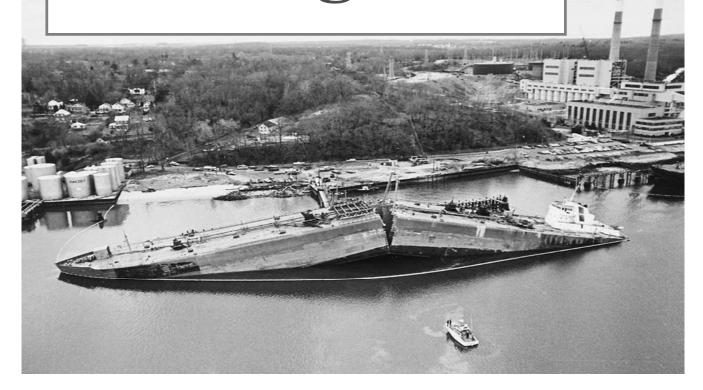
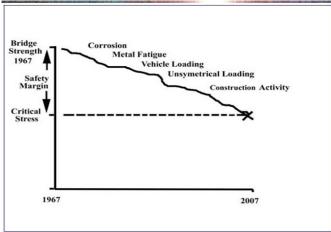


Fatigue



Cyclic Fatigue

Cyclic Fatigue of a Bridge



I35W bridge in Minneapolis on August 1, 2007

Fatigue cracks were observed.

Additionally also corrosion was acting and one had asymmetric loads.

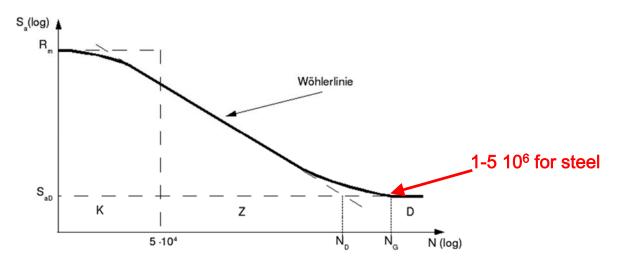
August Wöhler

ETH

On October 19, 1875 the locomotive Amstetten had an accident on the route between Salzburg and Linz because of a broken wheetset axle. The railroad administration demanded investigation to figure out the causes of the disaster. August Wöhler, who at that time was preparing the new railway track from Hannover to Hamburg and who later worked for the Borsig family, took this accident as an occasion to submit shafts to a cyclic load and noticed, that their fatigue strength was considerably lower than their static strength, which was in fact the only quantity considered during this time. He was the first to make systematic studies of material fatigue.

1819 - 1914

Wöhler Curve

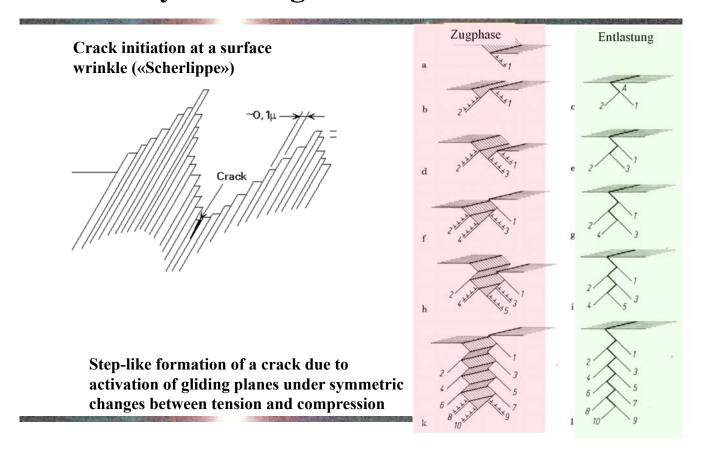


low cycle fatigue «Kurzeitfestigkeit» fatigue resistance «Zeitfestigkeit» fatigue strength «Dauerfestigkeit»

L.F. Coffin (1954) S.S. Manson (1953)

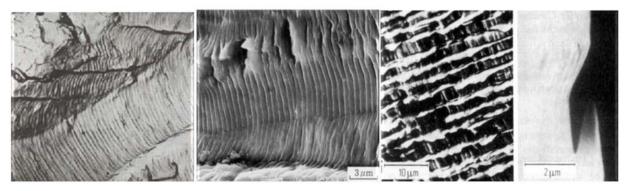
O.H. Basquin (1910)

Cyclic Fatigue of Metals



Cyclic Fatigue of Metals

- Microscopically fatigue consists in the accumulation of dislocations in shear bands.
- On the surface of the samples one can recognize this by the wrinkles ("Scherlippen") formed of extrusions and intrusions.
- In the case of LCF (low cyle fatigue) the yield stress is attained at each tension-compression cycle.



wrinkles on the crack surface

Growth Velocity of Fatigue Cracks: Paris(-Erdogan) Law

Relation between sub-critical crack growth velocity and the amplitude of the stress intensity factor (SIF):

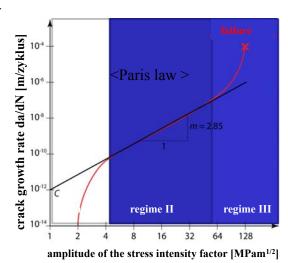
$$\frac{da}{dN} = C\Delta K^{m}$$

 $\Delta K = K_{max}$ - K_{min} C and m are material constants, e.g. metals 2 < m < 7; ceramics 20 < m < 100

→ Prediction of the number of load changes that will yield to the failure of the sample.

Paris law is only vaild in regime II.

There exist many empirical laws for the crack growth in each regime.



P.C. Paris (1961)

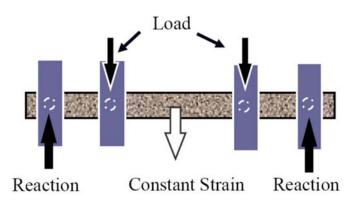
(Walker, Forman, Collipriest, McEvily, Frost & Pook, Zheng, Wang, Miller & Gallgher, Dowling & Begley, Pugno)

Fatigue of Asphalt

Fatigue Test of Asphalt

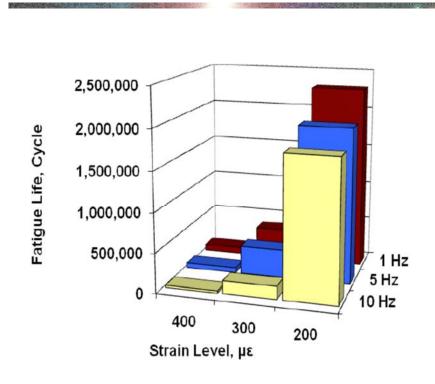
4-Point Beam Bending Fatigue Test

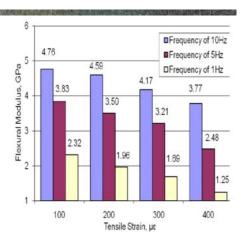
asphalt samples



1 - 10 Hz

4-Point Beam Bending Fatigue Test



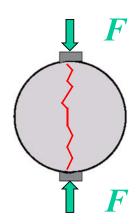


Testing Machine

strain controlled uni-axial low-frequency tension

Fatigue Life Test for Asphalt

experimental setup



- cylindrical sample
- diametrical loading
- apply periodically

main observables

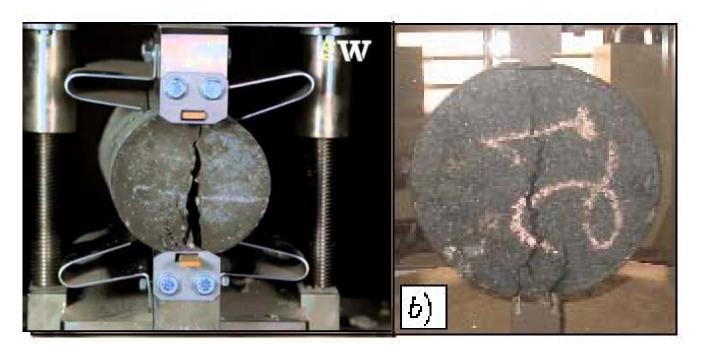
- evolution of deformation
- number of cycles to break

