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Abstract In this work, a three dimensional multiscale formulation is presented for
the analysis of masonry structures based on the multiscale finite element formu-
lation. The method is developed within the framework of the Enhanced Multiscale
Finite Element Method. Through this approach, two discretization schemes are
considered, namely a fine mesh that accounts for the micro-structure and a coarse
mesh that encapsulates the former. Through a numerically derived mapping, the
fine scale information is propagated to the coarse mesh where the numerical
solution of the governing equations is performed. Inelasticity is introduced at the
fine mesh by considering a set of internal variables corresponding to the plastic
deformation accumulating at the Gauss points of each fine-scale element. These
additional quantities evolve according to properly defined smooth evolution
equations. The proposed formalism results in a nonlinear dynamic analysis method
where the micro-level state matrices need only be evaluated once at the beginning
of the analysis procedure. The accuracy and computational efficiency of the pro-
posed scheme is verified through an illustrative example.
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1 Introduction

Masonry structures constitute a large portion of the existing building stock and in
many cases involve buildings of significant social and cultural importance. With
rare exceptions, masonry buildings in historic urban settlements have been con-
ceived only for gravity loads. Unreinforced masonry constructions are amongst the
classes of structures severely harmed during earthquake events. Even in cases
where some sort of aseismic structural system has been devised, its performance
over the course of years tends to deteriorate. The recent seismic events of Modena,
2012, Christchurch 2011, L Aquila, 2009 tragically pointed out the need for res-
toration and reinforcement of existing masonry buildings not only for the conser-
vation of cultural heritance but also for the protection of human lives [1, 2]. Failures
have been also documented that are not directly related to seismic events rather to
long term damage accumulation. Such examples are the Civic Tower at Pavia in
Italy, 1989 [3] and more recently the collapse of the bell tower of the St. Willib-
rordus Church at Meldert, Belgium and the partial collapse of the Medieval
Maagden tower at Zichem, Belgium [4].

Within this framework, polymeric materials in the form of sheets [5], distributed
reinforcing fibers [6] and multi-functional textiles [7], are extensively used for the
retrofitting and strengthening of existing or newly built infrastructure [8]. In
implementations pertaining to preservation of architectural heritage, including
masonry and historic structures, polymeric solutions are becoming increasingly
popular [9, 10] since they comprise reversible interventions that do not adversely
affect the character of the structure or monument. In recent years, textile solutions in
particular are gaining ground as they provide a minimally intrusive means for
recovering structural strength, improving structural performance under service
conditions and additionally provide protection in the event of an extreme event
[7, 11]. On a step further the embedment of sensors in such textile solutions may
provide valuable information for characterising such complex materials [12, 13].

Masonry is a composite material comprising distinct units of various natural or
industrial materials e.g. stone, brick, concrete etc. [14]. Individual units are split by
joints that can be either filled with mortar or not. In most cases, the mechanical
properties of the units exhibit severe anisotropy, which is correspondingly reflected
in the mechanical properties of the composite. This anisotropy is further affected by
the mechanical properties of the mortar. Thus, a masonry wall demonstrates dif-
ferent values of bending strength when in-plane or out-of plane bending is con-
sidered [15]. Furthermore, the various construction techniques implemented also
lead to severe variations on the masonry mechanical properties as in the case of
multi-leaf masonry systems [16].

To assess the structural integrity of an existing masonry structure and also design
and predict the performance of a retrofitted structure, the engineer needs to account
for this intricate material and structural behaviour. Modern design codes [17, 18]
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provide guidance for the assessment of existing and retrofitted structures within the
framework of performance based design [19]. In this, the nonlinear response of the
structure is evaluated and its integrity is verified with respect to predefined levels of
structural performance. On practice, the evaluation of the structural response is
performed through a series of nonlinear static analysis procedures. Although non-
linear dynamic analysis procedures provide a more thorough and exact estimation
of the actual response, both the increased computational cost of a nonlinear analysis
procedure as well as the large amount of output data that usually needs to be
processed (i.e. of the order of GBs) renders its application prohibitive for the design
office.

Nonlinear modeling of masonry is a difficult and challenging task due to the
inherent complexities concerning the nonlinear behaviour of either the constituent
materials (stone and mortar) or the resulting structural system. Masonry materials
usually demonstrate a brittle and in general anisotropic behaviour in the micro-
level. The anisotropy at the micro level together with the inherent weak directions
(along the head and bed joints) results in a highly anisotropic macroscopic
behaviour [20, 21]. The computational methods used for the nonlinear analysis of
masonry structures are classified into three main categories, namely macro-scale,
micro-scale and multi-scale methods [22]. Macro-models commonly pertain to
orthotropic materials with different tensile and compressive strengths along the
material axes. Furthermore, different inelastic properties for each material axis have
to be reproduced. A reduced number of orthotropic material models specific for
masonry have been proposed [23]. Recently in [24] a macro-element has been
presented for the nonlinear analysis of unreinforced masonry piers considering only
the in-plane structural response. In general, macro-modeling is a fast and reliable
analysis tool when the qualitative response of a structure is sought. However the
accuracy of the method significantly depends on the generalized material properties
used and the corresponding assumptions made on the governing parameters of the
problem. These are not easy to identify and the use of finer methods is necessary
either to get accurate results or to correctly specify the macro-modeling material
parameters.

Micro-modeling approaches comprise refined masonry models employing a
distinct representation of units, mortar and the unit/mortar interface. In this case,
continuum elements are used to represent units and mortar in the joints whereas the
unit-mortar interface is modelled via discontinuous elements which account for
potential crack/slip planes. Though exact, this modeling approach leads to large
memory and computational time requirements.

To further enhance the computational efficiency of micro-modeling techniques
while retaining their level of refinement, multi-scale approaches have been intro-
duced. Homogenization approaches are multi-scale modeling methods that rely on
the definition of a Representative Volume Element (RVE) and the evaluation of
average stress and strain measures over the RVE domain. Homogenization
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approaches have been successfully implemented for the linear and nonlinear
analysis of various heterogeneous materials. Recently, Massart et al. [20, 25, 26]
have developed a meso-scale constitutive model for masonry that accounts for
anisotropic plasticity effects and damage of the constituents implementing a gen-
eralized plane state assumption.

