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Abstract

Terrestrial laser scanning (TLS) technology is by now a mature and widespread
geodetic measurement technique, and the accuracy of the commercially available
scanners is steadily increasing. TLS is particularly suitable for the task of areal
deformation analysis and, despite its popular use for the tasks of structural monit-
oring, no consistent workflow for structural identification has been yet defined. For
this reason, this thesis contributes towards the automatic determination of the ma-
terial properties of structures modelled and monitored via point cloud technologies.
It results in an interdisciplinary work that touches both the fields of geodetic and
structural engineering, and forms part of the discipline of structural health monitor-
ing (SHM), which plays a key role in the current engineering practice.

The main contribution of this thesis is a novel method to perform the numerical
identification of structural members by using point cloud data acquired with ter-
restrial laser scanners in multiple epochs. The backbone of the developed method
is the approach of integrated monitoring, which offers a great flexibility to merge
measurements of different origins within a single framework relying on the finite
element (FE) modelling of the investigated structure. The underlying criterion of
this approach is to match the measured and the FE-calculated displacements by us-
ing a least squares adjustment (LSA), which includes the linearisation of the men-
tioned FE model. In this way, a thorough propagation of the stochastic information
from the TLS data to the final estimated parameters can also be performed. The
LSA is herein validated with closed-loop and Monte Carlo simulations. Addition-
ally, a method to automatically generate the geometry of the FE model from the
point cloud of the surface of the monitored object is proposed, and specific insights
about the implementation of the numerical differentiation are provided.

Moreover, the observed nodal displacements and their uncertainties are derived
from the TLS-based deformation analysis of the structure. Among others, this
step can be carried out with three different methods: variance propagation, log-
Euclidean interpolation, and nearest neighbour search. Despite being all applicable
methods, the third one has proven more computationally efficient.

The method is herein implemented for the model update of beams and slabs for
which the Young’s modulus is estimated, with the possibility to subdivide the ana-
lysed structure in multiple partitions. Moreover, the proposed method can be readily
used to estimate other material parameters or even forces, for any shape of structure,
including free-form ones.

The proposed method is herein analysed and successfully employed for three ap-
plication cases, of which one with real data and two with synthetically generated
point clouds: a cross-laminated timber slab, a steel beam, and an alloy plate. The
observations for the application cases relying on synthetic data have been generated
with a self-developed point cloud generator. This generator has also been embedded
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in a tool that enables the planning of TLS monitoring campaigns by predicting the
influence of the sensor setup (position, resolution and accuracy) on the estimated
parameters. Ultimately, the developed method successfully expands the range of
capabilities of TLS, by defining an operational procedure for the numerical identi-
fication of structures.
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Zusammenfassung

Das terrestrische Laserscanning (TLS) ist heute eine ausgereifte und weit verbrei-
tete geodätische Messtechnik, und die Genauigkeit der kommerziell erhältlichen
Scanner nimmt ständig zu. TLS eignet sich besonders für die Aufgabe der flächen-
haften Deformationsanalyse. Trotz seiner weit verbreiteten Anwendung für die Auf-
gaben der Bauwerksüberwachung ist noch kein einheitlicher Verfahrensablauf für
die Bauwerksidentifikation definiert worden. Aus diesem Grund trägt diese Arbeit
zur automatischen Bestimmung der Materialeigenschaften von Strukturen bei, die
mittels Punktwolkentechnologien modelliert und überwacht werden. Es ist eine in-
terdisziplinäre Arbeit, die sowohl die Bereiche der Geodäsie als auch die des Bau-
ingenieurwesens betrifft und Teil der Disziplin des Structural Health Monitoring
(SHM) ist, das in der aktuellen Ingenieurpraxis eine Schlüsselrolle spielt.

Der Hauptbeitrag dieser Arbeit ist ein neuartiges Verfahren zur numerischen Iden-
tifikation von Bauwerken unter Verwendung von Punktwolkendaten, die mit ter-
restrischen Laserscannern in mehreren Epochen erfasst wurden. Der Hauptstrang
der entwickelten Methode ist der Ansatz des integrierten Monitorings, das eine
grosse Flexibilität bietet, um Messungen unterschiedlicher Herkunft in einem ein-
zigen Modellrahmen zusammenzuführen, welcher auf der Finite-Elemente (FE)-
Modellierung der untersuchten Struktur basiert. Das zugrundeliegende Kriterium
dieses Ansatzes ist die Anpassung der gemessenen und der FE-berechneten Ver-
schiebungen durch die Verwendung einer Ausgleichsrechnung nach der Metho-
de der kleinsten Quadrate, die die Linearisierung des erwähnten FE-Modells ein-
schliesst. Auf diese Weise kann auch eine gründliche Fortpflanzung der stochasti-
schen Informationen aus den TLS-Daten zu den geschätzten Endparametern durch-
geführt werden. Die Ausgleichsrechnung wird hier mit Closed-Loop- und Monte-
Carlo-Simulationen validiert. Zusätzlich wird eine Methode zur automatischen Ge-
nerierung der Geometrie des FE-Modells aus der Punktwolke der Oberfläche des
überwachten Objekts vorgeschlagen. Ausserdem werden spezifische Erkenntnisse
über die Implementierung der numerischen Ableitung geliefert.

Darüber hinaus werden die beobachteten Knotenverschiebungen und deren Unsi-
cherheiten aus der TLS-basierten Deformationsanalyse der Struktur abgeleitet. Die-
ser Schritt kann unter anderem mit drei verschiedenen Methoden durchgeführt wer-
den: Varianzfortpflanzung, logarithmisch-euklidische Interpolation und Suche nach
dem nächsten Nachbarn. Obwohl alle Methoden anwendbar sind, hat sich die dritte
Methode als rechnerisch effizienter erwiesen.

Die Methode wird hier für die Modell-Aufdatierung von Balken und Platten imple-
mentiert, deren Elastizitätsmodul mit der Möglichkeit, die analysierte Struktur in
mehrere Partitionen zu unterteilen, geschätzt wird. Ausserdem kann die vorgeschla-
gene Methode leicht zur Schätzung anderer Materialparameter oder sogar Kräfte für
jede Form der Struktur, einschliesslich Freiformstrukturen, verwendet werden.
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Die vorgeschlagene Methode wird hier analysiert und erfolgreich für drei Anwen-
dungsfälle eingesetzt, für einen mit realen Daten und für zwei mit synthetisch er-
zeugten Punktwolken: eine Brettsperrholzplatte, ein Stahlträger und eine legierte
Platte. Die Beobachtungen für die Anwendungsfälle, die sich auf synthetische Da-
ten stützen, wurden mit einem selbstentwickelten Punktwolkengenerator erzeugt.
Dieser Generator wurde auch in ein Werkzeug eingebettet, das die Planung von
TLS-Überwachungskampagnen ermöglicht, indem der Einfluss der Sensoranord-
nung (Position, Auflösung und Genauigkeit) auf die geschätzten Parameter vorher-
gesagt wird. Letztendlich erweitert die entwickelte Methode erfolgreich das Leis-
tungsspektrum von TLS, indem sie ein operationelles Verfahren für die numerische
Identifizierung von Strukturen definiert.
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Riassunto

Il laser scanning terrestre (TLS) è una tecnica di misura geodetica ormai matura e
diffusa, e la precisione degli scanner attualmente disponibili in commercio è in co-
stante aumento. Il TLS è particolarmente adatto per eseguire analisi delle deforma-
zioni di superfici. Tuttavia, nonostante il suo largo uso per i compiti di monitoraggio
strutturale, non esiste ancora una procedura condivisa per i fini dell’identificazio-
ne strutturale. Pertanto, questa tesi fornisce un contributo verso l’automatizzazione
della stima delle proprietà dei materiali di strutture modellate e monitorate median-
te l’acquisizione di nuvole di punti. Questo è dunque un lavoro interdisciplinare,
che connette i campi dell’ingegneria geodetica e strutturale, e che si colloca nel-
la disciplina del monitoraggio strutturale, il quale è divenuto centrale nella pratica
ingegneristica odierna.

Il principale contributo di questa tesi è un nuovo metodo per condurre l’identifica-
zione numerica di strutture grazie all’uso di nuvole di punti acquisite in più epoche.
Il fulcro del metodo sviluppato è l’approccio del monitoraggio integrato, che of-
fre una grande flessibilità nel combinare misure di diversa origine all’interno di un
unico processo, basandosi sulla modellazione agli elementi finiti (FE) della strut-
tura indagata. Il criterio di base di questo approccio è la corrispondenza fra gli
spostamenti misurati e gli spostamenti calcolati dal modello FE, utilizzando una
compensazione ai minimi quadrati che include la linearizzazione del modello FE
stesso. In questo modo è possibile propagare le incertezze dalle osservazioni effet-
tuate col laser scanner fino ai parametri stimati. In questo lavoro, la compensazione
è stata validata con simulazioni e col metodo Monte Carlo. Inoltre, è stato anche
sviluppato un metodo per la generazione automatica della geometria del modello
FE, a partire dalla nuvola di punti che rappresenta la superficie dell’oggetto moni-
torato. In aggiunta, vengono fornite indicazioni riguardo l’implementazione della
derivazione numerica del modello FE.