Brazil test

splitting tensile strength

«Spaltzugfestigkeit»

Experimental Setup

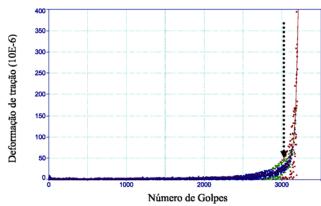


Laboratorio de pavimentos, Univ. Fed. do Ceará, Brasilien

15

Experimental Results

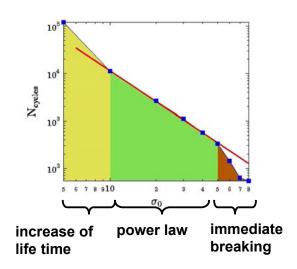
evolution of deformation



mechanisms

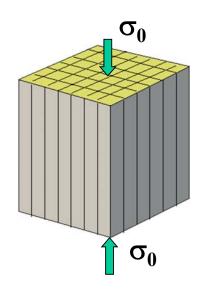
- immediate breaking
- damage accumulation
- healing
- viscoelasticity

Basquin's law



low-frequency cycles: Coffin-Manson law

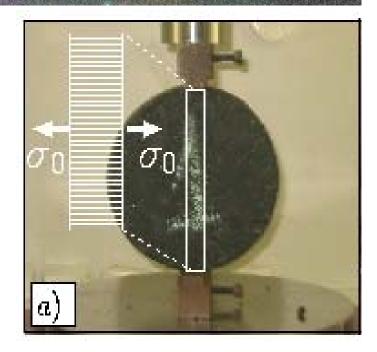
Fibre Bundle Model for Fatigue



- parallel bundle of fibres
- ⇒ constant external load σ₀
- time-independent response (no viscoelasticity)
- perfectly brittle behaviour of individual fibres
- interaction between fibres: equal load sharing

Brasil Test of Asphalt

arrangement of the fibres



Microscopic Failure Mechanisms

failing due to two physical mechanisms

brittle rupture, fails when

$$p_i > p_{th}^i$$

failure due to damage accumulation

$$\Delta c = \alpha_0 p^{\gamma}(t) \Delta t$$
nucleation rate
of micro cracks

$$c(t) = \alpha_0 \int_0^t p^{\gamma}(t')dt'$$

$$c_i(t) > c_{th}$$

dependence on history

$$\left| \frac{h(p_{th}, c_{th})}{c_i(t) > c_{th}^i} \right|$$
 joint distribution

 $h(p_{th},c_{th})=g(p_{th})f(c_{th})$

healing of damage

$$c(t) = \alpha_0 \int_0^t e^{-(t-t')/\tau} p^{\gamma}(t') dt'$$

7 limits the range of memory

Strain Stress Evolution

integral equation:

$$\sigma_0 = \left[1 - F(\alpha_0 \int_0^t e^{-(t-t')/\tau} p^{\gamma}(t') dt')\right] \left[1 - G(p(t))\right] p(t)$$

damage accumulation and healing

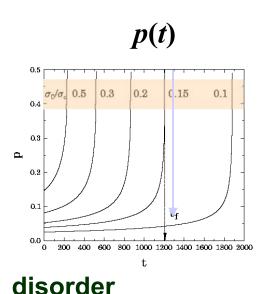
static FBM

$$\Rightarrow p(t)$$
 $p(t) = E \varepsilon(t)$
deformation

initial condition $\sigma_0 = [1 - G(p_0)] p_0 \Longrightarrow p_0$

parameter of the model: γ , τ , α_0 , σ_0/σ_c

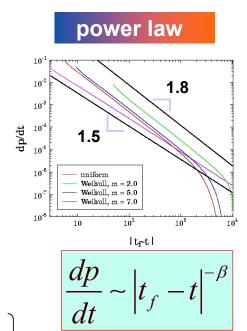
Shortly before End of Life Time



- $\beta = 1.50 \pm 0.04$ finite
- infinite

$$\beta = 1.30 \pm 0.04$$

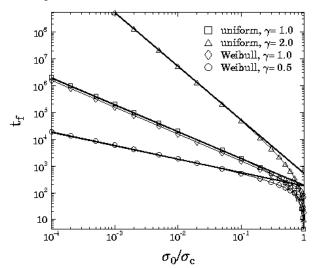
 $\beta = 1.80 \pm 0.06$



two different cases

Life Time (Number of Cycles till Failure)

t_f as function of σ_0/σ_c



power law

$$t_f \sim \left(\frac{\sigma_0}{\sigma_c}\right)^{-\alpha}$$

with
$$\alpha = \gamma$$

independent on the type of disorder

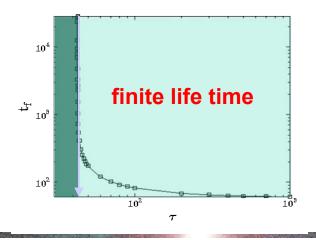
- different distributions of disorder
- \blacksquare different exponents γ

Effect of Healing

stress-strain evolution

$$\sigma_0 = \left[1 - F(\alpha_0 \int_0^t e^{-(t-t')/\tau} p^{\gamma}(t') dt')\right] \left[1 - G(p(t))\right] p(t)$$

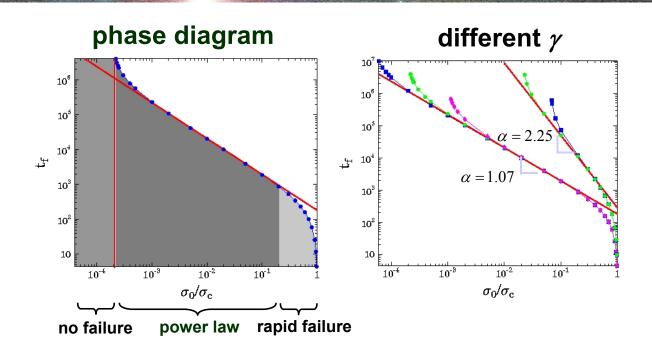
fixed $\sigma_{\!o}/\sigma_{\!c}$ variable au



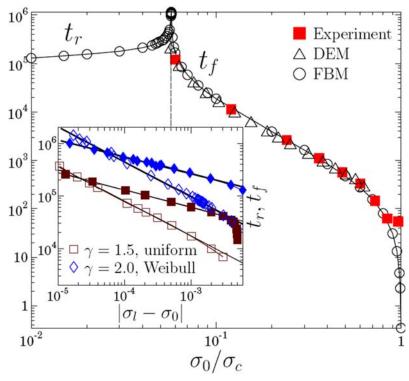
- τ limits the range of memory.
 - competition between damage and healing
- \bullet τ_c separates two phases.

life time

Constant Maximal Load



Life Time and Relaxation Time



 σ_l is load at threshold.

