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Fields of classical mechanics

Classical mechanics
Solid mechanics Hydro dynamics

Rigid body dynamics

— Mechanics of deformable bodies

Elasticity theory
Plasticity theory
Viscoelasticity theory

Viscoplasticity theory
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Elasticity theory (ET)

» Part of continuum mechanics
» Theory on stresses and deformations in elastic bodies
» Linear ET = linear elastic materials + infinitesimal small distortions

Red line:

Stresses (stress vector / Tensor, transformations, principal stresses, invariants, hydrostatic and deviatoric

stress, equilibrium conditions)
Deformations and strains (Position and displacement vector, strain tensor, linear theory, compatibility

conditions)
Material behavior (uni-axial), generalized HOOK’s law, material symmetries
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StreSS t stress vector in point P of the cut:
P
- . AF
t = lim —
Ad—>0 &A

Normal component ¢ and
Tangential component

g:[gg]:‘an g 32N\ 13
|_‘T3i PN Normal stress BOLTZMANN's axiom:
Shear stress O-U =0
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Let’s start with a body, that is arbitrarily loaded by a singular force F and distributed
load p.

e External loads cause internal forces.

* Now we slice the body in s-s. The internal forces are distributed across the entire
cutting area and are variable. On the area element dA, that contains point P, the
internal force is DF, on the opposing face —DF. Method of sections (Schnittprinzip):
If a body is in equilibrium under external load, the cut body must as well be in
equilibrium under external load + internal forces acting on the cutting are.
Following the principle of reactions, the opposed cut has to have inverted forces
and moments of same magnitude on the same line of action.

* The ratio DF/DA gives the mean stress on the area element and with DA>0 we
obtain the stress vector t.

* The stress vector has a normal and tangential component with respect to the
cutting plane. The normal component is called normal stress sigma and the
tangential one shear stress tau.

* Hence there is no way to transmit a local moment what is the characteristic of a
classical Boltzmann continuum.

* The stress vector depends on the position of P and the orientation of the normal
vector of the cutting plane through P. To fully characterize a stress state, one
needs 3 perpendicular cuts through P, e.g. in direction 1,2,3.




From the 3 cutting areas we obtain the stress tensor, that fully describes a stress
state.

The indices show, weather we have a shear or normal stress. Identical index 2
normal stress, hence principal diagonal of the stress tensor, different index 2>
shear stress.

The first index gives the orientation of the area normal, while the 2nd one
describes the orientation of the stress component.

From the moment equilibrium follows the Boltzmann axiom, since shear stresses
in two perpendicular cuts that intersect have to be identical.

Also positive stresses point at positive cuts in the positive coordinate direction.
The stress tensor is symmetric, hence sigmaT=sigma.



Stress tensor known, stress vector with respect
Stress to cut with normal n wanted.

Projection of dA with normal vector:
dA, =dAn,; dA, =dAn,; dA, =dAn,

= dA, = dAn, Equilibrium:
tdAd = 0,,dA, + 0 ,,dA, + o ;,dA, =00 +0,n,+ 0, n,
t,dA = o,,dA, + 0,,dA, + 0 ,,dA, L=l gl - Gy o 0 5 W
t,dA = 0 ,,dA, + 0 ,,dA, + 0 ,,dA, Iy = 030 + 0,0, + 04,0,
3
Cauchy’s equation: t, = Z g n o T o i
j=1
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Now let’s make an arbitrary cut with the normal of the cutting plane n. By projection
of dA with n one obtains...

The equilibrium conditions lead to the CAUCHY’s equation, that is used to project a

normal vector by use of the stress tensor onto a stress vector. Hence the stress state
is really completely defined by sigma_ij.



Baron Augustin Louis@auch
Institute for Building Materials 1 789'1 857 .

Baron Augustin Louis Cauchy

Was born in 1789 in Paris and died in 1857 in Sceaux close to Paris. After his death
he was honored by including his name in the row of the 72 on the Eiffel tower. At
very young age he became engineer in Napolen’s army. With 26 he became
professor at the ecole polytechnique, where he quickly evolved to become the
leading French mathematician of his time. There was the rumor, that his colleagues
gave him the name «cochony, since he liked to take his ideas from publications he
refereed. Instead of this, one must for sure acknowledge that the majority of his 789
publications must have been his idea. After the death of Euler, many people had the
impression that in math there were no more significant problems to be solved. It
was Gauss and Cauchy, that could oppose this impression. Cauchy was catholic and
from the dynasty of the Bourbones. This brought him during the French revolution
constantly in conflict with his fellow citizen and gave him an exciting academic life.

The young Cauchy studied at the Ecole Polytechnique road and bridge construction.
At that time the classes were mathematically overloaded by his teachers called
Lacroix, de Prony, Hachette, Ampére. After two years he was primus and allowed to
move on to the more prestigious Ecole Nationale des Ponts et Chaussées. In
February 1810 he received the contract for the construction of the harbor in
Cherbourg, at that time Europe’s largest construction site with more than 3000
worker. It was the preparation of the invasion of England. Working hours were hard
and in his little free time he continued with math. In 1813 he did get a position at
the Ecole Polytechnique and he developed to be a good teacher. He thought analysis



to be the fundament of mechanics and all other important engineering disciplines.
This was not liked by students, who found his lectures too abstract or let’s say not
engineering oriented enough. One time he was even booed by them. Anyway he was
always a respected mathematician and in his late years remained influential by
evaluating and refereeing many works.
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Exercise stress vector:

L T | _xoan___ Bk

ress tensor o with respect to a Cartesian coordinate system x; is:

w

in a materiai point th

54 =27 9
o, =|-27 18 0
9 0 -36
a. Calculate the three components of a stress vector ¢, on a cutting plane with normal vector
n=1/3[2,-2,1].

b. What magnitude does the stress vector have?

c. How large is the normal stress component o perpendicular to the plane and ist shear
counterpart t in the cutting plane?

d. What is the angle between t and n?

Losung s. Beiblatt




.th Toolset:

' EINSTEIN summation convention:

;
- 3
I agb, = z apb, = a,b, +a;,b, +a;b,
k=1 CAUCHY's equation:
a; = a“+a::+a33=tr(a,}.) (Trace) 1. = o0 .n.
1 Ji
3 3
Ce‘;‘kdm = Z Cij#dr'k
==
. 3
eof =e,f; :=z€kfk=€|fl+€:f2+€3f5 (dot product)
k=1
KRONECKER-symbol . . 1 0 0
5 IS fd i = N )
%07 o firi= j dy=| L0
0 0 1
Hafce 0, =0, +0, +0;; =3
é,n; = n, Or more general ,‘5{”&;", = Nim
\/
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There is a very handy method of writing very compact — the index notation. However
one needs to summarize some math tools for the index notation like the Einstein
summation convention or the Kronecker symbol (delta). It needs some practice to
get into, but it is worth to use it.

The simplified way of writing sums is the Einstein summation convention. Hence we
agree on summing, if in a term the identical index appears (runs form 1-3). This
summation index can then be replaced by any other index, as we can see in the 1st
equation. Of course our agreement is also valid for double sums, and when we look
at the last equation we realize that this is nothing but the dot product. With the
summation convention, we can also write the Cauchy’s equation in a very compact
form.

In this context also the Kronecker delta is used. It is the identity matrix | in index
notation. Using the Kronecker-delta often strongly simplifies equations.



.th Toolset:

- Magnitude of a vector:

'\ " \
Product

Partial derivative to x:
(Comma convention)
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: normal vector

6( ): 5(05):

(Ci' )U (Nabla operator)

0x,
Vf=gradf = f,
divi = Vev = CAG — OV, + Sl 0v, =v,,
dx;  Odx, @z, Ox, ‘

— —

rotv = V xV

V2 =div(grad(f)) = VeV =

3, 52
,Z:, ox] =®

Laplace operator

The index notation is a convincing compact way of writing, as we can demonstrate
for various tensor operations

The nabla operator is a operation symbol used in vector analysis for the three
differential operations: gradient, divergence, rotation. Formally the nabla operator is
a vector, whose components are the partial derivative operators:
- The (formal) product of the nabla operator with the function f gives its gradient.
- The (formal) dot product with the vector field gives its divergence. If v is the
velocity field of a fluid, div(v) can be seen as local source density of the field.
(Div(v)>0 are sources, =0 is source free and <0 are sinks)
- The rotation of a vector field is given by the cross product with the vector field
(gives vortex density of v in x)
- The dot product of the nabla operator with itself is called Laplace operator.