Gli spostamenti nodali osservati e le loro incertezze sono ricavati dai dati TLS,
grazie ad una analisi delle deformazioni. In particolare, questo compito può esse-
re eseguito con tre diversi metodi: la propagazione della varianza, l’interpolazio-
ne log-Euclidea, e la ricerca nearest neighbour. Nonostante siano tutti questi tre
metodi accettabili e funzionali, il terzo si dimostra superiore per la sua efficienza
computazionale.

Questa tesi presenta l’implementazione della stima del modulo di Young per travi
e piastre, con la possibilità di suddividere le strutture analizzate in più partizioni.
Inoltre, il metodo è potenzialmente in grado di stimare altre proprietà meccaniche
e forze applicate, anche per strutture a forma libera. Il metodo proposto viene qui
analizzato e utilizzato con successo per tre casi applicativi: una trave in acciaio e
una piastra in lega di alluminio le cui nuvole di punti sono state generate sintetica-
mente, ed una lastra in legno X-LAM monitorata nella realtà. Per quanto riguarda
i casi applicativi che hanno previsto l’uso dati sintetici, è stato sviluppato un ge-
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neratore di nuvole di punti, il quale è stato anche incorporato in uno strumento in
grado di prevedere l’influenza delle impostazioni dello scanner (posizione, risolu-
zione e precisione) sui parametri stimati, utile per la pianificazione di campagne
di monitoraggio TLS. In definitiva, questa tesi allarga il campo di applicazione del
TLS, definendo una procedura operativa per l’identificazione strutturale a partire da
nuvole di punti.
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1. Introduction

1.1. Motivation and relevance

As we live in the information age, the decision-making processes are driven by the
knowledge and insight into the technological systems, and this holds for systems
such as civil structures and infrastructures as well. In order to ensure safety and
minimise the economical consequences of the undesired, yet inevitable, degrada-
tion of the built heritage, engineers should not merely react to failures, posing users
and stakeholders at the mercy of extreme or catastrophic events. Instead, engineers
should try to work proactively, mainly by continuously monitoring the present in-
tegrity and condition of the industrial and civil structures and infrastructures that
are most critical for the citizenry. Undertaking the monitoring of civil structures
and infrastructures enables to design, plan and implement maintenance measures,
regulate their use according to their capacity limits, and inform the users in case of
foreseen or current service disruptions. Within the engineering community, the dis-
cipline dealing with these issues is structural health monitoring (SHM). The realm
of SHM is quite vast and is defined as ”the process of implementing a damage iden-
tification strategy for aerospace, civil, and mechanical engineering infrastructure”
(Worden et al., 2007, p. 1639). In this context, the term identification implies the
derivation of a model of the physical system by using experimental data.

This work represents a step towards the automation of SHM with terrestrial laser
scanning (TLS) data, i.e. an extension of deformation monitoring with TLS data to
the direct estimation of structural parameters of the investigated structures. Since
it is important to provide herein adequate context about the intended relevance of
this work, the rest of this chapter describes the three main arguments behind the
definition of the scope of this work.

The first motivation is the awareness that the construction industry is arguably the
industry sector that underwent the least innovation in the last century. Of course,
innovation is a concept difficult to quantify. However, higher productivity is the
main expected effect of the introduction of innovative processes and solutions, and
the historical lagging of the productivity of the construction industry with respect
to other industries has been recorded for many decades. In fact, figs. 1.1 and 1.2
strikingly show that in the UK and in the USA, despite a steadily increasing trend of
the overall productivity, the various economical sectors exhibited mixed perform-
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Figure 1.1: Historical productivity in the United States of America, 1947-2010,
Source: McKinsey Global Institute (2017)

ances. In particular, the sectors of manufacturing and agriculture experienced the
largest increase in productivity starting from the 1970s on, while the construction
and mining industries did not keep the same pace. Indeed, the most impressive
technological advancements of the last three decades (i.e. the pillars of the third in-
dustrial revolution, such as biotechnology, computer science, telecommunications,
and robotics) affected the building industry only indirectly. For example, the con-
crete casting process has substantially remained the same for several decades now.

Researchers, investors, and regulators are aware of this sectorial gap in innovation
and production, and direct considerable efforts towards its reduction. Thus, in the
last few years the research community has been aiming for the automated con-
struction of automatically computer-aided designed structures (Dunn, 2012). Con-
sequently, the field of architecture is revolutionising with comprehensive free-form
designs, computer-generated shapes, and delivering higher geometrically complex
final products for a reduced cost. This would indeed represent a revival of free-form
architectural geometries within the field of civil engineering, because engineers of
the last century such as Pier Luigi Nervi and Sergio Musumeci were already op-
timising the design of their structures by placing materials following the isostatic
lines (Bucur-Horváth and Saplacan, 2013; Neri, 2012). This way of thinking is be-
ing revived under the new name of graphic design by contemporary engineers (see
Beghini et al., 2014; Oval et al., 2019). The main drive of these changes in design
criteria is the economic convenience of the associated building techniques. Until
the 1960’s the labour work force was cheaper as opposed to the material cost. Thus,
it was convenient to dedicate a larger on-site manual workforce to create complex
formworks thereby reducing the total incurred cost. In the second half of the 20th

century instead, the relatively cheaper installation of the pre-fabricated structural

2



Figure 1.2: Historical productivity per worker (Index: 100=1997) in various eco-
nomic sectors in the United Kingdom, 1997-2017, Source: UK Infrastructure and
Projects Authority (2017)

elements and the delivery of standard-sized formworks made the use of repetitive
and prismatic elements more practical. Nowadays, when building free-form struc-
tures, individual structural members are machine-produced in industrial production
plants and subsequently assembled on site. In the future, it is reasonable to expect
that a higher level of automation will be brought to the construction site, where
robotic machinery will directly assemble and build complex structures. This will
mark a big shift in the construction industry. Although robotic fabrication is a big
and promising theme in research (Wangler et al., 2016), it is still expected to evolve
as a more widespread technology over the next decades. For these reasons, the
development of measurement techniques for the geometric monitoring of free-form
objects will soon be requested by the construction industry, along with the analytical
methods to automatically evaluate and assess the condition of such structures.

Another reason behind the choice of the topic is the pressing issue of ageing and
deteriorating infrastructure. Indeed, the need for structural health monitoring is
growing in a large part of the developed world (i.e. Europe, North America, and Ja-
pan), which experienced a large infrastructural development after the second world
war and now requires major maintenance and restoration of a large part of its infra-
structure.

The third strong trend that has been considered is the tremendous advancement of
the available computational power, which is steadily enlarging the realm of numer-
ical simulations of natural phenomena. In particular, a reasonable approach to get
advantage of the availability of computational power is to leave the repetitive and
quantitative tasks to computers, while focusing on creative tasks, such as the choice
and control of the input data, and the analysis and interpretation of the results. Co-
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herent with this approach, and together with the increasing availability of automatic
optical measurement systems, the process of structural identification should be then
transition to single manual measurements and analytic modelling into multiple auto-
matically gathered and classified contact-less measurements (e.g. TLS), numerical
modelling, and eventually to the automated interpretation of the measurements.

1.2. State of the art
A visible trend in the engineering disciplines is their progressively increasing spe-
cialisation and compartmentalisation, accompanied by the apparently contrasting
overlap and convergence of the underlying mathematical methods. This thesis
presents an interdisciplinary research, as different fields of engineering have been
connected, namely engineering geodesy and structural engineering. Indeed, this
work consists of merging and integrating several existing tools belonging to dif-
ferent disciplines, and demonstrating what is technically feasible in the present
state-of-the-art, and it is driven by the ambition to present a small but significant
contribution in each of the two subjects.

TLS is a ground-based, active sensing technology able to acquire dense 3D point
clouds of opaque object surfaces, and this thesis focuses on its use for static meas-
urements for SHM. However, it is important to note that a major branch of SHM
consists in the monitoring of dynamic properties of structures i.e. stiffness-related
vibration modes and frequencies (Deraemaeker and Worden, 2010; Ou et al., 2017;
An et al., 2019). In fact, historically, SHM has been predominantly developed for
the vibration-based damage assessment (Farrar and Worden, 2007) of the effects
of phenomena such as fatigue, wear and impacts. Indeed, the applications fields
of SHM are multiple, primarily including the safety control and the maintenance
planning of industrial machinery and aerospace, automotive, and civil structures.

Moreover, structural monitoring can be performed with several alternative contact-
less measurement systems, i.e. with geodetic sensors such as image-assisted total
stations (Ehrhart, 2017), or with non-destructive techniques to assess the stiffness
distribution in a body, such as by using ultrasonic or acoustic tomography (Alves
et al., 2015; da Porto et al., 2003). For the periodical monitoring of extremely large
structures, even satellite contactless solutions may also be viable. An extreme case
is the monitoring of the Millennium Tower in San Francisco with InSAR (Desnos
et al., 2017). Additionally, the sensor fusion of different contactless systems is also
possible; for example, Wiedemann et al. (2017) integrated TLS and image data.