Below σ_l the stress relaxes to a finite value with a relaxation time t_r .

$$t_r \propto (\sigma_l - \sigma_0)^{-1/3}$$

$$t_f \propto (\sigma_0 - \sigma_l)^{-\frac{2}{3}}$$

30

DEM and Lattice Models

→ Discretization of Space

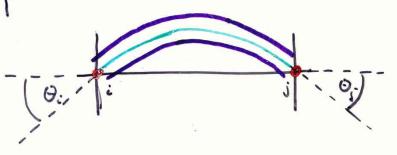
Beam Model

discretized (Cosserat) description of elasticity

on each site i: X_i Y_i Θ_i

$$z = \Theta l$$

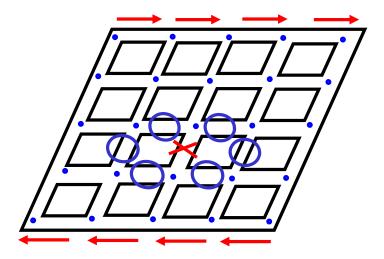
cellular solid



33

Breaking a Beam

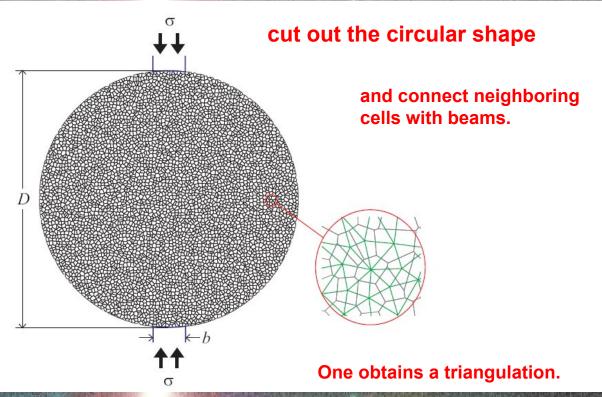
Consider external shear



Can break by traction only or by bending

$$p = (F^2 + q \max(|M_i|, |M_j|))$$

Discretization of the Sample



44

Breaking Criterion

previously:

$$p(t) = \left(\frac{F}{t_F}\right)^2 + \frac{\max(M_i, M_j)}{t_M}$$

damage accumulation

healing

now replace p by q:

$$q(t) = p(t) + \alpha_0 \int_0^t e^{-\frac{t-t'}{\tau}} p(t')dt'$$

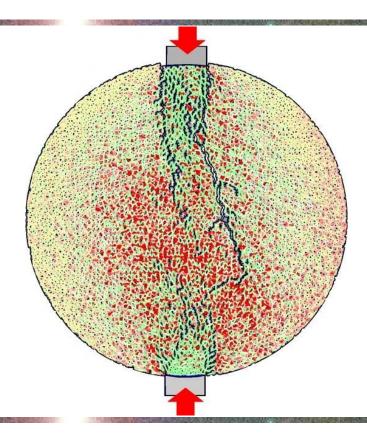
$$p(t) \ge 1 \rightarrow q(t) \ge 1$$

Parameters used in Simulation

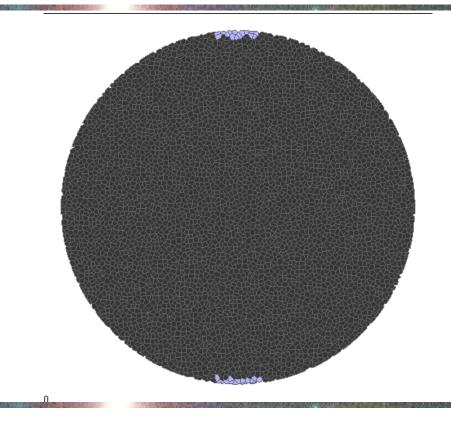
Parameter		Value
Number of elements		5070
Density	ho	$5 g/cm^3$
Bulk Young modulus	Y	$1 \times 10^{10} \ dyn/cm^2$
Beam Young modulus	E	$5 \times 10^{10} \ dyn/cm^2$
Time step	δt	$1 \times 10^{-6} \ s$
Diameter of the disk	D	20 cm
Typical size of a single element		$0.5 \ cm$
Width of the load platen	b	$2.5 \ cm$
Memory factor	α_0	10 - 500
Range of memory	au	$500-\infty$

