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ABSTRACT

Composite materials are being implemented in numerous engineering applications
including, though not limited to, the aerospace, auto-mobile, wind turbine industries
and the retrofit and strengthening of existing buildings. Advancements in manufactur-
ing processes enable the production of composites whose macroscopically observed
properties are elaborately determined at the micro-scale.Composites are therefore
inherently multiscale materials. Consequently, the reliability of structural systems being
comprised of composites heavily depends on the micro-mechanical properties of the
latter. In this work, a methodology is presented for the evaluation of failure probabilities
of composite structures. The hysteretic multiscale finite element method (HMsFEM) is
implemented for the modelling of composites while the subset simulation method is
used to evaluate the corresponding probabilities of failure. In the HMsFE method, the
nonlinear behaviour of the constituents is accurately modelled in the fine scale, while
global solution of the structure is performed in a macro-scale thus significantly reducing
the computational cost of the reliability analysis procedure.

INTRODUCTION

Composites are mixtures of two or more mechanically separable solid materials (Strong
2008). Composites are inherently multiscale materials, i.e. the scale of the constituents
can be of lower order than the scale of the resulting material. The content, geometry,
distribution and phase of the different constituents, thatare can only be observed at the
micro-scale, significantly affect the macroscopically measured behaviour of the com-
posite (Mishnaevsky 2007). Furthermore, the resulting structure, that is an assemblage
of composites, can be of an even larger scale than the scale ofthe constituents (e.g. a
textile strengthened masonry structure (Fuggini et al. 2013), a bio-sensor consisting
of several nano-wires (Park 2010)). Thus, the required modelling approach has to



account for such a level of detailing that spreads through scales of significantly different
magnitude.

Instead of implementing the standard finite element method,upscaled or multiscale
methods have been proposed to account for such types of problems, therefore sig-
nificantly reducing the required computational resources (Kim et al. 2013). Amongst
the various multiscale analysis procedures (Kanouté et al. 2009), the multiscale finite
element method has been proven very efficient in terms of accuracy and computational
complexity for the case of linear and nonlinear flow (Efendiev and Hou 2009; He and
Ren 2005) as well as for the analysis of heterogeneous structures (Zhang et al. 2012).
In the latter, a numerically derived mapping is interpolation scheme is implemented
to map the micro-scale displacement field onto the macro-scale where the solution of
the problem is actually performed. However, during a nonlinear analysis procedure
the material properties of the micro-structure are updateddue to damage progression,
thus the material dependent numerical mapping needs also tobe updated during the
incremental solution procedure. In (Zhang et al. 2012) the initial stiffness approach is
implemented for the solution of the incremental governing equations, thus avoiding the
re-evaluation of the basis functions. Nevertheless, this method is known to face serious
convergence problems and usually requires a large number ofiterations to achieve
convergence (Powell and Simons 1981).

In this work, a hysteretic multiscale finite element method (HMsFEM) is used for
the nonlinear static and dynamic analysis of heterogeneousstructures (Triantafyllou
and Chatzi 2013). In this, the evaluation of the micro-scalebasis functions is accom-
plished within the hysteretic finite element framework (Triantafyllou and Koumousis
2013). In the hysteretic finite element scheme, inelasticity is treated at the element level
through properly defined evolution equations that control the evolution of the plastic
part of the deformation component. Using the Principle of Virtual Work, the tangent
stiffness matrix of the element is replaced by an elastic anda plastic state matrix both
of which remain constant throughout the analysis.

The reliability analysis of structures consisting of composite materials can turn into
an arduous task as it includes a number of Monte Carlo iterations over a computational
expensive model (Kimiaeifar et al. 2013). Many methods havebeen proposed to address
the problem of efficiently sampling the design space, thus avoiding exhaustive Monte
Carlo iterations, such as Stratified Sampling, Latin-HyperCube sampling, Importance
Sampling and Subset Simulation (Au and Beck 2001) amongst many. An illustrative
review of the different methods can be found in (Mackay 1998). In this, work the Subset
Sampling (or Subset Simulation) method is used that has beenextensively implemented
and tested in structural analysis problems and has proven tobe very efficient both in
terms of computational cost and robustness (Au and Beck 2003; Zio 2010). Surro-
gate models are also implemented that significantly reduce the computational cost by
substituting the detailed computational model with a simplified but probabilistically
equivalent model (Dimitrov et al. 2013). However, the accuracy of the method in
problems involving when material non-linearities across multiple scales has not yet
been examined. Rather than reverting to surrogate models, the HMsFE method is used



in conjunction with the subset simulation approach, yielding a cost effective reliability
analysis procedure.