10




.th Toolset:

_ LEVI-CIVITA-Tensor (permutation tensor) € ijk
! 1 for i, j,k cyclic hence 123,231,312
Epp =9 -1 for i, j,k anti cyclic hence 321,213, 132
0 otherwise
Application: _ . nFy, - nk,
Cross product: M =FxF =|nF -nF;|=¢,rF,
nF, - r,F,
Rotation of a vector: A
3a2 2.3
= 5 = , 1 1
@ =—r10tU=—Vxu=—|u,;—-U;, |[=—8&,u;,
> 3 . D) ;
Triple product: g St
=T
a al a2 aS
[a‘,b,a] = (axb)ed=det|b" |=|b, b, b,|=z,ab,.c,
o ) e, e,
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The Levi-Civita tensor is very useful as well. It is a permutation tensor (3rd. Order)
with 3*3*3=27 components, from whom only 6 are interesting. It’s application is
manifold:

- Cross product of two vectors (a x b perpendicular to the plane defined by a and b,
a, b lead to a right-handed trihedron, its magnitude |} a x b |=absinalpha is the area
of the parallelogram, a x b=-b x a; a x b=0 - linear dependent vectors; lambda a x
b=lambda (axb);ax(b+c)=axb+axc)

- Rotation of a vector (gives vortex density of v in x)

- Triple dot product (Spatprodukt) is the oriented volume (magnitude is the volume
of the parallelepiped = 6x of the tetrahedron, cyclic permutation does not change
anything, >0 right handed, =0 Linear dependent vectors, <0 left handed)

11
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.th Toolset:

LEVI-CIVITA-tensor:

ifk

Application:
Symmetry of the stress tensor:

£l 4 = =0, =
rminant:

Determinant by By b
deth = by, by, by,
b3] b32 b33
Calculation rule: 80y =6 =0
gihng:'a’u = kIY mn

Eyx€iy = 20y

Eux€ie = 6
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= & b:fb:jbm = g:‘jkb:‘]bjlka

ijk

Further applications of the LEVI-CEVITA tensor are:
- Testing the symmetry of a tensor.

- Short form for calculating determinants developed after the 1st, resp. 2nd

column.
Finally we look at some calculation rules of the tensors.

12



Transformation of the stress tensor

x5

ij : Gk!!"

r r r
X, (2 2 x) (x x %)
853 s & 54
r - | - . | .
X €, T | Qyy |2€3 = | Qo (58 = |3 |,
GI,:. (]':,3 ﬂ':.‘. |
; .. M =@ = d — cos( v
CAUCHY'’s equation: k 1 1"k with a,, = cos(x;,x;)
L, = 0yl =0 d,;
' X
Projection: Oy =1le =1La, =04ya,,a,
r
O,y =1le, =1a,;, =0,0,,0a,, ,
r
O,y =1ley=1ay, =0,0a,,0ay,

Transformation relation:

Oy = Q@ ;O
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The change of coordinate systems and reference systems is a very common part of
mechanics with high error potential. One starts off with a stress tensor sigma_ij that
is formulated with respect to a coordinate system x_i . We are looking for the stress
state sigma_k’l’ in the rotated orthonormal coordinate system x’_i with the
transformation coefficient a_k’l, also called directional cosine.

Let’s look at the intersection plane whose normal vector is identical to the new
coordinate x’_1. If we apply CAUCHY’s equation, we obtain the components of the
stress vector with respect to the 1-2-3 system. However to get the stress vectors in
the 1’-2’-3’ system, we have to project them onto the coordinate axes using a dot-
product. The procedure now has to be repeated for the intersection planes with the
normal vectors identical to x2” and x3’ to obtain all 9 components of the Tensor. One
can write it in the general transformation relation.

13



Transformation of the stress tensor

Transformation-relation:

Transformation matrix: a
11
a=|d,,
Ay
Transformation: o
. !
Back transformation a r g ea
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0-1'1‘ = al'lal'loll =2 al'lal'zollz 17 a|'1a1'30-|3
+a|':a|'162| + al':al'zo- 22 + al':al’san
Ta130,,0 3, T 8138,,0 5, T 8,38,,0,;

Oy = Qa0 0 T 810,20, +4,,0,30;

+al'lal'lall = 01'162‘2621 + al'Zaz’jJES

+a|‘3a2'|61| ok al'Jaz':O-S: ks a|'3a2'30-|3 ASO.
e aea’ =1 =aea’;
2o Ao T T
a,, ay, det(a) = £1

1
a0 *a
r r

a’easgea’ a
a’ec'ea Iy = Y%y % 1w

Since on the right side, k and | have to appear twice, one has to sum over both

indices:

The transformation rule contains 9 equations with 9 summands (81 coefficients). As
you can see, the index notation is very handy for such situations. One can also use
the matrix notation with the transformation matrix a and get to the resulting back

transformation.
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ormation of the stress tensor

A transformed coordinate system (x;) forms with the initial coordinate system (x) the
angles (x;,%;)=45°; (X4,%)=60°;(X»,%,)=60°, with the relation for the angle with the x,
axis:

0°<(x4,%3) <90°; 0°<(xy,X%3) <90°%;

a. Calculate the transformation matrix.

Institute for Building Materials
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Tensor transformations: Principal stress

Principal axis system: Cutting planes oriented in principal directions have not shear stress components. The respective
normal stresses are called principal stress and coincide with the normal of the cut.

*
I, = Oh,; o proportionality factor

i

i,=o.n withn =6 .n = (0'..—0'5.. n. =10
ij i i ij i U J

In full: 0, -0 Ois O s n,
O 3 (s il O 13 ”; =0
031 Fixa e =11 || |75
Eigenvalue equation: l,=0,=0,,+0,,+0,,=1rg
3 2 !=l—(cro -0 .0 )=tr‘c =
c'-lo " +1,0-1,=0 y = a0y 0oy z
0,10 ;40 3,035+ 0,05, —0 5 -0, —0 ¢,
I first, second and third invariant
Gll Gl 0.13
I, =det = ,
= 07,0 -, 0 5 s=det[o,]=0,, o, o,
o (o3 (e
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Of course we can now calculate the stress tensor for an infinite number of
orthonormal coordinate systems. However there is one among them, called principal
stress system that is peculiar. It is defined by the fact that in the cutting planes called
principal direction or axis, only normal forces act and all shear stresses are zero. The
stress vector is hence the normal vector of the cut multiplied by a proportionality
factor sigma. If we use the Cauchy equation and take the just formulated condition
for principal stress, we obtain the equation system.

This is called Eigen value problem and we are looking for the Eigen values (principal
stresses) and Eigen vectors (principal axes). The determinant ordered after powers of
sigma gives the characteristic equation or eigenvalue equation with the invariants.
The fist invariant is the trace of the stress tensor. The second one is the sum of sub
determinants for the principal diagonal and the third one is the determinate of the
stress tensor itself. The characteristic equation gives three real solution sigma_1-3
for the principal stresses. These are stationary values of the normal stresses: The
maximum one is called sigma_1, the minimum one simga_3 and sigma_2 is in
between.

16



Tensor transformations: Principal stress
Eigen veciors: ~

- — -

= RIi,Ni,N

*
11 o O, O3 n)
2 J L = i
2
0.0 11,0 1 = Gy =a n, | =0 = oy
¢ K = . ag, =|n, ", n;
L O 4 g3, 033 — 0O n, nlm nfu Hjm

Principal axis transformation:

gk'f’ ah‘a.fJ'G:;

D2 . o-k‘;r - ak”aj}lo- & B

Invariant with respect to rotation around the 3rd
axis

Invariant with respect to coordinate

Oy = 40,0, = transformations (isotropic) hydrostatic state.

Institute for Bullding Materials |

When the values are known, one can insert them into the equation above to obtain
the normal directions. In principle one has to solve a linear system of equations with
3 unknowns. To start with one can first calculate the non-normalized version by
setting the value of the first Eigen vector to 1 and then solving the system for 2
unknowns. In a second step the result can be normalized. When 2 vectors are
calculated the 3™ one can be calculated with the cross product. When the principal
axes are known, one can set up a transformation matrix for the coordinate
transformation. In general sigma_I>sigma_IlI>sigma_lll and there exists but one
principle axis system. We can visualize the components of the stress vector in all
possible cuts in form of the stress ellipsoid. If three principal stresses are identical,
all coordinate systems are principle axis systems.