However these methods are based on two main assumptions i.e. scale separation
within the RVE and periodicity of the RVE. The latter assumption poses a strict
constraint on the geometrical domains that can be addressed through this method.
Multiscale Finite Element methods (MsFEM) [27, 28] are based on the notion of
nested finite element meshes, defined across different scales. On each mesh a
corresponding displacement field is also defined. Based on a set of kinematic
assumptions a numerically derived interpolation field is defined between the dif-
ferent scales that maps the micro to macro displacement field. While the micro-
modeling properties are accounted for in the inner (or finer) finite element mesh, the
solution of the governing equations is performed on the outer (or coarser) mesh at a
significantly reduced computational cost. Recently the method has been extended to
account for the nonlinear dynamic response of heterogeneous domains [29] using
the hysteretic finite element method at the fine scale [30]. Using this approach,
inelasticity is introduced at the fine scale by formulating the evolution equations of
plastic deformation within the framework of classical plasticity [31].

In what follows, the hysteretic multiscale finite element method is used to assess
the nonlinear dynamic response of masonry structures. A two-scale analysis
approach is implemented. In the micro-scale, a fine-meshed finite element mesh is
defined accounting for each different constituent material. Using the micro to macro
interpolation scheme of MsFEM, the fine-scale is mapped at a coarser mesh where
the solution of the governing equations of motion is performed at a significantly
reduced computational cost. The nonlinear behaviour of the constituent materials is
treated using a properly defined smooth hysteretic model. In this, inelasticity is
treated within the framework of classical plasticity while damage is introduced
through additional hysteretic variables that account for stiffness degradation,
strength deterioration and pinching of the corresponding material.

The micro measures of the structural response (i.e. micro-displacements, micro-
stresses and micro-strains) can be evaluated through the inverse micro to macro
mapping procedure. Therefore, the amount of output data is also significantly reduced
as these measures can be evaluated on demand during the post-processing phase
of the analysis. In Sect. 2 the hysteretic model considered for the nonlinear behaviour
at the constituent level is described. In Sect. 3 the EMsFE method is presented
while the proposed hysteretic multiscale formulation is described in Sect. 4. Finally,
the application of the method for the analysis of masonry structures is described in
Sects. 5 and 6. In Sect. 5, the response at the material level is examined. In Sect. 6, the
dynamic response of a natural stone masonry wall under earthquake excitation is
examined with and without textile composite reinforcement.
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2 Smooth Hysteretic Modeling

2.1 From Classical Plasticity to Smooth Hysteretic Modeling

The hysteretic formulation of finite elements [30] is implemented herein to account
for the nonlinear dynamic behaviour of materials at the micro-scale. In this, a mixed
interpolation scheme is considered for both the displacement and the plastic com-
ponent of the strain tensor. The method is based on the additive decomposition of
the strain rates into a reversible elastic and an irreversible inelastic component [32]
that is defined through the following relation:

_ef g ¼ _eel
� �þ _epl

� � ð1Þ

where {ɛ} is the tensor of total strain, {ɛel} is the tensor of the elastic, reversible,
strain and {ɛpl} is the tensor of the plastic strain. The vectorial notation of the stress
and strain tensors is used in this work while the (.) symbol denotes differentiation
with respect to time. In classical elasto-plasticity, the elastic component of the strain
tensor {ɛel} is directly related to the current stress {σ} through the Hooke’s law

_rf g ¼ D½ � _eel
� � ð2Þ

where [D] is the elastic material constitutive matrix. Using relation (1), Eq. (2) is
re-written in the following form

_rf g ¼ D½ � _ef g � _epl
� �� � ð3Þ

The evolution of the plastic part of the deformation component is defined
through the flow rule

_epl
� � ¼ _k

@F

@ rf g ð4Þ

where F is the plastic potential [31]. Substituting relation (4) into Eq. (3) the
following expression is retrieved

_rf g ¼ D½ � _ef g � _k
@F

@ rf g
� �

ð5Þ

Elasticity is defined as the locus of points in the stress space lying in the interior
of the yield surface, defined through the following relation

U rf g; gf gð Þ ¼ 0 ð6Þ
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where {η} is the back-stress tensor whose evolution determines the motion of the
yield surface in the stress-space.

The evolution of the back-stress tensor is determined by the kinematic hardening
law that assumes the following form

_gf g ¼ _k Gf gkin gf g; epl
� �

; _epl
� �� � ð7Þ

where Gf gkin is the kinematic hardening function. The equivalent plastic strain p is
an appropriate measure of the accumulation of plastic deformation defined from the
following relation

p ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

_eplf gT _eplf g
r

dt ð8Þ

Substituting Eq. (4) in Eq. (8), the following relation is established

p ¼
Z t

0

_k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

@F

@ rf g
	 
T @F

@ rf g
	 
s

dt ð9Þ

Using the consistency condition of classical plasticity, the following relation is
established

_U ¼ 0 ) @U
@ rf g

� �T

_rf g þ @U
@ gf g

� �T

_gf g ¼ 0 ð10Þ

Substituting relations (5) and (7) into (10) and solving _k, the following relation is
established

_k ¼ j
@U
@ rf g

� �T

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1x6

D½ �
z}|{6x6

_ef g|{z}
6x1

ð11Þ

where κ is a scalar derived from the following relation

j ¼ � @U
@ gf g

� �T

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1x6

Gkinf g
zfflffl}|fflffl{6x1

þ @U
@ rf g

� �T

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1x6

D½ �
z}|{6x6

@F

@ rf g|ffl{zffl}
6x1

0
BBB@

1
CCCA

�1

ð12Þ

Since the evolution of the plastic multiplier is defined on the grounds of the
consistency condition (10), relation (11) is valid only at yield, i.e. when Φ = 0.
Introducing the following smooth Heaviside type functions, namely
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H1 ¼ U rf g; gf g;Rð Þ
U0

����
����N ; N � 2 ð13Þ

and

H2 ¼ bþ csgn _U
� � ð14Þ

relation (11) can be cast in the following convenient form

_k ¼ H1H2j
@U
@ rf g

� �
|fflfflfflfflffl{zfflfflfflfflffl}

T

1x6

D½ �
z}|{6x6

_ef g|{z}
6x1

ð15Þ

Equation (15) governs the evolution of the plastic multiplier along the full
loading-unloading-reloading cycle. When either H1 or H2 is equal to zero the elastic
regime of the material response is retrieved whereas when both H1 = 1 and H2 = 1
plastic deformations accumulate.

