

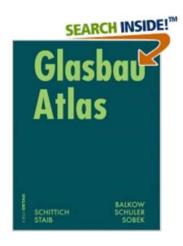
Werkstoffe II - Glas 1

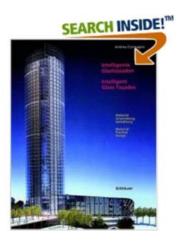
Prof. Hans Herrmann

| 1

Rechnergestützte Physik der Werkstoffe

ETH zürich


Lernziele heute:


- Erklären was Glas ist
- Diskutieren des Glaszustands vs. kristalliner Zustand
- Kennenlernen der Bestandteile und Rohstoffe von Baugläsern
- Verstehen des Temperaturverhaltens von Gläsern
- Charakterisieren und erklären typischer Schäden in Glas

Glas Literatur:

- Glaströsch: Glas und Praxis Handbuch, 4. Auflage online
- S. Schittich, G. Staib, D. Balkow: Glasbauatlas, Birkhäuser, 2. überarb. und erweiterte Aufl. 2006
- A. Compagno: Intelligente Glasfassaden, Material, Anwendung, Gestaltung, Birkhäuser 2002

IfB, ETHZ Rechnergestützte Physik der Werkstoffe

ETH zürich

NICE TO KNOW

1

Glas - ein besonderes Material

«Es gibt kein älteres Material das so modern ist und so viel Zukunft hat wie Glas»

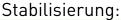
- Hohe Wandelbarkeit: Farbe, Transparenz, Form, Oberfläche, Festigkeit, Steifigkeit, Hitze und chemische Widerstandsfähigkeit, elektrische und thermische Leitbarkeit
- Dauerhaft, (ver)formbar, bearbeitbar, stabil
- Biokompatibel
- Unerschöpfliche Rohmaterialien und vollständige Rezyklierbarkeit
- Unerschöpfliches Innovationspotential in industrieller Herstellung und Verarbeitung

Die Entdeckung synthetischer Gläser

Entdeckung ca. 5000v.Chr. durch phönizische Kaufleute im Libanon (*nach Plinius d. Ä. «Historia naturalis» 23-79n.Chr.*)

Kochfeuer zwischen natronhaltigen Blöcken am Strand

Verflüssigung der Blöcke mit dem Sand durch die hohen Temperaturen des Feuers


→Opake, glasartige Substanz

Spaltung zu Wasserglas:

≡Si-O-Si≡ + Na-O-Na →≡Si-O-Na + Na-O-Si ≡

Glasbildner Glaswandler

Wasserglas

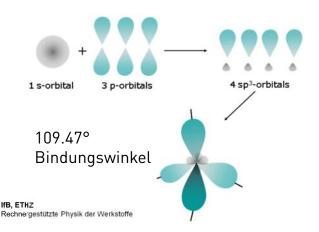
≡Si-O-Na + Na-O-Si≡ + Ca-O → ≡Si-O-Ca-O-Si ≡ + Na-O-Na

Wasserglas Stabilisator Siliziumdioxidnetz

Natriumoxid

Rechnergestützte Physik der Werkstoffe

ETH Zürich Der Glaszustand

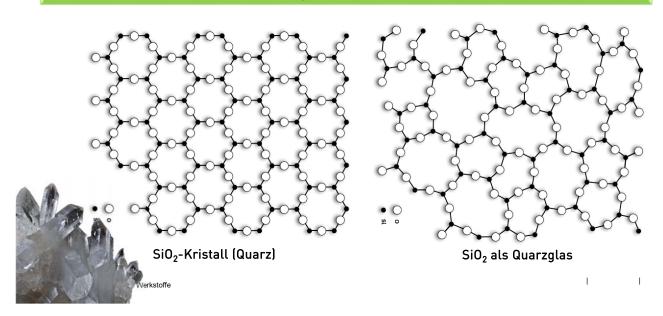


Einkomponenten Kieselgläser: Elektronenhülle

Si: 4 Valenzelektronen (wie C)

Grundzustand $3s^2p^2 \rightarrow \text{Hybridisiert sp}^3 \rightarrow \text{Tetraederstruktur (109.5°)}$ [SiO₄]⁴⁻ Tetraeder ist Nahordnung

Hybridorbital besitzen größere Elektronenwolken als Atomorbital
 ¬ größere Überlappungsbereiche sind möglich
 (zusätzlicher Gewinn an Bindungsenergie ist Ursache für Hybridisierung)



Der Glaszustand

- Im Glas sind grundsätzlich die gleichen Bindungszustände wie im Kristall (SiO₄ Tetraeder).
- Quarz hat Gitter (kristalline Fernordnung), Quarzglas ein Netzwerk mit unregelmässigen Bindungswinkeln und Abständen (ausschliesslich Nahordnung).

