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Abstract
A framework for the development of accurate yet computationally efficient numerical models is proposed in this work,
within the context of computational model validation. The accelerated computation achieved herein relies on the
implementation of a recently derived multiscale finite element formulation, able to alternate between scales of different
complexity. In such a scheme, the fine scale is modeled using a hysteretic finite elements formulation. In the micro-level
non-linearity is captured via a set of additional hysteretic degrees of freedom compactly described by an appropriate
hysteric law, which gravely simplifies the dynamic analysis task. The computational efficiency of the scheme is rooted
in the interaction between the micro- and a macro-mesh level, defined through suitable interpolation fields that map
the finer mesh displacement field to the coarser mesh displacement field. Furthermore, damage related phenomena
that are manifested at the micro-level are accounted for using a set of additional evolution equations corresponding to
the stiffness degradation and strength deterioration of the underlying material. The developed modeling approach is
utilized for the purposes of model validation; firstly, in the context of reliability analysis; and secondly, within an inverse
problem where the identification of constitutive parameters via availability of acceleration response data is sought.
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Introduction
Engineering simulation is an essential feature accompanying
the design, manufacturing and operational life of every
engineered structure. However, and despite the refinement
and complexity that such simulations might entail, these are
not routinely validated, largely due to the computational cost
associated with the multiplicity of parallel runs involved.
This inadequacy comes in direct disagreement with the
recent advances both in monitoring methodologies as well as
in computation potential. The former has provided engineers
with low-cost means of assessing structural performance
both during the construction phase as well as during the
operational of a structural system. Significant feedback is
therefore collected from the system at hand, which may then
be utilized for selecting, updating and/or validating candidate
computational models.

A significant source of complexity within computation
stems from the potential multi-phase nature of materials
comprising the system to be analyzed. Multiphase materials,
also known as composites, fit the profile of emerging
material solutions calling for enhanced computation. In
most industrial cases, the main volume of a composite
consists of a single material (e.g. the matrix) that acts
as a basis where a number of reinforcing materials are
added. The distribution of the reinforcement within the
matrix can be either fully prescribed (as in the case
of layered composites) or random (as in the case of
fiber reinforced matrices). This process of mechanically
combining constituent materials baring different properties
results into a highly heterogeneous structure. Due to
the advanced material properties of the resulting medium

(e.g. high stiffness to weight ratios, high damping,
negative Poisson’s ratio and high toughness (Strong 2008))
composites are widely used in numerous applications.
Moreover, research efforts are oriented towards further
improving the mechanical properties of composites while
at the same time alleviating some of their disadvantages
such as high production/ implementation costs and damage
susceptibility (Rohatgi 1994; Saheb and Jog 1999; Peng et al.
2011). Recent advances in fields such as bioengineering,
nano-mechanics and electronics also stress the need for
designing new composites with optimum material properties
(Munch et al. 2008; Belingardi et al. 2013). Nonetheless,
prior to proceeding with design refinement, methodologies
for validating the efficacy of the numerical models
simulating these solutions need to be developed.

Model validation may be carried out via two distinct
routes, which however can be intertwined. The first path
is though numerical validation, in the sense that the final
model to be utilized is usually inferred by adoption of a
number of assumptions which simplify the analysis thereby
reducing the required computational toll. A first step for
validating such models is through comparison with more
refined/higher dimensional numerical solutions that avoid
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a large number of assumptions at the cost, however, of
an exhaustive computation. If the reduced order model
successfully reproduces the desired response with a sufficient
level of accuracy, lying within some acceptable threshold,
it may then be adopted for the forward simulation of the
system at hand. The second route, which is invaluable
within the context of standardization of the validation
approach, is through experimental validation as noted in the
work of Patterson et al. (2012); Felipe-Sesé et al. (2014);
Burguete et al. (2013). This route relies on the use of
actual structural feedback, i.e., through experimental or field
measurements of structural response under static or dynamic
loads. Indeed, when it comes to composites, significant
effort has been allocated in developing simulation models
that comply with experimentally measured response, via an
inverse problem formulation (Soares et al. 1993). In past
years, several methods have been introduced along the lines
of the so-called mixed numerical-experimental techniques
for the successful modeling of polymer based materials and
composite reinforcing textiles (Frederiksen 1997; Rikards
et al. 1999). The anisotropic and heterogeneous nature of
these materials turns the direct determination of stiffness
parameters into an arduous task. Conventional methods
are based on direct measurements of strain fields (Tucker
and Erwin 1999), presenting several drawbacks such as
boundary effects, sample size dependencies and difficulties
in obtaining homogeneous stress/strain fields (Aboudi 2013).
As an alternative, indirect methods based on modal test data
have become more popular in recent years. These are based
on measurements of structural response and the comparison
between the experimentally identified eigen-frequencies of
a structure and those obtained through a numerical analysis
employing a finite element model (Maletta and Pagnotta
2004; Ekel’chik 2007; Abrosimov and Kulikova 2011). This
inverse problem formulation can lead to an estimate of the
macroscopic material parameters of the composite materials,
which are generally impossible to standardize in tables or
databases as they are dependent on diverse factors such as
the geometrical arrangement of the laminates, constituent
materials used, manufacturing process etc. Independent
of whether a direct or indirect method is employed, a
forward model of the structure is required for deriving those
parameters that are deemed as uncertain, most commonly
those pertaining to the effective moduli.

However, the dependence of the identified parameters
on the size of the specimen (Bažant and Daniel 1996;
Liu et al. 1998) imposes a strong constraint on the
required size of the underlying finite element model
leading to computationally intensive problems (Pickett
2002). To reduce the computational cost, multiscale
simulation approaches have been introduced (Hansun 2009;
Pahlavanpour et al. 2013; Nguyen et al. 2012). In general,
multiscale methods can be separated in two groups, namely
multiscale homogenization methods and multiscale finite
element methods (MsFEMs). Within the framework of
the averaging theory for ordinary and partial differential
equations, multiscale homogenization methods are based
on the evaluation of an averaged strain and corresponding
stress tensor over a predefined space domain denoted as
Representative Volume (RVE) (Babuška 1975). Amongst
the various homogenization methods proposed (Geers et al.

2010), the asymptotic homogenization method is proven to
be efficient in terms of accuracy and required computational
cost (Yu and Fish 2002). An extensive review on the subject
can be found in (Kanouté et al. 2009).

