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Abstract. In this work, a three dimensional multiscale formulation is presented for the anal-
ysis of masonry structures based on the multiscale finite element formulation. The method is
develloped within the framework of the Enhanced Multiscale Finite Element Method. Through
this approach, two discretization schemes are considered, namely a fine mesh that accounts for
the micro-structure and a coarse mesh that encapsulates the former. Through a numerically de-
rived mapping, the fine scale information is propagated to the coarse mesh where the numerical
solution of the governing equations is performed. Inelasticity is introduced at the fine mesh by
considering a set of internal variables corresponding to the plastic deformation accumulatimg
at the Gauss points of each fine-scale element. These additional quantities evolve according
to properly defined smooth evolution equations. The proposed formalism results in a nonlin-
ear dynamic analysis method where the micro-level state matrices need only be evaluated once
at the beginning of the analysis procedure. The accuracy and computational efficiency of the
proposed scheme is verified through an illustrative example.
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1 INTRODUCTION

Composite materials consist of two or more mechanically separable solid materials. As
such, they in general exhibit a heterogeneous micro-structure whose specific morphology affects
the mechanical behavior of the assembled structure [19]. Composites are therefore multiscale
in nature, i.e. the scale of the constituents is of lower order than the scale of the resulting
material. Furthermore, the resulting structure, that is an assemblage of composites, can be
of an even larger scale than the scale of the constituents e.g. a textile strengthened masonry
structure [14] or a bio-sensor consisting of several nano-wires [23]. Thus, the required modeling
approach has to account for such a level of detailing that spreads through scales of significantly
different magnitude. Throughout this paper, the term macroscopic (or coarse) scale corresponds
to the structural level whereas the term microscopic (or fine) scale corresponds to the composite
micro-structure properties such as the sizes, morphologies and distributions of heterogeneities
that the material consists of.

Modeling of structures that consist of composites could be accomplished using the stan-
dard finite element method [35]. However, a finite element model mesh accounting for each
micro-structural heterogeneity would require large amounts of computer memory and CPU
time. Therefore, the finite element scheme is usually restricted to small scale numerical ex-
periments of a representative volume element (RVE) [21, 28]. To properly capture the effect of
micro-structural heterogeneities in the large scale, more refined methods have been developed.
Instead of implementing the finite element method as is, upscaled or multiscale methods exist
that account for such types of problems.

Multiscale methods can be separated in two groups, namely multiscale homogenization
methods [24] and multiscale finite element methods (MsFEMs) [12]. Within the framework
of the averaging theory for ordinary and partial differential equations, multiscale homogeniza-
tion methods are based on the evaluation of an averaged strain and corresponding stress tensor
over a predefined space domain denoted as Representative Volume (RVE). Amongst the var-
ious homogenization methods proposed [15], asymptotic homogenization has been proven to
be very efficient both in terms of accuracy and required computational cost [7, 33]. However,
homogenization methods rely on two basic assumptions, namely the full separation of the in-
dividual scales and the local periodicity of the RVEs. In practice, the heterogeneities within a
composite are not periodic as in the case of fiber-reinforced matrices. In order to adapt to gen-
eral heterogeneous materials, the size of the RVE must be sufficiently large to contain enough
microscopic heterogeneous information [29, 16] which results in a considerable increase of the
computational cost. Furthermore, in an elasto-plastic problem, periodicity on the RVEs also
dictates periodicity on the damage induced which could result in erroneous results.

The multiscale finite element method, instead, relies on the numerical evaluation of a set of
micro-scale basis functions that are used to map the micro-structure information onto the larger
scale. These basis functions depend on the micro-structural geometry and constituent material
properties. MsFEM was first introduced in [18] although a variant of the method was earlier
introduced in the pioneering work of [5] for one-dimensional problems and later improved to
account for higher order elements [4, 3]. Although MsFEMs have been extensively used in
linear and nonlinear flow simulation analysis [12, 16] the method has not been implemented in
structural mechanics problems. This is attributed to the inherent inability of the method to treat
the bulk expansion/ contraction phenomena (i.e. Poissons effect). To overcome this problem,
the enhanced multiscale finite element method (EMsFEM) has been proposed for the analy-
sis of heterogeneous structures [34]. EMsFEM introduces additional coupling terms into the
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fine-scale interpolation functions to consider the coupling effect among different directions in
multi-dimensional vector problems. However, in a nonlinear analysis procedure, the numerical
basis functions need to be evaluated at every incremental step due to the progressive failure of
the constituents thus diminishing the computational advantage of the method. The problem is
treated in [34] through the implementation of the the initial stiffness method [25] for the solu-
tion of the incremental governing equations. Nevertheless, this method is known to face serious
convergence problems and usually requires a large number of iterations to achieve convergence
[25]. The computational cost increases in a nonlinear dynamic analysis scheme, where a time
integration scheme is also needed on top of the iterative procedure [17].