Der Glaszustand **ETH** zürich KNOV Glas verstehen: Das V-T-Diagramm Festkörper <| Viskose Schmelze Volumen unterkühlte Glas kristalliner Stoff TgTeTf Temperatur Transformations-(Einfrierbereich Wärmedehnung durch Netzwerkstruktur: asymmetrische Potentiale Stark verknüpft → weit offen Expansion durch Änderung

der Netzwerkstruktur

IfB, ETH

Der Glaszustand

Festkörper mit nichtkristalliner, amorpher Struktur → Glaszustand

Kristalliner Zustand (Einkristall / Polykristall)

- Periodisches Gitter
- •Alle Verbindungen gleiche Festigkeit
- Scharfer Schmelzpunkt

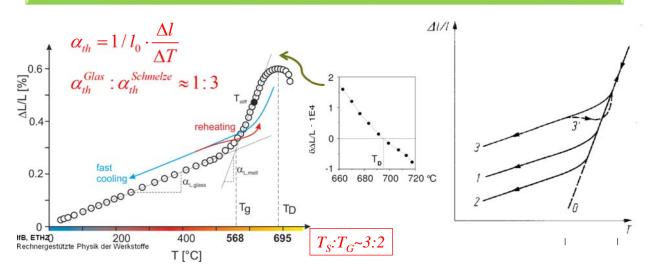
Glaszustand (amorpher Zustand)

- Eingefrorene ungeordnete Struktur
- Bei Abkühlung zunehmende Viskosität
 → Transformationsbereich
- Ende des Transformationsbereichs liegt der Glasübergang
- Sprunghafte Änderung der Wärmedehnung

IfB, ETHZ Rechnergestützte Physik der Werkstoffe

ETH zürich

Der Glaszustand



Glasdichte hängt von Abkühlrate ab.

Geringe Kühlrate → höherer Dichte; hohe Kühlrate → geringere Dichte

Grund: Moleküle können durch schnelle Abkühlung nicht in Gleichgewichtslage gehen.

Geringere Packungsdichte wegen rascher Viskositätszunahme →Glastemperatur ändert sich mit der Abkühlrate.

ETH Zürich Der Glaszustand

Gläser	Kristalline Stoffe				
Transformationsbereich (TB)	Scharfer Schmelzpunkt				
Volumenzunahme im TB bereits wie Flüssigkeit	Sprung im Volumen am Schmelzpunkt				
Oberhalb T _f wie kristalliner Stoff	Oberhalb T _f wie Glas				
Unregelmässiges Netzwerk (unregelmässige Bindungswinkel und Abstände) ohne Fernordnung (wie Flüssigkeit) → isotrope , unterkühlte Flüssigkeit extrem hoher Zähigkeit (10 ¹⁹ dPas RT)	Regelmässig, periodisch wiederkehrend, geordnet (Fernordnung) anisotrop				
Starke und schwache Bindungen liegen nebeneinander vor → Erstarrungs-/Erweichungsintervall	Bindungen mit annähernd gleicher Stärke → Schmelzpunkt				
Quarzglas	Quarzkristall und abkühlen				

Der Glaszustand ist der eingefrorene Zustand einer unterkühlten Flüssigkeit, die ohne zu kristallisieren erstarrt (Gustaf Tamman (1861-1938))

ETH zürich

Der Glaszustand

Natürliche Gläser

Glasbildung ...

- ... durch amorphe Erstarrung vulkanischer Schmelzen (Gesteinsglas)
- ... durch Meteoriteneinschlag (Impaktglas/Tektit)
- ... durch Blitzeinschlag (Fulgurite)
- ... durch Felsstürze (Friktionite)
- ... durch Schockwellen (Diaplektisches Glas)
- ... durch Lebewesen (Glasschwamm)

Glaschemie

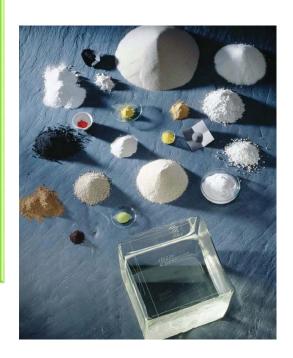
Glasrezepturen

«Nimm 60 Teile Sand, 180 Teile Asche aus Meerespflanzen und 5 Teile Kreide – und du erhältst Glas»

ältestes Glasrezept des assyrischen König Assubanipal (7. Jh.v. Chr.)

IfB, ETHZ Rechnergestützte Physik der Werkstoffe | 07.05.2018 | 13

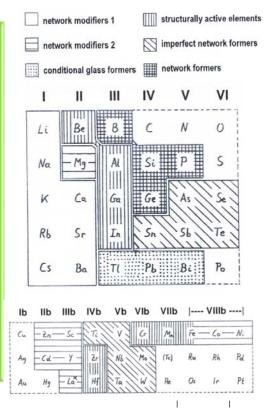
ETH Zürich Glaschemie



Glas hat oft keine definierte chemische Zusammensetzung, es ist eine Mischung aus Metalloxiden und anderen chemischen Elementen und Verbindungen.

Bausteine der Gläser sind Oxide von Si, B, Al, Mg, Ca, Ba, Pb, Zk, Li, Na, K

Die chemische Analyse bezeichnet immer Anteil eines Elements in Form dessen Oxides.

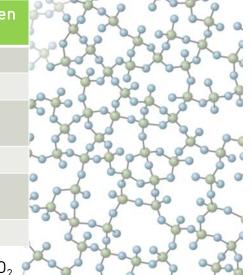

Da Glas kein Gefüge hat, müssen die Eigenschaften über die Chemie der Bindungen beeinflusst werden über Fremdionen!