Although homogenization methods are based on a strong
and robust mathematical background, they rely on the
assumption of scale separation and local periodicity of
the underlying micro-structure. Many structures however
usually fail to adhere to these assumptions, due to the
non-periodic nature of the imposed boundary and loading
conditions that lead to non-periodic stress and strain fields as
well as the non-deterministic distribution of heterogeneities
within them. To overcome this deficiencies the multiscale
finite element method has been introduced, which relies
on the numerical evaluation of a set of micro-scale
basis functions that are used to map the micro-structure
information onto the larger scale. MsFEMs have been
extensively used in linear and nonlinear flow simulation
analysis (Efendiev et al. 2005; He and Ren 2005). Recently,
the Enhanced Multiscale Finite Element method (EMsFEM)
has been proposed for the linear and nonlinear static analysis
of heterogeneous structures (Zhang et al. 2012). EMsFEM
introduces additional coupling terms into the fine-scale
interpolation functions to consider the coupling effect among
different directions in multi-dimensional vector problems.
However, the evaluation of the micro-scale basis functions is
based on the solution of a boundary value problem rendering
the interpolation scheme material dependent. Consequently,
this numerical mapping needs to be evaluated in every step of
a non-linear incremental analysis procedure, thus alleviating
the computational advantages of the method.

Dynamic forces and repeated cyclic loading beyond a
material’s elastic limit often lead to damage accumulation
and therefore to nonlinear response, which further compli-
cates the implementation of the aforementioned EMsFEM
framework. Damage initiates at the micro-level through the
propagation of inherent micro-discontinuities and manifests
itself at the meso- and macro-scale finally resulting in the
gradual reduction of the strength and stiffness of the structure
which is observed at the macro-scale. Within this framework,
the hysteretic multiscale finite element method (HMsFEM)
has been introduced in recent work of the authors Triantafyl-
lou and Chatzi (2014), for the efficient treatment of nonlinear
dynamic analysis of heterogeneous structures. In this, the
fine mesh is modelled using the hysteretic formulation of
finite elements (Triantafyllou and Koumousis 2014), which
is based on the definition of a set of additional degrees of
freedom that account for the evolution of the plastic part
of the deformation component within the element. Since
inelasticity is treated as a degree of freedom, the stiffness
matrix of the element remains constant throughout the anal-
ysis procedure. As a result, the evaluation of the of the micro-
basis functions is also performed once. The evolution of the
additional degrees of freedom is constrained by a set of addi-
tional equations that account for the constitutive behavior of
the underlying material. A smooth plasticity model is used to
account for the evolution of plastic strains at the micro-scale.
In this work, damage accumulation is also accounted for by
introducing a set of internal variables accounting for damage
the gradual degradation of the material’s unloading stiffness
as well as the deterioration of the material’s yield limit.

Prepared using sagej.cls



S. P. Triantafyllou and E. N. Chatzi 3

In the work presented herein, the previously introduced
HMsFEM approach serves as the tool for model validation,
under a stochastic setting in two classes of problems. The
first application pertains to a reliability analysis problem,
where the structural response is quantified in a probabilistic
sense using a Monte Carlo approach. Since the nature of
composite materials comes with significant uncertainties
as to the properties of the individual constituents (Xu
et al. 2011; Clément et al. 2013), the stochastic analysis
of such materials under conditions of extreme loading
is of paramount importance in order to quantify the
probability of failure of the corresponding structure.
Since the reliability analysis of structures per-se is a
computationally intense procedure, it is pointed out that
multiscale models (Tootkaboni and Graham-Brady 2010)
should be preferred over standard stochastic FEM procedures
(Shang and Yun 2013) to reduce the complexity of the
implemented computational model without adverse effects
on the desired accuracy. The second application pertains to
an inverse problem formulation, where the identification of
the uncertain material parameters of a composite structure,
namely the structural stiffness and strength at the level of
the constituents, is sought, based on recorded acceleration
response from limited structural nodes.

The paper is structured as follows. In Section The
enhanced multiscale finite element method the
Enhanced Multiscale Finite Element Method (EMsFEM)
is overviewed. The smooth hysteretic model that forms
the basis of the proposed method is described in Section
Hysteretic modeling in the fine scale. In Section The
hysteretic multiscale finite element method the Hysteretic
Multiscale Finite Element Method (HMsFEM) is presented.
Section Computational Model Validation briefly discusses
the computational tools that are here adopted for the
purpose of model validation, from both a numerical and
experimental standpoint. Finally, examples are presented
in Section Examples to validate the proposed derivations
and demonstrate the computational advantages of the
developed framework, firstly under the scope of reliability
assessment and secondly within the context of an inverse
problem formulation. The adoption of enhanced and cost-
effective simulation approaches in the validation process
can grease the wheels of the process chain from design,
through manufacturing and production, to operation and
maintenance.

The enhanced multiscale finite element
method

Overview
EMsFEM is based on the definition of a set of nested
finite element meshes as explained in Zhang et al.
(2012). The interaction between subsequent mesh levels is
defined through the numerical derivation of corresponding
interpolation fields that map the finer mesh displacement
field to the coarser mesh displacement field. In Fig. 1(a), the
case of a two-phase solid composite structure is presented
for brevity. The composite comprises a matrix and a set of
reinforcing cells. Based on the distribution of the cells within
the matrix, a fine discretization scheme is defined, consisting

of 384 linear hex-elements and 663 nodes that correspond to
1989 degrees of freedom.

Depending on the micro-structure’s periodicity, patterns of
heterogeneity can be recognized and sets of micro-elements
can be grouped into clusters (that will be denoted herein as
Representative Volume Elements or RVEs). The convex-hull
of each cluster defines a coarse-element (or macro-element)
that surrounds the fine-meshed RVE substructure. In Fig.1
two distinct patterns are identified and the corresponding
RVEs are presented in Fig. 1(c) and 1(d). The set of
coarse elements results in the definition of the coarse mesh
presented in Fig. 1(e). This mesh consists of 8 coarse
elements and 30 macro-nodes that correspond to 90 macro-
degrees of freedom.

According to EMsFEM,instead of performing a finite
element analysis on the fine mesh (Fig. 1(a)) a numerical
interpolation scheme Ti is evaluated for each RVE (i)
that maps the displacements of the corresponding micro-
nodes defined within the micro-domain Ωm onto the
macro-displacement field defined in the macro-domain
ΩM . Furthermore, two displacements fields are established
corresponding to each level of discretization. Thus, in the
fine mesh the displacement of a micro point p is described
by the micro-displacement vector field (Fig. 1(h)).

um = {um vm wm}T |(x,y,z) (1)

The continuous micro-displacement field introduced in
relation (1) can be interpolated at the micro-nodal points
using a standard displacement based FE interpolation
scheme as in Zienkiewicz et al. (2005)

um = [N ]md
i
m (2)

where

dim =
{
um(1) vm(1) · · · vm(8)

}T︸ ︷︷ ︸
1x24

(3)

is the vector of nodal displacements of the ith micro-element
and [N ]m is the displacement based interpolation matrix of
the hex-element.