In this work, a modified multiscale finite element analysis procedure is presented for the
nonlinear static and dynamic analysis of heterogeneous structures. In this, the evaluation of
the micro-scale basis functions is accomplished within the hysteretic finite element framework
[30]. Inelasticity is treated at the element level through properly defined evolution equations that
control the evolution of the plastic part of the deformation component. Using the Principle of
Virtual Work, the tangent stiffness matrix of the element is replaced by an elastic stiffness matrix
and a hysteretic stiffness matrix that both remain constant throughout the analysis. A multi-
axial smooth hysteretic model is implemented to control the evolution of the plastic strains. This
model is derived on the basis of the Bouc-Wen model of hysteresis [8] and accounts for any kind
of yield criterion and hardening law within the framework of classical plasticity [20]. Smooth
hysteretic modelling has proven very efficient with respect to classical incremental plasticity in
computationally intense problems such as nonlinear structural identi-fication [9] and stochastic
dynamics [27, 32]. Furthermore, the proposed hysteretic scheme can be extended to account
for cyclic damage induced phenomena such as stiffness degradation and strength deterioration
[13].

2 HYSTERETIC MODELING

2.1 Multiaxial modelling of hysteresis

The material model implemented in this work is a generic rate-independent hysteretic model.
This model accounts for any type of yield criterion and hardening law either isotropic, kinematic
or combined. Both the case of linear and nonlinear kinematic hardening is considered.

The model is defined on the grounds of two rate equations. The first equation controls the
evolution of the stress field with respect to the strain field and assumes the following form

{σ̇} = [D] ([I]−H1H2 [R]) {ε̇} (1)

where {σ} is the stress tensor, [D] is the elastic constitutive matrix, [I] is the identity matrix
while (·) denotes differentiation with respect to time while H1 and H2 are smoothened Heav-
iside functions that will be defined later on. Matrix [R] in equation (1) is a strain interaction
matrix defined through the following relation

[R] = {α}
(
−{b}T G ({η} ,Φ) + (α)T [D] {α}

)
{α}T [D] (2)

where {α} = (∂Φ/∂ {σ})T , {b} = (∂Φ/∂ {η})T and G ({η} ,Φ) is a hardening function cor-
responding to the kinematic hardening rule considered.

The second equation of the constitutive model used in this work defines the evolution of the
back-stress with respect to the strain field and assumes the following form:

{η̇} = H1H2G ({η} ,Φ)
[
R̃
]
{ε̇} (3)
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Figure 1: Multiscale Finite Element procedure

where
[
R̃
]

is the corresponding hardening interaction matrix defined by the following relation

[
R̃
]

=
(
−{b}T G ({η} ,Φ) + {α}T [D] {α}

)−1

{α}T [D] (4)

The smoothed Heaviside functions H1 and H2introduced in relations (1) and (3) assume the
following form, namely

H1 =

∣∣∣∣Φ ({σ} , {η})
Φ0

∣∣∣∣N , N ≥ 2 (5)

and
H2 = β + γsgn

(
{ε}T {σ̇}

)
(6)

where Φ = Φ ({σ} , {η}) is a yield criterion, Φ0 the yield limit,N a material parameter that
determines the rate at which the yield criterion reaches its maximum value while β and γ are
material parameters that control the stiffness at the moment of unloading.