Substituting relation (15) into Eq. (4) the following flow rule is retrieved

_epl
� � ¼ H1H2 R½ � _ef g ð16Þ

where [R] is an interaction matrix defined as:

R½ � ¼ j
@U
@ rf g

� �
|fflfflfflfflffl{zfflfflfflfflffl}

6x1

@U
@ rf g

� �
|fflfflfflfflffl{zfflfflfflfflffl}

T

1x6

D½ �
z}|{6x6

ð17Þ

Similarly, by substituting Eq. (15) into relation (7), the evolution of the back-
stress tensor is derived as:

_gf g ¼ H1H2j Gkinf g
zfflffl}|fflffl{6x1

@U
@ rf g

� �T

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1x6

D½ �
z}|{6x6

_ef g|{z}
6x1

ð18Þ

The derived model constitutes a generic smooth form of the classical plasticity
framework and is fully defined by determining the expressions of the yield surface
Φ, the kinematic hardening function Gf gkin and the additional material parameters
N, β and γ.
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2.2 Damage Induced Phenomena

In this work, stiffness degradation, strength deterioration and pinching are taken
into account by introducing additional material parameters within the hysteretic
finite element scheme. These parameters are accompanied by a set of corresponding
evolution equations that depend on the hysteretic energy accumulated over time.
The relations are based on the derivations introduced in [33, 34].

The stiffness degradation parameter is introduced at the stress-strain relation (2),
which assumes the following form

_rf g ¼ vg D½ � _eel
� � ð19Þ

where vη is a degradation parameter that is equal to unity as long as the material has
not yielded and increases as a function of the plastic deformation. The following
generic expression is thus defined:

_vg ¼ Kg Ehð Þ ð20Þ

where Eh is the hysteretic energy of the ith micro-element.
Solving Eq. (1) for _eel

� �
and substituting into Eq. (19) the following relation is

finally derived:

_rf g ¼ vg D½ � _ef g � _epl
� �� � ð21Þ

where the total stress tensor is expressed as a function of the total and plastic strain
tensors and the degradation parameter. For the purpose of this work, a constant rate
stiffness degradation rule is considered and thus relation (20) is expressed as

vg
: ¼ Cs

vg
��
Eh¼0¼ 1:0



) vg ¼ 1:0þ cgEh ð22Þ

where ηsd is a material parameter.
Strength deterioration is accounted for by introducing parameter vs into the yield

related smooth Heaviside function H1 defined in relation (13)

H1 ¼ vs
U rf g; gf g;Rð Þ

U0

����
����N ; N� 2 ð23Þ

where in general vs is a function of the hysteretic energy accumulated within the
element

_vs ¼ Kv Ehð Þ ð24Þ
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A constant rate evolution law is also considered in this work, thus the variation
of the strength deterioration parameter vs is defined as

vs
: ¼ cs

vsjEh¼0 ¼ 1:0



) vs ¼ 1:0þ csEh ð25Þ

where cs is a user defined material parameter.
Finally pinching is defined on the basis of the pinching parameter hp that is

directly introduced in the stress-strain relation (21)

_rf g ¼ vg
hp

D½ � _ef g � _epl
� �� � ð26Þ

The corresponding evolution equation is defined as

hp ¼ 1� f1e
� H1sign _Uð Þ�q=msð Þ2=f22 ð27Þ

where q is a material constant. Variables ζ1 and ζ2 are defined as

f1 ¼ f01 1� e�pEh
� � ð28Þ

and

f2 ¼ w0 þ dwEh
� �

lþ f1ð Þ ð29Þ

where ζ1
0, p, ψ0, δψ and μ are also material constants.

3 The Enhanced Multiscale Finite Element Analysis
Method

In this section, the EnhancedMultiscale Finite Element Method (EMsFEM) is briefly
outlined for reasons of completeness and for serving as a reference for subsequent
derivations. A masonry frame is presented in Fig. 1, consisting of two piers and a
horizontal spandrel. An additional outer layer of reinforcement is also considered.
The computational fine scale model consists of 8-node hex elements [35]. Instead of
directly solving the fine scale computational model using the standard isoparametric
finite element formulation, EMsFEM is based on a two-step approach. Grouping
together clusters of micro-elements, a set of coarse elements is constructed. The nodes
of the derived macro-elements are the macro-nodes of the coarse mesh. Accordingly,
two displacement fields are defined, namely the micro-displacement field corre-
sponding to the micro nodal displacements um x; yð Þ vm x; yð Þ wm x; yð Þf gT of the

fine mesh and the macro-displacement field uM x; yð Þ vM x; yð Þ wM x; yð Þf gT
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corresponding to the macro nodal displacements. Throughout this work, subscript
m denotes a micro-measure whileM is used to denote a macro-measure of the indexed
quantity.

Next, a numerical mapping is constructed that maps the micro-displacement field
within each RVE to the corresponding macro-displacements of the RVE macro-
nodes. This numerical mapping assumes the following generic form:

df gm¼ M df gM ð30Þ

where M is a mapping operator. EMsFEM is based on the assumption that the
discrete micro-displacements within the coarse element are interpolated at the
macro-nodes using the following scheme:

um xj; yj
� � ¼ XnMacro

i¼1

NijxxuMi þ
XnMacro

i¼1

NijxyvMi þ
XnMacro

i¼1

NijxzwMi ð31Þ

vm xj; yj
� � ¼ XnMacro

i¼1

NijxyuMi þ
XnMacro

i¼1

NijyyvMi þ
XnMacro

i¼1

NijyzwMi ð32Þ

wm xj; yj
� � ¼ XnMacro

i¼1

NijxzuMi þ
XnMacro

i¼1

NijyzvMi þ
XnMacro

i¼1

NijzzwMi ð33Þ

where j ¼ 1. . .nmicro is the jth micro-node, um, vm, wm are the horizontal and vertical
micro-displacement components, nMacro is the number of macro-nodes of the coarse
element, (xj, yj, zj) are the local coordinates of the micro-nodes, uMi , vMi , wMi are the

Fig. 1 Multiscale finite element procedure
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horizontal and vertical displacement components of the macro-nodes, Nixx, Nixy,
Niyy, Niyz, Nizz are the micro-basis functions and nmicro is the number of micro-nodes
within the coarse element.