With a focus on TLS, its main applications in the geodetic field are the dimensional
control (Wang et al., 2016a) and the deformation monitoring of both artificial (Sarti
et al., 2009; Holst et al., 2019b; Adamson et al., 2020) and natural objects (Barbar-
ella et al., 2017; Bienert, 2013). A more recent declination of this discipline is the
parametric deformation monitoring, which is based on geometric objects such as
basis splines (Schmitt et al., 2019; Harmening and Neuner, 2020) and non-uniform
rational basis splines (NURBS) (Oreni et al., 2014a).
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TLS is also largely used for the modelling of 3D geometries of complex techno-
logical systems such as buildings. In fact, point cloud-based acquisition methods
are extremely popular for the definition of building information models (BIM). In
this field, various applications have been tackled, such as the automatic generation
of models (Jung et al., 2016; Tran et al., 2019), the digital preservation of cultural
heritage and historic BIM (HBIM) (Oreni et al., 2014b; Antón et al., 2018; Bru-
mana et al., 2018), and the inventory and recognition of architectural elements such
as windows, doors, and furniture (Xiong et al., 2013; Valero et al., 2016). Still in
connection with cultural heritage, several researchers have been also focusing on
the forward modelling of the mechanical behaviour of historical masonry buildings
(Barazzetti et al., 2015; Bitelli et al., 2018; Selvaggi, 2017; Selvaggi et al., 2018,
2019; Argiolas et al., 2019; Rolin et al., 2019).

Regarding other applications close to the fields of structural and construction en-
gineering, Nguyen and Weinand (2019) performed a comparison between FE-
generated deformations and TLS-measured ones, Pöchtrager et al. (2018) dealt with
the reverse engineering of manufactured objects such as timber structures, and other
authors investigated different structural elements, e.g. 2D facades (Truong-Hong
et al., 2013) and vaults (Angjeliu et al., 2019). Other widespread uses of TLS in
construction are the condition assessment of surfaces (Mukupa et al., 2017) and the
damage inspection of cracks (Sánchez-Rodrı́guez et al., 2018). For a wider review
on the use of point cloud data in construction, one can refer to (Wang and Kim,
2019)

Moving towards the specific topics treated in this thesis, other authors already
devoted themselves to the structural numerical identification by integrating point
clouds measurements and static finite elements (FE). For example, Riveiro et al.
(2016) automatically extracted TLS-measured displacements and subsequently
searched for the best parameters for a manually defined FEM to diagnose masonry
arches, while Napolitano and Glisic (2019) diagnosed the most probable causes of
cracks on masonry structures by using photogrammetric data. Other authors defined
methods to analyse bent beams (Lee and Hyo, 2013; Yang et al., 2018; Riveiro et al.,
2018), while Wu et al. (2016) proposed an approach which involves the direct in-
version of the FE stiffness matrix. In addition, Jo et al. (2020) estimated the strains
of a metallic plate by using a FE model to translate the out-of-plane displacements
into in-plane strains.

1.3. Objectives
The aim of the present work is to develop an algorithm that combines the contactless
areal monitoring of a free-form deformable structure and the numerical identifica-
tion of its mechanical parameters, in the framework of an integrated deformation
analysis, which is defined by Welsch (2003) as the determination of the geometrical
changes (movements and distortions) of an object.

The rationale behind is maximising the use of TLS data for static SHM, by design-
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ing and implementing the first method that integrates the steps of monitoring, mod-
elling, and interpretation in a single workflow, in an attempt to exploit the spatial
redundancy of the TLS point clouds.

The research questions can therefore be summarised as below:

• How can mechanical parameters of structural models be estimated using TLS
areal measurements? What are the limitations?

• How to propagate the uncertainties of the scanning process to the estimated
parameters?

• What is the influence of the scanner location and the scan resolution on the
estimated values and their accuracy?

• How to assess if a structure is suited to be monitored with a given TLS meas-
urement setup?

1.4. Thesis outline
This works is structured as follows.

In chapter 2, as this is an interdisciplinary project, the fundamentals of the discip-
lines touched by the proposed method (i.e. FEM and TLS) are provided. Regarding
the TLS, special attention is given to the uncertainties involved in the acquisition of
TLS point clouds, by explaining their sources and their modelling. The registration
process, which is crucial in any TLS monitoring task, is also described, along with
an overview of the advantage and disadvantages of TLS with respect to other remote
sensing systems. As for the FEM, the basic terminology and the main underlying
principles are provided.

Chapter 3 starts with a presentation of the overarching workflow of the developed
method. Then, the single steps of the workflow are successively explained, begin-
ning with the geometrical manipulations designed to convert a point cloud of the
surface of the investigated structure into a FE mesh. Subsequently, three methods
to interpolate the TLS-calculated displacements at the FE nodes are described and
compared, in order to provide an indication about the advantages and disadvantages
of each of them. Further, the integrated monitoring approach is presented in its
general version, and then it is shaped to address the task of structural identification.
Moreover, the integrated monitoring approach has also been modified to account
for multiple partitions and for the pre-elimination of the nodes displacements that
are not influenced by the measurements. Afterwards, the LSA and its output are
validated by using closed-loop tests and a Monte Carlo experiment. Additionally,
some insights and observations about the calculations are presented, thus provid-
ing useful suggestions, mainly about the actual implementation of the numerical
differentiation within the LSA.

As for chapter 4, three application cases are presented and commented upon. Since
the first two application cases have been conducted using synthetically generated
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data, the developed simulation tool is described at first. Then, the setup and the
results of a simulated steel beam and of an alloy plate are detailed. In fact, several
analyses have been conducted, in order to evaluate the impact of varying inputs such
as the accuracy of the observations and the number of the partitions on the estimated
parameters and their accuracies. For the case of the steel beam, the simulation tool
has been also used to estimate the sensitivity of the results depending on a variable
standpoint of the laser scanner. The last part of the chapter is then dedicated to the
application of the method to the monitoring of a cross-laminated timber slab, which
has been performed with real data.

Finally, chapter 5 delivers a concluding outlook over the whole thesis and provides
some suggestions about the possible extensions and improvements of the proposed
method.

While this thesis has been designed and carried out as a monography, the author has
published several of the new contributions and analyses in earlier or more concen-
trated version along the way (Serantoni et al., 2017, 2018; Serantoni and Wieser,
2019). These publications are cited in the corresponding subsections of the thesis.
Furthermore, the author has contributed to other publications related to structural
monitoring and terrestrial laser scanning beyond the integrated monitoring covered
herein (Serantoni et al., 2015a,b; Ferrari et al., 2015, 2016; Serantoni and Wieser,
2016; Selvaggi et al., 2019; Frangez et al., 2020).
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2. Background

2.1. Terrestrial Laser Scanning

Today, terrestrial laser scanning is a very widespread measuring technique, which is
progressively getting more affordable and user-friendly. Compared to other survey-
ing techniques, a great advantage of TLS is the shift of a good part of the invested
time from the acquisition to the data analysis in the office. In fact, the acquisition
of large amounts of features is cheaper, because of the reduced personnel costs on
field (the TLS field operator does not need a great experience or outstanding skills)
and the possibility to automatise several processing steps such as the registration
of scans, their georeferencing, the recognition and the extraction of the interesting
features.

2.1.1. How TLS works
This section provides an insight on the topics related to TLS that are necessary to
understand and contextualise the following chapters. The fundamentals about TLS
are detailed in the books by Vosselman and Maas (2010) and Shan and Toth (2018).

The TLS is a optical active remote sensing technology that permits to measure
the distance of opaque surfaces in multiple directions. To determine the distance
between the sensor and the target, two types of associated measurement principle
are used: pulse-based scanners measure the time-of-flight of the reflected pulses,
while phase-based scanners measure the phase shift between the sent amplitude-
modulated continuous-wave (AMCW) and its reflection. In this work, the analysis
holds for both these categories of scanners.

The terrestrial laser scanners available on the market are built in different ways,
but the major part of those used for surveying purposes belongs to the category
of panorama scanners, as opposed to camera scanners. The discussion herein is
restricted to panorama scanners, which feature a fast rotating mirror that deflects the
laser beam. More precisely, the rotation velocity of the mirror has two components:
a fast rotating primary rotation axis that is typically approximately horizontal, and
a much slower secondary rotation axis that is approximately vertical, assuming the
instrument properly levelled. Typically, the whole housing of the instrument slowly
rotates around the vertical axis. In a more formal way, if we represent the beam
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Figure 2.1: Sketch of the adopted convention for spherical coordinates.

direction in spherical coordinates (the adopted convention is shown in fig. 2.1, and
the z axis is approximately aligned with the gravity vector if the scanner is properly
levelled) and centre of the system of coordinates in the instrument location, the
beam moves with constant angular velocities θ̇ and ϕ̇, with θ̇ � ϕ̇.

Furthermore, the areal measurement process with TLS can be labelled as static. In
fact, a repetition of a measurement can be only done in an amount of time com-
parable with the duration of the scan itself, seldom below 1 minute, depending on
the scanner model, its resolution, and quality settings. Actually, dynamic meas-
urements with TLS are also possible (Ferrari et al., 2015; Kim et al., 2016; Schill,
2018), but they cannot be considered really areal, since only a single profile of the
structure is monitored.