Glaseigenschaften – Glasmikrostruktur

- Das Material, das die Grundstruktur bestimmt, nennt man Netzwerkbildner (Glasbildner).
- Netzwerkwandler werden in das vom Netzwerkbildner gebildete Gerüst eingebaut. Sie reissen die Netzwerkstruktur auf, indem der Brückensauerstoff der Tetraeder gesprengt wird.
- Stabilisatoren können sowohl Netzwerkwandler als auch Netzwerkbildner sein. Sind nicht in der Lage als Einzelkomponente ein Glas zu bilden.

Rechnergestützte Physik der Werkstoffe

Glaschemie ETH zürich



Glasbildner

Glasbildner können Einkomponentenglas bilden. Elektroneutralität kann nur von Stöchiometrien erfüllt werden.

		M ₂ X ₃	MX ₂	M ₂ X ₅	Elektronen -summe
Siliciumdioxid	SiO ₂		X		3.33
Bortrioxid	$B_{2}O_{3}$	X			2.8
Phosphor- pentoxid	P ₂ O ₅			X	3.71
Germanium	GeO_2		X		3.3
Arsenik / Diarsentrioxid	As ₂ O ₃	X			3.6
Antimon	Sb_2O_5			X	3.71

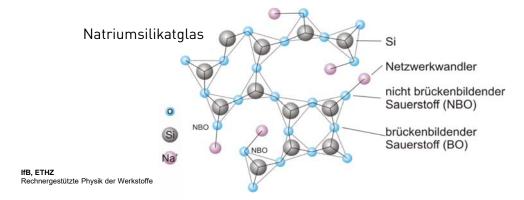
IfB, ETHZ Rechnergestützte Physik der Werkstoffe

Glaschemie

Netzwerkwandler / Glaswandler

Netzwerkwandler spalten das Netzwerk auf und verringern die Zahl der Verknüpfungsstellen → kleinere Glastemperatur, geringere Viskosität

Anstelle der Atom- tritt schwächere Ionenbindung auf.


Glaswandler sind vornehmlich basische Oxide mit grossen Kationen:

Natriumoxid (Na₂0) $\rightarrow \eta \downarrow$

Calciumoxid (CaO) → chemische Resistenz

Kaliumoxid (K_2O) \rightarrow Glas wird länger; Litiumoxid (Li_2O) $\rightarrow \eta \downarrow \downarrow$

seltener: Bariumoxid, Nioboxid, Rubidiumoxid, Strontiumoxid, Caesiumoxid (CsO), Tantal(V)-oxid, Telluroxid

ETHZÜrich Glaschemie

Stabilisatoren

Zwischenoxide können sowohl Netzwerkwandler als auch

Netzwerkbildner sein, aber nicht Einkomponentenglas.

Beispiele sind:

Mangan(II)-oxid (MnO) → Glas wird länger

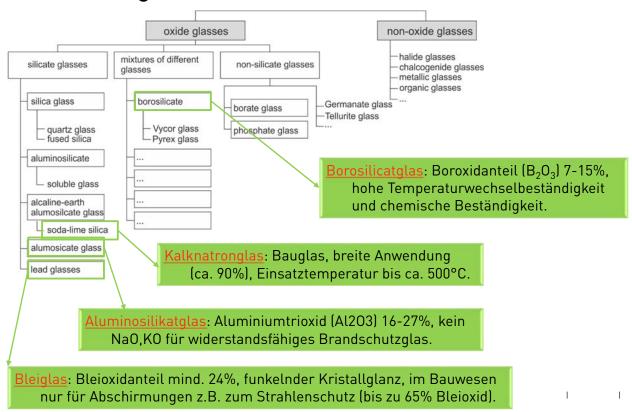
Aluminiumoxid (Al₂O₃) \rightarrow Glas wird länger, mech. Festigkeit \uparrow , chem. Resistenz \uparrow

Bleioxid (PbO) \rightarrow $Tg \downarrow$, $Brechzahl \uparrow$, el. Widerstand \uparrow , Absorption v. Röntgenstrahlen

Titandioxid (TiO₂) \rightarrow Brechzahl \uparrow , Säureresistenz \uparrow

Zirconium(IV)-oxid $(ZrO_2) \rightarrow chemische Resistenz \uparrow$, Trübmittel für Emails

Zinkoxid ZnO → Härte ↑


Ploniumoxid (PoO) Zinn(II)-oxid (SnO) Cadmiumoxid (CdO) Berylliumoxid (BeO) Thoriumoxid (ThO₂) Selen(IV)-oxid (SeO₂) Eisen(II)-oxid (FeO) Eisen(III)-Oxid (Fe $_2$ O $_3$) Nickel(II)-oxid (NiO)

Cobalt(II)-oxid (CoO)

Glaschemie

Einteilung der Gläser

ETH zürich

Glaschemie

Zusammensetzung wichtiger Gläser

Glasart / Gewichtsprozent	SiO ₂	Al ₂ O ₃	Na ₂ 0	K ₂ 0	Mg0	Ca0	B ₂ O ₃	Pb0	TiO ₂	F	As	Se	Ge	Те
Quarzglas	100	-	_	-	-	-	-	-	_	-	-	-	_	-
Kalknatronglas*	72	2	14	-	-	10	-	-	-	-	-	-	-	-
Floatglas	72	1,5	13,5	-	3,5	8,5	-	-	-	-	-	-	_	-
Bleikristallglas	60	8	2,5	12	-	-	-	17,5	-	-	-	-	-	-
Laborglas	80	3	4	0,5	-	-	12,5	-	-	-	-	-	-	-
E-Glas	54	14	-	-	4,5	17,5	10	-	-	-	-	-	-	-
Email	40	1,5	9	6	1	-	10	4	15	13	-	-	-	-
Chalkogenidglas 1	-	-		-	-	_	-		-	-	12	55	33	-
Chalkogenidglas 2	-	-	_	-	-	-	_	-	-	-	13	32	30	25