3 THE MULTISCALE FINITE ELEMENT ANALYSIS METHOD

In this Section, the Enhanced Multiscale Finite Element Method (EMsFEM) is briefly dis-
cussed as a reference for subsequent derivations. A masonry frame is presented in Figure 1,
consisting of two piers and a horizontal spandrel. An additional outer layer of reinforcement
is also considered. The computational fine scale model consists of 8-node hex elements [35].
Instead of directly solving the fine scale computational model using the standard isoparamet-
ric finite element formulation, EMsFEM is based on a two-step approach. Grouping together
clusters of micro-elements, a set of coarse elements is constructed. The nodes of the de-
rived macro-elements are the macro-nodes of the coarse mesh. Accordingly, two displacement
fields are defined, namely the micro-displacement field corresponding to the micro nodal dis-
placements

{
um (x, y) vm (x, y) wm (x, y)

}T of the fine mesh and the macro-displacement
field

{
uM (x, y) vM (x, y) wM (x, y)

}T corresponding to the macro nodal displacements.
Throughout this work, subscriptm denotes a micro-measure whileM is used to denote a macro-
measure of the indexed quantity.
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Next, a numerical mapping is constructed that maps the micro-displacement field within
each RVE to the corresponding macro-displacements of the RVE macro-nodes. This numerical
mapping assumes the following generic form:

{d}m = M {d}M (7)

where M is a mapping operator. EMsFEM is based on the assumption that the discrete micro-
displacements within the coarse element are interpolated at the macro-nodes using the following
scheme:

um (xj, yj) =
∑nMacro

i=1 NijxxuMi
+
∑nMacro

i=1 NijxyvMi
+
∑nMacro

i=1 NijxzwMi

vm (xj, yj) =
∑nMacro

i=1 NijxyuMi
+
∑nMacro

i=1 NijyyvMi
+
∑nMacro

i=1 NijyzwMi

wm (xj, yj) =
∑nMacro

i=1 NijxzuMi
+
∑nMacro

i=1 NijyzvMi
+
∑nMacro

i=1 NijzzwMi

j = 1...nmicro

(8)
where um, vm, wm are the horizontal and vertical micro-displacement components, nMacro is
the number of macro-nodes of the coarse element, (xj, yj, zj) are the local coordinates of the
micro-nodes, uMi

, vMi
, wM are the horizontal and vertical displacement components of the

macro-nodes,Nixx,Nixy,Niyy,Niyz,Nizz are the micro-basis functions and nmicro is the number
of micro-nodes within the coarse element.

In equation (8), Nijxx stands for the displacement component of node j along the x axis
induced by a unilateral displacement at the i node (also along the x axis). Likewise, Nijxy

stands for the displacement component of the i node, along the x axis induced by a unilateral
displacement at node j and along the y axis. Contrary to MsFEM where the interpolation fields
of the displacement components are considered uncoupled, the coupling terms Nixy, Nixz, Niyz

are introduced in EMsFEM. Thus, equation (8) results in a kinematical assumption consistent
with the observation that a unit displacement in the boundary of a deformable body may induce
displacements in both directions within the body.

From the interpolation field introduced in equation (8), the following relation can be estab-
lished at the micro-elemental level

{d}m(i) = [N ]m(i) {d}M (9)

where {d}m(i) is the nodal displacement vector of the ith micro-element, [N ]m(i) is a matrix
containing the micro-basis shape functions evaluated at the nodes of the ith micro-element while
{d}M the vector of nodal displacements of the corresponding macro-nodes.

3.1 Numerical evaluation of micro-scale basis functions

The evaluation of the mapping operator M is performed numerically. Relation (8) suc-
cessfully maps the micro-displacement field to the macro-displacement field if and only if the
micro-shape functions adhere to the following property, namely, when the macro-displacement
component is equal to unity at a macro-node, displacement is equal to zero at every other macro-
node. The derivation of micro-basis functions with such properties can be accomplished by
considering the following boundary value problem

[K]RV E {d}m = {/0}

{d}S =
{
d̄
} (10)

where [K]RV E is the stiffness matrix of the RVE, {/0} is a vector containing zeros while {d}S
is a vector containing the nodal degrees of freedom of the boundary S of the RVE and

{
d̄
}

is a
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vector of prescribed displacements. The RVE stiffness matrix is formulated using the standard
finite element method [8]. In this work, the solution of the boundary value problem established
in equation (10) is performed using the Lagrange multiplier method [6].