2.1.2. TLS error modelling
Several contributions to the measurement deviations can be encountered when ana-
lysing laser scanner data. The angular errors of a laser scanner are caused by very
similar phenomena as for total stations, i.e. by a combination of tilts and offsets of
the two rotation axes and of the beam direction of propagation. The error sources
involved in the range measurement process are multiple as well, and they are due
either to a partially incorrect modelling of different stages of the signal involved in
the measurement process (i.e. generation, propagation, reflection, acquisition, and
digitisation), or to an insufficient information on the sources of variability within
those (e.g. temperature distribution within the instrument).

The description of the stochastic properties of the TLS-acquired point clouds has
been object of investigations of several researchers (Lichti et al., 2005; Gordon,
2008; Chaudhry et al., 2019; Holst et al., 2019a; Zámečnı́ková et al., 2014), and
multiple calibration methods have been proposed (e.g. Lichti, 2006; Medić et al.,
2019). However, a universally agreed pointwise error model has not been defined
yet, neither for the biases nor for the random deviations.

To my knowledge, the most comprehensive works addressing the simulation of the
error distribution of TLS measured surfaces have been written by Soudarissanane
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(2016) and Mill (2016).

In this work, the accuracy of the used scanners has been estimated according to the
specification sheets provided by the TLS manufacturers, which express the expected
measurement errors with the following indicators:

• range error, i.e. the average bias when measuring the distance of a scanned
surface;

• range noise, i.e. the root mean square (RMS) of the deviations with respect
to the best-fit-plane of the scanned surface;

• angular error, which is of difficult interpretation, as it is often not clear if it
simply refers to the accuracy of the angular encoders or to the expected bias
of the beam direction in both azimuth and elevation angles.

In tab. 2.1, some exemplary values of the specifications of some TLS systems cur-
rently on the market are provided.

Even when all of the listed specifications are available, the stated range errors apply
to a very limited set of diffuse reflectance standards, i.e. standardised physical
samples of quasi-Lambertian diffusive materials.

In addition, it is worth to mention that TLS techniques are able to measure only
the surface of the scanned objects. Until now the penetration of the laser beam in
materials is still an open issue. Some partial investigation has been conducted for
porous materials such as snow (Serantoni and Wieser, 2016).

Moreover, even if the effects of the misalignments lead to biases lower than the ones
stated by the manufacturer, they can be often easily spotted when analysing TLS
datasets for deformation monitoring purposes, i.e. when comparing two or more
point clouds acquired when repeatedly scanning the same object. Two-face meas-
urements are useful to quantify some of these misalignments and therefore reduce
the bias via on-site calibration, in a similar fashion of the index error determination
when performing measurements with a total station (Holst et al., 2017).

Besides the discussion about the point-wise accuracy of TLS, the modelling of the
co-variances within a TLS-acquired point cloud is a currently debated topic as well.
In fact, depending on the resolution and the cross-sectional energy distribution of
the laser beam, neighbouring measured points may be correlated because the re-
spective beams’ footprints may overlap. The footprint of the laser beam is the area
of the sensed surface illuminated by the laser, i.e. where the reflection, and hence
the surface-related distortions of the signal, take place.

In addition, a rigorous modelling of the covariances among different points be-
longing to the same point cloud should also take into account that the neighbouring
points belonging to the same vertical profile (ϕ approximately constant, see fig. 2.1)
are acquired in sequence. Thus, the correlation of the noise on points on the same
vertical profile is likely to be larger than the correlation between other pairs of
points, even if at the same elevation angle. In fact, the magnitude of systematic
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errors of the angle encoders may be the same for the two rotation angles. Never-
theless, in this work no correlation among any pair of points have been assumed.
Hence the question: how to exploit the redundancy of such datasets? Several solu-
tions are possible: (i) neglect the phenomenon, (ii) identify and remove some points
so that the remaining ones are uncorrelated, or (iii) take into account all the correl-
ations among all the points belonging to a point cloud. In this work, the solution
(i) has been adopted, as no unanimously accepted models exist yet. The variance-
covariance matrix (VCM) of each point has been modelled, but the covariances
between points have not. This topic is investigated more in depth in section 3.3.

2.1.3. Registration of point clouds

In the classical treatment of TLS data, the registration process plays a crucial role.
The term registration denotes the translation and rotation of two or more point
clouds into the same reference system. The need for registration arises when mer-
ging several quasi-simultaneously acquired point clouds to produce a larger point
cloud, and when aligning two or more point clouds acquired in different epochs in
order to extract the deformations among them. Even if the study of the registration
process is outside the scope of this thesis, the method presented herein requires a
prior inter-epochal registration.

The registration of multiple scans can be accomplished in several ways:

• with physical targets:

– spheres, which have the advantage of having the same aspect from any
point of view;

– flat targets with geometrical patterns such as checkerboards or circular
sectors (Omidalizarandi et al., 2019; Janßen et al., 2019), which can
be opportunely oriented to reduce the incidence angle-based bias and
whose permanent installation is generally more practical;

• point-cloud based techniques:

– Iterative Closest Point (ICP) (Chen and Medioni, 1991; Besl and
McKay, 1992);

– 4-Points Congruent Sets (4PCS), a method for the markerless initialisa-
tion of refinement methods such as ICP (Theiler, 2015);

– octree-based methods useful to distinguish between stable and unstable
portions of the point cloud (Wujanz, 2016; Friedli and Wieser, 2016);

• feature-based techniques:

– plane detection approaches (He et al., 2005; Dold and Brenner, 2006;
Hu et al., 2019);

– RGB-D based methods (Wagner et al., 2017), which rely on the fusion
of TLS and image data into depth images;
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– Feature to Feature Supervoxel-based Spatial Smoothing (F2S3), an ap-
proach that relies on the correspondences of machine-learned features
(Gojcic et al., 2020);

• direct georeferencing:

– in a similar fashion of free-stationing a total station (TS), as described
by Pandžić et al. (2017);

– directly during the fieldwork, by using an instrument that integrates both
the capabilities of TS and TLS (e.g. Leica Multistation, Trimble Scan-
ning Total Station);

– with the help of additional navigation sensors embedded in the laser
scanner, such as inertial units, accelerometers, or GNSS receivers.

The relative magnitude of the inter-epochal registration error with respect to the
accuracy of the point clouds themselves depends strongly on both the registration
method and the scanning setup, i.e. the scanner accuracy, its distance to the target,
and the mechanical stability of the instrument. For monitoring purposes, target-
based approaches are often used, because they can be placed in stable areas and
their use can be very accurate if the setup of the targets (i.e. number, size, distance,
and orientation) is well designed.

Within this thesis, the point clouds used for the experiments conducted with real
data (see section 4.4) have been registered with the help of physical flat targets.
With this solution, a good accuracy could be reached (below 1 mm) while keeping
the computational effort very low.

2.1.4. Monitoring with TLS
An issue that is often encountered in practice is the choice of the most appropriate
measurement system for a given monitoring task. In particular, it is interesting to
know how does TLS compare with respect to other remote systems for monitoring
purposes. This is important to understand the suitability of TLS for different classes
of applications. A quite complete list of parameters and features of remote sensing
systems has been provided by Mazzanti (2012). The list has been compiled having
primarily geotechnical applications in mind:

• precision: repeatability of measurements;

• data reliability and validity: reliability of the collected measurements;

• temporal resolution: maximum frequency in data collection;

• spatial resolution: maximum resolution of pixels at the ground/structure, i.e.
minimum size of the area where a deformation value is provided;

• information density: the density of information in terms of number of pixels
and their areal distribution;

• deformation geometry: geometrical information of the deformation measure-
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ment (e.g. unidirectional predefined, unidirectional, bidirectional, 3D, etc);

• degree of interaction with the ground/structure: interaction with the mon-
itored area, which ranges from zero for the fully remote techniques, to high
for techniques that require the installation of targets on the investigated ob-
ject;

• size of the monitored area: maximum size of the area that can be monitored
simultaneously by a single sensor;

• maximum operability range: maximum distance to which the deformation of
a target (artificial or natural) can be determined;

• atmospheric noise: degree of sensitivity to the atmospheric noise;

• budget: cost required for the monitoring.

This list is very useful to compare advantages and disadvantages of different sensor
systems, even if in the geodetic community, the categories precision and data reliab-
ility and validity should probably be replaced by the better-defined set of accuracy,
precision, and reliability, which have a more sound mathematical definition. For an
overview about the most established mathematical tools used in the field of geodetic
deformation analysis, see the work of Caspary (2000) and Heunecke et al. (2013).
Moreover, other two items that should be added to the list are the minimum oper-
ability range, a limitation that all remote systems have, and the distinction between
installation and running costs. According to the presented classification criteria,
compared to other techniques such as radar interferometry, digital photogrammetry,
and trigonometric surveying, TLS features the strengths of high information dens-
ity, no interaction with the investigated object, and the possibility to monitor large
areas. On the other hand, TLS features limited operative range, and strong limit-
ations due to the atmospheric conditions. These assessments are valid for whole
classes of sensors, and they are of course quite generic. Moreover, no sensor sys-
tem is intrinsically better than the others, and the aptest instrument should be chosen
according to the concrete application case.