Since the structure defined in Fig. 1(e) is a discrete macro-
representation of the physical model consisting of the RVEs,
the macro-displacement component within each RVE diM
can be defined accordingly as the discrete set such that

diM =
{
uM(1) vM(1) · · · vm(8)

}T︸ ︷︷ ︸
1x24

(4)

where (i) stands for the ith macro-node of the coarse mesh.
Throughout this work the subscript m is used to

denote a micro-measure while the capital M is used to
denote a macro-measure of the indexed quantity. The
enhanced multiscale Finite Element method is based on
the numerical derivation of a relation between the discrete
micro-displacement field introduced in equation (3) and the
coarse element discrete displacement field introduced in
relation (4).

Numerical evaluation of micro-scale basis
functions
The numerical mapping is established by considering each
type of coarse element and the corresponding fine mesh
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p

p

Figure 1. Multiscale Finite Element procedure.

within this element as a representative volume element
(RVE). For each RVE a homogeneous equilibrium equation
is established considering specific boundary conditions. The
solution of this equilibrium problem forms a vector of base
functions that maps the displacement components of the fine
mesh within the element to the macro-nodes of the RVE.
EMsFEM is based on the assumption that the discrete micro-
displacements within the coarse element are interpolated at
the macro-nodes using the following scheme:

um(j) =
nMacro∑
i=1

NijxxuMi
+
nMacro∑
i=1

NijxyvMi

+
nMacro∑
i=1

NijxzwMi

vm(j) =
nMacro∑
i=1

NijxyuMi +
nMacro∑
i=1

NijyyvMi

+
nMacro∑
i=1

NijyzwMi

wm(j) =
nMacro∑
i=1

NijxzuMi
+
nMacro∑
i=1

NijyzvMi

+
nMacro∑
i=1

NijzzwMi

(5)

where um(j), vm(j), wm(j) are the displacement components
of the jth micro-node, j = 1...nmicro where nmicro
the number of micro nodes within the coarse element.
Furthermore, nMacro is the number of macro-nodes of the
coarse element and uMi

, vMi
, wMi

are the displacement
components of the macro-nodes of the ith coarse-element.

The quantities Nijxx, Nijxy, Nijyy, Nijzz , Nijxz . Nijyz
are the micro-basis interpolation functions that interpolate
the displacement components of the jth micro-node to the
macro-displacement components of the corresponding ith
coarse element. In MsFEM the interpolated displacement
fields are considered uncoupled. However in EMsFEM
the coupling terms Nijxy, Nijyz , Nijxz are introduced
that are more consistent with the observation that a unit

displacement in the boundary of a deformable body may
induce displacements in both directions within the body.

Equation (5) can be conveniently cast in the following
matrix form:

{d}m(i) = [N ]m(i) {d}M (6)

where {d}m(i) is the nodal displacement vector of the ith
microelement, [N ]m(i) is a matrix containing the micro-basis
shape functions evaluated at the nodes of the ith micro-
element while {d}M is the vector of nodal displacements
of the corresponding macro-nodes. Denoting {d}m the
(3nmicro × 1) vector of nodal displacements of the micro-
mesh, the following relation is established:

{d}m = [N ]m {d}M (7)

where [N ]m in equation (7) is a 315× 24 matrix containing
the components of the micro-basis shape functions evaluated
at the nodal points (xj , yj , zj) of the micro-mesh. Each
column of matrix [N ]m corresponds to a deformed
configuration of the RVE where the corresponding macro-
degree of freedom is equal to unity and all the rest macro-
degrees of freedom are equal to zero.

Deriving micro-basis functions with these properties can
be accomplished by considering the following boundary
value problem

[K]RV E {d}m = {/0}

{d}S =
{
d̄
} (8)

where [K]RV E is the stiffness matrix of the RVE, {/0} is a
vector containing zeros while {d}S is a vector containing
the nodal degrees of freedom of the boundary S of the
RVE and

{
d̄
}

is a vector of prescribed displacements. The
RVE stiffness matrix is formulated using the standard finite

Prepared using sagej.cls



S. P. Triantafyllou and E. N. Chatzi 5

element method (Zienkiewicz et al. 2005). In this work,
the solution of the boundary value problem established in
equation (8) is performed using the Penalty method (Maury
2008).

The choice of the values of the prescribed boundary
displacements is an assumption of the EMsFEM and plays
a key part on the accuracy of the macro-scale solution. Three
different types of boundary conditions are established in
the literature namely linear boundary conditions, periodic
boundary conditions and oscillatory boundary conditions
with oversampling. In the first case, the displacements along
the boundaries of the coarse element are considered to vary
linearly. Periodic boundary conditions are established by
considering that the displacement components of periodic
nodes lying on the boundary of the coarse element differ by
a fixed quantity that varies linearly along the boundary of the
coarse element. The oscillatory boundary condition method
with oversampling considers a superelement of the coarse
element whose basis functions are evaluated using the linear
boundary condition approach. The derived basis functions
are then used as the boundary conditions of the coarse
element to derive the micro basis functions. An illustrative
presentation on the subject can be found in Efendiev and Hou
(2009).

Hysteretic modeling in the fine scale

Material Model
The hysteretic formulation of finite elements (Triantafyllou
and Koumousis 2014) is implemented herein to account for
the nonlinear dynamic behavior of materials at the micro-
scale. In this, a mixed interpolation scheme is considered for
both the displacement and the plastic component of the strain
tensor. The method is based on the additive decomposition of
the strain rates into a reversible elastic and an irreversible
inelastic component (Nemat-Naser 1982) that is defined
through the following relation:

{ε̇}m(i) =
{
ε̇el
}
m(i)

+
{
ε̇pl
}
m(i)

(9)

where {ε}m(i) is the tensor of total strain,
{
εel
}
m(i)

is the

tensor of the elastic, reversible, strain and
{
εpl
}
m(i)

is the
tensor of the plastic strain while m (i) indexes the ith micro-
element within the coarse element. The vectorial notation
of the stress and strain tensors is used in this work while
the (.) symbol denotes differentiation with respect to time.
In classical elasto-plasticity, the elastic component of the
strain tensor

{
εel
}
m(i)

is directly related to the current stress
{σ}m(i) through the Hooke’s law

{σ̇}m(i) = [D]m(i)

{
ε̇el
}
m(i)

(10)

where [D]m(i) is the elastic material constitutive matrix
(Armenakas 2006). Additionally, an evolution law is
considered for the plastic part of the deformation component
that can be generically defined as:{

ε̇pl
}
m(i)

= F
({
εel
}
m(i)

,
{
ε̇el
}
m(i)

, {σ}m(i)

)
(11)

where F is an hysteretic operator (Visintin 1994; Iwan 1967;
Erlicher 2003).