Glaschemie

Kalknatronglas: Zuschlagstoffe

- Flussmittel (Zinkoxid, Thallium):
 - Verminderung des Schmelzpunktes.
 - Beschleunigung der Läuterung (= Entfernen von Glasbläschen aus der Schmelze).
 - Verminderung der Entglasung (= Trübung des Glases durch örtliche Kristallbildung beim Erstarren).
- Veränderung der Brechzahl (Bariumoxid, Blei).
- Absorption von Infrarotstrahlung (Cer).
- Veränderung der thermischen und elektrischen Eigenschaften (Boroxid).
- Erhöhung der Bruchfestigkeit (Aluminiumoxid).
- Trübungsmittel (Zinndioxid, Calciumphosphat, Fluorid, Zirkoniumdioxid).

IfB, ETHZ Rechnergestützte Physik der Werkstoffe

Rechnergestützte Physik der Werkstoff

ETH zürich Glaschemie

Färben von Glas

Über Zwischenoxide werden die Eigenschaften des Glases gesteuert
→ Ionenfärbung

Beimischung von Metallen in Form von Nanopartikeln in der Schmelze (Silber / Gold in Korngrössen <10nm, Form wichtig)

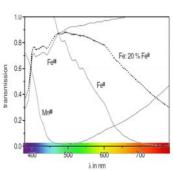
→ Colloidale Färbung

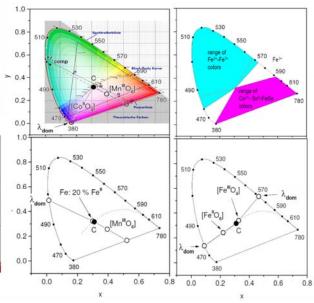
Beeinflussung durch nicht an der Reaktion beteiligte Zusätze für Farbe, Brechungsindex, Trübung.

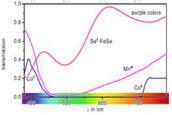
Entfärbung durch Metalloxide, die die komplementäre Farbe zur Verunreinigung bringen -> Glasmacherseife

Glaschemie

Kalknatronglas: Zuschlagstoffe für die Färbung


Oxide		Farbe
Kupferoxid (einwertig)	CuO	Rot (Kupferrubinglas)
Kupferoxid (zweiwertig)	Cu ₂ O	Blau
Kobaltoxid	Co_2O_3	Dunkelblau
Chromoxid	Cr_2O_3	Grün
Eisenoxide	Fe ₂ O ₃	Je nach Wertigkeit Fe $^{2+}$ =blau / Fe $^{3+}$ =gelb \rightarrow Mischung grün
Uranoxid	Ur0	Gelb-/Grünfärbung (Annagelb mit grüner Fluoreszenz)
Nickeloxid	Ni0	Violett, rötlich, bräunlich (Entfärbung)
Manganoxid (Braunstein)	Mn0	Glasmacherseife
Selenoxide	Se0/Se0 ₂	Rosa (Rosalin) und rot (Selenrubin)
Silber		Feines Silbergelb
Gold		Rubinrot (in Königswasser aufgelöst)
Indiumoxid	ln_2O_3	Gelb bis bernsteinorange
Neodym	NdO	Rosa bis purpur, lila


ETH ZÜrich Glaschemie



Kalknatronglas: Zuschlagstoffe für die Entfärbung

Entfärbung mit Mn³+: Nur eine komplementärfarbe möglich! Bsp: Fe²+:Fe³+=1:4

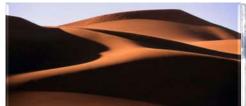
Entfärbung mit Mischung aus Cobalt-Selen macht Komplementärfarbe für beliebige Fe²⁺:Fe³⁺ Mischungen möglich!

Glaschemie

Kalknatronglas: Rohstoffe

Quarzsand: Körnung <1mm; fast reines SiO₂; durch gezielte Rohstoffauswahl kann die grüne Eigenfarbe von Kalknatronglas nahezu aufgehoben werden → Chemische Entfärbung; Glas-/ Netzwerkbildner

<u>Natriumcarbonat</u>: Soda; Na₂CO₃; senkt Schmelzpunkt des SiO₂; *Flussmittel; Netzwerkwandler*.


<u>Pottasche</u>: Kaliumcarbonat K₂CO₃; liefert Kaliumoxid für die Schmelze; *Netzwerkwandler und Flussmittel*.

Netzwerkwandler und Stabilisatoren in carbonatisierter Form:

Kalk: Calciumcarbonat CaCO3; Netzwerkwandler; Erhöhung der Glasfestigkeit.

Feldspat: NaAlSi₃O₈; Als Trägerrohstoff für Al zur Erhöhung der Glashärte.

<u>Altglas</u>: Drastische Senkung des Energieverbrauchs aber schlechte Farbtrennung, Fremdstoffe → nicht für hochwertige Gläser zu verwenden.