49

Simulation of Brazil Test

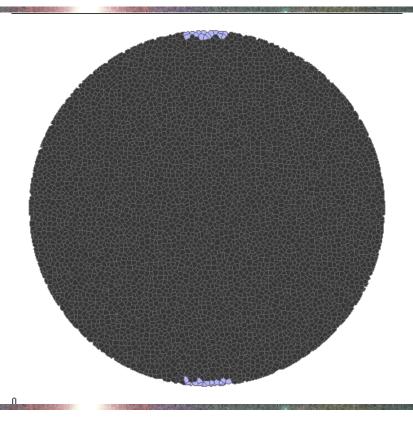


Simulation of Brazil Test

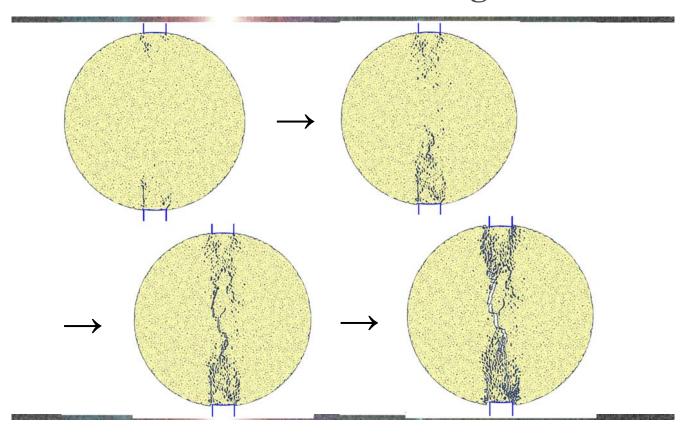


51

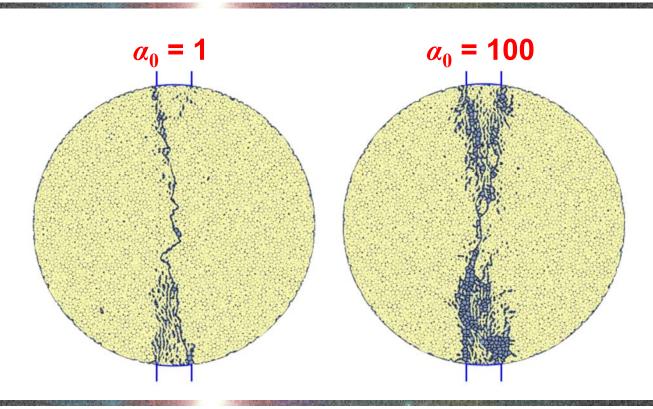
Simulation with more Disorder



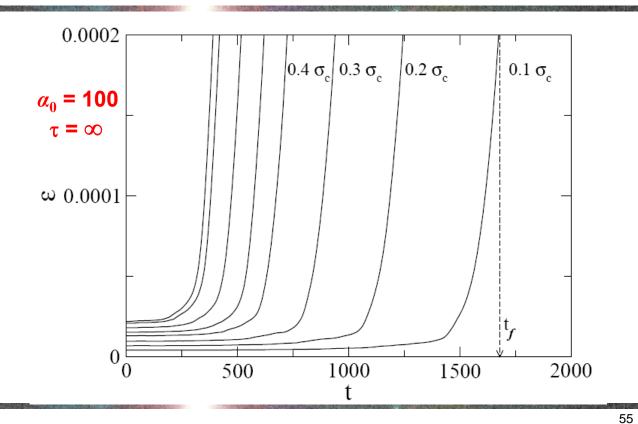
Time Evolution of Damage



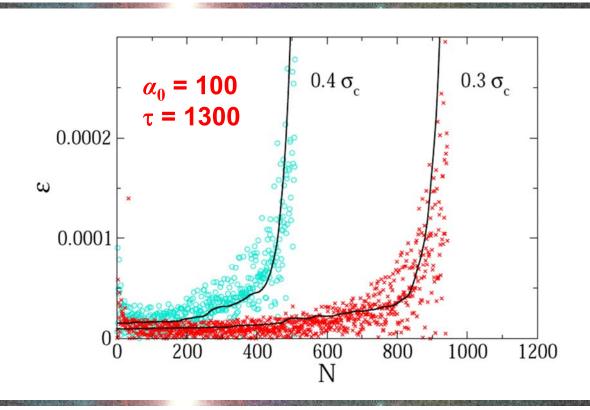
Dependence on Memory



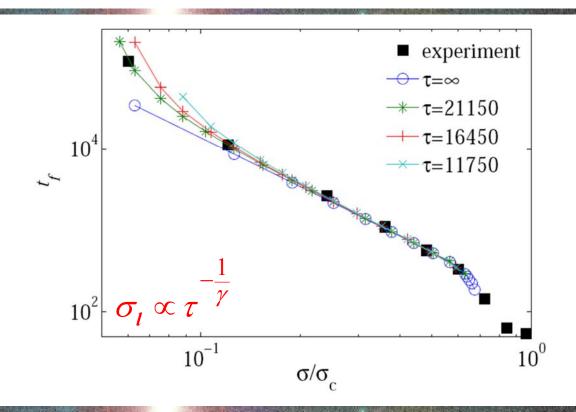
Deformation in Time



Comparison to Experiment

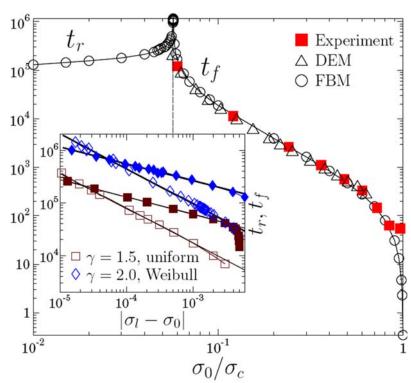


Dependence on healing time τ



59

Life Time and Relaxation Time



 σ_l is load at threshold.

Below σ_l the stress relaxes to a finite value with a relaxation time t_r .

$$t_r \propto (\sigma_l - \sigma_0)^{-\frac{1}{3}}$$

$$t_f \propto (\sigma_0 - \sigma_l)^{-\frac{2}{3}}$$

$$t_f \propto (\sigma_0 - \sigma_l)^{-\frac{2}{3}}$$

Corrosion

Origin of Corrosion

- galvanic
- hydrogen embrittlement
- chloride ions and O₂ in solution
- bacteria

Stress Corrosion Cracking

metal

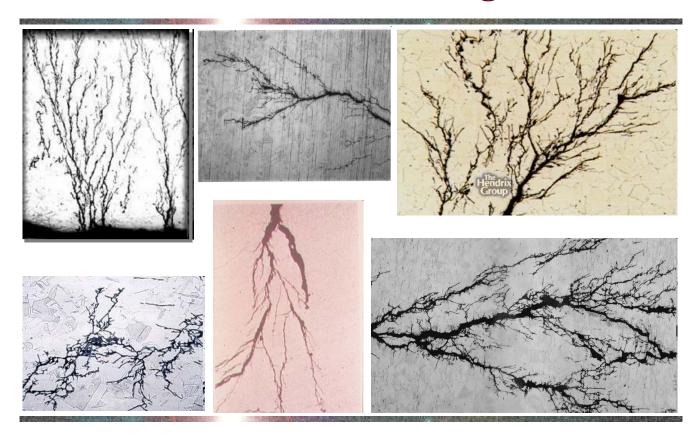
glas

concrete

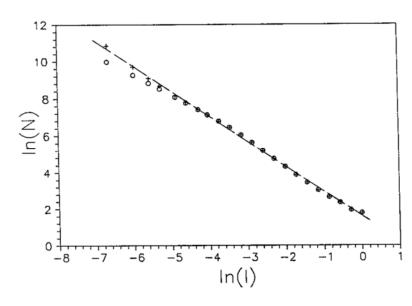
Stress Corrosion Cracking

alloy	normal SIF	environment	reduced SIF
stainless steel	$60 \text{ MN/m}^{3/2}$	3% NaCl	$12 \text{ MN/m}^{3/2}$
brass	$200 \text{ MN/m}^{3/2}$	ammonia	$1 \text{ MN/m}^{3/2}$
Al(3Mg,7Zn)	25 MN/m ^{3/2}	water (Cl ⁻)	$5 \text{ MN/m}^{3/2}$
Cr Ni steel	$200 \text{ MN/m}^{3/2}$	42% MnCl ₂	$10 \text{ MN/m}^{3/2}$

Stress Corrosion Cracking

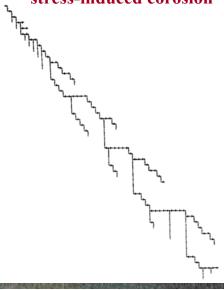


Stress Corrosion Cracking



"fractal dimension" = 1.4

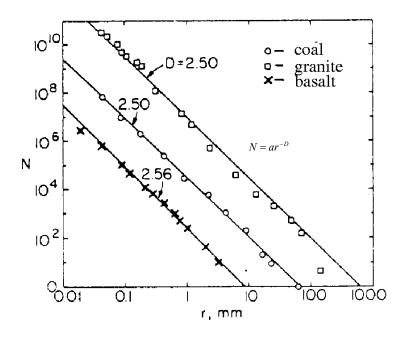
modeling by introducing on the crack surface a damage variable that accumulates stress-induced corosion



Fragmentation

Volcanic Fragments

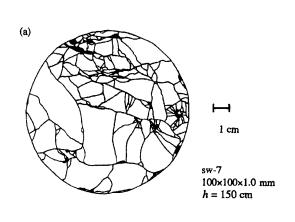
Fragment Size Distributions

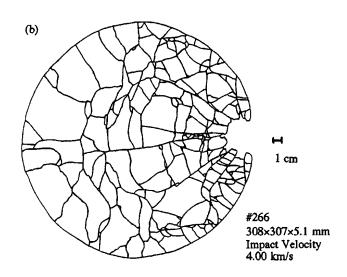


$$N = ar^{-D}$$

Turcotte (86)

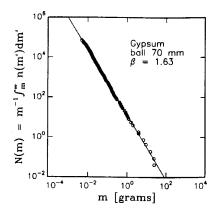
Impact of plaster discs

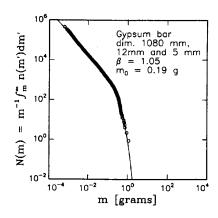




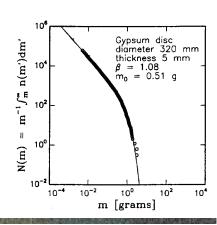
Kadono (97)

Fragment Size Distributions





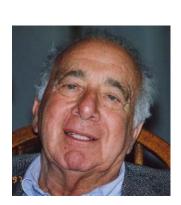
Oddeshede (93)



Discrete Elements

Alder and Wainwright (1957)

- deterministic simulationof the motion of a classicalmany body system
- Newtonian mechanics



Bernie Alder

- Conservation of energy and momentum
- Invariance under translation and rotation

M.P. Allen and D.J. Tildesley: "Computer Simulation of Liquids" (Clarendon Press, Oxford, 1987)

Equations of motion

Solve Newton's equation:

$$\dot{\vec{x}}_i = \vec{v}_i = \frac{\vec{p}_i}{m_i} , \quad \dot{\vec{p}}_i = -\vec{\nabla}_i V(Q) = \vec{f}_i$$

$$m_i \ddot{\vec{x}}_i = \vec{f}_i = \sum_j \vec{f}_{ij} \quad \text{vector sum of all forces that act on particle } i.$$

$$i = 1, ..., N$$

system of N coupled equations

86

Solving the equations

- Euler method
- Runge Kutta method
- Predictor-Corrector method
- Verlet method
- Leap-frog method

special for Newton eqs.