In this work, the hysteretic operator is defined on the
grounds of a multi-axial smooth plasticity model (Triantafyl-
lou and Koumousis 2014) based on the assumptions of rate-
independent associative plasticity (Lubliner 2008). Within
this framework, the evolution of the plastic strain tensor is
defined as {

ε̇pl
}
m(i)

= H1H2 [R] {ε̇}m(i) (12)

where H1 and H2 are smoothened Heaviside functions
defined by the following relations, namely:

H1 =

∣∣∣∣∣∣
Φ
(
{σ}m(i) , {η}m(i)

)
Φ0

∣∣∣∣∣∣
N

, N ≥ 2 (13)

and
H2 = β + γsgn

(
Φ̇
)

(14)

In equation (13) Φ = Φ
(
{σ}m(i) , {η}m(i)

)
is a yield

criterion, Φ0 the yield limit, N a material parameter that
determines the rate at which the yield criterion reaches its
maximum value while β and γ are material parameters that
control the stiffness at the moment of unloading. The time
derivative of the yield function in equation (14) is derived
from the following expression

Φ̇ =
∂Φ

∂{σ}m(i)

˙{σ}m(i) +
∂Φ

∂{η}m(i)

˙{η}m(i) (15)

Matrix [R] in equation (12) is a strain interaction matrix
defined through the following relation

[R] = {α}Q {α}T [D] (16)

where

Q =
(
−{b}T G

(
{η}m(i) ,Φ

)
+ (α)

T
[D] {α}

)−1

(17)

and column vectors {α} and {b} are defined as

{α} = ∂Φ
/
∂ {σ}

and
{b} = ∂Φ

/
∂ {η}

respectively, while G
(
{η}m(i) ,Φ

)
is a hardening function

corresponding to the kinematic hardening rule considered
and is defined through the following relation

{η̇}m(i) = λG
(

Φ, {η}m(i)

)
(18)

where λ̇
λ̇ =

{
ε̇pl
}
m(i)

∂Φ

∂ {σ}m(i)

is the plastic multiplier of classical plasticity (Lubliner
2008).

Since the yield function in relation (13) depends on the
back-stress a second equation is also introduced for the
evolution of the back-stress with respect to the strain field
that assumes the following form:

{η̇} = H1H2G
(
{η}m(i) ,Φ

) [
R̃
]
{ε̇}m(i) (19)
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where
[
R̃
]

is the corresponding hardening interaction matrix
defined by the following relation[

R̃
]

= Q {α}T [D] (20)

Equations (9) and (10) imply that during unloading the
material stiffness is constant and equal to the elastic one.

Cyclic loading induced damage
The model presented in Section Material Model is extended
herein to account for damage induced deformations. This
is accomplished by introducing two additional internal
parameters within the hysteretic finite element scheme
accounting for the degradation of the elastic material
stiffness and the deterioration of the yield limit. These
parameters are accompanied by a set of corresponding
evolution equations that depend on the hysteretic energy
accumulated over time. The relations are based on the
derivations introduced in (Erlicher and Point 2004) where a
proof is also derived for the thermodynamic admissibility of
the corresponding material model.

The elastic stiffness degradation parameter is introduced
at the stress-strain relation (10), which assumes the following
form

{σ̇}m(i) = vη [D]m(i)

{
ε̇el
}
m(i)

(21)

where vη is a degradation parameter that is equal to unity
as long as the material has not yielded and increases as a
function of the plastic deformation. The following generic
expression is thus defined:

v̇η = Kη

(
Ehm(i)

)
(22)

where Ehm(i) is the hysteretic energy of the ith micro-
element.

Solving equation (9) for
{
ε̇el
}

and substituting into
equation (21) the following relation is finally derived:

{σ̇}m(i) = vη [D]m(i)

(
{ε̇}m(i) −

{
ε̇pl
}
m(i)

)
(23)

where the total stress tensor is expressed as a function
of the total and plastic strain tensors and the degradation
parameter. For the purpose of this work, a constant rate
stiffness degradation rule is considered and thus relation (22)
is expressed as

.
cη = ηsd

cη|Eh=0 = 1.0

}
⇒ vη = 1.0 + cηEhm(i) (24)

where ηsd is a material parameter.
Yield deterioration is accounted for by introducing

parameter vs into the yield related smooth Heaviside
function 1 defined in relation (13)

H1 = vs

∣∣∣∣∣∣
Φ
(
{σ}m(i) , {η}m(i) s

)
Φ0

∣∣∣∣∣∣
N

, N ≥ 2 (25)

where in general vs is a function of the hysteretic energy
accumulated within the element

v̇s = Kv

(
Ehm(i)

)
(26)

i ci hi
1 280e6 kPa 850
2 100e3 kPa 500
3 50e3 kPa 8
4 1e3 kPa 5
5 0.1 kPa 1

Table 1. Chaboche model parameters

A constant rate evolution law is also considered in this work,
thus the variation of the strength deterioration parameter vs
is defined as

.
vs = cs

vs|Eh=0 = 1.0

}
⇒ vs = 1.0 + csEhm(i) (27)

where cs is a user defined material parameter.

Example
To better demonstrate the influence of the hysteretic
parameters implemented in the model the case of steel bar
under uniaxial tension is considered. The elastic modulus
of the bar is Es = 210GPa and the initial yield stress
sy = 235MPa. The following parameters are considered for
the smooth model, namely n = 2 and β = γ = 0.5. A von-
Mises yield criterion is considered. Two cases of hardening
are examined. In the first, linear kinematic hardening is
considered with the hardening modulus H = 4GPa. The
hardening function G in relation (18) is therefore defined as

G = 4
∂Φ

∂ {σ}

In the second case, a Chaboche additive nonlinear kinematic
hardening rule is considered (Chaboche 1991), where
hardening function is defined as:

G =
∂Φ

∂σ

(
5∑
1

2

3
hi −

√
2

3
ciη

)
(28)

The model parameters for the Chaboche kinematic hardening
are presented in Table 1.

The bar is subjected to sinusoidal imposed strain
according to the following equation

ε =
0.01

π
sin(πt)

First, the analysis is performed considering no degradation
effects, thus setting cη = cs = 0 in equations (24) and
(27) respectively. The resulting stress-strain diagrams
are presented in Fig. 2. Next, stiffness degradation
and strength deterioration are taken into account by
setting cη = 0.0000002 and cs = 0.000001 respectively. The
corresponding results are presented in Fig. 3.