The choice of the values of the prescribed boundary displacements is a key assumption of
the EMsFEM and highly affects the accuracy of the derived multiscale scheme. Three different
types of boundary conditions are established in the literature namely linear boundary conditions,
periodic boundary conditions and oscillatory boundary conditions with oversampling. Further
details on the procedure implemented for the derivation of the micro-basis functions can be
found in [12].

4 THE PROPOSED NUMERICAL SCHEME

The evaluation of the micro-shape functions for each RVE is based on the solution of the
equilibrium problem (10). Thus, the mapping depends on the material properties of the fine-
scale model, e.g. for the case of the reinforced masonry RVE presented in Figure 1, the solution
depends on the material properties of masonry and the composite matrix. Consequently, in a
nonlinear analysis procedure, either static or dynamic, the evaluation of the micro to macro-
mapping needs to be performed in every incremental step of the analysis procedure. To over-
come this computational drawback, the hysteretic formulation of finite elements is implemented
[30] in this work to account for the fine scale nonlinear material behaviour.

Considering the additive decomposition of the strain rate into a reversible elastic an an irre-
versible plastic part [22] within the micro-element, the following relation is established:

{ε̇}m(i) =
{
ε̇el
}

m(i)
+
{
ε̇pl
}

m(i)
(11)

where {ε}m(i) is the tensor of total micro-strain within the ith micro-element,
{
εel
}
m(i)

is the
tensor of the elastic strain,

{
εpl
}
m(i)

is the tensor of the inelastic, irreversible strain while (.)

denotes differentiation with respect to time. The vectorial notation of the stress and strain
tensors is used in this work. Using equation (11) the elastic Hooke’s stress-strain law is cast
into the following form

{σ̇}m(i) = [D]m(i)

{
ε̇el
}
m(i)

= [D]m(i)

(
{ε̇}m(i) −

{
ε̇pl
}
m(i)

)
(12)

where {σ} is the stress tensor and [D]m is the elastic material constitutive matrix [11] of the
micro-element. Comparing equations (1) and (12) the following expression for the evolution of
the plastic strain component is readily derived:{

ε̇pl
}
m(i)

= H1H2 [R]m(i) {ε̇}m(i) (13)

where the interaction matrix [R]m(i) is introduced in equation (2). The following rate form of
the principle of virtual displacements is introduced [31] over the finite volume Ve of a single
element: ∫

Ve

{ε}Tm(i) {σ̇}m(i) dVe = {d}Tm(i)

{
ḟ
}

m(i)
(14)

where {d}m(i) is the vector of micro-nodal displacements introduced in relation (9) and {f}m(i)

is the corresponding vector of nodal forces. For the sake of the presentation, only nodal loads
are considered herein, however the evaluation of body loads and surface tractions can be derived
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accordingly. Substituting equation (12) into the variational principle (14) the following relation
is derived:∫

Ve

{ε}Tm(i) [D]m(i) {ε̇}m(i) dVe −
∫
Ve

{ε}Tm(i) [D]m(i)

{
ε̇pl
}
m(i)

dVe = {d}Tm(i)

{
ḟ
}

m(i)
(15)

Considering the standard isoparametric interpolation scheme [35] for the micro-displacement
field {u}m(i)

{u}m(i) = [N ]m(i) {d}m(i) (16)

with the accompanying strain-displacement compatibility relation:

{ε}m(i) = [B]m(i) {d}m(i) (17)

where [N ]m(i) is the matrix of shape functions for the 8-node solid element [35], and [B]m(i) =
∂ [N ]m(i) is the corresponding strain-displacement matrix. Substituting equation (17) into equa-
tion (15) the following relation is derived:∫

Ve

[B]Tm(i) [D]m(i) [B]m(i) dVe

{
ḋ
}

m(i)
−
∫
Ve

[B]Tm(i) [D]m(i)

{
ε̇pl
}
m(i)

dVe =
{
ḟ
}

m(i)
(18)

Furthermore, introducing an interpolation scheme for the plastic part of the strain
{
εpl
}
m(i)

,
namely: {

ε̇pl
}
m(i)

= [N ]em(i)

{
ε̇plcq
}
m(i)