In Eqs. (31)–(33), Nijxx stands for the displacement component of node j along
the x axis induced by a unilateral displacement at the ith node (also along the
x axis). Likewise, Nijxy stands for the displacement component of the ith node, along
the x axis induced by a unilateral displacement at node j and along the y axis.
Contrary to MsFEM where the interpolation fields of the displacement components
are considered uncoupled, the coupling terms Nixy, Nixz, Niyz are introduced in
EMsFEM. Thus, Eqs. (31)–(33) result in a kinematical assumption consistent with
the observation that a unit displacement in the boundary of a deformable body may
induce displacements in both directions within the body.

From the interpolation field introduced in Eqs. (31)–(33), the following relation
can be established at the micro-elemental level

df gmðiÞ¼ N½ �mðiÞ df gM ð34Þ

where {d}m(i) is the nodal displacement vector of the ith micro-element, [N]m(i) is a
matrix containing the micro-basis shape functions evaluated at the nodes of the ith
micro-element while {d}M the vector of nodal displacements of the corresponding
macro-nodes.

3.1 Numerical Evaluation of Micro-scale Basis Functions

The evaluation of the mapping operator M is performed numerically. Relations
(31)–(33) successfully map the micro-displacement field to the macro-displacement
field if and only if the micro-shape functions adhere to the following property,
namely, when the macro-displacement component is equal to unity at a macro-
node, displacement is equal to zero at every other macro-node. The derivation of
micro-basis functions with such properties can be accomplished by considering the
following boundary value problem

K½ �RVE df gm ¼ ;
df gS ¼ �d

� � ð35Þ

where [K]RVE is the stiffness matrix of the RVE, ;f g is a vector containing zeros
while {d}S is a vector containing the nodal degrees of freedom of the boundary S of
the RVE and �d

� �
is a vector of prescribed displacements. The RVE stiffness matrix

is formulated using the standard finite element method [36]. In this work, the
solution of the boundary value problem established in Eq. (35) is performed using
the Penalty method [37].
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The choice of the values of the prescribed boundary displacements is a key
assumption of the EMsFEM and highly affects the accuracy of the derived multiscale
scheme. Three different types of boundary conditions are established in the literature
namely linear boundary conditions, oscillatory boundary conditions and oscillatory
boundary conditions with oversampling. Further details on the procedure imple-
mented for the derivation of the micro-basis functions can be found in [27, 28].

4 The Hysteretic Multiscale Finite Element
Analysis Method

The hysteric approach for implementation within the context of multi scale dynamic
analysis has recently been introduced by Triantafyllou and Chatzi [29]. The eval-
uation of the micro-shape functions for each RVE is based on the solution of the
equilibrium problem (35). Thus, the mapping depends on the material properties of
the fine-scale model, e.g. for the case of the reinforced masonry RVE presented in
Fig. 1, the solution depends on the material properties of masonry and the com-
posite matrix. Consequently, in a nonlinear analysis procedure, either static or
dynamic, the evaluation of the micro to macro-mapping is performed in every
incremental step of the analysis. To overcome this computational hurdle, the hys-
teretic formulation of finite elements is implemented [38] in this work, accounting
for the nonlinear material behaviour in the fine scale.

The derivations presented herein are based on the additive decomposition of the
micro strain rates into elastic and plastic parts defined in relation (1) which is re-
written here in the following form

_ef gm ið Þ ¼ _eel
� �

m ið Þ
þ _epl
� �

m ið Þ
ð36Þ

where the index m(i) denotes the corresponding measure of the ith micro-element.
The multi-scale formulation is based on the following variational formulation [39]Z

Vm ið Þ
ef gTm ið Þ _rf gm ið ÞdVm ið Þ ¼ df gTm ið Þ _f

� �
m ið Þ ð37Þ

where {d}m(i) is the vector of micro-nodal displacements introduced in relation (34),
{f}m(i) is the corresponding vector of nodal forces and where Vm(i) is the volume of
the ith micro-element. For the sake of the presentation, only nodal loads are con-
sidered herein, however the evaluation of body loads and surface tractions can be
derived accordingly. Substituting Eq. (36) into the variational principle (37) the
following relation is derived:
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Z
Vm ið Þ

ef gTm ið Þ D½ �m ið Þ _ef gm ið ÞdVe �
Z
Ve

ef gTm ið Þ D½ �m ið Þ _epl
� �

m ið ÞdVm ið Þ ¼ df gTm ið Þ _f
� �

m ið Þ

ð38Þ

Considering the standard isoparametric interpolation scheme [35] for the micro-
displacement field {u}m(i)

uf gm ið Þ ¼ N½ �m ið Þ df gm ið Þ ð39Þ

with the accompanying strain-displacement compatibility relation:

ef gm ið Þ ¼ B½ �m ið Þ df gm ið Þ ð40Þ

where [N]m(i) is the matrix of shape functions for the 8-node solid element [35], and
B½ �m ið Þ¼ @ N½ �m ið Þ is the corresponding strain-displacement matrix. Substituting
Eq. (40) into Eq. (38) the following relation is derived:Z

Ve

B½ �Tm ið Þ D½ �m ið Þ B½ �m ið ÞdVe _d
� �

m ið Þ �
Z
Ve

B½ �Tm ið Þ D½ �m ið Þ _epl
� �

m ið ÞdVe ¼ _f
� �

m ið Þ ð41Þ

Furthermore, introducing an interpolation scheme Nr½ �m ið Þ for the plastic part of
the strain epl

� �
m ið Þ, namely:

_epl
� �

m ið Þ|fflfflfflffl{zfflfflfflffl}
6x1

¼ Nr½ �m ið Þ|fflfflffl{zfflfflffl}
6x6ncq

_eplcq

n o
m ið Þ

zfflfflfflfflffl}|fflfflfflfflffl{6ncqx1

ð42Þ

where eplcq

n o
m ið Þ

is the vector of plastic stains retrieved at properly defined collo-

cation points and ncq is the number of collocation points used, the following relation
is finally derived:

kel
 �

m ið Þ
_d

� �
m ið Þ� kh

 �
m ið Þ _eplcq

n o
m ið Þ

¼ _f
� �

m ið Þ ð43Þ

where kel
 �

m ið Þ is the elastic stiffness matrix of the micro-element

kel
 �

m ið Þ ¼
Z
Vm ið Þ

B½ �Tm ið Þ D½ �m ið Þ B½ �m ið ÞdVm ið Þ ð44Þ

and kh
 �

m ið Þ is the hysteretic matrix of the micro-element.
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kh
 �

m ið Þ ¼
Z
m ið Þ

B½ �Tm ið Þ D½ �m ið Þ Nr½ �m ið ÞdVm ið Þ ð45Þ

Both kel
 �

m ið Þ and kh
 �

m ið Þ are constant and inelasticity is controlled at the col-
location points through the accompanying plastic strain evolution equations that in
this work are of the form of Eq. (16).