The hysteretic multiscale finite element
method

Discrete formulation at the micro-scale
The discrete formulation is derived on the basis of the
following rate form of the Principle of Virtual Work as in
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Figure 2. Stress-strain diagrams - no degradations
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Figure 3. Stress-strain diagrams - stiffness degradation/
strength deterioration

Washizu (1983)∫
Ve

{ε}Tm(i) {σ̇}m(i) dVe = {d}Tm(i)

{
ḟ
}
m(i)

(29)

where Ve is the volume of the discrete element, {d}m(i) is

the vector of nodal displacements and
{
ḟ
}
m(i)

is the vector

of energy conjugate nodal forces. Substituting equation (9)
into the variational principle (29) the following relation is
derived:∫

Ve

{ε}Tm(i)vη[D]m(i)

(
{ε̇}m(i) −

{
ε̇pl
}
m(i)

)
dVe =

= {d}Tm(i)

{
ḟ
}
m(i)

(30)

Performing some algebraic manipulations and also consider-
ing that vη ≥ 1.0 the following expression is derived:

Iel −Ipl =
1

vη
{d}Tm(i)

{
ḟ
}
m(i)

(31)

where

Iel =

∫
Ve

{ε}Tm(i)[D]m(i){ε̇}m(i)dVe (32)

and

Ipl =

∫
Ve

{ε}Tm(i)[D]m(i)

{
ε̇pl
}
m(i)

dVe (33)

In this work, the isoparametric interpolation scheme is
considered for the displacement field

{d}m(i) = [N ] {u}m(i) (34)

where [N ]m(i) is the shape function matrix. The correspond-
ing strain-displacement relation is derived through compat-
ibility (Zienkiewicz et al. 2005) and assumes the following
form

{ε}m(i) = [B] {u}m(i) (35)

where [B] is the strain-interpolation matrix.
An additional interpolation scheme is introduced for the

plastic deformation{
ε̇pl
}
m(i)

= [N ]e
{
ε̇plcq
}
m(i)

(36)

where
{
εplcq
}
m(i)

is the vector of stains measured at properly
defined collocation points and [N ]e is the corresponding
interpolation matrix.

Substituting relations (35) and (36) onto equation (30), the
following relation is derived[
kel
]
m(i)

{
ḋ
}
m(i)
−
[
kh
]
m(i)

{
ε̇plcq
}
m(i)

=
1

vη

{
ḟ
}
m(i)

(37)
where [

kel
]
m(i)

=

∫
Ve

[B]
T

[D]m(i) [B] dVe (38)

is the element elastic stiffness matrix while
[
kh
]
m(i)[

kh
]
m(i)

=

∫
Ve

[B]
T

[D]m(i) [N ]e dVe (39)

is the hysteretic matrix. Both
[
kel
]
m(i)

and
[
kh
]
m(i)

are constant. Nonlinearity is introduced at the additional
collocation points where plastic the evolution of plastic
deformations is measured. This evolution can be generically
defined in the form of equation (11).

In the case of the composite structure presented in Figure
1, the element elastic stiffness matrix

[
kel
]
m(i)

concides with
the 24× 24 stiffness matrix of the 8-node brick element
(Cook et al. 2002). The size of the hysteretic matrix[
kh
]
m(i)

depends also on the number of collocation points.
Considering the case where full integration is performed and
the collocation points are chosen to coincide with the Gauss
point would result in a 24× 48 hysteretic matrix.

Micro to Macro transformation
Considering zero initial conditions for brevity, rates in
equation (38) are dropped and the following relation is
established[

kel
]
m(i)
{d}m(i) −

[
kh
]
m(i)

{
εplcq
}
(i)

=
1

vη
{f}m(i)

(40)
Substituting equation (6) into equation (40) and pre-
multiplying with [N ]

T
m(i) the following relation is derived:

[
kel
]M
m(i)
{d}M −

[
kh
]M
m(i)

{
εplcq
}
(i)

=
1

vη
{f}Mm(i) (41)
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where [
kel
]M
m(i)

= [N ]
T
m(i)

[
kel
]
m(i)

[N ]m(i) (42)

is the elastic stiffness matrix of the ith micro-element
mapped onto the macro-element degrees of freedom while[
kh
]M
m(i)

is the hysteretic matrix of the ith micro-element,
evaluated by the following relation:[

kh
]M
m(i)

= [N ]
T
m(i)

[
kh
]
m(i)

(43)

Finally, {f}Mm(i) in equation (41) is the equivalent nodal
force vector of the micro-element mapped onto the macro-
nodes of the coarse element.

{f}Mm(i) =
1

vη
[N ]

T
m(i) {f}m(i) (44)

Equation (41) maps the micro-element equilibrium
equation established in equation (40) from the micro-scale
to the macro-scale. The micro-displacement components
{u}m(i) are mapped onto their macro-counterparts through
relation (6). Consequently, the elastic micro-constitutive
behavior is communicated across scales through the
EMsFEM numerical mapping. Inelasticity is accounted for
in the micro-scale through the evolution of the micro-plastic
deformation quantities

{
εplcq
}
(i)

and mapped onto the macro-

scale through the transformed hysteretic matrix
[
kh
]M
m(i)

.
Relations (42) and (43) are then assembled at the macro-

scale to derive the coarse element equilibirum equation
which assumes the following form

[K]
M
CR(j) {d}M = {f}M − {fh}M (45)

where [K]
M
CR(j) is the equivalent stiffness matrix of the

coarse element derived as

[K]
M
CR(j) =

i∑
1

[
kel
]M
m(i)

(46)

while {f}M is the correspodning nodal force vector
assembled from the contributions of the mapped micro-nodal
force components defined in relation (44) and {fh}M is the
force vector of the plastic components evaluated as

{fh}M =

mel∑
i=1

[
kh
]M
m(i)

{
εplcq
}
m(i)

(47)

Equation (45) is derived upon enforcing the energy
equivalence principle between the deformation energy of
the coarse element and the deformation energy of the
corresponding micro-mesh (Triantafyllou and Chatzi 2014).
This is not an assumption of the method a relation that
holds as the coarse element is a mathematical entity
whose mechanical properties are only defined at the micro-
scale. Having defined the equivalent coarse element elastic
stiffness and hysteretic matrice, the direct stiffness method
is implemented to finally derive the governing equations at
the structural level. Defining as ndofM the number of the
free macro-degrees of freedom, the equations of motion of
the structure assume the following form

[M ]
{
Ü
}
M

+ [C]
{
U̇
}
M

+ [K] {U}M = {P}M (48)

The coarse mesh (ndofM × 1) nodal load vector {P}M in
relation (48) is derived as

{P}M = {F}M + {Fh}M (49)

where {F}M is the (ndofM × 1) vector of externally
applied loads and {Fh}M is the (ndofM × 1) hysteretic load
vector assembled for the whole structure. Matrices [M ], [C]
and [K] are the (ndofM × ndofM ) mass, viscous damping
and elastic stiffness matrix of the structure evaluated at the
coarse mesh.