(19)

where
{
εplcq
}
m(i)

is the vector of plastic stains retrieved at properly defined collocation points,
the following relation is finally derived:[

kel
]
m(i)

{
ḋ
}

m(i)
−
[
kh
]
m(i)

{
ε̇plcq
}
m(i)

=
{
Ṗ
}

m(i)
(20)

where
[
kel
]
m(i)

is the elastic stiffness matrix of the micro-element

[
kel
]
m(i)

=

∫
Ve

[B]Tm(i) [D]m(i) [B]m(i) dVe (21)

and
[
kh
]
m(i)

is the hysteretic matrix of the micro-element.

[
kh
]
m(i)

=

∫
Ve

[B]Tm(i) [D]m(i) [N ]em(i) dVe (22)

Both
[
kel
]
m(i)

and
[
kh
]
m(i)

are constant and inelasticity is controlled at the collocation points
through the accompanying plastic strain evolution equations defined in equation (13).

Considering zero initial conditions for brevity, rates in equation (20) are dropped and the
following relation is established[

kel
]
m(i)
{d}m(i) −

[
kh
]
m(i)

{
εplcq
}
(i)

= {f}m(i) (23)

Substituting equation (9) into equation (23) and pre-multiplying with [N ]Tm(i) the following
relation is derived: [

kel
]M
m(i)
{d}M −

[
kh
]M
m(i)

{
εplcq
}
(i)

= {f}Mm(i) (24)
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where [
kel
]M
m(i)

= [N ]Tm(i)

[
kel
]
m(i)

[N ]m(i) (25)

is the elastic stiffness matrix of the ith micro-element mapped onto the macro-element degrees
of freedom while

[
kh
]M
m(i)

is the hysteretic matrix of the ith micro-element, evaluated by the
following relation: [

kh
]M
m(i)

= [N ]Tm(i)

[
kh
]
m(i)

(26)

Finally, {P}Mm(i) in equation (24) is the equivalent nodal force vector of the micro-element
mapped onto the macro-nodes of the coarse element.

{f}Mm(i) = [N ]Tm(i) {f}m(i) (27)

Equation (24) is a multiscale equilibrium equation involving the displacement vector evaluated
at the coarse-element nodes and the plastic part of the strain tensor evaluated at collocation
points within the micro-scale element mesh.

4.1 Micro to Macro scale transition

Having established the micro-element equilibrium in terms of macro-displacement measures
using the micro-basis mapping introduced in equation (9), a procedure is needed to formulate
the global equilibrium equations in terms of the macro-quantities. Denoting with a subscript M
the corresponding macro-measures over the volume V of the coarse element equation (14) is
re-written as: ∫

VM

{ε}TM {σ̇}M dVM = {d}TM
{
ḟ
}

M
(28)

where {f}M is the vector of nodal loads imposed at the coarse element nodes. Equivalently to
relation (20) the variation principle of equation (28) gives rise to the following equation:∫

VM

{ε}TM {σ̇}M dVM = [K]MCR(j)

{
ḋ
}

M
−
[
Kh
]M
CR(j)

{
ε̇plcq
}
M

(29)

where [K]MCR(j),
[
Kh
]M
CR(j)

are the equivalent stiffness matrix and the equivalent hysteretic ma-
trix of the jth coarse element respectively. These matrices need to be expressed in terms of
micro-scale measures, to account for the micro-scale effect upon the macro-scale mesh. This
is accomplished by demanding that the strain energy of the coarse element is additively de-
composed into the contributions of each micro-element within the coarse-element. Thus, the
following relation is established:∫

V

{ε}TM {σ}M dV =

mel∑
i=1

∫
Vmi

{ε}Tmi {σ}mi dVi (30)

where {ε}mi, {σ}mi are the micro-strain and micro-stress field defined over the volume Vmi of
the ith micro-element. Using relations and (14) (15), the following relation is established for
the r.h.s of equation (30)

mel∑
i=1

∫
Vmi

{ε}Tmi {σ}mi dVi =

mel∑
i=1

(
{d}Tmi

[
kel
]
m(i)
{d}m(i) − {d}

T
mi

[
kh
]
m(i)

{
εplcq
}
m(i)