Considering zero initial conditions for brevity, rates in Eq. (43) are dropped and
the following relation is established

kel
 �

m ið Þ df gm ið Þ� kh
 �

m ið Þ eplcq

n o
ið Þ
¼ ff gm ið Þ ð46Þ

Substituting Eq. (34) into Eq. (46) and pre-multiplying with [N]m(i)
T the following

relation is derived:

kel
 �M

m ið Þ df gM � kh
 �M

m ið Þ eplcq

n o
ið Þ
¼ ff gMm ið Þ ð47Þ

where

kel
 �M

m ið Þ ¼ N½ �Tm ið Þ kel
 �

m ið Þ N½ �m ið Þ ð48Þ

is the elastic stiffness matrix of the ith micro-element mapped onto the macro-

element degrees of freedom while kh
 �M

m ið Þ is the hysteretic matrix of the ith micro-

element, evaluated by the following relation:

kh
 �M

m ið Þ ¼ N½ �Tm ið Þ kh
 �

m ið Þ ð49Þ

Finally, ff gMm ið Þ in Eq. (47) is the equivalent nodal force vector of the micro-
element mapped onto the macro-nodes of the coarse element.

ff gMm ið Þ ¼ N½ �Tm ið Þ ff gm ið Þ ð50Þ

Equation (47) is a multiscale equilibrium equation involving the displacement
vector evaluated at the coarse-element nodes and the plastic part of the strain tensor
evaluated at collocation points within the micro-scale element mesh.

4.1 Micro to Macro Scale Transition

Having established the micro-element equilibrium in terms of macro-displacement
measures using themicro-basismapping introduced in Eq. (34), a procedure is needed
to formulate the global equilibrium equations in terms of the macro-quantities.
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Denoting with a subscriptM the corresponding macro-measures over the volume V of
the coarse element Eq. (37) is re-written as:Z

VM

ef gTM _rf gMdVM ¼ df gTM _f
� �

M ð51Þ

where {f}M is the vector of nodal loads imposed at the coarse element nodes.
Equivalently to relation (43) the variation principle of Eq. (51) gives rise to the
following equation:Z

VM

ef gTM _rf gMdVM ¼ K½ �MCR jð Þ _d
� �

M� Kh
 �M

CR jð Þ _eplcq

n o
M

ð52Þ

where K½ �MCR jð Þ, Kh
 �M

CR jð Þ are the equivalent stiffness matrix and the equivalent

hysteretic matrix of the jth coarse element respectively. These matrices need to be
expressed in terms of micro-scale measures, to account for the micro-scale effect
upon the macro-scale mesh. This is accomplished by demanding that the strain
energy of the coarse element is additively decomposed into the contributions of
each micro-element within the coarse-element. Thus, the following relation is
established:

Z
V

ef gTM rf gMdV ¼
Xmel

i¼1

Z
Vmi

ef gTmi rf gmidVi ð53Þ

where {ɛ}mi, {σ}mi are the micro-strain and micro-stress field defined over the
volume Vmi of the ith micro-element. Using relations and (37), (38), the following
relation is established for the r.h.s of Eq. (53)

Xmel

i¼1

Z
Vmi

ef gTmi rf gmidVi ¼
Xmel

i¼1

df gTmi kel
 �

m ið Þ df gm ið Þ� df gTmi kh
 �

m ið Þ eplcq

n o
m ið Þ

� �
ð54Þ

Substituting relation (47) into relation (54), the following relation is derived

Xmel

i¼1

Z
Vmi

ef gTmi rf gmidVi ¼ df gTM
Xmel

i¼1

N½ �TMi k
el

 �
m ið Þ N½ �Mi df gM� N½ �TMi k

h
 �

m ið Þ eplcq

n o
m ið Þ

� �
ð55Þ

Using Eqs. (52) and (55), Eq. (53) assumes the following form:

K½ �MCR jð Þ df gM � Kh
 �M

CR jð Þ epl
� �

cq ¼
Xmel

i¼1

kel
 �M

m ið Þ df gM �
Xmel

i¼1

kh
 �M

m ið Þ eplcq

n o
m ið Þ

ð56Þ
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Relation (56) holds for every compatible vector of nodal displacements {d}M as
long as:

K½ �MCR jð Þ ¼
Xmel

i¼1

kel
 �M

m ið Þ ð57Þ

and

Kh
 �M

CR jð Þ eplcq

n o
¼

Xmel

i¼1

kh
 �M

m ið Þ eplcq

n o
m ið Þ

ð58Þ

thus, the following multiscale equilibrium equation is derived for the coarse
element:

K½ �MCR jð Þ df gM ¼ ff gM � fhf gM ð59Þ

where {fh}M is a nonlinear correction to the external force vector arising from the
evolution of the plastic strains within the micro-structure

fhf gM ¼
Xmel

i¼1

kh
 �M

m ið Þ eplcq

n o
m ið Þ

ð60Þ

while the plastic strain vectors {ɛcq
pl}m(i) are considered to evolve according to

relation (16). Equations (59) and (60) are used to derive the equilibrium equation at
the structural level.

4.2 Solution in the Macro-scale

Considering the general case of a coarse mesh with ndofM free macro-degrees of
freedom and using Eq. (59), the global equilibrium equations of the composite
structure can be established in the coarse mesh. In the dynamic case the following
equation is established:

M½ � €U
� �

M þ C½ � _U
� �

M þ K½ � Uf gM ¼ Ff gM þ Fhf gM ð61Þ

where [M], [C], [K] are the (ndofM × ndofM) macro-scale mass, viscous damping
and stiffness matrix respectively. The mass matrix can be formulated following
either the lamped or distributed mass approach while the viscous damping can be of
either the classical or non-classical type [40]. The global stiffness matrix of the
composite structure is formulated through the direct stiffness method by additively
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appending the contributions of the coarse elements equivalent matrices defined in
Eq. (57). The (ndofM × 1) vector {U}M consists of the nodal macro-displacements.