2.2. Finite Element Method

The FE method is arguably the most widespread method to numerically solve par-
tial differential equations (PDEs). Among others, the main applications include
elastostatics, structural dynamics, heat diffusion, electromagnetism, fluid dynam-
ics. Within this work, the selection of the FEM as numerical method to link the
measurements to the material properties has followed the consideration of some
advantages and disadvantages:

⊕ The flexibility in modelling free-form structures and non-linear materials.

⊕ The freedom of choice of the estimated structural parameters, as long as they
are contained in the stiffness matrix or in the vector of the nodal forces.
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Figure 2.2: Tonti diagram of elastostatics. Figure adapted from (Tonti and Zarant-
onello, 2009)

⊕ There is no need to develop ad hoc analytical models for every investigated
structure, as this widens the range of potential applications and makes the
proposed method more general. In fact, also an analytic relationship between
the observables (i.e. the deformations) and the unknown parameters would be
sufficient in principle.

⊕ The popularity among both the technical and scientific communities of struc-
tural engineers.

	 The plausibility control of the results is still necessary, and left to the engin-
eer’s judgement.

For a thorough introduction to the FE method, see the books by e.g. Hughes (2000)
and Johnson (2000). The mathematical foundation of the FE method is to avoid the
need of searching for a solution to the PDE expressed in the so-called strong (or
complete) form; the solution is instead searched within a finite-dimensional space,
with the help of a weak (or integral) form. Intuitively, and without claiming to be
complete, the weak form is a projection of the strong form on a finite base of test
functions. The weak form is also termed variational form because it can be obtained
by applying energy principles, such as the principle of virtual works or the principle
of minimum energy.

The diagram displayed in fig. 2.2 shows in a compact way the relationships between
stresses, mechanical properties and deformations. In the theory of linear elasticity,
the displacements are connected to the forces applied on a deformable body via a
chain of the fundamental mathematical relationships, i.e. the compatibility equa-
tions, the constitutive relations, and the equilibrium equations. However, the FE
model links directly forces and displacements according to the following equation:

f = Ku (2.1)

where f is the vector of the nodal forces, K is the stiffness matrix, and u is the vector
of the nodal displacements. In fact, both the constitutive laws and the equilibrium
and compatibility equations are embedded in the stiffness matrix. Each entry of
the stiffness matrix ki,j represents the value of the the nodal force Fj that has to be
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Figure 2.3: Examples of continuum finite element types available in the FE solver
Abaqus, from (Holstein et al., 2009)

applied on the system to obtain a unitary displacement di.

The steps involved in the FE analysis are the following:

• discretisation of the analysed body in finite elements (meshing);

• definition of the shape functions, which interpolate the solution (in case of
elastostatic analyses, the field of displacements) between the nodes of an ele-
ment, which are often low-order polynomials;

• assembly of the global stiffness matrix according to the connections among
the individual elements (direct stiffness method), i.e. the whole set of equa-
tions is defined;

• application of boundary conditions (BC), i.e. loads and constraints;

• solution of the system of equations for the primary variables at the nodes’
locations, i.e the nodal displacements;

• optionally, derivation for the secondary variables, i.e. the nodal forces are
obtained by back-calculation, while strain and stresses are calculated by in-
terpolation.

The choice of the type of finite elements depends on the level of detail and complex-
ity that the engineer aims to simulate with his model. For example, when modelling
a truss structure or a 3D frame made of columns and girders, it often makes sense to
employ beam elements, whereas when modelling a shell structure, the most sensible
choice may be to use bi-dimensional triangular elements such as triangles. Indeed,
several kinds of solid finite elements exist. Four examples of them are shown in
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fig. 2.3. Furthermore, for every combination of shape and number of nodes, various
strategies of integration can be employed, depending on the number and location of
the integration points. For example, the C3D8 (continuous stress and displacement,
3D, 8 nodes) element can be modified to allow for reduced integration (e.g. C3D8R
elements) or to reduce the shear locking1 by adding incompatible displacements
(e.g. C3D8I elements). For a wide list of finite elements, one can consult the book
by Oñate (2013a).

1an overly stiff behaviour of a finite element due non-physical constrains between the nodal dis-
placements (Oñate, 2013b)
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3. From TLS data to material para-
meters

As stated in section 1.3, the rationale behind this research is to exploit the areal
information provided by laser scanners, and assess the potential benefits that the
measurement of large amounts of points can bring in the context of SHM.

The main inspiration behind this work is the idea of extending the concept and the
functionality of integrated monitoring to TLS areal surface measurements. Integ-
rated monitoring is a method that combines data from various sources and sensors
within a coherent and flexible framework for SHM applications. It has been form-
alised by Chrzanowski et al. (1991) and applied in practice by Lienhart (2007), who
developed his work on the basis of the contributions of Kälber and Jäger (2000) and
Jäger et al. (2004). In fact, in his dissertation, Lienhart used observations from total
stations, geometric levelling, fibre optics extensometers (SOFO), inclinometers and
temperature sensors to calibrate the FE model of a monolithic bridge. More details
are provided in section 3.4

Moreover, this work focuses on a specific field of SHM, which is the numerical
identification of material parameters of structures subject to a static loading. Welsch
and Heunecke (2001) defined the system identification as the determination of a
transfer function that turns the input quantities (the stresses) into the output ones
(the deformations) (see fig. 3.1). According to the scheme by Welsch and Heun-
ecke (2001), the determination of the stresses is defined as back analysis (inverse
problem), while the determination of the deformations is named system analysis
(direct problem). Furthermore, this work can be also classified as system identi-
fication by using a parametric model, because the deformations and the loads are
known and the material parameters are determined with the help of a mechanical
model.

In addition, since a numerical approach instead of an analytical one is adopted, the
analytical constitutive law of the investigated materials is not explicitly modelled,
but only a selection of the parameters within the stiffness matrix. Indeed, the stiff-
ness matrix K does not depend on the material parameters only, it depends on the
choice of the element types and their shape functions as well.

Lastly, when dealing with FE models, the task of identification can be denoted in
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Figure 3.1: The behaviour of a system can be described by three sets of elements:
input, transfer function, output. For structural systems, the three sets coincide
with forces, mechanical properties and deformations, respectively. Adapted from
(Welsch and Heunecke, 2001)

literature as model updating (especially in the SHM scientific community), model
calibration, model tuning, or inverse finite element problem.

This chapter presents and details the conceived method for the material identifica-
tion of TLS scanned structures. The main points of the chapter and especially the
description of the three interpolation schemes presented in section 3.3, have been
already summarised in (Serantoni and Wieser, 2019).

3.1. Workflow
The developed method is built upon three subsequent main steps: the generation
of the FE mesh, the calculation of the surface nodal displacements from TLS data,
and the determination of the sought parameters, under the overarching criterion that
the FEM-calculated displacements shall fit to the measured ones. This method is
concisely illustrated by the block diagram in fig. 3.2.

First of all, the developed algorithm takes as input data pairs of point clouds: a
reference one and a test one, which respectively represent the outer surface of the
structure in the states before and after the deformation, named throughout this thesis
reference and deformed state, respectively. When more than two epochal measure-
ments are available, any couple of them can be employed as input data. Of course,
the input points clouds have to be registered in the same reference system of co-
ordinates. The method of registration (see section 2.1.3) is not relevant, as long as
its associated error is negligible with respect to the intrinsic accuracy of each point
cloud.

If several scans from different standpoints are acquired within the same monitoring
epoch, they have to be co-registered, and all the measured displacements can be
used, provided that the VCM of each measured point is modelled according to the
position of the associated scanner standpoint. In this work, except for the applica-
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Figure 3.2: The block diagram of the proposed method

tion case described in section 4.4, a single scan is used for each material parameter
determination.

Moreover, the proposed algorithm is suitable for quasi-real time monitoring, be-
cause the analysis can be performed after each acquisition epoch, as the modelling
step is uncoupled with the extraction of displacements. However, given that the
acquisition of the measurements and the processing take several minutes, the in-
tegration within an early warning system looks hardly feasible. In addition, the
developed method is suited for problems that are linear (geometrically and materi-
ally) only.

The reference point cloud is used as input to generate the mesh of the FE model.
The size and shape used for the voxelisation of the space occupied by the structure
have to be chosen according to the desired level of detail. Furthermore, the engineer
should also select the kind and the size of the FE elements that are employed. The
process of the FE mesh generation is extensively described in section 3.2.

In order to fully define the FE model, the FE mesh is not sufficient, because loads
and boundary conditions have to be formalised as well. Since the loads can be
included in the set of parameters to be estimated (see section 3.4.1), they are defined
according to prior knowledge on them. In fact, unless a structure is new and we can
claim we can calculate the dead loads, the exact estimation of the loads is usually
very difficult. The type of constrains do not belong to the set of parameters to be
estimated, and they have to be defined according to the prior knowledge about the
scanned structure.

The two point clouds are also used to determine the surface nodal displacements.
They are calculated by first extracting the field of displacements, which is obtained
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by calculating the distance between the two clouds, and then by interpolating in
correspondence of the locations of the nodes of the FE mesh. Several interpolation
strategies are possible; in sections 3.3.1, 3.3.2, and 3.3.3, three different ones are
illustrated, and successively compared in section 3.3.4.

