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 Scaled Boundary Finite Element Method (SBFEM)
 Computationally efficient

 Semi-analytical

 SIFs can be determined accurately and with ease

 Computational challenges for large domains remain

 Extended multiscale finite element method (EMsFEM)

 Coarse mesh: solve governing equations of the problem

 Fine mesh: account for fracture phenomena

Motivation
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MsSBFEM Theory
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Coordinates:

Displacements:

𝑥 𝜉, 𝜂 = 𝑥𝑂 + 𝜉𝑥(𝜂)

= 𝑥𝑂 + 𝜉 𝑵 𝑛 {𝒙}

𝑢 𝜉, 𝜂 = 𝑵𝑢(𝜂) {𝒖(𝝃)}
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 General solution as power series

 Having performed the eigen-decomposition

 Equating displacement modes and force modes

on the boundary 𝑢 𝜉 = 1 :

MsSBFEM Theory
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𝑢 𝜉 = 𝜙𝑖 𝜉
− 𝜆𝑖 [𝑐𝑖]

𝜙𝑖 = eigenvector

𝜆𝑖 = eigenvalue

𝑐𝑖 = integration constant

Displacements:

Forces:

𝑢 𝜉 = [𝜙−
𝑢]𝜉− 𝜆− [𝑐−]

𝑞 𝜉 = [𝜙−
𝑞]𝜉− 𝜆− [𝑐−]

𝑲𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = [𝜙−
𝑞][𝜙−
𝑢]−1Stiffness Matrix:
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 Difference FEM and MsFEM

 Basis functions (G) map the response between fine (micro) 

and coarse (macro) mesh

MsSBFEM Theory
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MsSBFEM Theory
MsFEM construction of basis functions
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Linear Periodic

+ • Simple implementation • Local periodicity included

• Softer behaviour

- • Too stiff

• Too restrained

• No local variation

• Requires adjacent pairs

• Computational effort
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 SBFEM expression for the stresses

 Inspection of modal representation yields

 Singularity for -1 < λ < 0

 By matching expressions with

the exact solution:

Calculating Stress Intensity Factors
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𝜎 𝜉, 𝜂 = [𝑫] 𝑩1 𝜂 𝑢 𝜉 ,𝜉 +
1
𝜉
𝑩2 𝜂 {𝑢(𝜉)}

𝜎𝑠 𝜉, 𝜂 = 𝜞𝑖 𝜂 𝜉
− 𝜆𝑠 − 𝑰 {𝒄𝑠}

𝜞𝑖 = 𝑫 −𝜆𝑖 𝑩
1 + 𝑩2 [𝝓𝑖]

where:

𝐾𝐼
𝐾𝐼𝐼
= 2𝜋𝐿0

 

𝑖=𝐼,𝐼𝐼

𝑐𝑖Γ𝑦𝑦(𝜂 = 𝜂𝐴)𝑖

 

𝑖=𝐼,𝐼𝐼

𝑐𝑖Γ𝑥𝑦(𝜂 = 𝜂𝐴)𝑖
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Numerical Examples:
Unit Cell with embedded slant crack in tension
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Property Value

E-modulus 200 [N/mm2]

Poisson ratio 0.3

Side length L 1 [mm]

Crack angle 30°

Crack length a variable

Tension force 0.1 [N/mm]

Quantities of interest:

• SIF K1 and K2

at right crack tip
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Numerical Examples:
Plate with multiple cracks in tension
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Property Value

E-modulus 200 [N/mm2]

Poisson ratio 0.3

Side length 5 [mm]

Crack angle 30°

Crack length variable

Tension force 0.1 [N/mm]

Quantities of Interest:

• SIFs K1 and K2

at right crack tip

of crack 1-5Q4 Q8 Q12 Q16

1

2

3

4

5
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Numerical Examples:
Plate with multiple cracks in tension
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MsSBFEM

 Cracks successfully incorporated 

at the microscale

 Testing of linear and periodic 

Q4, Q8, Q12 and Q16 elements

 Q4 and Q8 elements not 

recommended when cracks present

 No benefit from using quadratic BC

 Q12 and Q16 elements deliver best 

performance

 Accurate for ratios of a/L ≤ 0.7

 For larger ratios, boundary effects 

difficult to capture with just 12 or 16 

coarse nodes and current choice of 

micro basis functions

Conclusion and Outlook
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Micro basis functions

 Linear BC better represent the 

physical behaviour of the crack

 Periodic BC better account for the 

uncracked behaviour of the UC

 Propose hybrid BCs as seen below

Revisiting Fracture via a Scaled Boundary Multiscale Approach
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SBFEM derivation II
 Geometry transformation

 Jacobian

 Differential unit volumen
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SBFEM derivation III
 The linear differential operator L may thus be written as:
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with
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SBFEM derivation IV
 Assuming an analytical solution in radial direction:

 And therefore the strains and stresses become:
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SBFEM derivation V
 Setting up the virtual work formulation:
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SBFEM derivation VI
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SBFEM derivation VII
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SBFEM derivation VIII
 Introducing some substitutions

 Leads to some significant simplifications
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SBFEM derivation IX
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SBFEM derivation X
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