Equations (48) are supplemented by the evolution
equations of the micro-plastic strain components defined
at the collocation points within the micro-elements. These
equations can be established in the following form:{

Ėplcq

}
m

= [H] {ε̇cq}m (50)

where the vector

{
Ėplcq

}
m

=
{ {

ε̇plcq
}
m(1)

· · ·
{
ε̇plcq
}
m(mel)

}T
(51)

holds the plastic strain components evaluated at the
collocation points of its micro-element and{

Ėcq

}
m

=
{
{ε̇cq}m(1) · · ·

{
ε̇cq
}
m(mel)

}T
(52)

Matrix [H] in relation (50) is a block diagonal matrix that
assumes the following form

[H] =

 A(1) [0]

[0]
. . .

A(mel)

 (53)

where A(1) = H1m(1)H2m(1)[R]m(1) and A(mel) =

H1m(mel)H2m(mel)[R]m(mel)

Equations (50) are independent and thus can be solved
in the micro-element level resulting in an implicitly parallel
scheme. Furthermore, relation (53) depends on the current
micro-stress state within each micro-element. Thus, a
procedure needs to be established that downscales the macro-
displacements {U}M .

Any type of numerical integration method can be
implemented to solve the equations of motion of the
hysteretic multiscale formulation (48). In this work, the HHT
numerical integration algorithm is used in conjunction with
a Newton-Raphson iterative scheme to treat nonlinearity.
Equations (50) are treated at the micro-element level by
means of the cutting-plane algorithm although more robust
approaches such as the Radial Return mapping algorithm
can also be implemented. The compuatational aspects of
the methodology presented herein are described in detail in
Triantafyllou and Chatzi (2014).

Computational Model Validation
As aforementioned, validation of computational models may
be discussed in relation to two main directions, namely the
numerical and experimental validation approach.
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Numerical Validation
Within the scope of what is discussed herein, it is evident that
as the complexity of the system increases, the formulation of
exact models becomes a challenging task. In validating the
efficacy of the assumptions and simplifications that need be
adopted, the Monte Carlo method comprises a useful tool
for reliability prediction. Unlike many other mathematical
models, system complexity is not a hurdle for this approach,
which can handle dynamic systems of an imprecise nature.

Reliability models entail processes of a probabilistic
nature. These processes usually analyze the effects of the
combination of two or more input random variables onto the
probability distribution of certain output random variables.
In approaching such a problem one could resort to either
analytical methods or to Monte-Carlo simulation. In the
analytical method, the probability distributions associated
with the output are derived via analytical formulations
involving the probability distributions associated with the
input. Since such a straightforward formulation is difficult
to obtain depending on the problem at hand, Monte Carlo
simulation offers a valuable alternative. In Monte-Carlo
simulation, a sample space of the input parameter is
generated via use of a random number and knowledge of
its probability distribution function (pdf). By repeating this
process for a large number of input samples, a picture of the
distribution of the output random variable is attained, which
ultimately leads into statistical estimates of parameters
of interest, e.g. mean and standard deviation of failure
probability, or maximum inter-storey drift ratios. Through
a variety of implementations, the Monte Carlo simulation
has surfaced as a robust and widely applied method in
determining the reliability of a structural component or
system (Kiureghian 1996; Beck and Au 2002). A more
detailed explanation of the Monte-Carlo simulation within
the scope of structural reliability is given in Laumakis and
Harlow (2002). Nonetheless, it should be noted that Direct
Monte Carlo simulation (DMCS) can be computationally
expensive, which is why hybrid or semi-analytical methods
have been developed (Cardoso et al. 2008).

Due to its ease of implementation and flexibility in
handling any type of problem, the Monte Carlo method is
applied in the example cases presented herein for the purpose
of computational model validation. In what is of interest in
this work, the set of random input variables comprises not
only the structural’s system properties but also the precision
of the numerical model itself. In the first application
example presented in Section Examples, the sensitivity of
the performance of a composite system is assessed with
regard to both of these quantities, namely the stiffness and
strength parameters of the separate constituents, as well as
the use of solver (fine-mesh FEM versus HMsFEM).

Experimental Validation
The second and most critical means of model validation is
via direct comparison of the model prediction to the actual
system response, either this is pertinent to experimentally
observed response or field testing of large-scale structural
systems. On the basis of this, System Identification methods
provide a valuable toolkit for updating uncertain models
of structural systems based on direct information from the

system itself. The recent technological advances further
enable the extraction of information from structures via
production of low-cost sensor arrays that can be easily
deployed on either a short- or long-term basis and based on
which structural feedback is attained in various forms such as
acceleration, velocity, displacement, or strain measurements.

The rich amount of data gathered from structural response
can be used in an inverse problem setting for identifying
structural characteristics that are not precisely known a-
priori and for updating or even selecting appropriate
simulation models. The second application presented in
Section Examples discusses such an inverse problem
formulation, where the goal is to infer the characteristic
properties of the constituents, i.e., stiffness and strength,
based on limited information of vibrational response in the
form of acceleration measurements. The measurements are
obtained via simulation of a testing process for the composite
aluminum panel that is here used as an example test case.

The identification algorithm that is here utilized for joint
state and parameter estimation is the Unscented Kalman
Filter (UKF), which has been extensively utilized in previous
works of the authors (Chatzis et al. 2014; Chatzi and Smyth
2009; Chatzi et al. 2010) and essentially constitutes an
approximation of the standard Kalman Filter applicable for
problems of joint state and parameter estimation. The UKF
is a Bayesian approximation which succeeds in simulating
non-linear behavior by approximating the state as a Gaussian
random variable (GRV), represented by a set of carefully
chosen deterministic points known as the Sigma Points.
The interested reader is referred to the works of Julier and
Uhlmann (1997), and Wan and van der Merwe (2000) for the
implementation details.

In the joint state and parameter identification regime, the
filter’s structure is of the following form:{

xk+1

θk+1

}
=

{
F (xk,θk)

θk

}
+ wk

yk = H(xk,θk) + vk

(54)

where xk is the state variable vector comprising
the displacements and velocities of a structural system
undergoing dynamic loading, θk are the time invariant
parameters that are considered to be unknown or uncertain,
wk is a zero mean Gaussian process noise vector with
covariance matrix Qk, yk is the observation vector and vk
is the zero mean Gaussian measurement noise vector with
corresponding covariance matrix Rk.

