
qtSBFEM underpinnings
for crack localization

Aim
The aim is to analyse a wrench-like structure using my developed qtSBFEM, inspired by UNSW’s

crack propagation algorthms.

Implementation
The explicit geometry of the polygons and associated points, which form the basis of the quadtree

analysis are presented below:

The individual shadings represent regions with different material properties. The scatter plots (+)

represent explicit points on the boundary.

The implicit geometry is constructed via signed distance functions. These form the basis of

determining if a standard rectangular quadtree block must be split into arbitrary polygons, as

encountered on the domain boundary or transition between different materials for example.

Now, a standard quadtree decomposition is performed, with the caveat that not more than 1

explicit point (+) may be in a block. It is then balanced to exploit precomputation:

Performing trimming and clipping of the unnecessary blocks for analysis by leveraging the signed

distance functions the final pre-processor mesh is obtained: a hybrid quadtree. The crack is inserted

as well and the traversed blocks are clipped similarly. Trimmed blocks are coloured and grouped

according to material properties. These are the blocks for which one must individually compute the

stiffness matrix. All blocks in white (16 possible orientations in balanced quadtrees) have

precomputable properties. The crack location is chosen arbitrarily, not based on physical

considerations, but rather so to provoke the worst case to program for.

Next a standard FEM-type analysis is performed. The displacement field is plotted. The inner circle

on the left is held in (x,y)-direction. On the right inner circle, I enforce a unit displacement in

negative y-direction. Plotting with a scaling factor of 100x results in:

Colouring is according to material properties. The red region is reserved for the crack tip element,

which requires special treatment in my code.

Having performed post processing, I plot the von Mises stresses. To accelerate I compute the

stresses at the nodes and interpolate linearly over elements. In this analysis the E-mod of the

inclusions are assumed to be an order of magnitude smaller than the rest of the domain, so that one

can see a difference in the plots (visual inspection for debugging and testing).

Timings
The above discretization as shown is termed the coarse mesh. To understand how the code scales, I

have also forced a finer discretization, the fine mesh, via changing two lines in the input file.

Coarse Mesh Fine Mesh
DOF: ~8600 DOF: ~36000

Remarks
The steps associated with most of the computational cost, are not applicable to the crack ID

problem.

Step Anticipated Reduction in computational Cost

prepocessor Baseline (ucracked) qtDecomp can be performed ahead of analysis

Precompute K Ahead of analysis

Polygon K Clear majority of polygons computed ahead of analysis

Assemble K -

Enforce BC -

Solve -

Post process Only compute those strains at sensor locations (at least 90% reduction)