Verlet method

Loup Verlet (1967)

real time

Taylor expansion in time step Δt :

 $\Delta t \approx t_c/20$

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \Delta t \ \vec{v}(t) + \frac{1}{2} \Delta t^2 \ \dot{\vec{v}}(t) + \dots$$

$$\vec{x}(t - \Delta t) = \vec{x}(t) - \Delta t \ \vec{v}(t) + \frac{1}{2} \Delta t^2 \ \dot{\vec{v}}(t) + \dots$$

add the two equations \Rightarrow

from Newton equation

$$\vec{x}(t + \Delta t) = 2\vec{x}(t) - \vec{x}(t - \Delta t) + \Delta t^{2} \dot{\vec{x}}(t)$$

RR

Rotations in two dimensions **ETH**

Time evolution of the rotation angle $oldsymbol{\phi}$ using the Verlet algorithm:

$$\varphi(t+\Delta t) = 2\varphi(t) - \varphi(t-\Delta t) + \Delta t^2 \frac{T(t)}{I}$$

with

$$T(t) = \sum_{j \in A} \left(f_j^y(t) \cdot d_j^x(t) \right) - f_j^x(t) \cdot d_j^y(t)$$
 $o =$ angular acceleration

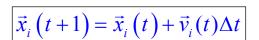
x-component of the

vector connecting the center of mass to the mass element j

DEM of Polygons

$$|\vec{F}_i| = \sum_j \vec{F}_{ij} + m_i \vec{g}$$
 $|T_i| = \sum_j T_{ij}$

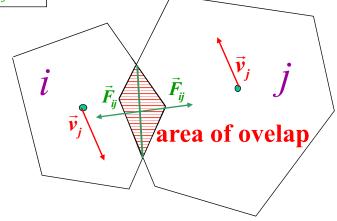
$$T_i = \sum_i T_{ij}$$



$$\vec{v}_i(t+1) = \vec{v}_i(t) + \frac{\vec{F}_i}{m_i} \Delta t$$

$$\varphi_{i}(t+1) = \varphi_{i}(t) + \omega_{i}(t)\Delta t$$

$$\omega_{i}(t+1) = \omega_{i}(t) + \frac{T_{i}}{I_{i}} \Delta t$$
 Cundall and Strack:



$$\overrightarrow{F_{ij}} = -\frac{YA}{l} \overrightarrow{n} - \gamma v_{ij}^{(n)} \overrightarrow{n} - \min(\gamma v_{ij}^{(t)}, \mu F_{ij}^{(n)}) \overrightarrow{t}$$

91

Inelastic collisions

The restitution coefficient r can be measured by letting the particle fall from a height $h^{initial}$ on a plate of same material and measuring the rebounce

height hfinal:

$$r = r_n = \frac{E^{after}}{E^{before}} = \frac{h^{final}}{h^{initial}} = \left(\frac{v_n^{after}}{v_n^{before}}\right)^2$$

One also defines normal and tangential coefficients:

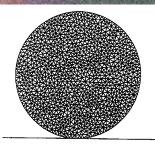
$$e_n = \sqrt{r_n} = \frac{v_n^{after}}{v_n^{before}}$$
, $e_s = \sqrt{r_s} = \frac{v_s^{after}}{v_s^{before}}$

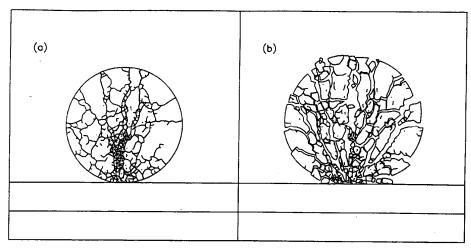
Restitution Coefficient

 $\begin{array}{c} e_n \\ \text{steel} \\ \text{o.93} \\ \text{aluminum} \\ \text{o.8} \\ \text{plastic} \\ \end{array}$

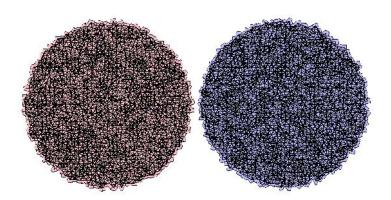
Simulation of Impacting Disc

Potapov et al (95)

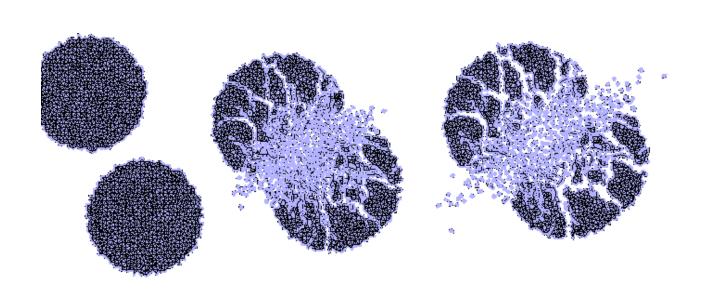




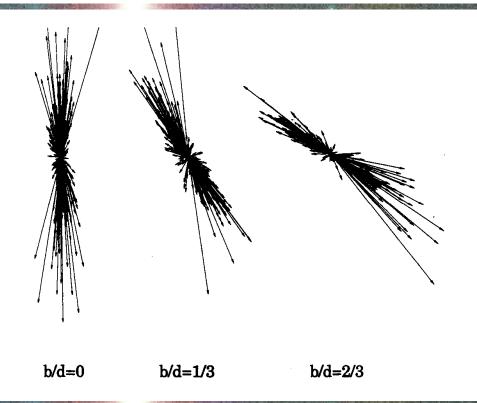
Two colliding discs



Three Snapshots

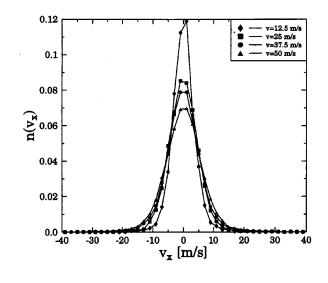


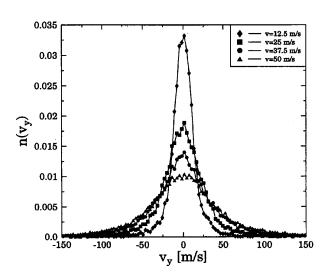
Velocities for three different impact parameters



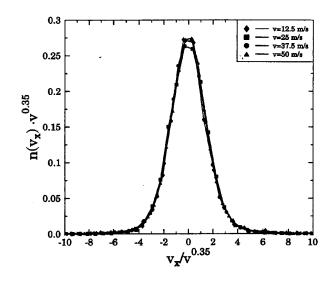
100

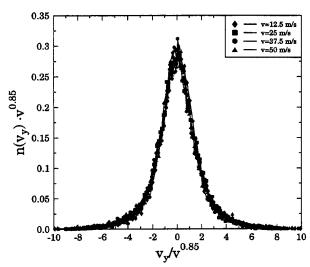
Distributions of Fragment Velocities **ETH**





