WATERSHED MODELLING LV 102-0468-10L (6KP, 4 SWS)

Curriculum: Master in Environmental Engineering Instructors: Peter Molnar (HIF D 20.1), Scott Sinclair (HIF D 18.2) Teaching Assistant: Jovan Blagojevic, HIF Open Space

Monday: 15:45-17:30 (lectures), Wednesday: 11:45-13:30 (exercises) Room: HIL E 8 (ETH Hönggerberg Campus) Lectures are recorded

Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis using a range of spatial data, model types from conceptual to physically-based watershed models, methods of parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

Objective:

The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are backed by many examples from scientific studies and practice. A comprehensive exercise block builds on the lectures with a series of 4 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanations of the tasks and answer student questions. The course is evaluated 50% by performance in the graded exercises and 50% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Content:

The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final lecture (D) provides an open classroom discussion forum about topics learnt in the class.

Digital materials:

LECTURES: PDF files and video recording (Monday block) EXERCISES: PDF files, code (Python Notebooks), data, video recording (Wednesday block)

VIDEO RECORDING (NETHZ Access): https://www.video.ethz.ch/lectures/d-baug/2024/autumn/102-0468-10L.html MOODLE LINK: https://moodle-app2.let.ethz.ch/course/view.php?id=22841

CONTENT (Version 2024)

Week	LECTURES HIL E 8	EXERCISES HIL E 8
	2x45 min with 15 min break	45 min exercise explanation + 45 min
		Q&A and free work time
16. & 28.9.	NO LECTURE (FIRST DAY OF SEMESTER)	INTRODUCTION
MOLNAR		Le 1: Watersheds in GIS. Watershed as a
		landscape unit. GIS basics. Data types &
		operations. Elevation data (DEM).
		Topographic operations on DEMs.
		Hypsometric curve. Slope. Aspect.
		Curvature. Flow directions (D8). Flow
		accumulation. Topographic Index.
23. & 25.9.	Le 2: River networks and HRUs.	Ex 1: Watershed analysis using GIS
MOLNAR	Extracting river networks from DEMs. The	- choose Berner Oberland basin
	a>at model. Other models and field	 compute hypsometric curve
	evidence. Multiple flow direction	- apply D-8 flow directions (ArcGIS, Q-GIS)
	algorithms (Dinf+). Spatial data sampling	
	effects. Typical spatial datasets for	
	modelling (landcover, soil). Hydrological	
	Response Units.	
30.9. &	Le 3: Climate data input into models.	- extract the river network (calibrate)
2.10.	Measurement of climatic data in time and	- apply D-inf flow directions
MOLNAR	space. Summary climate statistics.	- define HRUs in your basin
	Weather radar. Satellite data. Climate	
	reanalysis data. Spatial interpolation	
	(IDW) and filling in missing data for rainfall	
	(regression)	
7. & 9.10.	Le 4: Introduction into watershed	- describe climatology of your basin
MOLNAR	modelling. Modelling concepts –	- summary statistics (PDFs, extremes)
	perceptual model. Modelling	
	Model complexity versus data evallability	
	Budyko curve	
14 8 16 10	Le 5: Concentual watershed modelling	Ex 2: Concentual bydrological modelling
	Build your own lumped bucket model	- apply daily bucket model to your site
1 IOLINAI	Linear reservoirs. Examples of model	- manual changing of parameters
	structures – HBV, PRMS, Typical	- analyse outputs of the model (O.FT.R)
	parameters. Case study: Berner	
	Oberland.	
21. & 23.10.	Le 6: Calibration and validation.	- automatically calibrate parameters
MOLNAR	Systematic and random error sources.	- validate model
	Goodness-of-fit measures. Objective	
	functions. Calibration-Validation tests.	
	Multicriteria optimisation.	
28. & 30.10.	Le 7: Sensitivity and uncertainty.	- parameter sensitivity
MOLNAR	Parameter sensitivity. Sensitivity of model	- example of Sobol indexes
	oututs: local and global (Sobol indexes).	
	Uncertainty analysis: sources of errors.	
	Monte Carlo simulation (ensembles),	
	bootstrapping. Parameter and input	
	uncertainty.	
4. & 6.11.	Le 8: Stochastic processes for rainfall.	Ex 3: Stochastic input of rain into the
MOLNAR	1D Temporal and spatial disaggregation	model
	approaches. Point process models.	- fit the WeaGETS rainfall generator to data
	Markov chains. NSRP Model. Nested	- prepare stochastic climate for modelling
	appraoch. 2D rainfall disaggregation.	

11. & 13.11.	Le 9: Climate impacts on hydrology.	- run model of Ex 2 with stochastic rainfall
MOLNAR	Climate models (GCMs, RCMs).	- conduct a climate change CC study
	Downscaling approaches. Weather	
	generators. Climate impact studies.	
	Uncertainty partitioning in climate change	
	studies.	
18. & 20.11.	Le 10: Physically-based gridded	- estimate uncertainties in model outputs
SINCLAIR	watershed models: Topkapi. The	- partition CC uncertainties into sources
	concept of a physically-based model.	
	Detailed component description in	
	Topkapi-ETH: surface runoff and	
	subsurface runoff. 2D routing	
	simplifications. Case studies: rainfall	
	variability, climate change, regulation.	
25. & 27.11.	Le 11: Physical components – soil	Ex 4: Application of Topkapi-ETH
SINCLAIR	hydrology. Soil properties. Water	- apply Topkapi to prepared site (Kl Emme)
	retention curves. Pedotransfer functions.	- analysis of hourly streamflow output
	Darcy and Richard's equation. Concepts	- flood frequency analysis
	for infiltration. Philips and Green-Ampt	
	models. Infiltration and saturation excess	
	overland flow.	
2. & 4.12.	Le 12: Physical components – ET. Energy	- analysis of grid resolution effect
MOLNAR	balance. Methods to calculate potential	- analysis of rainfall variability
	evaporation – similfied EB, mass transfer.	
	Process of transpiration. Penman-	
0 9 11 10	Monteith equation. Simplifications.	study of exotic model output (exour CT)
9. & TT.TZ.	Le 13: Examples of other physically-	- study of spatial model output (show, ET)
MOLNAR	modes of applications: actobrant	
	(WaSim) regional (PARELOW/ T&C)	
	dobal (PRC-CLOBWB VIC) Combination	
	of watershed models with floodplain	
	inundation models	
16. & 18.12	OPEN DISCUSSION CLASS	- summary of exercises 1-3, interesting
MOLNAR	Open discussion of selected topics in	examples from class: informal discussion
	class. Details to be announced later.	
		HAND IN LAST EXERCISE BY LAST DAY OF
		SEMESTER 20.12.2024

Evaluation:

- Semester performance (exercises) 50% of grade
- Semester-end oral exam (30 mins, 2-3 week of January 2025) 50% of grade, sign-up on MOODLE