Equation (59) expresses the nodal equilibrium of the coarse element mesh. The
coarse element equivalent stiffness matrices K½ �MCR jð Þ can be assembled through
the direct stiffness method to derive the stiffness matrix of the composite structure.
The external load vector {F}M and the hysteretic load vector {Fh}M are assembled
considering the equilibrium of the corresponding elemental contributions {f}M and
{fh}M, defined in Eqs. (51) and (60) respectively, at coarse nodal points.

Equations (61) are supplemented by the evolution equations of the micro-plastic
strain components defined at the collocation points within the micro-elements.
These equations can be established in the following form:

_Epl
cq

n o
m
¼ G½ � _ecq

� �
m ð62Þ

where the vector

_Epl
cq

n o
m
¼ _eplcq

n o
m 1ð Þ

_eplcq

n o
m 2ð Þ

� � � _eplcq

n o
m melð Þ

	 
T

ð63Þ

holds the plastic strain components evaluated at the collocation points of each
micro-element and

_Ecq
� �

m ¼ _ecq
� �

m 1ð Þ _ecq
� �

m 2ð Þ � � � _ecq
� �

m melð Þ
n oT

ð64Þ

Matrix [G] in relation (62) is a band diagonal matrix that assumes the following
form

G½ � ¼

H1m 1ð ÞH2m 1ð Þ R½ �m 1ð Þ
H1m 2ð ÞH2m 2ð Þ R½ �m 2ð Þ

0½ �

0½ � . .
.

H1m melð ÞH2m melð Þ R½ �m melð Þ

2
66664

3
77775

ð65Þ

Equations (62) are independent and thus can be solved in the micro-element
level resulting in an implicitly parallel scheme. Relation (65) depends on the current
micro-stress state within each micro-element. The corresponding stress tensors are
evaluated from the current micro-strains, using Eqs. (39) and (40).
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5 Computational Modeling of Masonry Structures

The multiscale computational method described in Sects. 2–4 is used herein for the
numerical simulation of the nonlinear dynamic response of masonry structures. In
particular the use of textile composites as a means of retrofitting masonry walls is
examined by comparing the nonlinear dynamic response of both plain and retro-
fitted specimens.

5.1 Natural Stone

In this work, natural stone is considered to be an elasto-plastic isotropic material.
Plasticity is introducing a Drucker-Prager [31] yield criterion and an Armstrong-
Frederich (AF) [36] nonlinear kinematic hardening law in Eqs. (16) and (18)
respectively.

Thus, the yield criterion Φ in Eq. (13) assumes the following form

U ¼
ffiffiffiffiffi
J2
2

r
� c1J1 ð66Þ

while the corresponding limit value is

U0 ¼ c2 ð67Þ

Parameters c1 and c2 in relations (66) and (67) are evaluated as

c1 ¼ rt � rc
rt þ rc

ð68Þ

c2 ¼ 2
rtrc

rt þ rc
ð69Þ

where σc and σt are the compressive and tensile strength of the material.
To account for AF type of hardening the following relation is established for the

kinematic hardening function {G}kin in Eq. (7)

Gf gkin ¼
2
3
h

@U
@ rf g � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

@U
@ rf g

� �T
@U
@ rf g

� �s
gf g ð70Þ

where h and c are model parameters.
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5.1.1 Numerical Experiment

The case of a uniaxial compression numerical experiment is examined. The material
parameters considered are E = 20.2 GPa, σc = 69.2 MPa and rt ¼ 0:1; rc ¼ 6:92
MPa. The AF kinematic hardening parameters considered are h = 8 GPa and
c = 1000. The smooth hysteretic model parameters used are β = 0.1, γ = 0.9, N = 25,
cη = 0.002 and cs = 0.005. The strain envelope considered is presented in Fig. 2a.
Five loading-unloading cycles are simulated. In each, the specimen is unloaded up
to a value of stress σ0 = 2.5 MPa.

In Fig. 2b the resulting stress-strain diagram is presented. In each cycle, both the
strength and the unloading stiffness of the specimen is reduced due to the stiffness
degradation and strength deterioration parameters introduced in relations (21) and
(23) respectively. The corresponding back-stress evolution is presented in Fig. 2c.
Finally, the hysteretic energy evolution is presented in Fig. 2d. In this, hysteretic
energy and thus damage is accumulating even during the “elastic” unloading of the
material. This is due to the effect of the stiffness degradation parameter.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [sec]

A
xi

al
 S

tr
ai

n 
[%

]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

Axial Strain [%]

A
xi

al
 S

tr
es

s 
[M

pa
]

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

Axial Strain [%]

B
ac

k−
st

re
ss

 [
M

P
a]

0.7 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [sec]

H
ys

te
re

ti
c 

E
ne

rg
y 

[M
J]

(a) (b)

(d)(c)

Fig. 2 Natural stone hysteretic response. a Imposed strain envelope. b Cyclic axial stress-axial
strain diagram. c Back-stress-axial strain diagram. d Hysteretic energy evolution

Towards a Multiscale Scheme for Nonlinear Dynamic Analysis … 183



5.2 Mortar

The inelastic behaviour of mortar is modelled accordingly using a non-associative
Drucker-Prager material model. Such an approach has been implemented in the past
to account for the nonlinear response of concrete and cement-based materials [41].
The yield function Φ for mortar is provided from Eq. (66). However in this case the
flow potential is defined as:

F ¼
ffiffiffiffiffiffiffi
3J2

p
þ 1
3
J1 tanw ð71Þ

where J1, J2 are the first and second invariants of the stress tensor and ψ is the
Drucker-Prager dilation angle. No hardening is considered for the mortar material.

5.2.1 Numerical Experiment

A uniaxial compression-tension numerical experiment is considered in this case.
The model parameters are E = 3494 MPa, σc = 3 MPa, σt = 0.3 MPa, ψ = 600

β = γ = 0.5, N = 2, cη = 0.002 and cs = 0.05. Furthermore, the following pinching
parameters are considered namely ζ1

0 = 1.0, ψ0 = 0.05, δψ = 0.01, μ = 0.0001, p = 1.2
and q = 0.0001.

The imposed strain envelope is e ¼ 0:0005t=10 sin ptð Þ (Fig. 3a). The evolution
of the hysteretic energy accumulating per cycle is presented in Fig. 3b. Compared to
Fig. 2d, the chosen set of parameters results in higher accumulation rates. The
resulting stress-strain diagram is presented in Fig. 3c. Last, the evolution of the
pinching parameter is shown in Fig. 4d. The pinching parameter assumes
decreasing values only within a region of elastic loading. However the aboslute
value of the pinching parameter increases as damage accumulates.

