli and the corre-
sponding yield stresses of the materials are consid-
ered to be random variables. The Log-Normal dis-
tribution is used for all random variables with cor-
responding mean values Ema = 70GPa and fya =
214MPa for the aluminum and Ems = 200GPa and
fys = 235MPa respectively. A varying amplitude si-
nusoidal deterministic pressure load is considered at
the free end defined as p(t) = 20000sin(πt)kPa

The fine meshed finite element model is presented
in 3 consists of 1600 linear quadrilateral plane stress
elements with a total of 3358 free degrees of freedom.
The multiscale finite element model is formulated by
16 plane stress coarse elements. The corresponding
representative RVE consists of 100 plane stress ele-
ments. In Figure 4, the force-displacement hysteretic
loops derived from the two formulations for the mean
values of the random variables are presented. The dif-
ferences between the two formulations are marginal.

Next, a total of 5000 Monte Carlo iterations is per-
formed in each model, considering a Latin Hypercube
sampling scheme. Different sets of random variables
are used for the FEM and HMsFEM case. In Fig. 5 the
derived PDFs of the macroscopic elastic horizontal
stiffness of the two models is presented. The derived
PDFs are found to fit a generalized extreme value dis-
tribution function of the II type. The results obtained
from the HMsFE model are almost identical to the re-
sults obtained from the fine meshed FEM model. In
Fig. 6 the derived probability density functions of the
maximum axial displacement are presented. The cor-
responding statistical data is found to fit the extreme
value distribution function. The results obtained from
the two different models are in good agreement, with
the relative difference in the statistical parameters of
the parametric PDEs being less than 0.5%.

6 CONCLUSIONS

In this work, a numerical procedure for the nonlin-
ear analysis of composite structures is presented. The
method is formulated within the framework of the
Enhanced Multiscale Finite Element method where
the fine-scale is modelled using the hysteretic fi-
nite element approach. Using this method, inelastic-
ity is treated at the micro-level, introducing addi-
tional hysteretic degrees of freedom that evolve ac-
cording to a generic multiaxial smooth hysteretic law.
A benchmark problem is formulated and two test
cases, namely a fine meshed finite element model and
a multiscale finite element model, and their stochas-
tic response is compared considering variability of the
material parameters. The derived results demonstrate



Figure 4: Force Displacement Loops (Mean Values)

Figure 5: Elastic Stiffness PDFs

that the multiscale finite element model succeeds in
capturing the stochastic response of the model as
compared to a fine meshed finite element model.

Figure 6: Maximum Displacement PDFs
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