ETHZÜrich Glaschemie

Element	Oxid	Rohmaterialien: Optionen für Oxide						
Si	SiO ₂	Sand	Bruchglas					
Ti	TiO ₂	Illmenit, FeTiO ₃	TiO ₂					
Zr	ZrO ₂	Zirkon, ZrSi0 ₄	ZrO ₂					
Al	Al_2O_3	Feldspat (Ba,Ca,Na,K,NH ₄)(Al,B,Si) ₄ O ₈	Nephelinit	Hochofen- schlacke	Klingstein	Kaolinit		
		Al(OH)3	Al_2O_3					
В	$B_{2}O_{3}$	Borax	H_3BO_3	$B_{2}O_{3}$	Colemanit	Tinkal		
Fe	Fe ₂ O ₃	Rotes Eisenoxid	FeS	FeS ₂				
Cr	Cr_2O_3	Cr_2O_3	$K_2Cr_2O_7$					
Na	Na ₂ 0	Natriumcarbonat Na ₂ CO ₃	NaOH					
K	K ₂ 0	Potasche, K ₂ CO ₃						
Ca	CaO	Kalkstein						
Mn	MnO	MnO_2	MnCO ₃					
S	SO ₃	Na ₂ So ₄	K ₂ SO ₄	CaSo ₄	Gips	BaSO ₄		
Pb	Pb0	PbO	Pb ₃ O ₄					
Mg	Mg0	Dolomit, CaMg(CO ₃) ₂	MgCO ₃					

Rechnergestützte Physik der Werkstoffe

Ein 5 Minuten Check.... **ETH** zürich

ETH zürich

Glaseigenschaften

- Mechanische Eigenschaften von Glas variieren stark.
- Bruchfestigkeit wird stark von der Qualität der Oberfläche bestimmt.
- Glas ist sehr resistent gegen Chemikalien; Ausnahme: Flusssäure.
- Hoher elektrischer Widerstand bei Raumtemperatur, der bei steigender Temperatur rasch abnimmt.
- Einsatztemperaturen unterscheiden sich je nach Glastyp stark.

Eigenschaft		Kalknatronglas DIN1249-10	Borosilicatglas
Dichte (bei 18°C)	Kg/m³	2500	2200-2500
Härtegrad nach Mohs	-	5-6	
Elastizitätsmodul E	GPa	73	63
Querdehnzahl	-	0.23	0.2
Spez. Wärmekapazität	J/(kgK)	720	800
Lineare Wärmedehnzahl (20-300°C)	mm/(mK)	9x10 ⁻³	Klassenabhängig
Wärmeleitfähigkeit	W/(mK)	1.05	1
Biege/Druck/Zugfestigkeit	N/mm ²	45/700-900/30-90	
Mittlerer Brechindex	-	1.52	1.5

Glaseigenschaften

Einstellung von Glaseigenschaften

Grosse Datenbanken für Glaseigenschaften (z.B. SciGlass> 390.000 Glasskompositionen).

Eigenschaftsvorhersage anderer Zusammensetzungen über Regressionsanalyse.

- Praktisch alle physikalischen und chemischen Eigenschaften von Gläsern und glasbildenden Schmelzen.
- Unterschiedliche Interpolationsmethoden für breite Konzentrationsbereiche.
- Dreiecksdiagramme f
 ür Glasbildung.
- Optische Spektren.

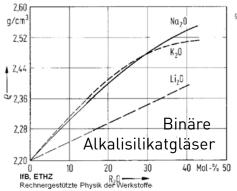
$$Glaseigenschaft = b_0 + \sum_{i=1}^{n} \left(b_i C_i + \sum_{k=1}^{n} b_{ik} C_i C_k \right)$$
n Anzanl aller
Glaskomponenten
C Konzentration der
Komponenten

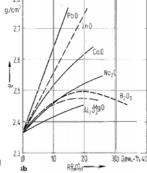
b variable Koeffizienten n Anzahl aller

→ Kristallisation oder Phasentrennungen dürfen nicht auftreten.

Rechnergestützte Physik der Werkstoffe

Glaseigenschaften **ETH** zürich

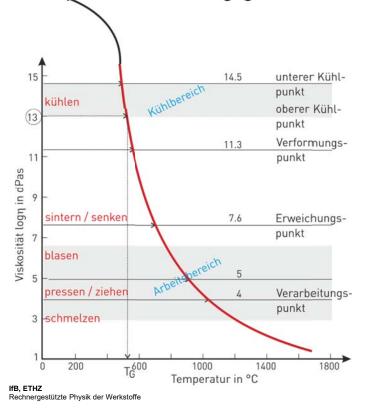

Einstellung von Glaseigenschaften: Bsp. Dichte


Dichtevariation 2-6g/cm³; Dichte SiO₂ kristallin 2.65/amorph 2-2.2g/cm³ → Aufgelockerte Struktur, Abhängig von Vorgeschichte Zugabe von Alkalioxiden erhöht die Glasdichte:

aufsprengen des Netzwerkes ←→ Auffüllen der Hohlräume

Wegen höherer atomarer Masse nimmt Dichte zu

Abschätzung:
$$\rho = \frac{100}{\sum_{i} p_{i} / \rho_{i}} \approx 2.5$$



Oxid	ρ _i (g/cm³)	Oxid	ρ _i (g/cm³)
SiO ₂	2.24	As_2O_5	3.33
Al_2O_3	2.75	CaO	4.3
$B_{2}O_{3}$	2.9	Zn0	5.94
Na ₂ 0	3.2	BaO	7.2
K ₂ 0	3.2	Pb0	10.3
Mg0	3.25		