5.3 Textile Composite Reinforcement

To accurately predict the nonlinear behaviour of the composite an anisotropic yield
criterion is required such as the Tsai-Wu failure surface introduced in [42]. How-
ever anisotropic yield and failure surfaces need extensive experimental investiga-
tion for the calibration of the corresponding material parameters where combined
stress-states need to be considered. Based on the experimental data provided, a
two-parameter yield surface can be calibrated. Thus the pressure-dependent Druc-
ker-Prager yield surface defined in Eq. (66) is also implemented for the textile
composite material. The Drucker-Prager yield surface has been implemented and
validated in various applications of fibre and textile reinforced composites [43, 44].
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Fig. 3 Mortar hysteretic response. a Imposed strain envelope. b Hysteretic energy evolution.
c Cyclic axial stress-axial strain diagram. d Pinching parameter evolution
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No hardening is considered in this case. A homogenized anisotropic material
constitutive model is considered for the textile reinforced composite as suggested in
[12]. The elastic properties of the homogenized material are presented in Table 1.

The orientation of the local element axes 11, 22, 33 for the homogenized
material are presented in Fig. 4. The shear and tensile strengths of the wrap-knitted
fibers are considered to be to be equal to σt = 10 MPa and σt = 400 MPa respectively
[12]. Furthermore, the compressive strength of the cement-based mortar used as the
matrix of the textile composite material is σc = 30 MPa [45] (Fig. 4).

The hysteretic and damage related parameters are β = 0.5, γ = 0.5, N = 25,
cη = 0.002 and cs = 0.005.

6 Numerical Applications

The cantilever masonry wall presented in Fig. 5 is considered, consisting of stone
blocks, bonding mortar and an outer layer of textile component reinforcement is
considered. The material properties for the stone, mortar and reinforcement have
been introduced in Sects. 5.1, 5.2 and 5.3 respectively. The wall is considered to be
laterally supported. A mass m = 20 tn is considered at the top of the wall. The
densities of the constituent materials are ρs = 1.8 tn/m3, ρm = 1.2 tn/m3 and ρt = 2.0
tn/m3 for the natural stone, mortar and textile composite layer respectively. No
viscous damping has been considered in this example.

A series of time-history analyses is performed using the HHT method [46] to
integrate the equations of motion. The corresponding numerical dissipation coef-
ficient is set to αHHT = −0.1. A constant time step equal to dt = 0.001 s is considered
in all cases. Results are derived at constant time step equal to dtout = 0.005 s. All
analyses were performed in a personal computer fitted with an Intel Core-i7 CPU
and 8 GB of RAM.

The two models (URMW and RMW) are subjected to a series of seven pairs of
unscaled ground motion records derived from the PEER database [47]. The ground-
motion records considered together with their corresponding peak values are pre-
sented in Table 2.

The corresponding time-histories are presented in Fig. 6a, b for the fault-normal
and fault-parallel direction of excitation respectively.

Table 1 Textile composite
elastic properties

Young’s modulus (MPa)

E11 E22 E22 E12 E23 E13

40,000 32,000 32,000 4500 4500 4500

Poisson’s ratio

ν12 ν23 ν13
0.14 0.2 0.2
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The corresponding Response Spectra (RS) are presented in Fig. 7a, b respec-
tively. The provided RS are compared with the elastic spectrum defined in EC8 [48]
considering a ground acceleration αg = 0.16g, soil factor S = 1.2, corner periods
TB; TC; TDf g ¼ 0:15; 0:5; 2:5f g and 5 % damping.
In all the analysis cases considered, the ground motion record with the highest

PGA is imposed on the longitudinal direction of the wall.

6.1 Verification

For verification purposes, a set of analysis cases is performed where the effect of
damage (i.e. setting cη = 0.0, cs = 0.0 and ζ = 0.0 for the stiffness degradation,
strength deterioration and pinching parameters respectively. The derived results are
compared to the results obtained from a conventional finite element model using the

Table 2 Ground motion records

Ground motion record NGA index PGA

(–) (–) Fault normal (g) Fault parallel (g)

Friuli, 1976 #130 0.09 0.11

Victoria-Mexico, 1980 #266 0.15 0.09

Northridge, 1995 #957 0.12 0.16

Imperial Valley(E06), 1979 #185 0.25 0.22

Chi-Chi, 1999 #1201 0.25 0.31

Imperial Valley(E07), 1979 #205 0.19 0.13

Coyote Lake, 1979 #145 0.28 0.16

3.
1 

m

0.40 m

0.05 m

Stone CompositeMortar

m=20tn

2.5 m

Natural Stone Height: h=30 cm

Mortar thickness: t=1 cm

Fig. 5 Textile composite reinforced stone masonry wall
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Fig. 6 Ground motion records. a Fault-parallel components. b Fault-normal components
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Abaqus commercial code [49]. Material nonlinearity in Abaqus is treated using the
Full Newton-Raphson method [35]. The C3D8 hex-element with full integration
[49] is implemented in both cases. The finite element mesh consists of 1710 ele-
ments and 2484 nodes (Fig. 8a). The multiscale element consists of 10 coarse
elements and 44 nodes. Each coarse element consists of 171 micro-elements
(Fig. 8c, d). Two types of coarse elements are considered since the coarse element
at the top of the wall does not have a mortar layer. The distribution of coarse
elements is presented in Fig. 8b). The oscillatory boundary condition assumption is
used for the evaluation of the micro to macro numerical mapping.

The free end displacement time-history components derived from the Victoria-
Mexico analysis case are presented in Figs. 9 and 10 for the in-plane and the out-
of-plane component respectively. The first 15 s of the derived time-history are
presented for clarity. The results obtained from the two different methodologies are
in good agreement. The differences observed, especially in the high frequency
oscillations after the 10th second, are attributed to the numerical assumptions
governing the evaluation of the effective stiffness of the coarse element that also
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Fig. 8 a Finite element model. b Multiscale model—coarse mesh. c Multiscale model coarse
element type #1. d Multiscale model coarse element type #2
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affect the derived mass matrix. Thus, small variations in the computational eigen-
frequencies of the multi-scale model as compared to the finite element one are
expected (Fig. 8).