PROBABILITY OF FAILURE ESTIMATION

Problem Statement The performance of a structure is described by a cost function
f : Xn → R

n whereXn denotes then-dimensional space of structure related design
variables andRn is then-dimensional real space. Given a design requirementD ∈ R

n,
a failure event is mathematically defined as the set

S
n = {x ∈ X

n : f (x) > D} (1)

Based on equation (1), the probability of occurrence of the failure event is defined as

Pf = Prob (Sn) =

∫

Sn

pf (x) dS
n =

∫

Xn

ISnpf (x) dX
n (2)

wherepf is a probability density function, whileIS is a Heaviside step function that is
equal to unity whenx ∈ S

n and zero otherwise.
The evaluation of the integral defined in equation (2) is not trivial, especially in the

case of complex and high-dimensional problems (e.g. problems that involve a large
number of random variables). The most common computationalprocedure for the
evaluation ofpf is the Monte-Carlo simulation method. This is based on the simulation
of a large number of randomly derived individual samplesxi, i = 1 . . . Nsamples

so that the probability of failure can be statistically evaluated through the following
relation:

Pf =
Number of performed samples that lead to failure

Total number of samples
(3)

However, the accuracy of equation (3) greatly depends on distribution of the individual
samples within the MC sample space. If the individual samplesxi lay all outside of the
failure region (e.g.f (xi) < D), then the corresponding probability will be evaluated
as to be exactly zero. As a result, a large number of individual samples needs to be
processed, thus considerably increasing the required amount of computational time.

The subset sampling method The basic idea of Subset Sampling is the subdivision
of the failure event into a sequence ofNsub partial failure events (subsets)Sn

m, m =
1 . . . Nsub that adhere to the following relation

S
n
1 ⊃ S

n
2 · · · ⊃ S

n
Nsub

(4)

Two conclusions can be drawn from the sequential determination of the failure events
defined in equation (4):

1. The events are sorted in a descending order of probabilityof occurrence.



2. Each next event can only occur on the condition of occurrence all the the
preceded events.

Thus, the probability of occurrence of the rare eventS
n
Nsub

(e.g. the solution of the
reliability problem) can be readily evaluated through the following relation

Pf = PSn
Nsub

= P
(

S
n
Nsub

∣

∣S
n
Nsub−1

)

P
(

S
n
Nsub−1

∣

∣ S
n
Nsub−2

)

....P (Sn
2 |S

n
1 )P (Sn

1 )

= P (Sn
1 )

Nsub−1
∏

1

P
(

S
n
i+1

∣

∣ S
n
i

)

(5)

Using the definition of the failure event presented in equation (1), each subset is
defined accordingly as:

S
n
m = {x ∈ X

n : f (x) > Dm} , m = 1 . . . Nsub (6)

whereDm is the limit value corresponding tomth probability of failure. Relation (6) is
more conveniently defined as

S
n
m = {x ∈ X

n : g (x) < gm} , m = 1 . . .Nsub (7)

whereg (x) = Dm− f (x). The formulation introduced in equation (7) bares some im-
plementation advantages, as the least rare eventS

n
1 can be associated with an extremely

large value of the limit valueg1, while the limit valuegm = 0 accounts for the failure
probability that the method searches for.

In the formulation introduced in (Au and Beck 2001), the limit valuesgm are adap-
tively determined during the analysis procedure in such a way so that the conditional
probabilities introduced in equation (5) are equal to a predefined value. This is achieved
through the implementation of a Markov chain Monte Carlo scheme in conjunction with
a modified version of the Metropolis-Hastings algorithm (Robert and Casella 2010).

THE HYSTERETIC MULTISCALE FINITE ELEMENT METHOD

Equilibrium in the fine scale Based on the hysteretic finite element method (Tri-
antafyllou and Koumousis 2013), equilibrium at the fine scale is established on the
grounds of the following relation

[

kel
]

m(i)
{d}m(i) −

[

kh
]

m(i)

{

εplcq
}

(i)
= {f}m(i) (8)

where
[

kel
]

m(i)
is the elastic stiffness matrix,{d}m(i) is the nodal displacement vector,

[

kh
]

m(i)
is the plastic state matrix,

{

εplcq
}

(i)
is the set of plastic strains measured at

predefined collocation points, while indexm (i) denotes the corresponding measure of
the ith micro-element. The plastic deformation components are considered to evolve
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Figure 1. The hysteretic multiscale finite element method

according to a pre-defined set of rate equations of the following form

{

ε̇pl
}

m(i)
= F

(

{

εel
}

m(i)
,
{

ε̇el
}

m(i)
, {σ}m(i)

)

. (9)

According to MsFEM the following interpolation scheme is introduced:

{d}m(i) = [N ]m(i) {d}M (10)

where[N ]m(i) is the micro-to-macro numerical interpolation functions and{d}M is the
vector of nodal macro-displacements.