Once the measured nodal displacements have been derived, it is possible to search
for the desired structural parameters by running a least squares adjustment (LSA).
The LSA iteratively evaluates the FEM for different values of the parameters until
the residuals between the FE-predicted and the measured nodal displacements are
minimised (see section 3.4).

The whole implementation has been written in Matlab, except for the evaluation of
the FE model, which is performed by the commercial software package Abaqus.
The interaction between the Matlab code and Abaqus (Dassault Systèmes, 2013)
has been enabled by wrappers that write input (.inp) files, read data (.dat) and out-
put (.fin) files, and call the execution of Abaqus/Standard jobs with dedicated DOS
commands. Because of this strategy, the method presented herein can be easily
adapted to work in association with any solver. Indeed, besides Abaqus, a large
number of alternative available FE solvers exist. Even if some of them can directly
and explicitly deliver the stiffness matrix of the modelled structure, the followed ap-
proach treats the FE solver as a ”black box” by the direct linearisation of the output
(i.e. the nodal displacements) with respect to the inputs (i.e. material parameters,
loads, and measurements).

All the analyses and simulations of this work have been conducted with a personal
computer equipped with an Intel Xeon E5-1650 v2 processor (3.50 GHz) and 32 GB
of RAM. Matlab integrates a very transparent parallelisation of for loops, which has
been used taking advantage of all the 6 cores of the employed processor. Parallel
computations have been conducted in the following stages of processing:

• sorting the FE elements according to their coordinates, in order to define the
elements belonging to each partition of the FE model;

• calculating the numerical derivatives for several partitions within the LSA;

• calculating the mean vertical displacement for points of the point cloud that
are aligned along the normal of a monitored surface;

• performing Monte Carlo simulations.

3.2. FE model generation

It is important to clarify that if the FE model is already available before the scanning,
there is no need to generate the mesh via voxelisation of the reference point cloud
data. Although it is a quite unrealistic case in practice, this may happen when the
designer has already created a FE model for design purposes beforehand, provided
that the geometry of the as-built structure corresponds to the designed one within
the desired accuracy. In that case, the acquired point clouds would be only used for
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the dimensional control of the as-built structure. If instead no FE model is available,
the generation of the FE model is made according to these subsequent steps, which
are further explained below:

• definition of the volume occupied by the structure;

• voxelisation;

• choice of the FE elements;

• assignment of the material properties;

• definition of the boundary conditions.

Definition of the volume occupied by the structure

In order to have a continuous representation of the outer surface of the structure, a
3D alpha solid of the reference point cloud is used. An alpha solid is the general-
isation of the alpha shape for the 3D case. Intuitively, the alpha shape of a set of
points is a polytope that is uniquely determined by the set and a parameter α. It
expresses the intuitive notion of shape of the point set, and α controls the level of
detail reflected by the polytope (Akkiraju et al., 1995). For example, the convex hull
of a set of points coincides with the alpha shape with α = +∞ (see fig. 3.3). For
a complete exposition about 3D and n-dimensional alpha solids, see (Edelsbrunner
and Mücke, 1994). The level of detail of the alpha shape is also determined by the
resolution of the point cloud representing the object surface. If some parts of the
surface are coarsely scanned or not scanned at all (it is often the case for the sup-
ports or the foundations), artefact concavities may be generated. To prevent such
artefacts, the missing surface points have to be reconstructed using assumptions or
prior knowledge.

Voxelisation

The voxelisation is an intermediate step between the definition of a bounded shape
and the discretisation into multiple regular finite elements. Practically, the 3D space
is first subdivided according to a 3D grid, then the centres of the potential voxels
whose centre lies within the alpha solid are selected. A sketch of the discretisation
process is shown in fig. 3.4.

Such voxelisation of the structure volume introduces a discretisation effect of the
surface, which is especially noticeable when the actual surface of the structure is
not parallel to the three principal directions of the voxels. An example is shown in
fig. 3.5.

Choice of the FE elements

In this thesis, general-purpose 3D elements (i.e. hexahedron-shaped ones) have
been chosen, in order to deal with generic-shaped structures. In particular, general-
purpose hexahedral ones (e.g. C3D8, C3D8R, C3D8I) have been selected, because
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Figure 3.3: Alpha shape for a decreasing value of the parameter α. From (Gardiner
et al., 2018)

Figure 3.4: Discretisation of the structure using an alpha shape built from the
scanned points (2D for graphical reasons, 3D in reality). The red square dots
represent the points of the point cloud, the dashed line represents the alpha shape
boundary, the black dots represent the centres of the potential voxels, while the blue
hatched squares represent the voxels that have been actually selected (adapted from
Serantoni et al., 2018)
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Figure 3.5: Example of the voxel discretisation effect for curved surfaces

their size can be easily set to be equal to the one of the previous voxelisation step.
However, the use of hexahedron discretisation implies non-smooth FE mesh for
smoothly curved objects. This issue can be overcome either by increasing the res-
olution of the mesh or by using alternative element types for the 3D tessellation of
the volume occupied by the structure, such as tetrahedrons, irregular hexaedrons
or wedge elements. Another interesting alternative for future investigation can also
be the refinement of the voxel discretisation by using marching cubes (Kim et al.,
2019).

Herein, the size and the shape of the voxels are selected to coincide with an integer
multiple of the size of the finite elements. The choice of the size of the elements is
a compromise between the spatial resolution of the predicted nodal displacements
and the computational effort to perform the FE analysis. Moreover, the size of the
elements should also prevent the generation of numerical errors. For example, when
modelling a beam or a plate made of linear C3D8 elements and subject to bending,
it is necessary to discretise the body along the directions transverse to the bending
moment in multiple elements, in order to avoid shear locking effects. Alternatively,
the use of C3D8R or C3D8I elements is also possible. A rigorous discussion on
the topic can be found in (Hughes, 2000), while a comparison of locking effects for
different FE software packages is provided by Sun (2006).

Assignment of the material properties

The material parameters are passed as input to Abaqus as (E, ν) for the orthotropic
linear elastic case, or by providing the 9 independent entries of the compliance
tensor C (see eqn. 3.1), which are named engineering constants according to the
Abaqus nomenclature (Dassault Systèmes, 2013). This is a very specific assumption
pertaining to certain classes of materials.
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The field of validity of the presented method is bounded by some assumptions. No
cracks are modelled, and the materials are assumed to be linear elastic, i.e. the yield
stress is not attained anywhere in the investigated body. Nevertheless, the material
is not restricted to be neither isotropic nor orthotropic. However, it is worth to note
that the definition of the yield point of uniaxial tests is not unique. Among the
various definitions, the yield point is often associated to a permanent strain equal to
0.2%. However, in the field of structural engineering, the yield point of mild steel
can be also conservatively defined as the lowest stress for which local plasticisation
occurs at the elastic-plastic transition (Dieter, 1986).

Definition of the boundary conditions

Operatively, the assignment of the boundary conditions is manual. For this task, a
combination of prior knowledge and the engineering judgement is needed. How-
ever, it is also possible to model the constraints so that their definition includes
parameters to be estimated, e.g. the stiffness of a support.

3.3. Interpolation of nodal displacements and their
covariances

As stated in section 3.1, the main criterion underlying the whole identification pro-
cess is the coincidence of the FE-simulated nodal displacements with the TLS-
measured ones. Since the spatial distributions of the points of the TLS-acquired
point cloud and of the nodes of the FE model are different, an interpolation strategy
has to be adopted. In fact, while the locations of the nodes of the FEM depend on
the choice of FE type and on the strategy adopted for meshing the object, the points
of the point cloud are located where the laser beam hits a diffuse reflective surface.
Therefore, their distribution depends mainly on the resolution of the scanner and
its position with respect to the scanned objects. In fact, the majority of laser scan-
ners provide point clouds whose angular resolution is constant around each rotation
axis, i.e. the vertical and horizontal ones. As a result, within a single scan, the
spatial density of the point cloud is inversely proportional to the square of the range
between the sensor and the scanned surface (see fig. 3.6).
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Figure 3.6: A schematic representation of the different spatial distributions of FE
nodes (in red) and the measured points (in blue). The picture is a close-up of a
scanned flat surface (see chapter 4)

Moreover, it is generally neither possible to directly relate the individual points of
the point cloud to individual physical points on the surface, nor to measure multiple
times the same locations on the structure, because of the practical impossibility to
repeatedly start the scan from the same exact orientation. For this reason, the use of
the point clouds is restricted to the measurements of the out-of-surface deformation
components, i.e. the apparent surface changes perpendicular to the surface at the
reference epoch. The approach is thus most sensitive to deformations that actually
occur in that direction, e.g. to the vertical deformation of a horizontal beam loaded
on top and scanned from below.

As for the modelling of the instrumental errors, in this work the random deviations
have been assumed to be Gaussian distributed. Furthermore, the correction and
removal of biases and artefacts such as mixed pixels and reflections has been neg-
lected. These two kinds of artefacts can be reduced with a proper measurements
setup, i.e. ensuring the absence of obstacles between the investigated object and the
scanner. The presence of mixed pixels, which is often unavoidable when scanning
the edges of the object’s silhouette, can be strongly reduced by filtering algorithms
embedded in commercially available scanners and in several post-processing soft-
ware packages. A description of the causes behind the occurrence of mixed pixels
and an example of implementation of a filter is provided in (Wang et al., 2016b).