17



Tensor transformations: Principal shear stress

Principie _shear stress:

Institute for Bullding Materials

max

|O' -0, .
f5i= 1 9 2 H‘m = \/%[l 1 O]T O wm = .17(0'11 + O.J}

Act in cuts, whose normal is perpendicular to a principal axis and has an angle of 45° with the other ones.
(=rhombic dodecahedron)
In cuts of maximal shear stress respective normal stresses do not vanish (MOHRs circle)

Of course one can also calculate the dependence of shear stresses with respect to
cutting orientations. To obtain extremal values, the derivatives with respect to
components of the normal vector have to be set to 0. After finite long calculations
one obtains the principal shear stresses tau_i that can be formed by the principal
stresses. The maximum is located at the difference between the 1st and 3rd
principal stress. When we look at the orientation of the cutting plane for maximum
shear stress, we realize, that those act in cuts, whose normal is perpendicular to a
principal axis but forms an angle of 45° with the other two. The resulting cutting
body is a rhombic dodecahedron (12 planes), whose area are of rhombic shape. The
normal vectors of these bodies form an 60° angle.

We can also have a look at this in the MOHRs circle. We realize the 45° of the cutting
plane for max. shear stress. The normal stress and shear stress can only be located in
the intense green region, that is limited by the circle. The circles themselves
represent cuts, whose normal is perpendicular to one of the three principal axes. As
we can observe, in those cuts, normal stresses in general do not vanish.

So for a given stress filed, we can now calculate the stress trajectories of the
principal stresses and principal shear stresses. Those are lines tangential to the
respective principal stresses that are used to visualize the stress flow. Densifications
of trajectories resemble stress concentrations. Materials mainly failing under tension
(cleavage fracture) will fail along lines perpendicular to the principal stress
trajectories. Materials whose failure is dominated by the shear criterion, will fail
along critical shear stress trajectories, that can be visualized by photo elasticity.

18
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Principle stress

In point P of a body the stress state is given by the tensor:

©P Q0T o

50 N2 A2

2 4 4

NE) 7 3

O’r: — — — ——
d 4 4 4

2 3 7

4 4 4

Give the values of invariants.

Calculate principle stresses and orientations

Draw a Mohr’s circle

Calculate the transformation matrix a;;.

Make a principal axis transformation of the stress tensor.

How large is the principal shear stress and in what direction n does it act?

19
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Principle stress / octahedral stresses

The cutting plane intersecting the space diagonal of the principal axis system is called

octahedral plane.
X;(o3)

a. Calculate the stress vector 1, with magnitude and components normal and parallel to
the octahedral plane.
b. Show the relation of invariants to the stress tensor.

20



Decomposition of the stress tensor

Decomposition by separation of the hydrostatic tensor:

0'H=;—(0'”+0' +0,,)= =0, =
c,, ©,, O, o 0 0 c,,—-o” o, o,
6, 0, 0,]=| 0 o 0 o, c,,-oc” o,
o3, o, (P 0 0 UH o, o3, J_z_x_cﬁ
H D
Oy T O O
1 o 1 ) S
O.:'_;' i ?O'A-k ij o.ij o ?O-kk ij ij
Hydrostatic . .
stross Deviatoric stress
->Volume change ->shape change
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We saw the hydrostatic stress state before, where all principle stresses are identical.
Well often it is quite handy to separate from an arbitrary stress tensor the
hydrostatic, isotropic one. One can use the mean hydrostatic stress sigma”H for this.
The difference from the hydrostatic tensor is called deviatoric stress tensor. We will

see later on how the decomposition is used in plasticity theory and for limit analysis.
By decomposing the stress tensor a particularly simple representation of the

elasticity law and the strain energy becomes possible. But let’s first look at the

invariants of both tensors.
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Decomposition of the stress tensor

Hydrostatic stress Deviatoric stress

H H .

11 =30 = 11 J, =I|D =O'r? =O‘:‘i_é_o-kkaii=0

H a2 2 D _ 5315 D? D* D*
Iy =30 :;—11 Jy=1, =-30,0,;, =-3(6; +0,; +0y)

3 2 2 2

I;H =gt :%]]3 a (0,,-03,) +(0,, —05;) + (0, -0y,

: - -6 2 2 2

+6(0, £ 05+ 064,)

= _é_[zfli_Ger]: IE __:_113
J3 =I3D =det0'jf.’ = 13 __ITIEII"' 227 113
1. S E
J, = _?O': 2_2_1';#; = _1+1)'UG

Deformation energy density

D _ 1 . D _ 1 L L
o, =0,-3loy=0,-31;0,; =0y
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_I?I:(O'f ~04) + (O -6 y) + (O~ O'J)z):l

1

Since the hydrostatic stress tensor is isotropic, and has no unique principle axis
system, the principal axes of sigma_ij and sigma”D _ij have to be identical. The
invariants of sigma”H_ij can be expressed using the 1st Invariant of sigma_ij. The
invariants of the deviatoric stress tensor are named J i.

J 1 vanishes.

J 2 is a measure for the mean quadratic deviation from the hydrostatic stress state.
It can be expressed by the invariants of the initial stress tensor. Note that the
equation is similar to the equivalent stress sigma_v following HUBER, v.Mises,
Hencky (HMH), as well as the octahedral shear stress (exercise 4). We want to use
here the deformation energy density Ug without definition, that can be used to
express the invariant J_2 very easily. Of course also the principal stresses of the
deviatoric stress tensor can be calculated like before, but the< can also be obtained
from the ones of the stress tensor just by subtracting the volumetric part 1/3*1_1.

22



Decomposition of the stress tensor

p-g-r invariants:

Equivalent stress:
|
o = —
vl
= Jrolo?
£—p—0 _invariants (Haigh-Westergaard coordinates) :

1 ) 33U,
— —1 = 3 ; = 2'_]_, = % ; 39 = — - ,J.""’
5 \/g 1 \/7}9 P AV 2 \/_,_C{ COS( ) ( (IJ P J 32

"

o, & cosd

c - & +\/§:p cos(@ — 2z /3)

o, V3 & cos(0 +2x/3)
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(]

1/
(0= 04,) + (0, —045,)" + (0, - 511)']+ 6(0, +05;5+ 0-5-1)}._

For cohesive frictional materials (like concrete) the scaled p-g-r invariant space is
important. Formulating equations in invariant spaces makes the formulation
automatically invariant too. P and g are scale versions of 11 and J2 and r is function
of J3. The threat of negative J3 and resulting imaginary r limits the use of this set of
invariants for engineering practice.

The equivalent stress is used for strain hardening like we will see in future lectures
on plasticity theory.

An other important set of invariants are the HAIGH-WESTERGAARD coordinates,
given in a cylindrical coordinate system. The angle Theta is the LODE angle being
function of the difference of second principal stress with respect to the other two.
Note that if simga2=sigma3 the Lode angle=60°, while for sigmal=sigma2 the
angel=0°. Hence the lode angel is an indicator of the magnitude of the middle
principal stress with respect to min and max.

23



Decomposition of the stress tensor

L ~~T

Y
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In principle stress space, the areas of constant invariants I;, J, and J; can nicely be
displayed. The |,-J,-J; stress space is important for yield surfaces, like we saw in the
last lecture.
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Deviatoric stress

For the stress state of uniaxial tension in 1 direction one should calculate:
a. The deviatoric stress.

b. The invariants of the deviatoric stress.
c. The Eigen values of the stress tensor and deviator.
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Remember... plane stress state (PS)

Disc and plate: Oy = Ty =0 L P 0
;=02 0Oy 0
0 0 Lo g9
Transformation matrix: .
cosa sin 0
a,; =|-smma cosa 0 \\“"\‘Xi
0 0 1
L I l 2 2
Principal stress: O, iu = 2—(0|1+033)i_ I(O'“—O'zz) + 0
Angle of principal stress: tana, , = - O =022 4 011 =0 2 41
' 20,, 20,
Angle of principal stress for . 20, 20, i
prir?cipal ghearpstress: tana,; ,; = 2 [ = ] +1
Oy, =0 O, — 0y
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Many situations allow for a two-dimensional perspective, where the 3rd dimension
is reduced by additional assumptions like plane strain or plane stress. In principle
you remember and this is just for completeness.