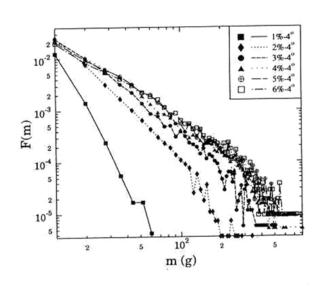
Scaling of Velocity Distributions

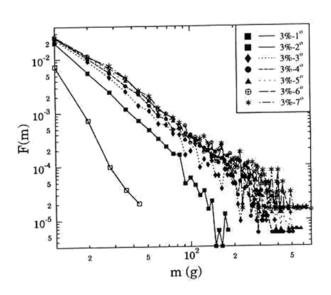




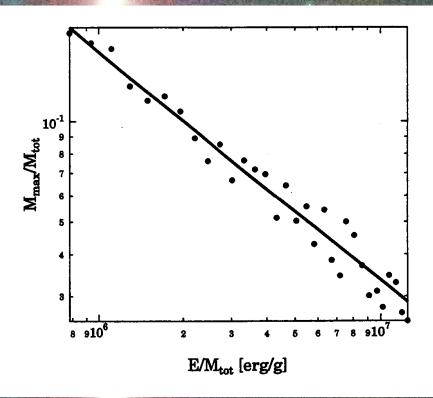
102

Fragment Mass Distributions





Mass of largest fragment



Dependence on Disk Size

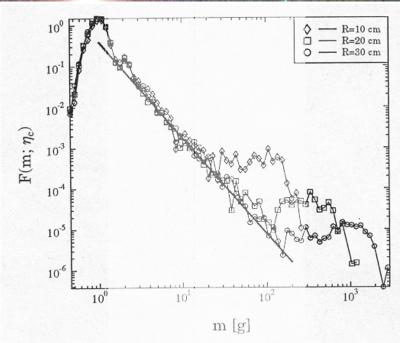


FIG. 8. Mass distribution of fragments at the transition point η_c for three different values of the system size R.

Released Energy

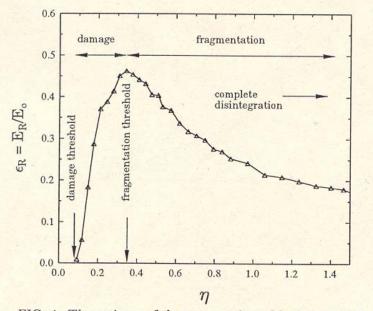


FIG. 4. The ratio ϵ_R of the energy released by breaking E_R and the total kinetic energy E_o . The transition point (fragmentation threshold) between the damaged and fragmented states is identified with the position of the maximum of ϵ_R .

Proportion of the Largest Masses

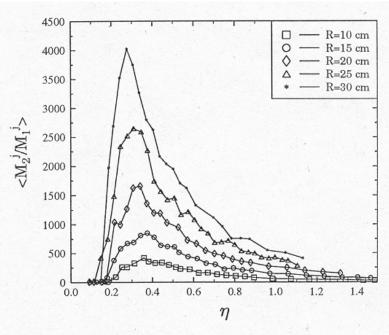
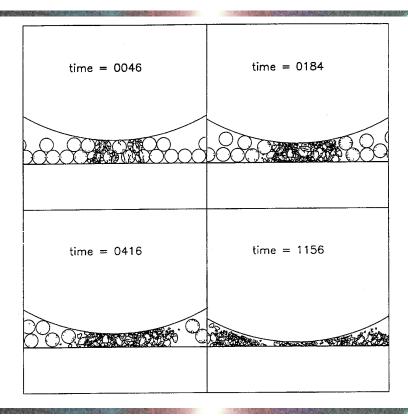
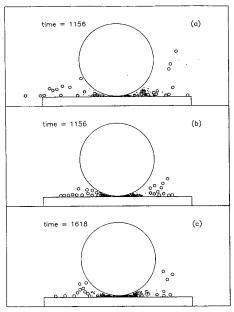


FIG. 9. $\left\langle M_2^j/M_1^j \right\rangle$ as a function of η for five different values of R.

Simulation of Ball Mill





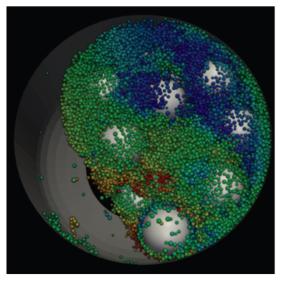
Potapov et al (95)