The required computational time for the FEM analysis model was approximately
125 min while the corresponding time for the multiscale model 14 min. The
reduction in the computational time is approximately 88 %.

6.2 Unreinforced Masonry Wall

Next, the URMW multiscale model is analyzed for all the ground motion records
defined in Table 2 considering both plasticity and damage evolution. The corre-
sponding parameters for the evolution of stiffness degradation, damage deteriora-
tion and pinching are defined in Sects. 5.1.1 and 5.2.1 for the natural stone and
mortar respectively.

The derived free-end displacement time-histories are presented in Figs. 11 and 12
for the longitudinal and out-of-plane displacement component respectively.
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Fig. 10 Top layer longitudinal displacement component. a Abaqus. b Multiscale formulation
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Fig. 9 Top layer out-of-plane displacement component. a Abaqus. b Multiscale formulation
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In all cases plastic deformation and therefore damage accumulates on the mortar
joints of the masonry wall. In Fig. 13, the evolution of the hysteretic energy
accumulated in the lower mortar layer is presented. The five most significant out of
the seven analysis cases are presented in the plot for clarity. The Friuli and Imperial
Valley(E06) records result in the highest damage intensities. This conclusion can
also be verified by comparing their spectral content against the out-of-plane eigen-
period of the wall (T = 1.19 s). In almost all of the examined cases, the mortar layer
assumes its maximum damage intensity at an extremely high rate. The Victoria-
Mexico event however results in a gradual increase of the accumulated hysteretic
energy.

In Fig. 14a typical stress-strain hysteresis loop is presented retrieved at the Gauss
point #1 of micro-element #19 located at the midspan of the lower mortar layer
(Fig. 8a). Due to the relatively large thickness of the mortar layer in this model the
mortar joints fail due to tensile rather than shear action. The effect of the strength
deterioration parameter on the material response is evident in Fig. 8b where the
stress path of the same Gauss point is presented in the p, q space where p is

the hydrostatic component of the stress tensor and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 sf gT sf g

q
while {s} is the

deviatoric part of the stress tensor. In the pq space, the initial yield surface defined
by the Drucker-Prager criterion is represented by a straight line. After the initial
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Fig. 11 URMW—free end longitudinal displacement time histories
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yielding of the material point the slope of the line gradually decreases as predicted
by Eqs. (23) and (11).

The required computational time for both the analysis and the output manipu-
lation for the seven analysis cases was approximately 157 min.
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6.3 Textile Composite Retrofitted Masonry Wall

In this case, a single layer of textile composite reinforcement is added on the
masonry wall. The homogenized properties defined in Sect. 5.3 are considered. The
fine-meshed finite element model presented in Fig. 15a consists of 2223 hex-
elements and 3020 nodes. The multiscale model again consists of 10 coarse ele-
ments and 44 nodes. Two types of coarse elements are defined each one consisting
of 228 micro-elements (Fig. 15b, c). The eigen-periods of the structure under
consideration are Tin = 0.19 s and Tout = 0.91 s for the in-plane and out-of-plane
eigen modes respectively. Thus, the first four ground motion records (Table 2)
represent the case of extreme seismic incidents where the performance level of Near
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Fig. 15 a Finite element
model. b Multiscale model
coarse element #1.
c Multiscale model coarse
element #2

Towards a Multiscale Scheme for Nonlinear Dynamic Analysis … 193



Collapse(EC8) needs to be achieved while for the rest a performance level of
limited damage should be achieved.

The derived results in terms of free end displacement time-histories are presented
in Figs. 16 and 17 for the longitudinal and out-of-plane displacement components
respectively. Compared to the URMW case, the peak displacements are clearly
reduced due to the increased stiffness provided from the textile composite layer.
The maxima of the displacement time-histories for the two cases (URMW and
RMW) are presented in Table 3. In most cases, the reduction in the absolute value if
the out-of-plane maximum displacement of the order of 50 %. This reduction is
even larger in the Northridge and Imperial Valley(E07) case where the increased
stiffness shifts the eigen-period of the wall away from the high spectral acceleration
region of the corresponding response spectra.

Although the reduction in displacement terms is significant, damage accumu-
lation is not avoided. However both the absolute value and the rate of damage
accumulation, as depicted in the corresponding hysteretic energy plot of the bottom
mortar layer is significantly reduced. Thus, although the textile composite layer
succeeds in increasing the overall strength and stiffness of the masonry wall, only
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by slightly altering its initial thickness, it needs to be combined with conventional
measures to provide acceptable retrofit solutions at the Damage Limitation per-
formance level (Fig. 18).
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Fig. 17 RMW—free end out of plane displacement time histories

Table 3 Maxima of displacement components

Ground motion record Displacement

Longitudinal (mm) Out-of-plane (mm)

URMW RMW URMW RMW

Friuli, 1976 0.04 0.03 4.43 2.19

Victoria-Mexico, 1980 0.05 0.04 4.43 2.19

Northridge, 1995 0.07 0.05 4.40 1.70

Imperial Valley(E06), 1979 0.09 0.08 8.88 5.32

Chi-Chi, 1999 0.09 0.07 3.45 2.25

Imperial Valley(E07), 1979 0.07 0.04 5.49 1.35

Coyote Lake, 1979 0.11 0.05 3.71 1.70
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7 Conclusions

The nonlinear dynamic analysis of heterogeneous structures can be an arduous and
time-consuming procedure. However, it provides significant insight on the
dynamics of the structural response and provides a reliable on the inelastic pro-
cesses undergoing at the material level. In this work a multiscale analysis proce-
dure, namely the hysteretic multiscale finite element scheme, is considered for the
computational up-scaling of refined finite element problems. Using this method, the
response of a natural stone masonry wall is examined under seismic excitation.
Next, a layer of textile composite reinforcement is added onto the assembly and the
response of the strengthened structure is examined. From the computational per-
spective, the multiscale method used enables the engineer to run a series of analysis
models in an affordable amount of time. In terms of modeling efficiency, the
multiscale model together with the hysteretic model adopted manage to capture the
dynamics of the structure under consideration. The textile composite reinforcement
layer increases the stiffness of the masonry wall, while at the same time the
accumulated damage, quantified through an energy measure decreases. Future
research will focus on the incorporation of brittle cracking mechanisms within the
presented multi-scale formulation to further enhance the versatility of the method
and provide more accurate estimates for the dynamic response of brittle structures.
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