For PS all stress components in the 3rd direction are zero, while for plain strain
sigma_33 is not zero but linearly dependent on sigma_11+sigma_22. Hence we look
at the stress tensor including sigma_33. The derivation of the transformation tensor
is relatively simple, since it can only rotate about the x3-axis. The principle axis
transformation has to consider that the 3-direction is already a principle stress, and
consequently only the angle alpha has to be calculated for which the shear stress
vanishes. We obtain the Eigen stress, insert it into the characteristic equation to get
the Eigen vector and finally alpha after selecting the one for a right hand system.
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Equilibrium conditions: Infinitesimal element

Reiation between externai given forces and internai stresses.

0

ij

o,(x, +dx;)=0,(x,)+—dx,
Oy

Example: force equilibrium in 2-direction:

| do,,
[o’l: + —1i dx, Ja’.\':a'.\'_l - o,,dx,dx,
.‘. 1
oo oo
+]| 0, + 2 dx, |dxdx, —o,,dxdx, +| o, + —
Ox, ’ ’ ' ox,
- ~ -
oo do, oo
11 + 21 il + fl = O
- - =
Ox, dx, Ox,
o do oo
12 o 22 i 32 + f: — 0
ox, ox, ox,
do do éo
1 2 - —
+ - +/,=0
ox, ox, ox er‘.;"’f:‘:(}v Voo':+f
|
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Up to now we always started from a given stress state at a point. So up to now we
did not contribute to the calculation of the components of the stress tensor. To get
the relation between external given forces and internal stresses equilibrium relations
are used. One has the choice to either make a local consideration using the
infinitesimal element or one can make a global consideration of the body.

The equilibrium at the infinitesimal element of size dx1*dx2*dx3 is given here for
the stress component in the x2 direction only. Note that also the volumetric force f2
only is considered with its component in the 2 direction. If we move away from the
position dx_k, the stress changes following the differential representation. This
engineering representation corresponds to a Taylor-series expansion with only 1
element, only valid for infinitesimal dimensions.

Equilibrium conditions must hold for forces and for moments, but not for stresses.
Consequently, we must consider the area the forces act on. For the 2-direction this
is:

Some terms cancel out, others can be combined with the volume V=dx1*dx2*dx3
and give the final equilibrium condition:... that can be given in index or symbolic
notation for all directions. As we can see there are 3 equations with 6 unknown
stress components sigma_ij; hence 3 times statically indeterminate. To progress
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from here, additional displacement-distortion equations and the constitutive
relation is needed.
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Equilibrium conditions: Infinitesimal element

Polar coordinates f{i Gy,

ACc Radial stress

circumferential
% > stress
(0]

Force equilibrium in radial direction:

(o-r + C:T’ dr']r‘(r +dr)yde — o trdep — o, tdr
or

do
+[0'r_¢, - H—"dgo]m’r - (o-c,d(a).fdr + ftrdedr =0
g

do. 100, 1
L — + =g, —a, )+ |. =0
ar r oo r( r Q) S,

- -
oo ] 0o 2
rg @ " -
+ — +—0o,,+/,=0

-

ar r o r

Institute for Building Materials

Extension: Often it is useful to formulate equation conditions not in Cartesian but
directly in polar coordinates with radial stress sigma_r and circumferential stress
sigma_phi. We look here at the force equilibrium of a thin disk of thickness t. Using
approximations for small angles, namely sin(a)=a, cos(a)=1 one obtains the force
equilibrium in radial direction.
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Equilibrium condition: mass body _

At
_— S \
Force equilibrium in a mass body: a3
. // Y Sl
[7av +[Tda =0  Resp: [/,dV|+[o,n,ddk0 SA /
B s B S [ /
| dV . /’
GAUSS j o ;n JdA ='[ o ij.jd V )—(-L
L |ha.-_.~mm S B XS /,_//-- \\\\.\ ?'\q '!J,f
[(o,,+ 1,)dv =0 s ]
B
x1

Moment equilibrium in a mass body:

GAUss
theorem

If x fdV +J.3r'x 1dA = 0 Resp.:jgﬂ,x f.dV +j‘£,ﬂ,x o, ndAd=0 —
s '

B B

v

S
jg,}.‘.xjcr“.n,,dA :I(a,ﬂx_lcr;k ); dV = jg,ﬂ, (x Pt xJ.J“_J)dV
s B ' B

J.(gr:ka.f (O-ﬂ_;“" % )"' €O ji )dV =0 _ = dx,/dx, =0,
B
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If we take instead of the infinitesimal small volume the entire body, or an arbitrarily
cut part from it with finite volume V and surface S with area A and the outside
pointing normal vector n under the action of the volume force f and surface tension
t.

The body is in equilibrium if the resultant from volume force and surface tension
disappears. This can be written in vector or component notation with the Cauchy
equation. The Gauss theorem can be applied with the 2nd summand to be able to
merge the two parts into a volume integral. The equation is only fulfilled for
arbitrary volumes, if the integrand disappears, what leads to the differential element
seen before. The same can be made for the moment equilibrium, but the solution
reveals nothing but the symmetry of the stress tensor. For the integration of course
boundary conditions are needed like the stress vector used here.
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Summary: Stress states

Normal stress 0,,,0,,,0;

Shear stress @ = 901:%008 = 9355915 = 991
Principal stress 0.0 ;1.0

Invariants T o0l s T, .2
Equilibrium condition c,,+/f,=0

Boundary condition l, =0 ;,n; |S
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Let’s summarize: The stress state describes the internal loading and the edge loading
of a body due to external loads. We introduced the stress tenors, discussed its
transformation behavior, in particular principle stress transformation. We derived
equilibrium conditions and it became evident, that if one want to calculate the
components of the stress tensor, one runs into a statically indetermined problem.
The stresses can thus not be solely obtained from equilibrium conditions.
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Displacement and distortion

Displacement and distortion
Compatibility conditions
Plane strain case

o et ‘

V5275577

~pg 1
v el N .
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By splitting the displacement gradient into a symmetric and antisymmetric part one
obtains the distortion tensor and the rotation tensor for the geometrically linear
theory. After showing its tensor character, all results we obtained for stress tensors
can be translated to strains. To get unique relations for the strain tensor,
compatibility conditions must be fulfilled. A special case is the plain strain condition.
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Displacement and displacement gradien

AX; 0.

) o7 U+dir
Reference configuration
E Q
/ u dx,
i Current configuration
7P

V

>

X
A"
Displacement point P: u, = X, — Xx,
Displacement infinitesimal line element dx: dx — dx: 0 - Q
Displacement point Q: u, Hdu,
ou,
du . |= “dx ., =u, dx, 6 =:H dx,
i Ox J i,j i if i
! Displacement gradient: | H i
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_ Ou,

-

cx

j J

*An arbitrary material Point P of a body is given by its position vector x. This is called
reference configuration and could for example be an undeformed one.

*By external action the position of the Point i now P~ in the current configuration
with the position vector x~.

*The displacement of Point P is hence vector u. Well this is nice, but we have no
clue, if this is rigid body motion or deformation.

*For this we take a neighboring Point Q that can be reached by the infinitesimal line
element dx. We deform and dx = dx~and Q 2 Q™.

*Since we are in a continuum, u is a steady vector field and one can calculate the
total differential. The displacement gradient H describes the relative motion of
neighboring points and contains now the stretching as well as the rotation of the line
element. It is only valid for small displacements.