Because of the different spatial distributions, in order to compare and match the
nodal displacements of the FEM with the ones derived from the TLS point clouds,
an interpolation strategy is needed, and when choosing on which support the inter-
polation is applied, the following three possibilities arise, each with advantages and
disadvantages:
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(a) interpolate the TLS-measured point cloud onto the FE nodes of the reference
epoch:

⊕ the FE nodes can be placed according to the engineer’s judgement, i.e.
the local mesh refinement is allowed;

⊕ the interpolated values can compared with the FEM output;

⊕ when the FE model is evaluated iteratively within an optimisation al-
gorithm that matches the simulated and the measured displacements,
there is no need to perform the interpolation at every iteration step;

⊕ overall simplicity;

	 within the LSA (see section 3.4.1), the spatial distribution of the points
in which the residuals are evaluated depends on the FE meshing and
does not reflect the actual measurement process;

(b) interpolate the FE nodal displacements onto the point cloud:

⊕ within the LSA, the spatial distribution of the points in which the resid-
uals are evaluated reflects the measurements;

	 the interpolation has to be performed at every iteration of the optimisa-
tion algorithm;

(c) interpolate both the point cloud and the FE nodes onto a third support:

⊕ enables the use of parametric surfaces, including the use of FE methods
specifically designed for parametric (i.e. NURBS) geometries instead
of meshes, such as the isogeometric analysis (see Hughes et al., 2005;
Cottrell et al., 2009);

⊕ the number of parameters to compare can be drastically reduced,
provided that the support geometry is suitably parametrised;

	 compared to meshes, parametric surfaces (e.g. NURBS) representing
complex structures are less straightforward to be automatically gener-
ated.

In light of the listed advantages and disadvantages, the chose strategy consists in
interpolating the TLS-measured point cloud onto the FE nodes, especially because
of the subsequent computational economy.

The goal of this processing step is to assign a displacement to each FE node, and
the available data consist in two point clouds: the reference and the deformed one.
The surface of the FE model cannot be used as reference surface, because the men-
tioned (section 3.2) discretisation effect would reduce the precision of the acquired
reference point cloud to the size of the FE elements. Indeed, the displacements
of the nodes on the surface of the FE model have been calculated by comput-
ing the distance along the surface normal between the piecewise triangular inter-
polants of both the reference- and the deformed point clouds. Herein, the described
method has been applied because the monitored objects are man-made structural
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Figure 3.7: A 2D schematic representation of the reference point cloud (in red), the
deformed point cloud (in blue), and the FE mesh (in black)

members, which usually feature locally smooth surfaces, and the direction along
which the distance is calculated is known beforehand. However, the approach can
be chosen differently, depending on the morphology of the structure’s surface. In-
deed, there are several different approaches to calculate the distance between two
point clouds, such as cloud-to-cloud (C2C), cloud-to-mesh (C2M), mesh-to-mesh
(M2M), multiscale-model-to-model-cloud comparison (M3C2). A review about
them is provided by Girardeau-Montaut (2006), and Holst and Kuhlmann (2016).

As shown in fig. 3.7, the nodal displacements δN are calculated as follows:

δN = δN,def − δN,ref (3.2)

where δN,def and δN,ref are the distances between the nodes of the reference mesh and
the triangulations of the deformed and reference point clouds, respectively. These
distances can be calculated along any direction. The choice depends on the sensitiv-
ity of the measurements and the expected deformation of the structure. For example,
in this thesis, all the analyses take into account the vertical component of the nodal
displacements only.

Herein, a linear triangular interpolation relying on a 3D Delaunay triangulation
(Amidror, 2002) has been employed. Each interpolated displacement δN corres-
ponding to the FE node N is a weighted average of the z coordinates of the three
points A,B,C of the point cloud, which form the triangle of the Delaunay trian-
gulation where the node N is projected as N ′ (see fig. 3.8). The coefficients are
the three normalised barycentric coordinates of N ′ within the 2D triangle ABC,
according to the following formula:

δN =
AN ′BC

AABC
zA +

AN ′CA

AABC
zB +

AN ′AB

AABC
zC − zN = δN(xN , yN , zN ,x) (3.3)

x = [xA, yA, zA, xB, yB, zB, xC , yC , zC ]ᵀ (3.4)
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where e.g. AABC denotes the area of the triangle ABC. In eqn. 3.3 and 3.4,
the coordinate system is rotated so that the displacement δN is aligned with the
direction z.

Moreover, in order to avoid artefacts due to wrong assumptions on the spatial trend
of the displacement field, no extrapolation is performed. In other words, the inter-
polation is limited to the 2D convex hull of the set of the projections of the measured
points on the xy plane.

A further potential source of interpolation artefacts is addressed. Although the
Delaunay triangulation strategy maximises the minimum internal angle of each tri-
angle of the triangulation, if the measured points are sparsely distributed some tri-
angle may be ”skinny” ones. In this case, the interpolant presented in eqs. (3.3)
and (3.4) tends to underestimate the intensity of the displacement field of bulging
surfaces (Franke, 1982).

A triangle is considered skinny if the ratio between its inradius rinc and its circum-
radius rcirc is lower than a certain threshold t to:

rinc/rcirc < t (3.5)

For accuracy reasons and to circumvent this effect, the affected displacements are
discarded by adopting the following procedure. First, a Delaunay triangulation of
the projection of the point cloud onto the FE surface is built, then the skinny tri-
angles lying on its boundary are iteratively removed, and finally the sole displace-
ments associated to the FE nodes located within the remaining triangulation are
retained. In this way, no displacement is a product of extrapolation. A schem-
atic representation of the skinny triangles identified by this process is provided in
fig. 3.9.

The choice of t should be adapted in order to affect the skinny triangles only. An
analysis of the distribution of the rinc/rcirc ratio for the whole triangulation can be
helpful to set the threshold t. For example, t has been set equal to 0.02 in the
simulations and in the application examples presented within this thesis.

Figure 3.8: A schematic representation of the linear triangular interpolation. In
black, the FE mesh and its nodes; in red, the measured point cloud and the points’
error ellipsoids for each point; in blue, the interpolating triangulation; in green, an
interpolated point and the calculated distance δN
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Figure 3.9: A schematic representation of the skinny triangles. The red skinny
triangles at the boundary of the Delaunay triangulation of the measurement points
(in blue) are iteratively removed

Along with the displacements of the FE nodes, their variances need to be calcu-
lated as well, because they are successively employed in the stochastic model of the
parameter estimation (see section 3.4.1).

Irrespective of the strategy chosen to assign covariances to the points of the point
clouds, the covariance assigned to the nodal displacements is derived owing to a
straightforward variance propagation. The functional model is shown in eqn. 3.2,
and the associated stochastic model is

σ2
δN

= σ2
δN,def

+ σ2
δN,ref

(3.6)

The assumption of uncorrelatedness is justified by the fact that the reference and the
deformed point clouds are acquired at different times and possibly from different
scanner standpoints.

In order to estimate σδN , if the point clouds are very dense as compared to the size of
the finite elements, it might be sufficient to calculate for each node of the FE mesh
the average of the measured displacements of several points in its neighbourhood,
together with its associated empirical standard deviation. If instead the distribution
of the scanned points is very sparse, i.e. if the average distance between points
of the point cloud is much larger than the size of the finite elements, some more
refined solution is necessary, possibly taking into account the expected accuracy
of each measured point. In particular, the available input data are the coordinates
and VCMs of the measured points, and the target coordinates of the FE nodes. A
a clarifying sketch is provided in fig. 3.10. In order to assign a VCM to a point
obtained by interpolation, several strategies can be adopted, such as the classical
variance propagation, the direct interpolation of VCMs, and the nearest-neighbour
(NN) search. In the following sections 3.3.1 to 3.3.3, these three tested strategies
are detailed. Among alternative schemes that are suitable for further investigations,
there are methods such as collocation (Moritz, 1978), k-nearest neighbours search
with distance-dependent weights (Dudani, 1976), and Kriging, which nevertheless
suffers from the disadvantage of being a ”global” method, i.e. the interpolant de-
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pends on all the data points (Franke, 1982).

Regardless of the interpolation method chosen, the VCM ΣP of each measured
point P is defined in a quite straightforward way, i.e. employing the specifications
model generally provided by the producers of laser scanners (see section 2.1.2).
However, for the definition of ΣP , the coordinates of the points of the point cloud
are not enough, because the accuracy specifications of the scanner and its standpoint
have to be known as well.

Concretely, the variance-covariance matrix ΣP of each measured point is first ex-
pressed in an opportune local reference system (RS), so that its matrix representa-
tion is diagonal. Such a local RS is defined by the orthonormal triple of directions
(ρ̂, t̂v, t̂h) (see fig. 3.11), where ρ̂ is the radial unit vector along the line joining
the instrumental centre S and the measured point P , t̂v is the tangent to the local
meridian profile (i.e. with constant azimuth ϕ0), and t̂h is the tangent to the local
parallel profile (i.e. with constant elevation θ0).