Pre-multiplying equation (8) with[N ]Tm(i) the following relation is derived:

[

kel
]M

m(i)
{d}M −

[

kh
]M

m(i)

{

εplcq
}

(i)
= {f}Mm(i) (11)

where
[

kel
]M

m(i)
= [N ]Tm(i)

[

kel
]

m(i)
[N ]m(i) (12)

is the elastic stiffness matrix of theith micro-element mapped onto the macro-element
degrees of freedom while

[

kh
]M

m(i)
is corresponding the hysteretic matrix of theith

micro-element, evaluated by the following relation:

[

kh
]M

m(i)
= [N ]Tm(i)

[

kh
]

m(i)
(13)

Finally, {P}Mm(i) in equation (11) is the equivalent nodal force vector of the micro-
element mapped onto the macro-nodes of the coarse element.

{f}Mm(i) = [N ]Tm(i) {f}m(i) (14)



Equation (11) is a multiscale equilibrium equation involving the displacement vector
evaluated at the coarse-element nodes and the plastic part of the strain tensor evaluated
at collocation points within the micro-scale element mesh.The derived multiscale
elastic stiffness and hysteretic matrices are constant andneed only be evaluated once
during the analysis procedure.

Micro to Macro scale transition Having established the micro-element equilibrium
in equation (11) in terms of macro-displacements a procedure is required to formulate
the global equilibrium equations in terms of the macro-quantities. The potential energy
at the coarse element level is evaluated using the followingrelation:

∫

VM

{ε}TM {σ̇}M dVM =
[

Kel
]M

CR(j)

{

ḋ
}

M
−

[

Kh
]M

CR(j)

{

ε̇plcq
}

M
(15)

where
[

Kel
]M

CR(j)
,
[

Kh
]M

CR(j)
are the equivalent elastic stiffness and hysteretic matrix

of the jth coarse element respectively while
{

ε̇plcq
}

M
is the vector of plastic strains

defined at the collocation points. Within the multiscale finite element framework, these
quantities are not known a priori and need to be expressed in terms of micro-scale
measures, thus accounting for the micro-scale effect upon the macro-scale mesh. This
is accomplished by demanding that the strain energy of the coarse element is additively
decomposed into the contributions of each micro-element within the coarse-element.
Thus, the following relation is established:

∫

V

{ε}TM {σ}M dV =

mel
∑

i=1

∫

Vmi

{ε}Tmi {σ}mi dVi (16)

where{ε}mi, {σ}mi are the micro-strain and micro-stress field defined over the volume
Vmi of the ith micro-element. Implementing the hysteretic finite elementmethod the
r.h.s of equation (16) is cast onto the following form

mel
∑

i=1

∫

Vmi

{ε}Tmi {σ}mi dVi =

mel
∑

i=1

(

{d}Tmi

[

kel
]

m(i)
{d}m(i)

−{d}Tmi

[

kh
]

m(i)

{

εplcq
}

m(i)

)

(17)

Substituting relation (10) into relation (17) the following expression is derived

mel
∑

i=1

∫

Vmi

{ε}Tmi {σ}mi dVi = {d}TM ·

mel
∑

i=1

(

[N ]TMi

[

kel
]

m(i)
[N ]Mi {d}M − [N ]TMi

[

kh
]

m(i)

{

εplcq
}

m(i)

)

(18)



Substituting equations (15) and (18) into equation (16), the following expression is
derived:

[

Kel
]M

CR(j)
{d}M −

[

Kh
]

CR

{

εpl
}

cq
=

mel
∑

i=1

[

kel
]M

m(i)
{d}M −

mel
∑

i=1

[

kh
]M

m(i)

{

εplcq
}

m(i)

(19)

Relation (19) holds for every compatible vector of nodal displacements{d}M as long
as:

[

Kel
]M

CR(j)
=

mel
∑

i=1

[

kel
]M

m(i)
(20)

and
[

Kh
]M

CR(j)

{

εplcq
}

M
=

mel
∑

i=1

[

kh
]M

m(i)

{

εplcq
}

m(i)
(21)

thus, the following multiscale equilibrium equation is derived for the coarse element:

[

Kel
]M

CR(j)
{d}M = {f}M − {fh}M (22)

where{fh}M is a nonlinear correction to the external force vector arising from the
evolution of the plastic strains within the micro-structure

{fh}M =

mel
∑

i=1

[

kh
]M

m(i)

{

εplcq
}

m(i)
(23)

while the plastic strain vectors
{

εplcq
}

m(i)
are considered to evolve according to relation

(9). Equations (22) and (23) are used to derive the equilibrium equation at the structural
level as will be described in the next Section.