)
(31)
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Substituting relation (24) into relation (31), the following relation is derived

mel∑
i=1

∫
Vmi

{ε}Tmi {σ}mi dVi = {d}TM
mel∑
i=1

(
[N ]TMi

[
kel
]
m(i)

[N ]Mi {d}M − [N ]TMi

[
kh
]
m(i)

{
εplcq
}

m(i)

)
(32)

Using equations (29) and (32), equation (30) assumes the following form:

[K]MCR(j) {d}M −
[
Kh
]M
CR(j)

{
εpl
}
cq

=

mel∑
i=1

[
kel
]M
m(i)
{d}M −

mel∑
i=1

[
kh
]M
m(i)

{
εplcq
}
m(i)

(33)

Relation (33) holds for every compatible vector of nodal displacements {d}M as long as:

[K]MCR(j) =

mel∑
i=1

[
kel
]M
m(i)

(34)

and [
Kh
]M
CR(j)

{
εplcq
}

=

mel∑
i=1

[
kh
]M
m(i)

{
εplcq
}
m(i)

(35)

thus, the following multiscale equilibrium equation is derived for the coarse element:

[K]MCR(j) {d}M = {f}M − {fh}M (36)

where {fh}M is a nonlinear correction to the external force vector arising from the evolution of
the plastic strains within the micro-structure

{fh}M =

mel∑
i=1

[
kh
]M
m(i)

{
εplcq
}
m(i)

(37)

while the plastic strain vectors
{
εplcq
}
m(i)

are considered to evolve according to relation (13).
Equations (36) and (37) are used to derive the equilibrium equation at the structural level.

4.2 Solution in the macro-scale

Considering the general case of a coarse mesh with ndofM free macro-degrees of freedom
and using equation (36), the global equilibrium equations of the composite structure can be
established in the coarse mesh. In the dynamic case the following equation is established:

[M ]
{
Ü
}

M
+ [C]

{
U̇
}

M
+ [K] {U}M = {F}M + {Fh}M (38)

where [M ], [C], [K] are the (ndofM × ndofM) macro-scale mass, viscous damping and stiff-
ness matrix respectively. The mass matrix can be formulated following either the lamped or
distributed mass approach while the viscous damping can be of either the classical or non-
classical type [10]. The global stiffness matrix of the composite structure is formulated through
the direct stiffness method by additively appending the contributions of the coarse elements
equivalent matrices defined in equation (34). The (ndofM × 1) vector {U}M consists of the
nodal macro-displacements.

Equation (36) expresses the nodal equilibrium of the coarse element mesh. The coarse
element equivalent stiffness matrices [K]MCR(j) can be assembled through the direct stiffness
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method to derive the stiffness matrix of the composite structure. The external load vector
{F}M and the hysteretic load vector {Fh}M are assembled considering the equilibrium of the
corresponding elemental contributions {f}M and {fh}M , defined in equations (28) and (37)
respectively, at coarse nodal points.

Equations (38) are supplemented by the evolution equations of the micro-plastic strain com-
ponents defined at the collocation points within the micro-elements. These equations can be
established in the following form: {

Ėpl
cq

}
m

= [G] {ε̇cq}m (39)

where the vector {
Ėpl

cq

}
m

=
{ {

ε̇plcq
}
m(1)

{
ε̇plcq
}
m(2)

· · ·
{
ε̇plcq
}
m(mel)

}T

(40)

holds the plastic strain components evaluated at the collocation points of its micro-element and{
Ėcq

}
m

=
{
{ε̇cq}m(1) {ε̇cq}m(2) · · ·

{
ε̇cq
}
m(mel)

}T

(41)

Matrix [G] in relation (39) is a band diagonal matrix that assumes the following form

[G] =


H1m(1)H2m(1) [R]m(1)

H1m(2)H2m(2) [R]m(2)

[0]

[0]
. . .

H1m(mel)H2m(mel) [R]m(mel)


(42)

Equations (39) are independent and thus can be solved in the micro-element level resulting
in an implicitly parallel scheme. Relation (42) depends on the current micro-stress state within
each micro-element. The corresponding stress tensors are evaluated from the current micro-
strains, using equations (16) and (17).