Note that the description of the length change can be made in two different ways: in
the Lagrangian description, where the motion of a material point is followed.
Independent variables are then the material coordinates. In the Eulerian description
the state in a fixed position in space is considered. This is very useful for flow
problems, but in elasto mechanics, the Lagrangian description is preferred.
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Strain and rotation tensor

Decomposition of the displacement gradient into symmetric and anti-symmetric part:

H l l 1 2 ) - l (z +1 ) ®. + &
=U, . g —\u, . —u.. ) ¥ —\u, . .. )=0 . i
0 @, o, S R
o, =0, 0 o, InflqlteS|maI Inflr.utesmal

J = Rotation tensor Strain tensor

@, O, 0
(0] 1 1 1 )
= — o= —\U., . — U . . .
LA Ji .7 J st
Rigid body rotation fq@?_tzthe % 2a%qg' [ o,

e o G e e Ao k000 T Voo = - 1 T
: ] 0 F Ao tuow, + N _9u, E )
0 =0y = (a +ﬁ5=—[?”——i”-jke o e
bR . 20Ky 0% g ] R 0Svap) o,

1 0u, QJu, i ¥
Wy =—0;, = —| —L - — 0 Bldx, /
- S - 2 (,_\.j C._\-: é /
1( du, ?7?:1 g~ | 98 j % / du,
@Dy = —03 = | 3 ~ 4 o %, 0"
2 ox 1 ox 3 w 5 ] dx1 T
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The deformation gradient H describes the relative displacement of neighboring
points and contains as such stretching of the line element as well as its rotation. If it
is decomposed into a symmetric (epsilon) and an anti-symmetric (omega)
component (wl2=-w21), the rotation can be splitted off. Now we obtain an
infinitesimal rotation and distortion tensor. The component of the rotation tensor
describe the rotation of the element as one can see in the picture. For small
deformations alpha=du2/dx1 and beta=-dul/dx2 for a rotation about the x3 axis. For
the rotation angle of the diagonal about the x3 axis one obtains (equation).
Analogous things are true for the rotation around the other 2 axes. Hence one has a
rigid body rotation, that do not lead to a distortion of the element and hence do not
lead to stresses. Consequently they cannot help us to reduce the under
determination of the system. Hence the rotation components will not enter the
elasticity law and are not further considered. We focus on the distortions.




Strain and rotation tensor

Decomposition_of the displacement gradient into symmetric and anti-symmetric part:

1 1
H,=u,,= 5(:1”. = u”)-r ?(u” i u}.,.): @,
Infinitesimal Infinitesimal
Rotation tensor Strain tensor
cu v ow ou, ou,
E,.=——.&, = —.& = — & = 3 €133 = €5
ox ) oz C’.\'l o0X s
ou 0v dv  ow 6w+€u e =1_[ﬂ ‘7”:] £,
Vo S 3ot 300V S a0t 307 T 3 P : Ox 3] T2
dy ¢ oz 0y ox 0z 2 0x, Ox,
, 1 0u,  OJu,
Technical shear £, =—| < —
; 2\ ox, Ox
strain 1
15 21
S.\‘ 2 yx_v 2 yx: 8]]
= | L L =
gij - 2 yy.\‘ 8,1' 2 }/_r: - 82]
] 1
T}/:,\' 2_}/:_1 8: 831
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Mathematical shear

gl
€,
£

]

ou, Ou,

ox, ox,
2 -

strain

[ 35
(U]

—

tad

(%] (5]
thh O

L =1

e el

)

The symmetric part of the displacement gradient H is equal to the strain tensor of
the geometric linear theory. However one has to be careful. On distinguished
between technical and mathematical shear strains. Taking the displacement u,v,w in
X,y,z direction the technical shear strain is defined as follows: The mathematical one
is different by a factor of %. It is important to know what shear strain measure is
used, e.g. when the results of computer programs are interpreted. The strain tensor
is a 2nd order tensor that can be considered the same way as the stress tensor: by
transformation, principal axis systems and decomposition into hydrostatic and

deviatoric parts.
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Strain tensor: Transformation, principal axes

Transformation relation:

&'!.3., =

r,a|._.

(“ Jit + U o ) = A a i€y
Principal axis with:
» Principal strains

: - E1>€>€m
Perpendicular principal axes

Disappearance of shear strains
Direction of maximum shear strains:

- 1 = 1
1 _i?(gu_gm),yn =X

£,=0, fiiri# j

| = &€t Ep T EY = E

- —

2, = €6y T EE T EE = ?(3”5;; =88y
- — —

I, =¢,6,6, =3 €ikm® jm€ y€ 1€ mn = deti

Decomposition of the tensor:

e = el + g’
if if

=1g,,0, + (5..ﬁ1—5 o .
3 if 3

— - ab _
z(gm_gf)_ymax:ym_iz(gf €
« Invariants: i

H)

if 3 7 kk T dj
e
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As for the stress tensor transformation relations can be used. Also there exists a
principal axis system.
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Strain tensor: becomposition of the strain tensor

_ H
A X, 8}} — 8"1 +
_ 1
I = TERO; | +
1;.';3d".i|
dx, %
1:..,de = L 1;?,d:;
F
x1
AdV
E, = =&, +&,,+eyy,=1=3"
dVv o o

—>Volume change (dilatation)
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I°P =¢el +¢e) +ep, =0

u
_ L (£, _5:.')2 +

D
Iy =+ 2 2
(,5-” _gm) +(‘9m - ‘9:)
D D D D
I =¢; e ey,
->Shape change

Octahedral strain:
1 D
gokr:gll;yoh_ _;._19

I

The strain tensor can be analogously decomposed into volumetric and deviatoric
part. The volume change can be calculated via the first invariant of the strain tensor.
Since the hydrostatic part describes the volume change, the deviatory part describes
the shape change of the volume element. Of cause here again three invariants exist.
Finally octahedral strains can be calculated, analogous to the octahedral stresses.
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Strain tensor

L e R VT T Do) e g Ol Wtk AR 7 | eIty LR ~ Py ¢ gt
1 Ne dispiatertient aistrputorn in a pedrrn will recle c LJ055-5e0

given in elasticity theory by:

¢
M, i—}z u,
— [+
Uy = X, %5 + A X5+ A% + A &
Uy, = —5vx,x,—A,x; — A,x, + A lx;-us
2 2 2
Uy, = — ﬁ[x, +v(x; — X, )] - Ayx, + A, x, + A

Poisson's number, R radius of curvature of the beam, ¢ a constant that relates to M, , and constants A, , ..., A; thatcan be
determined by boundary conditions.

Calculate the strain and rotation tensor.
Calculate the volume change.

c. What are the constants A, , ..., Ag assuming that the displacement and rotation in the origin is
zero.

d. Calculate with these constants the rotation in point (1,0,0) from the rotation tensor as well as from
the deflection line.

e. From the beam equation M =-Elw” calculate the constant c .

o
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Compatibility conditions

Kinematic equations: £ = ;—(u satu, )
28151, = Uy Uy, = (

6 compatibility conditions:

M= E9y33 F €3320 = 28453, =0, T2 = (523.1 &30 € ) &350, = 0,
M = 333\1|+81|,33_2531.31=0= 7, = (83|‘2+8«,|‘_83~,_|).1_8H)~, 0,
May :=E 12+ Epryy —28,,, =0 .
" 2z 22t 1212 Ms = (812.3"'833,1_531,3),_Szz,il =0,
—g—In eneral: UU' = ‘9:#:;1 g\;‘hrgk!,mn = O
Example: 7,5 = €51, 850, 10 = €24m (331285-1.;»2 + gszlga-z_ml): € 2km (3;.-1.".2 - 8;.—2.":1)
= &3 (331_12 REFRE )+ €213 (51|_32 — &123) )
= €t a5 T o T Easp
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Starting point are the kinematic equations. If displacements u_i are given, stains can
be calculated in unique way by differentiation. However if we want to calculate from
the 6 given strains epsilon_ij by integration the displacements we have 6 equations
for 3 unknowns u_i. In other terms we are 3 time kinematic over determined. Hence
the 6 strains epsilon_ij can not be independent from each other and must fulfill
compatibility conditions. One obtains these by differentiating twice. In principle
3*3*3*3=81 equations would be possible this way. However, since the strain tensor
is symmetric and one can change the order of derivations and can forget about
trivialities like i=j=k=1=1,2,3 it reduces to 6. In general one can write these equations
in a very compact way using index notation with the LEVI-CIVITA tensor. Eta is also
called incompatibility tensor and the=0 is the compatibility condition. This can be
controlled for the example ij=23. The equation eta_ij=0 can also be understood as a
linear coupled second order differential equation system to obtain the six unknown
components of the strain tensor. Hence the strains would be calculated from the
compatibility conditions in unique way. Since eta_ij,i =0 these 6 components are
linearly dependent and one does not obtain the 6 strains.
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Plain strain (PE)

Long components:  &;, = &,; = 0

Transformation matrix:

cosa sin &
a, = —sina cosa
0 0

Principal strain:
Invariants:

Compatibility condition:

Institute for Building Materials
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Su mmary: state of strain

shear €10 T €31:833 T 335813 T €3
Principal strains Es€us€m
Invariants IR B

* % 1
Kinematics Ey = z_(”f.j + l-fj_,.)
Boundary conditions u, = u,.|s
Compahblllty n if =& ikm & Jin Sk.",m n = 0
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Let’s summarize: By splitting the displacement gradient into a symmetric and anti-
symmetric part one obtains the distortion tensor and the rotation tensor for the
geometrically linear theory. After showing its tensor character, all results we
obtained for stress tensors can be translated to strains. To get unique relations for
the strain tensor, compatibility conditions must be fulfilled. A special case is the plain
strain condition.
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Elasticity law

Stiffness and compliance tensor
Elastic potential and strain energy
Material symmetries

Generalized Hook's law

_\}'olumetric and ;'ﬂisplacements
‘surface forces )
R Fi:Ti N
. A\ a5 )
Equilibrium mm};meo:mions
X7 \7
( stresses 4 strains
L Oij &
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constitutive law

The elasticity law interconnects stresses and strains via elasticity tensors. In the
general case one obtains a stiffness or compliance tensor with 21 independent

components, whose number is further reduced by material symmetry. Isotropic
material has only 2 parameters.
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Elasticity law

Matarial law (etata am
wigieria 1 gaw (siaie eg

J(O 56050 j26 el 35 mst)
dependent] independent variables

Simplifications:

The material law is independent from:

« Sign of the load (fully reversible)

+ Loading type: Tension, compression, shear, bending, torsion
* The loading history (order or number of loading)

» Loading rate (all temporal derivatives vanish).

« Of time and temperature (e.g. aging)

= O-:'j = O-:'j (S.H; xm )
Continuum €= Discontinuum

Homogeneous €-> Inhomogeneous

Isotropic €-> Anisotropic
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We have seen that stresses cannot be solely calculated from equilibrium conditions.
The problem was three times undetermined. Then we tried to describe the problem
kinematicaly and saw that it is three times over determined. However to solve
guestions of elasticity theory, a coupling between stress and strain is needed, what
is done by materials laws that comprise the physical behavior of the body. It is a
state equation with dependent and independent variables. It contains implicit
material properties that characterize the physical behavior of the body. We are here
to take a deeper look into exactly this. However before it gets complicated, we can
make it simple and make some assumptions such as: ....

Hence the stress state in a point of the body depends with theses assumptions only
from the deformation state and NOT how it was reached (history). It is as well not
dependent on its neighborhood (locality). If all material points are of identical phase
(solid/liquid) it is a continuum. Porous media is not. If all points in the body have
identical material properties, the material is homogeneous (independent on x_m).
Composites like concrete are not. If all material properties are independent on the
reference frame, it is isotropic. Composites, wood and others are not.
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Elasticity law: stiffness tensor

HOOKESs law (linear reiation between strain and stress):

OF 5 = Eijkfgk!

4th order tensor = 34=81 elements
Symmetry of g; and ¢ results in Ej,=E;j,=E;,=E; »6"6=36 independent constants.

o, Eny Enn Ene Ense Ens Ejnn |l e

0—22 E::t] E::: E::.‘E E 213 E::}I E 212 522

0-33 ‘E“ll E“: E E El?ﬂ ‘E 1 l""33

Gos | | Essi Esses Essss Essas Esys Enn || 264 O, = Efj;‘-,:gk,r

(‘TEI E.‘lt] E?]: E‘l 3 E 123 E?]E] E.‘]l 2“.‘1

o, Eiooi Buu Buan Bos Bas Bunlll2es

o, E, E, E E, E. E .

o, E, E E E,, E,. E,l||le, o :EABSB= A,B:l,2,...,6
o, E,, E E, E, E, E,||¢

o | |Ew Evn E. En Ei Es|le Symmetry. Eyp =Ly,
o, E., E. E. E, E. E.]||e. = 21 independent. constants

o, E,, E, E, E. E. E.]||le. > (aelotropic body)
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For now let’s stay general. Elastic material behavior can be described via the Hooks
law. It is a linear relation between stress and strain. Hence a linear relation between
two second order tensors needs a 4th order tensor with 374=81 components. It is
called stiffness tensor and its components stiffness components. By symmetry of
sigma and epsilon (6 independent constants each) one can reduce it to 36
independent constants that are needed to describe a material . The 9x9 equation
system can be reduced to 6x6. Since the stiffness tensor is symmetric as well (most
the time), it can further be reduced with E_AB=A_BA to 21 independent
components. Such a body is called aelotropic.
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Elastic law: compliance tensor

Compliance tensor: -1
" D:‘jk! = Erjk! ‘
“ D Emr?k;’ = §Ek5_ff

ifmn

[ 6‘1| ] 71)1|1| ])Il 2 ])]1€\ 2‘{)IIZS 2])11_11 2IJIIIE—I 70’|1ﬁ
82: DEQZQ D:Z_i_? 2D121_\ ZDQZSI Z‘Dﬂlll 0-21
| fas | _ D,;;; 2Dy, 2Dy, 2Dy, O3 | _
£, = = =D 0y
2833 4D3333 4D233l 4D2313 023
2¢,, sym. 4D,,.,, 4D, ., o,
| 2¢,, i 4D1:1:J_O'1:_
Shorter:
e, =D, c,, AB=12.6
- D is the inverse of E: D, ,E,. =0,
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The inverse of the stiffness tensor is called compliance tensor. Of course also here
the symmetries hold and one can write : ... With the index notation everything gets
again very compact. One can make the inverse, but the number of independent
elements of course does not change. In principle on has to obtain these from
material tests, what means and enormous experimental burden. However materials
often have internal symmetries, what means an significant reduction of the number
of independent components.
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Crafting unusual mechanical properties Metamaterials, which have engineered
internal structure, can have very different responses from conventional
materials when compressed. COVER Illustration of a 3D chiral elastic
metamaterial that is being compressed from above, causing the material to twist (along
with the usual axial compression and lateral stretching or expansion). The darkest
orange area denotes the highest degree of deflection. The twist motions, forbidden in
ordinary elastic continua, aid the design of complex mechanical architectures. See
pages 994 and 1072.

Illustration: C. Bickel/Science
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Elasticity law: material symmetries

Symmetry with respect to one plane:

->Monoclinic, resp. monotropic material

Examples symmetric with respect to the x;-x, plane (é’ e.e ) = (é‘ c — g;)

1 2 3

When transforming, material properties are not allowed to change 1 0 0
a. = 0
Example: Ei'j'k A a:";‘ajj;'ak 3 aF’IE{:'H ’
sym. -1
Epp=Ep = al'fal'jal'kal'.fEr'_;'H =E,,,=E}
Eyy=E;/,y = a]'a'al'jaz'ka3'.fE:'_;'H =-E,,=-E,=0
_Ell E12 El! 0 0 EIG 1
E:: E:J 0 0 Ezo
£ e EJJ 0 0 E36 - .
AB Eu E45 0 Symmetry: k AB = h BA
sym. E,, 0 - 13 independent constants
E,, (Monotropic body)
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The internal symmetries of technical materials mean, that the material behavior is
not supposed to change under certain transformations. The transformation matrix
contains all transformations. As one can see a component is positive, when the
index 3 is 0,2, or 4 times in there and negative if 1 or 3 times. Since an inverted sign
would be in contrary to the symmetry, these components must be zero. This way
one obtains a reduced stiffness tensor for a monoclinic material with 13
independent constants. As one can see here, pure shear deformation causes also
normal stresses, since these coupling terms are not zero, and pure strain can also

result in shear stress. Consequently the principal orientations of the stress and strain
tensor do not coincide.
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Elasticity law: material symmetries

Symmetry with respect to two perpendicular planes:

—>orthotropic
material

With engineering constants E;, G

1/E, -vy /E,
-v,,/JE, 1/E,
v, JE, —v, JE,
DAB — llb/ 1 l-b/ 2
0 0
| 0 0

Symmetry condition Dpg=Dga!
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AB

Ell

ij

0
0
0

_"Al/Ej

vy JE,
I/E,

E,
E,

sym.