The coarse element stiffness matrices are independent and therefore their evalua-
tion can be performed in parallel. Furthermore the coarse element stiffness matrices
[

Kel
]M

CR(j)
can be assembled at the structural level using the direct stiffness approach.

Likewise, the coarse element hysteretic load matrices{fh}M can be also assembled
at the structural level, accompanied by a set of hysteretic equations (10). The solution
of the coarse structure is then performed using the hysteretic finite element solution
procedure introduced in (Triantafyllou and Koumousis 2013).

APPLICATION

The FERUM reliability toolbox (?) was used for the purpose of implementing and
verifying the methodology presented in this work. The toolbox was properly modified
so as to cooperate with the developed hysteretic multiscaleanalysis software.
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Figure 2. (a) Model Definition (b) Finite Element mesh

Steel reinforced aluminum panel In this example, an aluminum sheet is considered,
reinforced with two steel strips (Fig. 2(a)). The length, width and height of the beam
are Lm = 200cm, bm = 0.5cm and hm = 50cm respectively. The height of the
steel strips ishf = 5cm . The constituents are assumed to be elastic-perfectly plastic
with deterministic Poisson ratiosνa = 0.33 andνs = 0.3 for the aluminum and steel
respectively. The elastic moduli and the corresponding yield stresses of the materials
are considered to be random variables. A uniform distribution is considered all random
variables with corresponding mean valuesEma = 70GPa andfya = 214MPa for the
aluminum andEms = 200GPa andfys = 235MPa respectively. The fine meshed
finite element model, presented in 2(b), consists of 1600 linear quadrilateral plane
stress elements with a total of 3358 free degrees of freedom.The multiscale finite
element model is formulated by 16 plane stress coarse elements. The corresponding
representative RVE consists of 100 plane stress elements.

Three analysis cases are considered. In the first, a crude MC method is implemented
with the multiscale model (MCMs). The second involves the subset simulation MC
with the multiscale model (ssMCMs) while in the third a finiteelement model is used
in conjuction with the subset simulation method (ssMCFEM) for verification. First a
varying amplitude sinusoidal deterministic pressure loadis considered at the free end
p(t) = 20000sin(πt)kPa. Failure is defined as the maximum axial displacement at
the cantilever tip exceeding the value of 100 mm (e.g. where the maximum aluminum
normal deformation isεxx > 5% during the first ten seconds of the response. The
average acceleration Newmark scheme is implemented for thesolution of the equations
of motion with a constant time stepTstep = 0.01sec. For the crude MC approach,
10000 model realizations are considered. The initial population of the subset simulation
method is set equal toNsub = 500 while the target probability of failure of the
intermediate failure events is set toP (|) = 0.1.

The derived propability of failure for each analysis case ispresented in Table 1.

Next, the case of random loading is also considered by multiplying the load ampli-
tude with a white noise factor of spectral intensityS = 1. The corresponding results
are presented in Table 2.



Table 1. Probability of failure and function evaluations

Method Pf Function Evaluations Time (sec)
MCMs 0.0002 10000 219192.48
ssMCMs 0.000187 1700 42760.05
ssMCFEM 0.000184 1700 152343.34

Table 2. Probability of failure and function evaluations - Random Loading

Method Pf Function Evaluations Time (sec)
MCMs 0.00015 10000 219194.48
ssMCMs 0.000152 1700 42762.05
ssMCFEM 0.000156 1700 152341.34

CONCLUSION

In this work, a method is presented for the reliability analysis of composite structures.
The method makes use of the hysteretic multiscale finite element formulation (HMs-
FEM) for structural modeling in conjunction with the subsetsimulation method for
the estimation of the probability failure. Compared to a finemeshed finite element
model, HMsFEM provides a faster solution since the order of the underlying governing
equations is significantly reduced. Likewise, the subset simulation method effectively
evaluates small failure probabilities by significantly reducing the number of required
numerical experiments. An example is presented, where boththe computational ef-
ficiency and the accuracy of the proposed scheme are examinedas opposed to the
classical reliability analysis procedure.
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