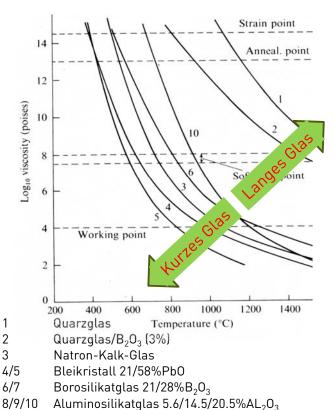
Glaseigenschaften

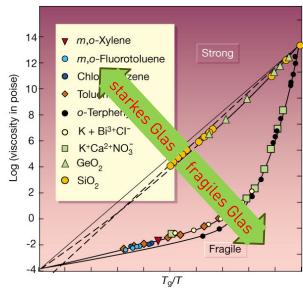
Temperaturabhängigkeit der Viskosität

Grosser Viskositätsbereich (16-18 Grössenordnungen →Unterschiedliche Viskosimeter erforderlich (Faserziehen, Torsion, Rotation)

Vogel-Fulcher-Tamman (VFT) Gleichung (für T>T_a)

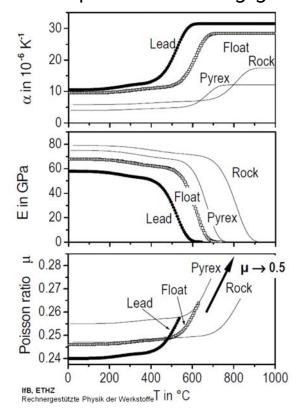
$$\log \eta = A + \frac{B}{T - T_0}$$


<u>Def.</u>: Glastemperatur $T_G = T^{13}$ Temperatur bei 10^{13} dPas


ETH zürich

Glaseigenschaften

Temperaturabhängigkeit der Viskosität


I

I

Glaseigenschaften

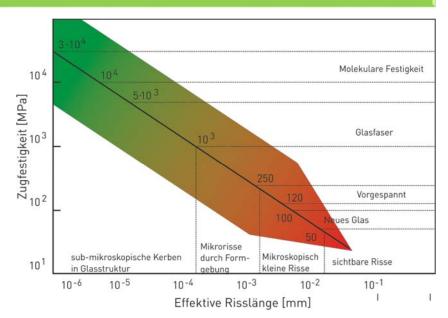
Temperaturabhängigkeit mechanischer Grössen

Elastische Konstanten ändern sich im Glasübergang

Im visko-elastischen Bereich sind Elastische Konstanten frequenzabhängig (! Ultraschallmessung)

Oberhalb T_D ist Querkontraktion 0.5 (Inkompressibilitätsbedingung)

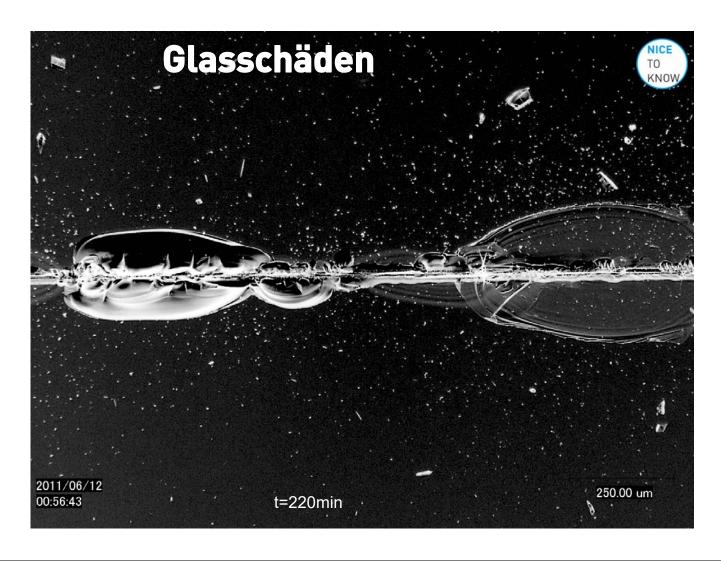
Pyrex=Borosilikatglas; Rock=Quarzglas

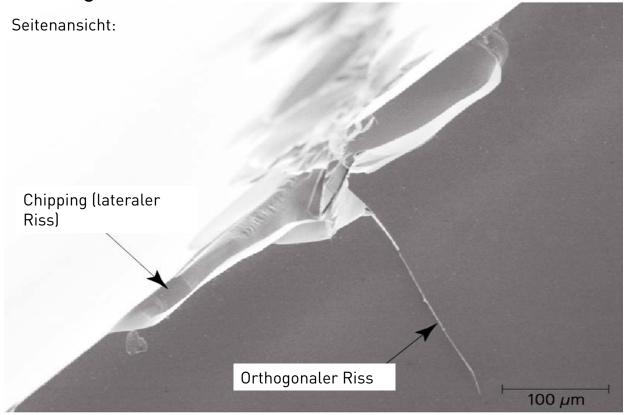

ETH zürich

Glasschäden

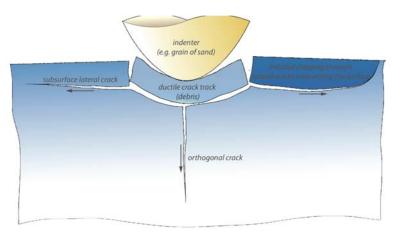
Glaseigenschaften – Bruchverhalten

- Sprödes Bruchverhalten aufgrund der geringen Zugfestigkeit und Bruchdehnung.
- Hohe Bruchgefahr durch geringe Oberflächenverletzungen (Kerbwirkung).