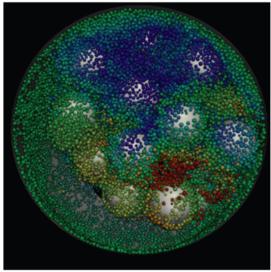
Simulation of Ball Mill

Role of agglomeration

Low Cohesion

High Cohesion



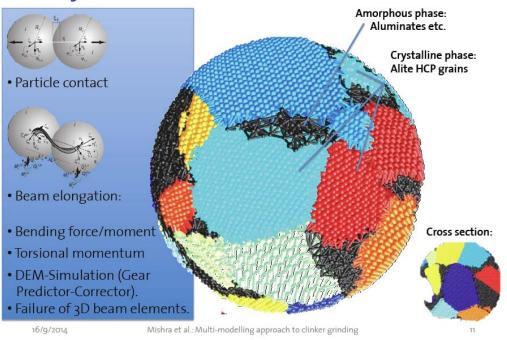


16/9/2014

Mishra et al.: Multi-modelling approach to clinker grinding

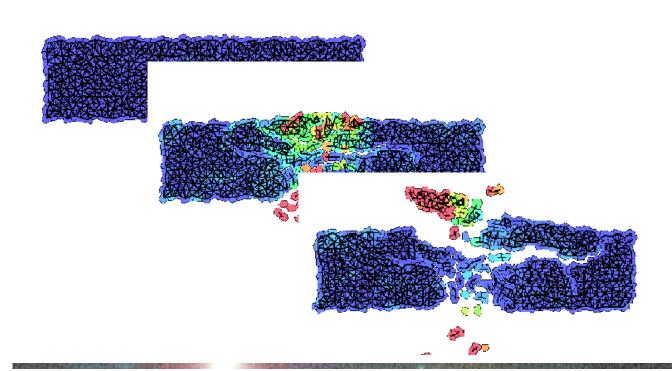
Simulation of Ball Mill

System Construction: Insilico Clinker

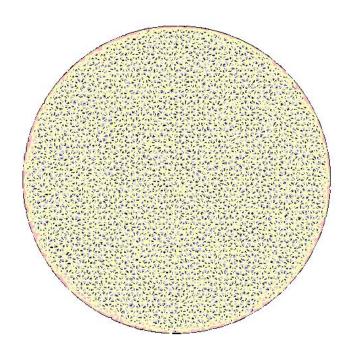


110

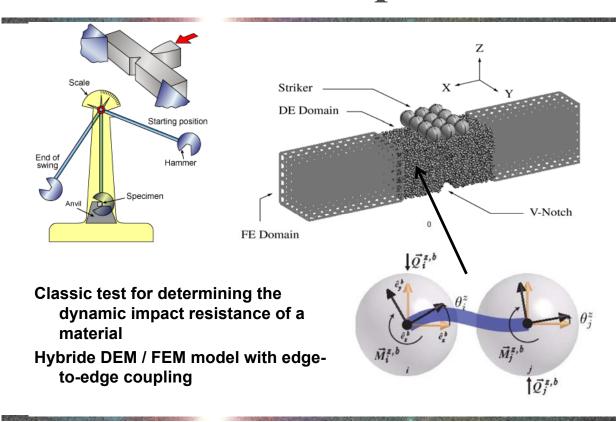
Hitting a Wall



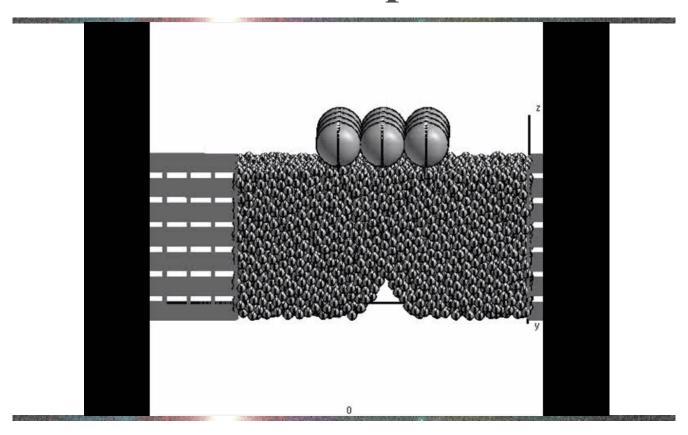
Explosion of a Disk



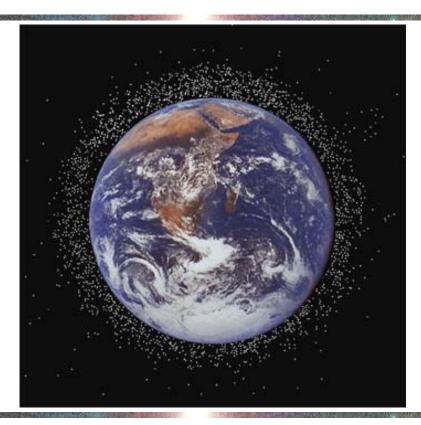
Pendulum Impact



Pendulum Impact



Fragmentation of Shells



space debris

Height Distribution of Space Debris

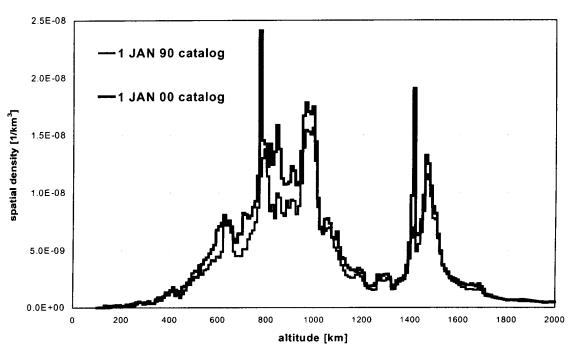


Fig. 1. The LEO spatial density in 1990 and 2000

Area and Mass Distribution

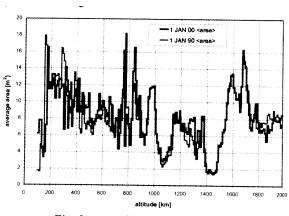


Fig. 2. Area distribution in LEO

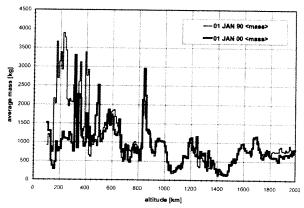
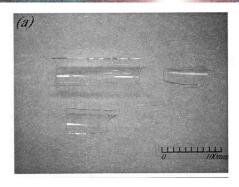
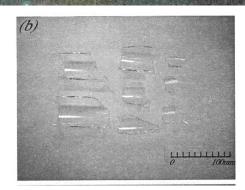
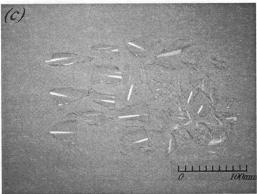


Fig. 3. Mass distribution in LEO

Breaking Glass Pipes





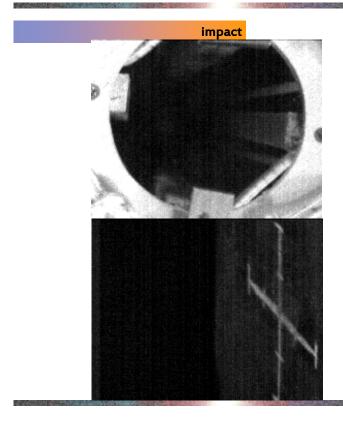


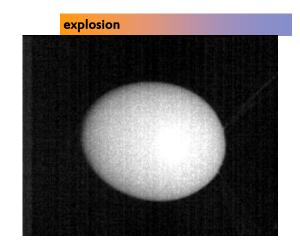
Kasuragi et al (03)

Experiments on Shell Fragmentation

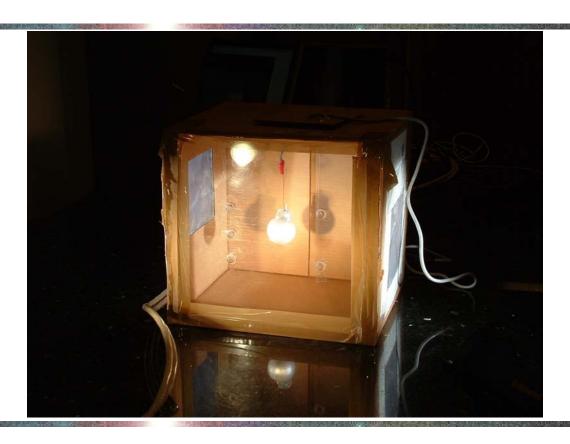
- materials (crystaline, amorphus, brittle, disordered)
- length scale
- way of imparting energy (impact, explosion)

