1 Introduction

The North China Plain is one of China’s most important agricultural regions. It relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. The interaction of agricultural production, groundwater resources and energy requirement was analyzed in the case study of Guantao County (456 km²). The results allow to provide recommendations for developing practical strategies for groundwater over-pumping control.

2 Guantao in North China Plain

3 Method and results

1) Reconstruct energy consumption for irrigation

\[E_{irr} = E_{irr,p} - c \cdot GDP \]

- \(c = 0.037 \text{ kWh/RMB} \) (from the records in 2007 [1])
- Hypothesis: the inter-annual variability of \(E_{irr,p} \) is caused by the randomness in annual precipitation.

2) Test energy-water conversion factor \(\alpha \) (kWh/m³) at selected wells (Fig. 4)

- \(\alpha = E/V \)
- Pump efficiency \(\eta \) can be then calculated (30%).

3) Reconstruct historical groundwater abstraction \(V = E/\alpha \); where \(\alpha = H/\rho g/(367g) \)

- Historical \(\alpha \) was calculated using the historical lift \(H \).
- The result was verified by a water balance model (Fig. 5).

4 Application: Assessing strategies of groundwater pumping control

S0: Present situation. No water saving equipment, energy-water conversion factor \(\alpha_0 \), groundwater consumption \(V_0 \), over-pumping rate \(k \) (10%). Energy consumption for pumping \(E_0 = V_0 \cdot \alpha_0 \), electricity price \(R_0 (0.5 \text{ RMB/kWh}) \).

To close the gap of over-pumping, two strategies are compared:

S1: Subsidize water saving equipment. Sprinkler is installed; water consumption can be reduced by \(\delta \) (26%) [2]; more energy is consumed in water saving irrigation, \(\alpha_1 (0.6 \text{ kWh/m}^3) \).

S2: Reduce planting area. No water saving equipment; planting area is reduced by \(k \) (10%); crop production is also reduced by \(k \) due to the reduction of planting area. (Table 2)

S3: Increase water price to incentivize farmers to save water

Water price, \(R_0 \) should be high enough to make using water-saving equipment profitable.

\[R_0 > R_2 \cdot \alpha_2 \cdot [(1-k) - \alpha_1]/s \]

Water price should be at least 0.48 RMB/m³, which is higher than the present water price of 0.1 RMB/m³.

4 References & Acknowledgement

4. The authors thank Prof. Wang Shuping and the students from Hebei University of Engineering for their assistance in the pumping tests.
5. This study is sponsored by Swiss Agency of Development and Cooperation.