

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Errata

W. Gujer: Systems Analysis for Water Technology (Springer, 2008)

Notes on the handling of this document:

This document lists the errata and inconsistencies discovered in the book "Systems Analysis for Water Technology" by Willi Gujer (Springer, 2008). Modifications are marked in **bold**, unless otherwise specified. Any comment on additional content errors would be gladly accepted by the teaching assistants or professors of the Chairs of Urban Water Management.

Table of Contents

Chapter 4.2.5 p.59	3
Chapter 5.2 p.79	3
Chapter 6.5 p.112	3
Chapter 6.5. p.114	3
Chapter 6.6-6.9 p.119-126	3
Chapter 7.4.1 p.143	6
Chapter 9.4.1 p.185-186	6
Chapter 9.4.4 p.197	6
Chapter 9.4.4 p.198	7
Chapter 10.3.4 p.222	7
Chapter 11.3.1 p.244-245	7
Chapter 12 p.257	7
Chapter 12.1.1 p.260	7
Chapter 12.3.2 p.273	8
Chapter 13.7.3 p.354	8
Chapter 14.11.4 p.390	8
Chapter 16.16 p.434	

IfU

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Chapter 16.23 p.439	9
	_
Chapter 16.28 p.443	9
Index p.459-460	g

Errata: Systems Analysis for Water Technology by W. Gujer Last updated: 8 May 2017

Page 2 of 9

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Chapter 4.2.5 p.59

$$u^* = \sqrt{\frac{\tau_0}{\rho}} = \sqrt{g \cdot R \cdot I_E}$$
 (4.19)

Chapter 5.2 p.79

...For one material (here marked with the index i*) we can freely select the dimensionless stoichiometric coefficient v_{i*} (see below), which fixes the dimension of the process rate ρ to [M_{i*} L⁻³ T⁻¹] and also of all other stoichiometric coefficients to [M_i **M**_{i*}-1].

Chapter 6.5 p.112

u(t) = velocity of flow (Q(t)/A) [L T⁻¹]

Chapter 6.5. p.114

For second order (n=2): $C_{A,out}^{-1} = C_{A,in}^{-1} + k_2 \theta_h$

Chapter 6.6-6.9 p.119-126

Note: The figure numbering for the following figures was incorrect in the book, but the cross-references were correct.

New Fig. 6.18

Fig. 6.18 Sampling points in a plug-flow reactor with turbulence. In the influent (1) and in the effluent (4) advection is dominant; inside the reactor (2) and (3) turbulence is to be considered

Errata: Systems Analysis for Water Technology by W. Gujer Last updated: 8 May 2017

IfU

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

New Figure 6.19

Fig 6.19 Example of the design of a plug-flow reactor with turbulence. The flow is directed by the inserted guidance walls, so that a longitudinal current develops. This configuration of the reactor can be retrofitted to an existing fully mixed basin

New Figure 6.20

Fig. 6.20 Transformation of a plug-flow reactor with turbulence into a series of completely mixed compartments

New Figure 6.21

Fig. 6.21 Comparison of the prediction of the stationary model (Eq. (6.14), Example 6.17) with the discretized version of the dynamic model (Example 6.19, Eq. (7.39)

Errata: Systems Analysis for Water Technology by W. Gujer Last updated: 8 May 2017

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Characteristics of an SBR:

- influent and effluent may differ
- variable volume
- ideal mixing
- effluent concentration = concentration in the reactor
- the steady state corresponds to a CSTR
- open system

Fig. 6.22 Schematic illustration and characteristics of a sequencing batch reactor (SBR)

New Figure 6.23

Concentration C_△ in g m⁻³, Volume in m³

Fig. 6.23 Change of the concentration and the volume in a sequencing batch reactor (SBR) with a first-order degradation process over three cycles (see also Example 6.23)

Errata: Systems Analysis for Water Technology by W. Gujer

Last updated: 8 May 2017

IfU

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

New Figure 6.24

Fig 6.24 Progress of the volume as well as the concentration and the mass of material A in an SBR with constant influent and a first order degradation reaction (see also Example 6.21 for an analytical solution)

Chapter 7.4.1 p.143

$$f(\tau) = f(t - t_0) = \frac{Q \cdot S_A(t - t_0)}{E_A} = \frac{Q \cdot S_A(\tau)}{E_A}$$
 (7.18)

Chapter 9.4.1 p.185-186

$$\frac{\partial X_{BF}}{\partial t} = \frac{j_{Degrad,BF} + j_{Erosion,BF}}{R_h}$$
 (9.3)

Corrections to the variables defined on p.186:

 R_h = hydraulic radius (**A/U**) [L]

 h_m = mean depth (**A/W**) [L]

Chapter 9.4.4 p.197

$$V_{B} \cdot \frac{dS_{G}}{dt} = j_{G} \cdot A_{B} = -k_{1} \cdot \left(\frac{S_{G}}{H} - S_{W}\right) \cdot A_{B}$$
 (9.25)

Errata: Systems Analysis for Water Technology by W. Gujer Last updated: 8 May 2017

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Chapter 9.4.4 p.198

For spheres one has $\frac{A_B}{V_B} = \frac{6}{\Phi_B}$ (where Φ_B is the diameter) and thus

$$\tau < ln(1-0.99) \cdot \tfrac{H \cdot \varphi_B}{k_1 \cdot 6}$$

$$\tau > ln(1-0.99) \cdot \frac{{}^{H\cdot \varphi_B}}{{}^{k_1\cdot 6}} \qquad \text{if} \qquad H < \textbf{0.}$$

Chapter 10.3.4 p.222

Fig 10.10 Bode diagram for a stirred tank reactor, drawn for the dimensionless reaction rate of $k \cdot \theta_h = 3$. The points 1-3 refer to the three pictures in Figure 10.6, where 1= bottom, 2= middle, 3= top.

Chapter 11.3.1 p.244-245

Example 11.4:

i	x _i in gN m ⁻³	τ_i for n = 6	τ_i for n = 5
1	17.6	0.71	0.88
2	17.6	0.71	0.88
3	18.9	1.93	- eliminated in the first step
4	17.9	0.10	0.77
5	18.0	0.10	1.32
6	17.7	0.51	0.33

For n = 6 one has
$$m_x = 17.95 \text{ gN m}^{-3}$$

$$s_x^2 = 0.243 \text{ (gN)}^2 \text{ m}^{-6}$$

$$s_x = 0.493 \text{ gN m}^{-3}$$

$$\tau_{krit} = 1.73$$

For i = 3 we obtain $\tau_i > \tau_{krit}$. This value is eliminated from the series as an outlier.

For n = 5 one has
$$m_x$$
 = 17.76 gN m⁻³

$$s_x^2 = 0.033 (gN)^2 m^{-6}$$

$$s_x = 0.182 \text{ gN m}^{-3}$$

$$\tau_{\rm krit} = 1.64$$

Chapter 12 p.257

...In addition we want to gain information on the uncertainty of our model predictions.

Chapter 12.1.1 p.260

$$\sigma_{m,i}^2 = \frac{x^2}{n - n_p} = \frac{n}{n - 1 - n_p} \cdot x_{rms}^2 . \tag{12.4}$$

Last updated: 8 May 2017

Errata: Systems Analysis for Water Technology by W. Gujer

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Chapter 12.3.2 p.273

 $I = I_{max} \cdot (-\cos(2 \cdot \pi \cdot t)), I > 0$, available light energy in W m⁻²

Chapter 13.7.3 p.354

Table 13.7 (only part of table shown):

Parameters from the unstable controller, K _{P,krit} = 1.69, T _{krit} = 0.54									
1	Р	0.85	-	-	2.37	0.82	1.3	3.8	
2	PI	0.76	1.70	-	1.99	0.23	1.6	2.3	
3	PID	1.01	3.76	0.068	1.99	0.13	1.8	2.2	

Chapter 14.11.4 p.390

New Value for $A_3 = 5.17$

Amplitude in °C

Fig. 14.25 Frequency spectrum of the measured temperatures (FFT, Berkeley Madonna)

Chapter 16.16 p.434

Derive the hydraulic residence time distribution for the ozonation/disinfection reactor in Sect. 16.9. Compare the results for 2, 6 and 30 reactors in series.

Errata: Systems Analysis for Water Technology by W. Gujer

Last updated: 8 May 2017

Institut für Umweltingenieurwissenschaften Institute of Environmental Engineering

Chairs of Urban Water Management

Chapter 16.23 p.439

2. During a rain event the following characteristics of the influent apply (time in seconds): Qin=0.1*(1+squarepulse(0,1000)), Cin=1-0.5*(squarepulse(0,1000)).

Chapter 16.28 p.443

New: Influent B

Fig. 16.8 Influent of two wastewater streams to a wastewater treatment plant. The value of the mean, flow weighted COD concentration is uncertain with a coefficient of variation of 20%

Index p.459-460

Α

activated sludge system **320**, **353**

L

logistic growth model 374

Errata: Systems Analysis for Water Technology by W. Gujer Last updated: 8 May 2017

Page 9 of 9