Experiments for Shell Fragmentation

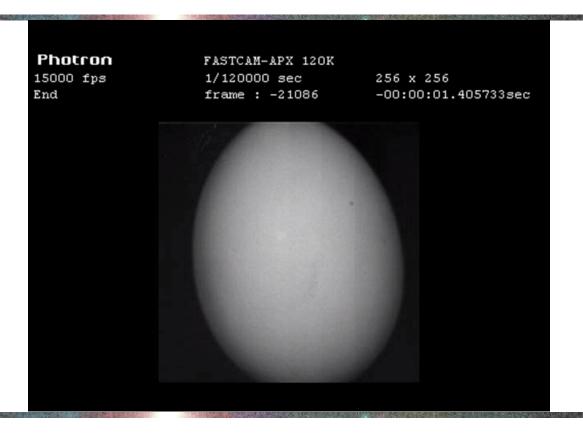




Cardboard Box

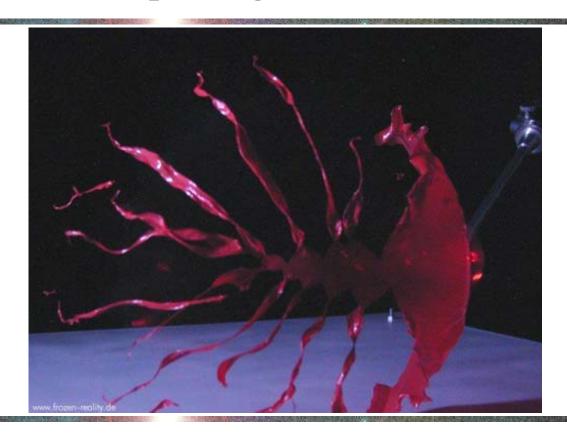


Explosion of an Egg

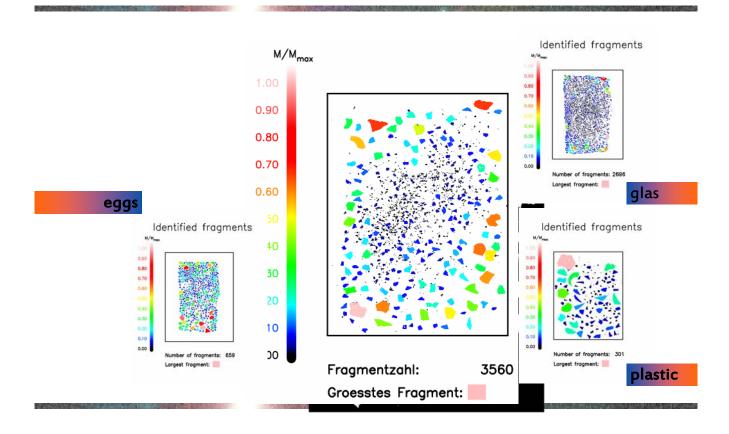


Explosion of a Christmas Glitter Ball

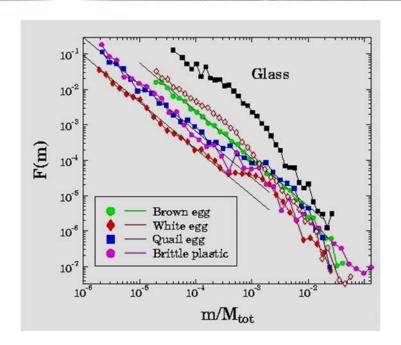
Exploding Balloon



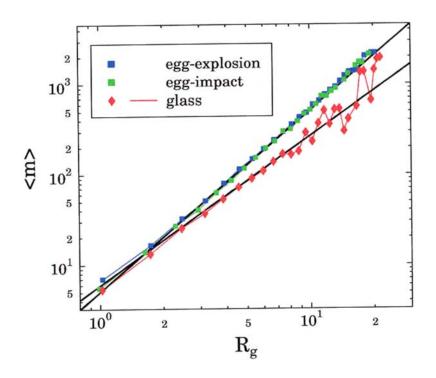
Analyzing the Fragments



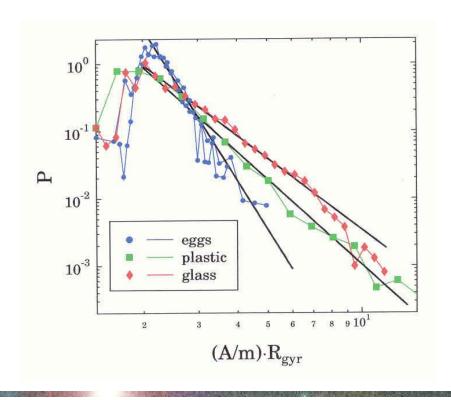
Fragment Mass Distributions



Shape of Fragments

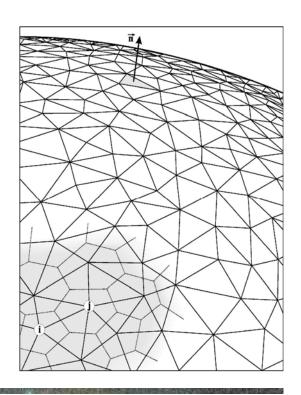


Distribution of area/mass

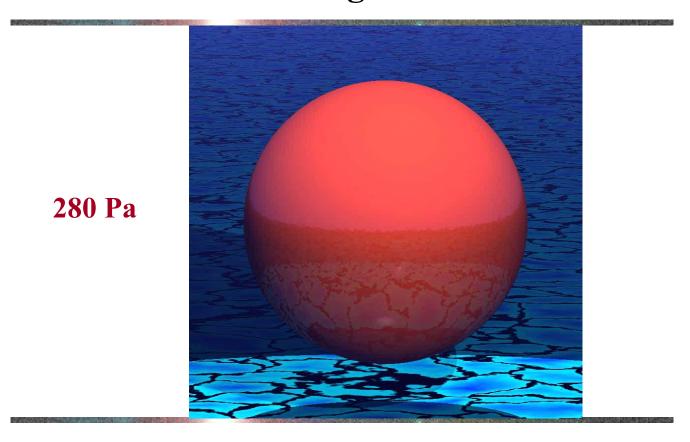


Shell Model

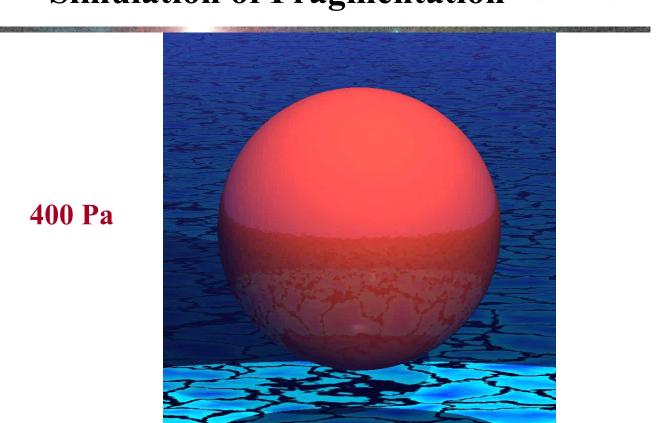
- triangulated sphere
- pressure acts on triangle
- adiabatic system



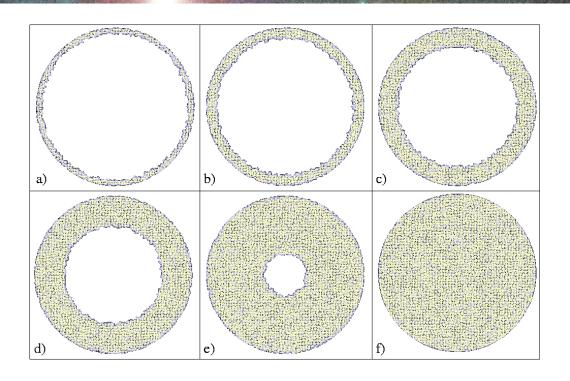
Simulation of Fragmentation **ETH**



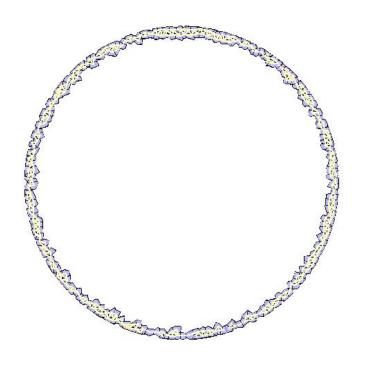
Simulation of Fragmentation **ETH**



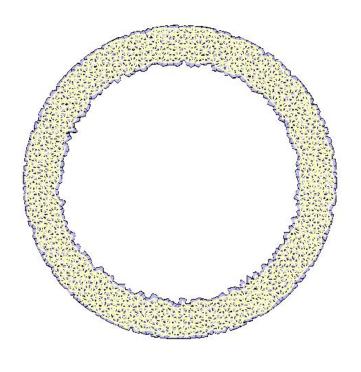
Simulations Varying Wall Thickness



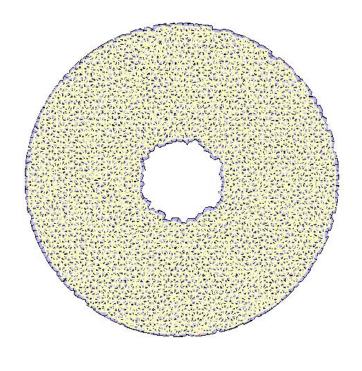
Thin Shell



Thick Shell



Very Thick Shell



Fragmentation in shear bands