The process noise reveals the confidence placed into
the accuracy of the system representation, i.e., the model
of the system. The observation noise on the other hand
reveals the confidence placed in the acquired measurement.
The tuning of these quantities is critical depending on the
task at hand. Additionally, functions F , H represent the
system and observation model respectively. The flexibility
of the UKF lies in the ability to incorporate loosely
defined functions. In the implementation presented herein
the developed HMsFEM framework is utilized as the model
simulating the system response (function F ), whereas a fine-
mesh FEM is utilized for extraction of the measurement
quantities, yk. The latter correspond to acceleration time
histories at certain nodes of the structure. As this process
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Figure 4. (a) Model Definition (b) Finite Element mesh

is also a stochastic one involving numerous parallel forward
simulation, for each discrete sigma point, the ability to use a
reduced order model of the system which however provides
sufficient accuracy is of the essence.

As discussed in the next Section the HMsFEM approach
furnishes an invaluable tool for accurate yet accelerated
computation, especially suited for problems of structural
reliability or inverse formulations, that are concomitant to
structural model validation.

Examples

Aluminum Panel - Non-degrading material
In this example, a sensitivity and reliability analysis
pertaining to the dynamic response of a heterogeneous
structure, with uncertain material properties, is performed.
A fine meshed Finite Element model is considered as the
detailed reference simulation and is cross-compared to a
reduced order forward model developed via the HMsFE
method. For the purpose of this parametric analysis the
case of an aluminum sheet is considered, reinforced with
two steel strips (Fig. 4(a)). The length, width and height
of the beam are Lm = 200cm, bm = 0.5cm and hm =
50cm respectively. The height of the steel strips is hf =
5cm. The constituents are assumed to be elastic-perfectly
plastic with deterministic Poisson ratios νa = 0.33 and
νs = 0.3 for the aluminum and steel respectively. The
elastic moduli and the corresponding yield stresses of
the materials are considered to be random variables. The
Log-Normal distribution is used for all random variables
with corresponding mean values Ema = 70GPa and fya =
214MPa for the aluminum and Ems = 200GPa and fys =
235MPa for the steel. A varying amplitude sinusoidal
deterministic pressure load is considered at the free end
defined as p(t) = 20000tsin(πt)kPa.

The fine meshed finite element model presented in
Fig. 4(b) consists of 1600 linear quadrilateral plane
stress elements with a total of 3358 free degrees of
freedom. The multiscale finite element model is formulated
by 16 plane stress coarse elements. The corresponding
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Figure 5. Force Displacement Loops (Mean Values)

representative RVE consists of 100 plane stress elements.
The periodic boundary condition assumption is used to
evaluate the micro-basis interpolation functions. In Figure 5,
the force-displacement hysteretic loops derived from the two
formulations for the mean values of the random variables are
presented. The differences between the two formulations are
marginal.

Next, a total 5000 Monte Carlo iterations is performed
in each model, considering a Latin Hypercube sampling
scheme. Different random seeds and therefore different sets
of random variables are used for the FEM and HMsFEM
case, with the purpose of obtaining an unbiased comparison.
The derived data sets of the effective elastic stiffness
evaluated from the response of the FEM and HMsFEM
analysis cases are presented in Fig 6(a) and 6(b) respectively.
This effective value is calculated as the slope of the elastic
region of the force-displacement diagram for the first cycle
of loading. Furthermore, the histograms of the maximum
displacements are presented in Fig. 7, providing in this way
a measures that quantifies structural response under loads
that push the system into the plastic region, thereby serving
as a tool for assessing structural reliability. The statistical
properties of the two data sets are in very good agreement.

In Fig. 8(a) the derived PDFs of the macroscopic elastic
horizontal stiffness of the two models is presented. The
derived PDFs are found to fit a generalized extreme value
distribution function of the II type. The results obtained
from the HMsFE model are almost identical to the results
obtained from the fine meshed FEM model. In Fig. 8(b) the
derived probability density functions of the maximum axial
displacement are presented. The corresponding statistical
data is found to fit the extreme value distribution function.
The results obtained from the two different models are in
good agreement, with the relative difference in the statistical
parameters of the parametric PDEs being less than 0.5%.

Aluminum Panel - Degrading material
In this case, the variability of the strength deterioration
and stiffness degradation parameters is also considered. To
better illustrate their effect on the dynamic response of
the structure, the following, constant amplitude, sinusoidal
excitation is considered in this case

p(t) = 250000sin(πt)kPa
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Figure 6. Elastic Stiffness Histogram (a) FEM (b) HMsFEM

Variable Min Max
Ema 62500000 kPa 67500000 kPa
fya 200000 kPa 242000 kPa
cηm 2.5e-7 2.5e-6
csm 5.0e-7 5.0e-6
Es 200000000 kPa 231000000 kPa
fys 225000 kPa 247500 kPa
cηs 2.5e-7 2.5e-6
css 5.0e-7 5.0e-6

Table 2. Random Variable limit values

The random variables in this case are the elastic moduli, yield
stress and the stiffness degradation and strength deterioration
parameters of the constituents. The uniform distribution is
considered for all variables and the limit values considered
are presented in Table 2.

In Fig. 9, the total applied force versus the center-
point axial displacement at the tip of the cantilever is
presented. The results obtained from the two procedures
are practically identical. In this case, the analysis conducted
using the HMsFEM procedure concluded in 900 sec while
the corresponding analysis time using the standard FEM
procedure was 4626 sec, amounting to a significant reduction
in the computational toll involved.

In this case 2000 Monte Carlo simulations were performed
for each one of the solution approaches. Contrary to the case
examined in Section Aluminum Panel - Non-degrading
material the same pool of random variables is considered for
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Figure 7. Maximum Displacement Histogram (a) FEM (b)
HMsFEM

both cases. The derived results are again compared in terms
of the estimated PDFs of the response variables.

In Fig. 10(a) and 10(b) the histograms of the derived
maximum displacements are presented for the case of the
HMsFEM and FEM analysis respectively. The HMsFEM
approach results in a slightly stiffer configuration as
compared to the FE method. The same trend is also revealed
form the histograms of the residual displacement presented
in Fig. 11(a) and 11(b) for the multiscale and finite element
methods respectively.

In Fig. 12(a), the estimated PDFs for the maximum
displacement are compared while in Fig. 12(b) the
derived PDFs for the residual displacement (due to plastic
deformation) are presented.

Inverse Problem Formulation
In this example, a structure similar to the previous
composite panel is revisited, under the prism of parameter
identification. The aluminum sheet of Figure 4(a) is once
again considered with a length, width and height of Lm =
200cm, bm = 0.3cm and hm = 50cm respectively. The
height of the steel strips is hf = 5cm. A concentrated
mass of 15tn is attached on the free end of the beam.
A random pressure load is considered at the free end
defined as p(t) NID(0, σ2

e) with NID denoting a Normally
Independently Distributed process with the indicated mean
and variance. This type of load, illustrated in Figure 14,
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Figure 9. Degrading Material: Force Displacement Loops
(Mean Values)

allows for the simulation of a simple testing procedure driven
either via random excitation or possibly a suitable shaking
device with an appropriate stinger, exerting an axial load on
the lumped 15tn mass.

