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How are characteristic times (char) and non-dimensional 
numbers related? 
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This document provides some background on characteristic times, how they can be useful to 
differentiate between very fast/very slow processes, and how ratios of characteristic times can be 
used to calculate non-dimensional numbers such as the Reynolds number, the Turbulence 
Number, or the second Damköhler number.  
 
An introduction to characteristic times with some examples is also provided in section “10.4 
Discussion of Time Constants” in Gujer, 2008. 

1 Characteristic times (char) describes how fast a process is 

The concept of characteristic times (sometimes referred to as time constants) is frequently used in 
textbooks and the scientific literature - but the background of the concept is seldom explained. The 
concept can be introduced using the following example. For a first order reaction rate the mass 
balance equation for the degradation of a substrate CS in a batch process is: 
 

   S
1 S

dC
k C

dt
 (1) 

 
where CS is the substrate concentration, M L-3, k1 is the first order reaction rate, T-1, and t = time, T. 
Solving Eq. (1) with CS(t = 0) = CS,0 results in 
 

   1k tS

S,0

C (t)
e

C
 (2) 

 
Based on Eq. (2) one way to define the characteristic time for a first order reaction rate (reaction,1) is 
 

 reaction,1
1

1

k
   (3) 

 
Note that for a first order reaction rate this selection of the characteristic time results in CS(t=) = 
exp(-1)·CS,0 = 36.8 %·CS,0. However, there is nothing special about the value of 36.8 % (there are 
others); it is simply mathematically convenient (Clark, 2009). For example the characteristic time 
for a zero order reaction rate reaction,0 corresponds to CS(t=) = 0 in a batch reaction. A 
characteristic time is simply a measure of how fast a process will proceed, e.g., will the specific 
process approach equilibrium within seconds, hours, days, or weeks. In Table 1 characteristic 
times for reaction rates and mixing processes are summarized and some examples using these 
definitions are shown in Figure 1. 
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Figure 1. Characteristic times (char) provide an order of magnitude approximation of how fast a 
reaction is occurring: (a) Degradation with zero, first, and second order kinetics, (From Table 1 char 
= C0/k0, 1/k1, 1/(C0∙k2)) (b) cumulative residence time distributions for CSTR and PFR, and (c) 
diffusion of a dirac pulse added at time zero over space and time (char = L2/D). 
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Table 1. Characteristic times for transport and conversion processes (cited from Morgenroth, 2008, 
based on Clark, 2009; Esener et al., 1983; Gujer and Wanner, 1990; Ingham et al., 2007; Kissel et 
al., 1984; Picioreanu et al., 2000) 

Process Characteristic time Eq.

Advection 
 convection

L

u
 

(4)

Retention in CSTR 
  CSTR

V 1

Q dilution rate
 

(5)

Diffusion (mass) 
 

2

diffusion,mass

L

D
 

(6)

Diffusion (viscous) 
 



2

diffusion,viscous

L
 

(7)

Growth 
 

growth
max

1
 

(8)

 
 

 
* S

growth
max H

C

X
 

(9)

Decay 
 decay

decay

1

b
 

(10)

Reaction 
  S

reaction,0
0

C

k
 (zero order) 

(11)

 
 reaction,1

1

1

k
 (first order) 

(12)

  
  


S S

reaction,Monod
max H

K CY

X
 (Monod) 

(13)

L = characteristic distance (L), u = velocity (L T-1), D = diffusion coefficient (L2 T-1), dilution rate (D1) = Q/V,  
= viscosity (L2 T-1), k0, k1 = zero and first order volumetric reaction rates (M L-3 T-1 and T-1, respectively), 
bdecay = decay coefficient (T-1), , max = growth rate, maximum growth rate (T-1), Y = yield coefficient (M M-1), 
CS, XH = substrate, biomass concentration (M L-3), KS = Monod half saturation constant, (M L-3) 
 

2 How fast is a process relative to the time scale of interest (0)? 

When evaluating a dynamic system, one has to define a time scale of interest (0). All processes 
with much smaller time scales (i.e., faster processes) than 0 can be assumed to be at a pseudo 
steady state. Processes with much larger time scales (i.e., slower processes) can be described as 
if they were “frozen” in time (Benjamin and Lawler, 2013; Esener et al., 1983; Picioreanu et al., 
2000; Wanner et al., 2006). 