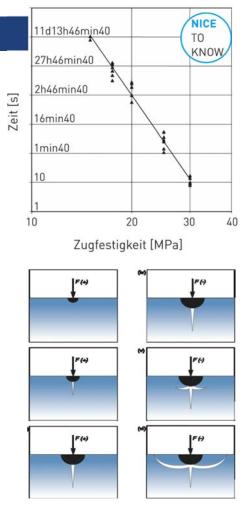


Glasschäden

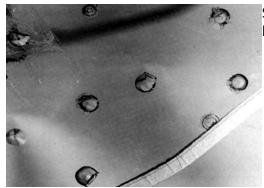


Glaseigenschaften – Kratzer auf Glasflächen

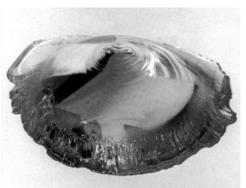
ETH Zürich Glasschäden

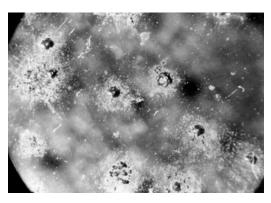

Glaseigenschaften – Kratzer

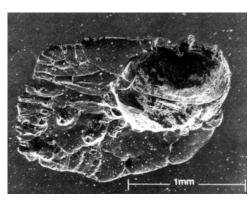
Orthogonale Risse bestimmend Festigkeit.


Spannungssingularität an Rissspitze führt zu Dichteänderungen.

Spannungsinduzierte Festigkeitsänderung + Spannungskorrosion and Risssitzen führt noch nach Tagen zu Festigkeitsverlust.



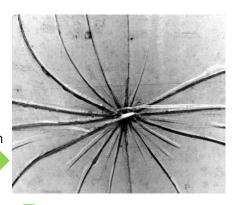

Glaseigenschaften - Oberflächenbeschädigung


Schneller Einschlag kleiner, harter Körner.

Hertzscher Kegel auf der gegenüber liegenden Seite.

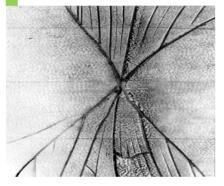
Kraterbildung durch Schweissperlen

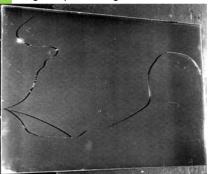
ETH zürich



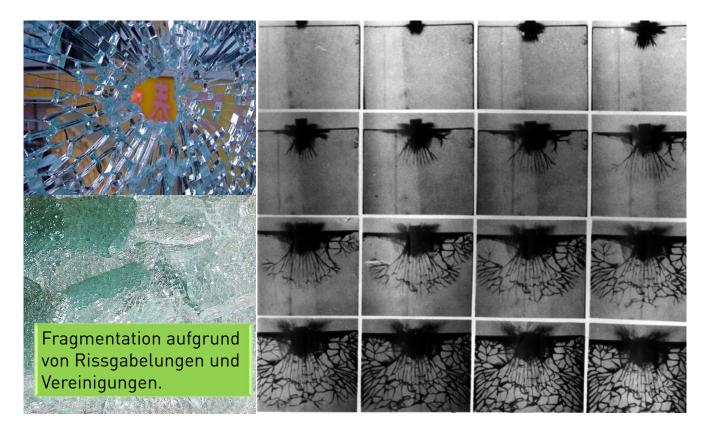
Glaseigenschaften - Bruchbilder

Schädigung durch Einschlag eines weichen Körpers.


Schädigung durch Einschlag eines harten Körpers.


Schädigung durch gleichmässige Belastung

Biegebruch



Risse durch thermische Eigenspannungen

Bruchbilder vorgespanntes Glas

ETH zürich

Glasschäden

Beständigkeit von Glas gegen Flusssäure

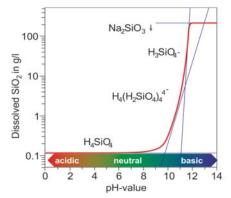

Fluorwasserstoffsäure löst das Siliciumdioxid auf und wandelt es zu SiF um. In wässriger Lösung reagiert es weiter zu Hexafluorokieselsäure

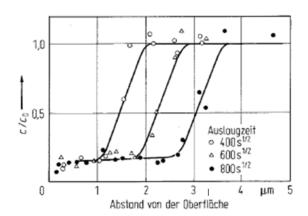
$$SiO_2 + HF \rightarrow SiF_4 + H_2O;$$

 $SiF_4 + 2HF \rightarrow H_2(SiF_6)$

Leicht lösliches Siliziumhexafluorid SiF₆ wird gebildet.

Achtung bei sauren Fassadenreinigern.


Beständigkeit von Glas gegen wässrige Säure


Ionenaustauschreaktion – Protonen der Säure ersetzen Kationen im Glas.