The goal is to utilize information from the structure
in the form of acceleration measurements obtained at a
finite set of sensor locations, nine in total, as indicated
in Figure 13, in order to identify the properties of the
constituents involved. The four constitutive parameters,
namely the elastic stiffness and yield stress of each of the
two constituents, are considered as unknown a-priori or,
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Figure 10. Maximum Displacement Histogram (a) FEM (b)
HMsFEM

more precisely, as uncertain. An off initial assumption is
made on the values of these parameters, which is utilized as
the initial condition to be fed into the UKF algorithm. The
corresponding initial values are θ0

1 = Ema = 87.5GPa and
θ0
2 = fya = 267.5MPa for the aluminum and θ0

3 = Ems =
241.5GPa and θ0

4 = fys = 211.5MPa for the steel. The
true parameter values are on the other hand set as θ1 =
Ema = 70GPa and θ2 = fya = 210MPa for aluminum
and θ3 = Ems = 210GPa and θ4 = fys = 235MPa for
steel.

A reference forward analysis is performed in ABAQUS,
employing a fine mesh; this serves as the “actual” response,
utilized here as the equivalent of an experimental testing
process. Therefore, the measurement vector yk, comprising
nine acceleration data sets, to be fed into equation (54) of
the UKF, is herein generated via an independent numerical
simulation. The crucial component lies in the utilization of
the forward (or process) model for the UKF. As explained
earlier, the UKF is formulated using a discrete set of samples,
termed the Sigma Points. The number of these Sigma Points
equals 2 ∗ L+ 1, where L is the size of the augmented
state of the system. For a joint state-parameter identification
problem, this augmented vector comprises the system’s
displacements and velocities at all degrees of freedom, as
well as the unknown parameters (four in this example). It
therefore becomes evident, that if one is to utilize a finely
meshed model construed in ABAQUS, the dimension of
the system would be too large for numerical computation.
Even more importantly due to memory limitations, there
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Figure 11. Residual Displacement Histogram (a) FEM (b)
HMsFEM

exists a critical matrix size, and therefore an associated mesh
refinement, for which calculations would be prohibited. A
means for solving this problem is delivered through the
utilization of the proposed HMsFEM approach. In what
follows, the process and observation functions denoted
as F , H in (54) are replaced via the HMSFEM solver
between successive time steps. A coarse mesh of 24 nodes is
utilized, bringing the state dimension down to a dimension
L = 2 ∗ 24 + 4 = 52. The corresponding Sigma Point set
therefore comprises a total of 2L+ 1 = 109 components.
Furthermore, the Sigma Point runs are in fact independent,
allowing for the parallel execution of these forward runs.
The identification process is consequently initiated with the
following settings for the filter. An initial covariance of the
state, Px, of the order of 1e− 13 is assigned. The process
and observation noise covariance matrices, Qk and Rk

respectively, are set as a diagonal with diagonal components
equal to 1e− 13 and 1e− 5 correspondingly. For facilitating
the filter implementation, and avoiding numerical errors, the
parameter values are normalized with a target values set at
0.01 for all four constitutive parameters.

The results of the identification process are summarized
in Figures 15-18. Figures 15-16 summarize the velocity
predictions of the filter for both an observed (node #3), i.e.,
monitored via a sensor, as well as an unobserved (node #21)
degree of freedom. It is noted that in both cases, the filter
furnishes a very accurate estimation of the corresponding
nodal velocities. An integration error, relating as well to the
selected levels of process noise, is however noticeable in
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Figure 13. Acceleration sensor locations

the displacement estimates. This accumulation of integration
errors resulting in displacement drifts is not uncommon as
noted in Chatzi and Fuggini (in press), nonetheless this does
not create a hindrance in the particular inverse problem
solution.

The primary target of this inverse formulation is
the extraction of the true parameters that characterize
the structural properties, i.e., the stiffness and strength
characteristics. Figure 19 indicates the convergence of the
algorithm to the true, “normalized” parameter value which
is set to 0.01 (unitless) for all parameters. The successful
utilization of the filter is enabled through the implementation
of the multiscale scheme. For the purposes of comparison,
it is mentioned than on a PC fitted with an Intel i7
processor and 32 GB of RAM. utilizing all 4 cores, the
time allocated for the analysis was approximatelly 4 hrs,
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Figure 14. Time history plot of the randomly generated input
load.
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Figure 15. Observed Node 3 velocity time-history estimate
(blue) versus actual value (red).
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Figure 16. Unobserved Node 21 velocity time-history estimate
(blue) versus actual value (red).

whereas if the ABAQUS model were to be employed
using the Finite Element mesh presented in Figure 4(b),
a prohibitive total time of 4 days would be delivered. It
is therefore pointed out, that the appropriate combination
of advanced modeling tools with appropriate identification
and uncertainty quantification techniques can enable the
validation of computational mechanics models seeking to
accurately reproduce structural response, especially in the
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Figure 17. Observed Node 3 displacement time-history
estimate (blue) versus actual value (red).
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Figure 18. Unobserved Node 21 displacement time-history
estimate (blue) versus actual value (red).

case of nonlinear hysteretic response, where the cost of
computation forms a major concern.
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Figure 19. Constitutive parameters estimates versus the
reference (normalized) value (black line).
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Conclusions

In this work, a numerical procedure for the computationally
efficient simulation of nonlinear hysteretic response of
multi-phase systems is presented, within the context of
model validation. The proposed methodology termed the
Hysteretic Multiscale Finite Element Method (HMsFEM) is
formulated within the framework of the Enhanced Multiscale
Finite Element method (MsFEM), where the fine-scale
is modeled using a hysteretic finite element approach.
Using this method, inelasticity is treated at the micro-level,
introducing additional hysteretic degrees of freedom that
evolve according to a generic multiaxial smooth hysteretic
law. The developed modeling approach is utilized for the
purposes of model validation; firstly, in the context of
reliability analysis through cross-assessment against a fine-
mesh model developed in an independent analysis program
(ABAQUS); and secondly, for an inverse problem where
the identification of constitutive parameters via availability
of acceleration response data is sought. The derived results
demonstrate the potential of utilizing the proposed approach
as a computationally accelerated yet sufficiently accurate
surrogate model in problems of nonlinear dynamic analysis
of heterogeneous structures; a problem which by default
comprises a computationally challenging task. The proposed
approach provides a means of assessing model credibility
as well as testing the validity of adopted assumptions
concerning not only the model structure, but additionally the
characteristic properties of associated models.
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