                                                 
1 Note: We use the symbol "D" for the diffusion coefficient and also for the dilution rate (= Q/V). In most 
cases, the meaning of the symbol can be derived from the specific context (e.g., dimensions). 
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Figure 2. Comparing time constants for very fast (char << 0) and very slow (char >> 0) processes 
with relevant system dynamics (0) (based on Esener et al., 1983; Roels, 1982). 

 
When comparing the rates of different processes (i.e., their characteristic times) one has to 
differentiate whether processes occur in sequence (e.g., oxidation of ammonia to nitrite followed by 
oxidation of nitrite to nitrate) or in parallel (e.g., utilization of oxygen for heterotrophic or autotrophic 
growth) (Figure 3). If reactions occur in sequence then the overall process rate is determined by 
the slowest process (i.e., the process with the highest characteristic time). If reactions occur in 
parallel then the slower processes are of minor importance and the overall process rate is 
determined by the fastest process (i.e., the process with the smallest characteristic time) (Table 2). 
 

 
Figure 3. In sequencing reactions (a) the system is dominated by the slowest process while in 
parallel reactions (b) the slower process is not relevant and the fastest process dominates. 
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Table 2. Time constants determine which process dominates system performance where system 
response depends on whether processes are sequential or in parallel (Figure 3). 

Type of process 
combination 

General case For A << B For A >> B 

Processes A and B in 
sequence 

Slowest process limits 
process combination 

Process B dominates Process A dominates 

Processes A and B in 
parallel  

Fastest process 
dominates and the 
slowest process can be 
neglected 

Process A dominates Process B dominates 

 
 

3 Non dimensional numbers as ratios of two characteristic times 

In many cases we are more interested in the ratios of characteristic times for two processes than in 
the characteristic times themselves. Ratios of characteristic times provides information on which of 
the two processes is dominating.  

3.1 Examples of non-dimensional numbers 

3.1.1 Reynolds number (Re) 

Fluid flow is influenced by inertial and viscous forces. The Reynolds number compares the 
relevance of these two forces.  
 

 
relevance of inertial forces

Re
relevance of viscous forces

 (14) 

 
can be expressed as a ratio of two characteristic times. Inertial and viscous processes can be 
viewed as “parallel processes” where the faster process or the process with the smaller time 
constant dominates. 
 

 

 
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1
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1
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2
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u LL

L

 (15) 

3.1.2 Turbulence number (NT) 

The turbulence number evaluates the relative importance of turbulence and advection 
 

 T

relevance of turbulence
N

relevance of advection
 (16) 

 
can be expressed as a ratio of two characteristic times. Mass transport due to turbulence and 
advection can be viewed as “parallel processes” where the faster process or the process with the 
smaller time constant dominates. 
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3.1.3 Second Damköhler number (DaII) 

Substrate degradation in biofilms is a heterogeneous process where substrate has to diffuse into 
the biofilm and is subsequently degraded inside the biofilm. The second Damköhler number 
evaluated the relative importance of diffusion and reaction 
 

 II relevance of reaction
Da

relevance of diffusion
 (18) 

 
Diffusion and reaction can be viewed as “sequential” processes as reactions inside the biofilm can 
take place only after the substrate has diffused into the biofilm so that the slower process with the 
larger characteristic time will limit the overall performance (Morgenroth, 2008). 
 

 




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 
  
 
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reaction,0II

diffusion,mass

S,0

0 S,0
22

0 FF
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C

k C D

k LL
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 (19) 

 
Note that for DaII the slower process will dominate. Therefore, the non-dimensional number is 
calculated from the ratio of characteristic times (Eq. (19)) and not the ratio of the inverse of 
characteristic times as was the case previously (Eq. (15) and (17)). If the mass transport of 
substrate is slower than the reaction then the biofilm will be only partially penetrated (DaII << 1) 
and the system will be transport limited. If DaII  >> 1 then transport is much faster than reaction and 
the biofilm is fully penetrated by the substrate. 

4 Examples of characteristic times 

Examples of characteristic times for biofilm processes are provided in Figure 4. 
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Figure 4. Characteristic times for biofilm processes (for details and underlying parameter values 
see Morgenroth, 2008). 
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