5 EXAMPLE

In this example a benchmark problem is examined for the verification of the proposed
method. The simplified masonry wall presented in Figure 2(a) is considered, consisting of
stone blocks and bonding mortar. Furthermore, an outer layer of textile component reinforce-
ment is considered. The stone and mortar material properties (Table 2) are derived from [26].
A J2 plasticity model is assumed for the stone layer while a Mohr-Coulomb yield criterion is
considered for the mortar [2]. For the purpose of this example, homogenized material proper-
ties are considered for the textile composite layer [14] whose behaviour is assumed to be elastic
until failure. The corresponding anisotropic properties are presented in Table 1.

Two analysis models are considered, namely a fine meshed Finite Element model (FE) and
a multiscale model. The FE model is analysed using the Abaqus commercial code [1]. The
FEM model is meshed with 2280 hex elements(Figure 2(b)). The second model consists of
a single coarse hex element, with the corresponding micro-structure being identical to the FE
model. The micro-basis shape functions are evaluated considering periodic boundary conditions
at the boundary surfaces of the coarse element. An average acceleration Newmark scheme is
implemented for the solution of the governing equations of motion with a constant time step
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(a) (b)

Figure 2: (a) Textile composite reinforced stone masonry wall (b) Fem hex-mesh

Mortar Stone
Young’s modulus [MPa] 3494 20200
Poisson’s ratio 0.11 0.2
Plasticity Mohr-Coulomb von-Mises
Friction angle [deg] 21.8 -
Cohesion [MPa] 0.1 -
Yield Stress [MPa] - 69.2

Table 1: Masonry wall: Constituent Properties

Young’s modulus [MPa]
E11 = 54000 E22 = 53200 E33 = 53200
E12 = 53200 E23 = 54000 E23 = 54000

Poisson’s ratio ν12 = 0.14 ν23 = 0.2 ν13 = 0.2

Table 2: Textile Reinforcement Material Properties
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(a) (b)

Figure 3: (a) V. A. Centro Valle ground acceleration record (L’ Aquila, 2009) (b) Top layer horizontal displacement
time history

(a) (b)

Figure 4: (a) FEM (b) Proposed Method

equal to dt = 0.01sec. Viscous damping is not taken into account in this example. Material
nonlinearity in Abaqus is treated through a Full Newton scheme.

An additional mass of 400 KN is considered at the top of the wall. The structure is subjected
to the L’ Aquila ground motion record presented in Figure 3(a) with a peak acceleration equal
to amax = 0.66g In Figure 3(a) the horizontal relative displacement time history at the top layer
of the masonry is presented as derived from the two different analysis schemes.

The results obtained from the two different methodologies are in good agreement. The dif-
ferences observed, especially in the low frequency oscillations near the end of the analysis,
are attributed to the numerical assumptions governing the evaluation of the effective stiffness
of the coarse element. The gradual shift of the horizontal displacement is a result of plastic
deformation accumulating at the mortar joints. In Figure 4 the evolution of the plastic strain
components evaluated at the mortar element -1843- (Figure 2(b)) are presented as derived from
Abaqus (Figure 4(a)) and the proposed formulation (Figure 4(b))) respectively.

The evolution of the plastic strain components is practically identical in both methods. How-
ever, the values predicted in the multiscale model are slightly larger, in agreement with the
displacement time-history presented in Figure 3(b).
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6 CONCLUSIONS

In this work, a novel multiscale finite element formulation is presented for the nonlinear
analysis of masonry structures. The method is based on the Enhanced Multiscale Finite Element
Method and the hysteretic formulation of Finite Elements. A set of smoothly evolving inelastic
quantities is considered in the fine scale that accounts for the plastic part of the deformation
component. Implementing the EMsFEM micro to macro-mapping for the micro displacement
components the motion equations of the structure are formulated in the macro-scale. The plastic
deformation evolution equations are also transferred into the coarse scale governing equations.
Thus, a multiscale formulation is derived where the state matrices, namely the coarse scale
stiffness matrix and the fine scale hysteretic matrix are evaluated only once at the beginning of
the analysis and remain constant throughout the solution process. The validity of the proposed
method is verified through a benchmark test, simulating the dynamic response of a single wall
element under earthquake load.
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