Auslagerungsreaktion: -Si-O-Na + + H + → -Si-OH + Na +

Durch die Reaktion verarmt die Säure an Protonen → pHΛ

Es entsteht eine Silikatgelschicht, die mit Protonen gesättigt ist und als Diffusionsbarriere den weiteren Angriff hemmt → Passivierung

IfB, ETHZ Rechnergestützte Physik der V

ETHzürich Glasschäden

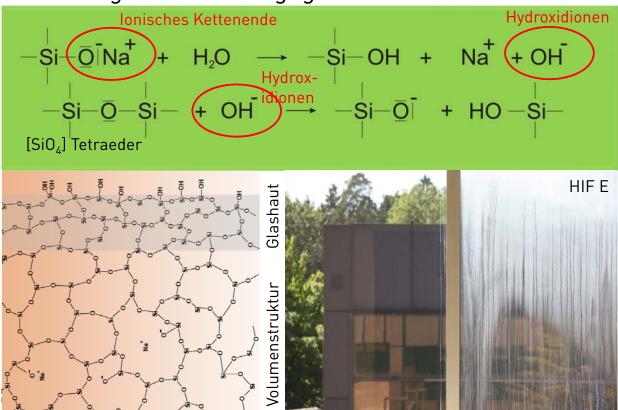
Beständigkeit von Glas gegen Basen

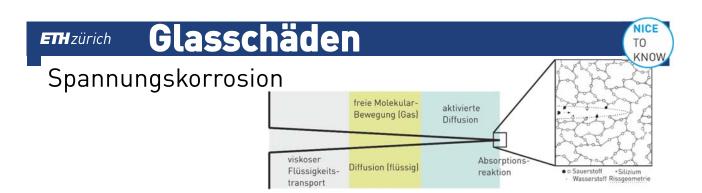
Vollständige Auflösung des Kieselsäuregerüstes, Angriff auf brückenbildenen Sauerstoff

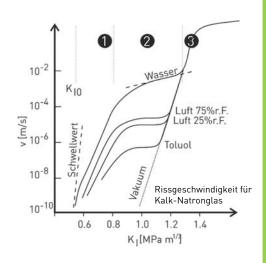
 SiO_2 Moleküle gehen in Lösung und bleiben dort als Polysilikate Es entstehen immer neue Oberflächen \rightarrow keine Schutzschicht Stärke des Laugenangriffs nimmt in der Reihenfolge ab: NaOH \rightarrow KOH \rightarrow LiOH \rightarrow NH $_3$

$$\equiv$$
Si-O-Si \equiv + OH- \rightarrow \equiv Si-OH + -O-Si \equiv \equiv Si-O- + H₂O \rightarrow \equiv Si-OH + OH-

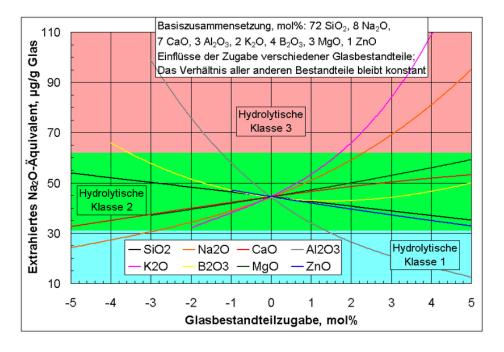
Oberflächenverätzungen durch Kalkmilch, (Beton/Putz)






<u>Glasschäden</u>

Beständigkeit von Glas gegen Wasser



Beständigkeit von Glas gegenüber Wasser

IfB, ETHZ Rechnergestützte Physik der Werkstoffe

ETHzürich Glasschäden

Entglasung

Glas ist so alt wie das Universum, aber warum gibt es keine vulkanische Gläser aus dem Präkambrium (>4.5Mrd Jahre)?

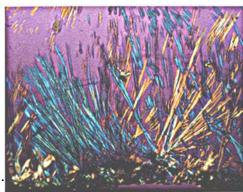
Gläser in einem metastabilen Zustand

- → Entglasung (Kristallisation) über geologische Zeiträume
- → thermodynamisch stabile Kristallstruktur ausgehend von Keimen
- → heute vollkommen rekristallisiert.

Schneeflockenobsidian ist im Prozess der Umwandlung, SiO_2 als Cristobalit

Entglasung

Auskristallisation unterhalb des Transformationsbereichs


- → Alterungsprozess durch Druck und Temperatur Ausscheidung von kristallisierter Kieselsäure und von feldspatartigen Kristallen zurückzuführen
- → Festigkeitsverlust, Härtegewinn, Anisotropie, Erblinden
- 24-48 Stunden nahe Schmelzpunkt halten und langsam abkühlen
- → Reaumursches Porzellan

Quarzglas besonders gefährdet

Entglasungsschicht, die in das Material wächst (ß-Cristobalit)

ETH zürich

Ein 5 Minuten Check....

Zusammenfassung

- Erklären was Glas ist
- Diskutieren des Glaszustands vs. Kristalliner Zustand
- Kennenlernen der Bestandteile und Rohstoffe von Baugläsern
- Verstehen des Temperaturverhaltens von Gläsern
- Charakterisieren und erklären typischer Schäden in Glas

IfB, ETHZ Rechnergestützte Physik der Werkstoffe