E'I.i

0 0

0 0

0 0

W 00

E,, 0

E66

0 1

0
0
0
0
1/G,

fir i # j

- 9 independent constants
(orthotropic body)

Positive definite Dyg:

1. E,E, E,.G,.E,.E, >0
2. |1r1,|< JL
J EJ.
3 VLV, V,, < ]|{I—|': E?—l': E’—'.':
. 127 237 31 2 \ 12 E‘ 23 E: 3

If additional symmetry to a perpendicular plane is enforced, 4 further components
vanish, and one can see that it is the same as having 3 symmetry planes. Such a
material is called orthotropic. Crystals, wood, composites, rolled steel and others are
examples for orthotropy, even though for rolled steel orthotropy is more in the

strength tensor.

9 independent parameters are needed to define an orthotropic body. As one can
see, shear strains only lead to shear stresses. If the symmetry planes are not
identical to the coordinate axes, one obtains a fully occupied matrix, however
composed still of 9 independent parameters.

When using engineering constants for MOE, MOS and Poisson rations in the material
orientations, one obtains a compact shape of the compliance matrix. Due to the
symmetry conditions one can write: The matrix has to be positive definite, all main
diagonal elements have to be positive, all 2nd order sub determinants have to be
positive and the 3x3 sub determinant has to be positive. Additionally the following
inequalities have to be fulfilled, not to violate energy balance (first law of

thermodynamics).
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Elasticity law: material symmetries

Symmetry with respect to two perpendicular planes:

With engineering constants E;, Gy, v; follows

Institute for Building Materials

-

sym.

with a=1-v

=> 9independent constants
(Orthotropic body)

V13 V12V23 E 0 0 0 ]
a 3
Vas = ValVis p 0 0 0
a 3
1-ViVo g 0 0 0
a 3
G,, 0 0
G, 0
Glz_
12Y21 = V2V — ViV _2V1:V:3V3|

31713

By re-inversion of the compliance matrix one obtains the stiffness matrix in
engineering constants here given for the sake of completeness.
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Elasticity law: material symmetries

Rotation symmetry with respect to one axis:

—>transversal isotropic material

Example rotational symmetry with the x; axis.

Epp =a,aaak,
S EE G 0
E, E, 0 0 0
E, 0 0 0
Eas = E,, 0 0
sym. E 0
L ZL(EII == Elz)
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cosa sin & 0
a,, =|-sina cosa 0
0 0 -1
Symmetry: b.—lB = f‘BA
- 5 independent constants
E,=E,
E ;= E,
E, = Ess
1
EG()_?(EII El:)

Rotational symmetric behavior with respect to one axis is given e.g. for a fiber
bundle model. We do not make a derivation of the individual constants here. If you
are interested, take a good mechanics book. Transverse materials are described by 5

independent constants:
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Elasticity law: material symmetries

Rotation symmetry with respect to one axis: E,=G, = £,
- — - 2(1 + v,
1JE, -v JE, -v /JE.E 0 0 0 (1+v.)
/E,  -v,/JE.E 0 0 0
. ‘"VJ_
D, = l/[‘. 0 0 0 1
I/G 0 0
sym. l/G 0
_ 1/G, | vy
[i=0 v, +v! vill+v,) ] 1 1
—-E, —E, - JEE 0 0 0
iyl vi(l+v,)
—E, a—.(E_E 0 0 0
E, = Vi y 0 0 0 4
a
G 0 0 Valid range for Poisson numbers
sym. G 0
2 E—
a=(1+v,)1-v, —2v) 200+ v,) |
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If we call all elements parallel to the isotropy axis (3) as Il and the perpendicular
ones as _|_, then the compliance matrix can be written as:

Its inversion again leads to the stiffness tensor. One can see that the matrix
population is identical to the one for orthotropic material. Again the request for
positive definite elements limits the range of material parameters. The valid range is
plotted here.
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Elasticity law: material symmetries

Rotation symmetry with respect to two axes:

E, =FE;
—>isotropic material
: ! Elz = £y3
Ly = Eg
“Ell E12 EIE 0 0 0 1
E, E, 0 0 0
P 3 E“ 0 0 0
“w '12_(E11_E12) 0 0
sym. +(E—E;) 0
] (B Ey)

Institute for Building Materials |

Invariance with respect to rotation about an additional coordinate axis already
results in isotropy. This additional constraint can be enforced by coordinate
exchange from the simple rotational symmetry. .... The stiffness matrix gets a very
simple shape: For isotropic material only 2 material constants are important, or have
to be experimentally obtained, what significantly simplifies the experimental
campaign, since they can be even obtained from 1 material test.
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Elasticity law: material symmetries

Rotation symmetry with respect to two axes:
—>isotropic material

I/JE -v/E -v/E 0 0 0 with G = __E
1/E -v/E 0 0 0 2(1+v)
E >0,
1/E 0 0 0 with
D,y = 1
1/G 0 0 -l<v< 3
sym. 1/G 0
L 1/G |
[(1-Vv)E /a vE/a vE/a 0 0 0 ]
(1-v)E Ja vE/a 0 0 0
" (1-v)E /a 0 0 0
4% = E/a(1+v) 0 0
sym. E/a(l1+v) 0
| with a=0+v)1-2v) Efa(l1+v) |
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The compliance matrix in engineering constants E,G, nu has again to be positive
definite, what leads to the conditions.... Again the stiffness matrix in engineering
constants can be obtained by the inversion of the compliance matrix and reads...
Of course there are crystals with other crazy symmetry conditions like tetragonal,
trigonal, cubic and so on. However the chance that you will meet them in an
engineering environment is rather low.
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Elasticity law: generalized HOOKE's law

Isotropic stiffness tensor:

Ei'j'k T = ai’paj'qaﬁ"raf'squrs = 55'1"5,!':.?'5!\"# 5!'fE:j'kF
For all a,, with a,.a, =0J,. and det a, = + ]
+  41=24 combinations of possible (fr}.b‘“ s (fr.k()‘ﬂ
. 41/(212121)= inati - . . e e .
41/(212121)=3 combinations due to symmetry ()U_ — aj,.,a“ =5, (5&(5“ — ()“_()U_
= E, = )“5;}5H + 2”(551;5;'; + 5515;& ) + K(afﬁ'(sj! ~ 5;':5;1-)
=0

Ejy=A0,0y+ 2:“‘5;1-5;';_1

o, =L ey

Elasticity law: IO-U_ = (2;;5}_;{5“” L 3-5,;,-5;{-;)3;.-;.

=2ue; + Ao,

Institute for Building Materials LAME's constants !

Let’s stay with an isotropic material for some time. We require for isotropic bodies
that components of the stiffness tensor are identical in all orthonormal coordinate
systems. For an isotropic 4th order tensor this means: .....

All components in the rotated CSYS have to be identical to the ones in the initial
CSYS. Our E_ijkl can hence only be from different combinations of delta_ij, delta_kl
(with index variation there are 4!=24 possibilities). By symmetries this reduces to 3
and hence the form of the tensor. This is the most general form of an isotropic 4t
order tensor. Since E_ijkl has to be symmetric with respect to the indices i,j, and k|,
the bracket with kappa is cancelled out and one obtains the stiffness tensor that
comprises 2 free constants, that are called Lamé constants. If we relate this to the
kinematic and kinetic properties, one obtains the elasticity law. If the strain tensor is
known, we can now calculate the stress tensor.
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Elasticity law: generalized HOOKE's law
oc.=2ue. + A&, 0.
i HEy KU Trace: o, =2ue,+ ey, =2pe, +34¢e, =(2u+31)e,
5 e
. i o
1 /1(),.}. 2
g:'j = —Gij - O..H'
2u 2u3A+2u)
Uniaxial stress state: Plain shear stress:
o, =o0,; all other O'U.ZO o, =0, =1,; all other o,=0
| T T
— l ‘ =—V s — = — _— = e e
£i /EO‘D, 85s /EO'O, Ve = 28, 22#(%: G
1 A A+ u _
- 4 17 sl [ =—= 7 = gl =iy
“u AWO 2;:[ 3/‘.4—2;:] To w(32+2u) ¢ &
1 A A
2 :V {,=_ 0—_ =
s qVEF 2;;[ 3/1+2;;J 7 122Gr+22)|°°
s Ev — E G = E
G+v)(1-2v) " " 20+v) 2(1+v)
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If we want to calculate the strains for a given stress state, we have to invert the
elasticity law. This means we have to solve the 6x6 equation system. Let’s first look
at the trace of the stress tensor. After renaming i to k we obtain a relation for
epsilon_kk, that we can insert into the elasticity law to obtain epsilon_ij.

However since the LAME’s constants are a little bit abstract, we want to express
them in engineering constants like MOE, MQS, Poisson's number nu and bulk
modulus K. To do this, we only look at two well defined stress states: uniaxial tension
and a plain shear stress state. By equating coefficients (Koeffizientenvergleich) we
obtain the Lame’s constant. Don’t forget about the technical shear strain gamma,
that is twice the mathematical one. As we can see, E, G, nu are not independent
from each other.
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Gabriel Lamé (1795-1870)

Gabriel Lamé (1795-1870) graduated in 1817 from the Ecole Polytechnique in Paris.
He continued his studies at the famous Ecole des Mines, where he graduates in 1820
with a second degree. Also at that time technological development work was
common, and the went the same year to Russia, to become director in St.
Petersburg of the school for Road and transportation. He teaches in civil engineering
but also does practical work in road and bridge construction in Russia. In 1832 he
returns to Paris and first founds an engineering bureau. He gets the chair for Physics
at the Ecole Polytechnique but remains active outside of academia as counselor and
chief engineer in mine questions and railway constructions. His scientific work shows
his deep love for applied math. However he also looks at abstract topics like number
theory. According to Gauss, Lame is the most influential mathematician of his time.
However his colleagues think different. The mathematicians think he is too practical
and for natural scientists he is too theoretical. Hence we can consider him to be one
of the really great minds that could bridge the worlds.
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Elasticity law: generalized HOOKE's law

(A, n)

(G.K) K—%G

Ev
(E.v) Toa-v)

Bulk modulus:

Material law:

i

g:‘;':
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#(BA+2u) A P
A+ p 2(A+u) 3u
9K G 3K -2G
3K +G 6K +2G
E E
2(1+v) 3(1-2v)
C 307 teg”
3A+2u 34A+2u K
1 E
K=-BA+2u)= —
= K=304+20)= 305
E 1%
= SU + _gkkarj
l1+v 1-2v
1
f((l+")av“’akk5a with: E > 0, —l<v<;—

The table summarizes

the relations of elasticity constants and Lame constants. The

bulk modulus is the proportionality factor between the hydrostatic stress and the
volumetric dilatation e. With these relations, we can write the material law in

engineering constants

The material law is val

id and exactly the same for arbitrary orthonormal CSYS (e.g.

cylinder coordinates (R-phi-z) or spherical coordinates (r-phi-theta)), only the indices

have to be exchanged

(1-2-3 by r-phi-z, resp. r-phi-theta).
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Elasticity law:

r \ Reformulate the elasticity law with decomposed hydrostatic and deviatoric part.
4 - 4 1

Oy =04~ 7%ud,

O'..:Z;fsu.+/..£Hr5U. Oy = (2u+34)

. 1 .
=2us,+ As,0, - §(3A +2u)e,0,
&y = }Tgkk():'j + Er’f

: 1 . . 2 . .
2}11(8;) + ?8“61") +Ae, 0, — ?,ug“_a,j — A& 0,

= 2)[{8;.)

D _ D _ D
o, =2ue; =2Gg¢; s
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Hence follows a particularly simple and easy to invert form of the elasticity law.
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rurve - Uisplaveltierit = Wurn )(3 dX2

cndx,dx, -de dx, =W '
volume

General work increase per volume:

dW =o0,de  +0,,de,+0,,de+0,de, +..

- O':'jdgu' B : P e
- . . | x, , ............................... L'.T,‘ai;ndx;
Specific work of deformation: W = I c.df, =U (8,—7) “
(path independent for elastic body) % ! 4 4 ‘
. - oU |
W= [dU =U(,) with o,de, =dU =—dz,
: oE..
0 if
Constitutive equation: _au
y =
O¢gy |
Li |asti ¢ 1
inear elastic: _ = J= = —
= Eu“ja“de”. == EEU'“F;*-‘SU = ?au.au.
0
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The deformation of an elastic body results in internal forces. Hence work is done.
Let’s look at this using the differential element. The stress sigma_11 corresponds to
the force sigma_11*dx2*dx3, the path is d epsilon_11*dx1, while the volume is
simply dx1*dx2*dx3 and can be used to obtain volume specific work increase. We
can do the same to all other components and obtain the work increase per volume.
If we integrate the work from the undeformed to the deformed final state epsilon_ij,
one obtains the specific work of deformation or density of the work of deformation,
since it is related to the volume. If the body is elastic, it does not matter, how this
state was reached and the values of the work integral is only dependent on initial
and final state. Hence it does have the character of a potential. This is only possible
if the integrand dW (dW) is a complete differential, and one writes.....

By equating coefficients one obtains the constitutive equation. Analogous to a
conservative force, stresses in the elastic case can be derived from the potential.
This is why U is also called specific strain energy or specific elastic potential or elastic
potential density. In the linear elastic case the integration along the line with
t*epsilon_ij results in a triangular area.
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Elastic potential, strain energy

Decomposition into volumetric and deviatoric part: O,
o, = 2
1 1 (o, g ‘
U=—0c.e, = — s+ s LS5 +e.
2 ij o if 2 3 if if 3 i if
1

1
= EO'H\,SH + ESUQU =U,  + U‘g
Volume Distortion
change energy
energy

Isotropic case:
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The decomposition of the stress and strain into volumetric and deviatoric part leads
to the volume change energy (Volumenanderungsenergie) and distortion energy

(Gestaltanderungsenergie). As one can see, both are always positive for arbitrary
deformations.
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Elasticity law: Generalized HOOKES law

= rg £ 01

rc. 11 12

;=8 €22 0| &, =
0 0 0

G =

v E
- (I+V)(1—2v)(€“+822)
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O 33

1
E((K_B)ali A (K * l)a:.‘ )

_ %((K +1)o,, +(x -3)0o, )

G
0'11:K_l((‘f+1)311+(3—-'5)3;;)-
o= G]((B‘“K)f.'”‘l-(.'(‘l-l)&‘”). Oy = 2G5
e
1 G 2 2 2
?K_l((x+l)(sl'1+£:'3)+2(3—x‘)g“s::+4(;c—1)g|~3)

VvV
&35 = ”E(o_ll +g::)

The isotropic elasticity law for plane problems can be given by using instead of E and
nu the shear modulus and the constant kappa. For the sake of completeness, the

equations are given here without derivation. Be aware that the stress state results in
a three dimensional strain state and vice versa.
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Problem description

Equilibrium: Gl = 3 equations
1
Kinematics: Ey = Mt ) 6 equations
Material law: O, = Ejéi,
&, =D 104 6 equations
Field properties (15): < ﬁ
u,, &, und Oy (O’ =0 .8, = 8;_‘.) :ﬂlﬁggrfigrggg displacements
Fi.T; Uj
Compatlblllty Conditions (6) E compatibilﬁy conditions
quilibrium (geometry)
”? ij = gr'#ufgj]ngka'.mn = 0 stresses ; strains
E £
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constitutive law

Let’s summarize what we talked about so far on linear elasticity. The sum of
equilibrium conditions, the kinematic equations and the 6 material laws give 15 field
equations that are facing 15 unknown field equations.

All equations are linear. The material law are the projection of a stress onto a strain.
The static and kinematic relations are first order partial differential equations. When
integrating partial differential equations integration functions appear, that have to be
determined by the boundary conditions. The solution of this boundary value
problem can be made via FEM, what is not part of this lecture.

Of course we can more deeply dig into this problem, however our real interest
would be lost, since we want to focus on material laws.
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.How are principal strains and their orientations defined?
12

What are the premises of linear elasticity theory?

Why is the stress tensor symmetric?

What is an invariant of the stress tensor?

What premises leads to the symmetry of the strain tensor?

How many independent variables constitute the deformation state in a point?

How does the strain state change with respect to transformations?

What is anisotropy of elastic material properties?

How many independent material constants does a homogeneous, isotropic, elastic body need?
. Give a possible form of the HOOKE's law for isotropic bodies in a general stress state.

Is the MOD for isotropic material larger or smaller than the MOS?

What are the local equilibrium conditions for the strain stress state in Cartesian coordinates.

©ONOU R WN R

Lin el. Material behavior-> DGL 1. order

Moment equilibrium

Property for changes of CSYS

Potential character (order of derivations does not matter)
3 displacements

Not a t all

Directional dependency

2

10 Larger
11. Like principal stresses
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Thank you for your attention.
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