The three directions are determined as follows:

ρ̂ =
P − S
‖P − S‖ (3.7)

t̂h = ρ̂ ∧ v̂ (3.8)

t̂v = ρ̂ ∧ t̂h (3.9)

where v̂ is the unit vector parallel to the local vertical in the standpoint S, and ∧
represents the vector product.

The local RS is a principal one for the matrix

ΣL
P (ρ) =

(
σρ,fix+σρ,propρ

cosα
)2

(σϕρ cos θ)2

(σθρ)2

 (3.10)

where ρ is the range (i.e.the distance between points S and P ), σρ,fix and σρ,prop are
respectively the constant and the distance-dependent parts of the range accuracy. α
is the incidence angle, σϕ and σθ are the angular accuracies of the horizontal and ver-
tical angles, and the superscript L denotes the local RS. Here, the impact of the in-
cidence angle alpha is modelled according to the findings of Soudarissanane (2016).

Figure 3.10: The interpolation of VCMs in correspondence to the FE nodes. The
red error ellipses represent the input VCMs, while the green ones represent the
interpolated ones. 2D sketch for ease of interpretation
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Figure 3.11: The local system of coordinates for the calculation of the VCM of a
scanned point. From the scanner location S, the point P is measured. The definition
of the shown symbols is provided in text

This author observed that, when scanning a flat surface, the orthogonal noise σρn
is approximately constant for a very wide range of incidence angles (between 0°
and 80°), thus the range component of the TLS accuracy σρ has been modelled as
deteriorated by the factor 1/ cosα (see fig. 3.12). In fact, since the projection of
the range component of the noise onto the normal to the scanned plane σρn has the
following form

σρn = σρ(ρ) cosα = const ∀α ∈ [0°, 80°] (3.11)

we can infer that

σρ(ρ) =
σρ,fix + ρ σρ,prop

cosα
(3.12)

The physical reason is the elongated footprint of the laser beam on the illuminated
surface (Soudarissanane et al., 2009).

Furthermore, for short-range monitoring applications, σρ,prop is often negligible with
respect to the total error budget, because of the short distances between the sensor
and the monitored structure. In fact, for SHM applications, the measured ranges are
often shorter than 10 m, and the order of magnitude of σρ,prop is 10 ppm.

The VCM of every point is then expressed in the global reference system G, by left
and right multiplication by the rotation matrix R, which features along its columns
the coordinates of the orthonormal triple of directions (ρ̂, t̂v, t̂h), expressed in the
global reference system, as follows:

R =

 ρ̂G t̂Gv t̂Gh

 (3.13)
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Figure 3.12: Cosine deterioration of σρ, depending on the incidence angle α

ΣG
P = RΣL

PRᵀ (3.14)

In reality, besides the incidence angle of the laser beam, there is a plethora of other
factors affecting the accuracy of a TLS-measured point, e.g. the recorded intensity
and the roughness of the target. However, no definitive quantitative models exist
yet. A first step towards the quantification of the effects of the recorded intensity on
the range accuracy has been proposed by Wujanz et al. (2017).

3.3.1. Variance propagation

The most straightforward approach to address the determination of the VCM of an
interpolant is the classic variance propagation starting with the full VCM of the
known values i.e. the observed coordinates of the points within the point cloud, in-
cluding all the correlations among them. However, in this case, if the interpolant is
not local (i.e. it is a function of all the known values) and the numerical derivatives
required for the variance propagation cannot be derived analytically, this solution
may be computationally very expensive. In fact, in this case, numerical differenti-
ation with respect to each of the three coordinates of thousands of points may be
necessary when processing TLS point cloud data.

As the interpolation strategy described by eqns. 3.3 and 3.4 is local, the variance
propagation can be performed analytically by derivation of δN with respect to all
the parameters of the vector x, which contains only the coordinates of the vertices
of a single triangle of the Delaunay triangulation:

σ2
δN

=

(
∂δN
∂x

)T
ΣABC

(
∂δN
∂x

)
(3.15)

where x is defined as in 3.4, and ΣABC is a 9×9 block matrix with the three 3×3
VCMs of the vertices of the triangle ABC along its main diagonal, as follows.
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ΣABC=

 ΣA 0 0
0 ΣB 0
0 0 ΣC

 (3.16)

The nine derivatives ∂δN
∂x

are shown in eqns.3.18 to 3.26. D is an auxiliary variable
to make the notation lighter.

D = (xA(yC − yB) + xB(yA − yC) + xC(yB − yA))2 (3.17)

∂δN
∂xA

=
[
(xN(yC − yB) + xB(yN − yC) + xC(yB − yN))

(yA(zC − zB) + yB(zA − zC) + yC(zB − zA))
]
/D (3.18)

∂δN
∂xB

=
[
(xN(yC − yB) + xB(yN − yC) + xC(yB − yN))

(yA(zC − zB) + yB(zA − zC) + yC(zB − zA))
]
/D (3.19)

∂δN
∂xC

=
[
(xN(yA − yB) + xA(yB − yN) + xB(yN − yA))

(yA(zB − zC) + yB(zC − zA) + yC(zA − zB))
]
/D (3.20)

∂δN
∂yA

=
[
(xN(yB − yC) + xB(yC − yN) + xC(yN − yB))

(xA(zB − zC) + xB(zC − zA) + xC(zA − zB))
]
/D (3.21)

∂δN
∂yB

=
[
(xN(yA − yC) + xA(yC − yN) + xC(yN − yA))

(xA(zB − zC) + xB(zC − zA) + xC(zA − zB))
]
/D (3.22)

∂δN
∂yC

=
[
(xN(yA − yB) + xA(yB − yN) + xB(yN − yA))

(xA(zC − zB) + xB(zA − zC) + xC(zB − zA))
]
/D (3.23)

∂δN
∂zA

=
−xNyB + xNyC + xByN − xByC − xCyN + xCyB
−xAyB + xAyC + xByA − xByC − xCyA + xCyB

(3.24)
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∂δN
∂zB

=
xN(yC − yA) + xA(yN − yC) + xC(yA − yN)

xA(yB − yC) + xB(yC − yA) + xC(yA − yB)
(3.25)

∂δN
∂zC

=
−xNyA + xNyB + xAyN − xAyB − xByN + xByA
−xAyB + xAyC + xByA − xByC − xCyA + xCyB

(3.26)

The three derivatives of δN with respect to the z components of A, B and C co-
incide with the barycentric weights shown in formula 3.3. Hereby, the correlation
which may occur between the interpolated displacements if the respective triangles
share one, two or three vertices is neglected, as well as the correlations between the
coordinates of the triangle’s vertices. Both are simplifications that may be dropped
in the future, in case (i) valid and numerically tractable correlation models of the
coordinates in a point cloud are developed, and (ii) it turns out that taking into ac-
count the correlations is necessary for practically useful results. Recent insight in
this filed has been provided by Kermarrec et al. (2019), who fitted NURBS to TLS
point clouds for deformation monitoring purposes. The authors hinted that the cor-
relation among the points of the point cloud cannot be overlooked especially when
the scanning geometry is not favourable (i.e. the incidence angles are large). An-
other recent contribution to the topic is by Schmitz et al. (2020), who showed that
performing a scan with very high resolution and low accuracy settings can signific-
antly reduce the number of uncorrelated points within the acquired point cloud.

The outcome of the actual implementation of the variance propagation performed
with the outlined method showed some unexpected results. More concretely, some
values of the variance propagation are lower than the expected minimum value. In-
deed, restricting eqn. 3.15 to the unidimensional case (see eqn. 3.27), a lower bound
for σδN is min{σzA , σzB , σzC}/

√
3 , when the node N is located in the centroid of

the triangle ABC and therefore all the partial derivatives ∂δN
∂zA

, ∂δN
∂zB

, and ∂δN
∂zC

are
equal to 1

3
.

σ2
δN

=
[

∂δN
∂zA

∂δN
∂zB

∂δN
∂zC

]
·

 σ2
zA

0 0
0 σ2

zB
0

0 0 σ2
zC

 ·


∂δN
∂zA

∂δN
∂zB

∂δN
∂zC

 (3.27)

This problem has been observed to arise when the local normal of the Delaunay
triangulation is approximately perpendicular to the direction along which the δN is
calculated. This happens when the noise level of the measurements is large, i.e.
σρ ≥ 5 mm for the scenario described in 4.2. A possible reason is that the deriv-
atives ∂δN

∂x
and ∂δN

∂y
may become very large and therefore prone to yield numerical

errors. Although more research is needed to find the causes of this issue, a prag-
matic approach has been adopted. The nodes of which the σδN is smaller than the
stated lower bound are simply removed from the analysis. For all the tested scen-
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arios, their number is very small compared to the total amount of points available,
e.g. this effect impacts less than the 0.8 % of the nodes for σρ = 5 mm.

3.3.2. Log-Euclidean interpolation of the VCM
The methods based on averaging several positive-semidefinite tensors are local, and
they can adapted to triangular interpolants. Such methods have been developed
especially in the field of diffusion tensor imaging (DTI)1 for medical applications
(see e.g. Hotz et al., 2010; Pusz and Woronowicz, 1975), and a review on them is
provided by Yang et al. (2012). Among them, the log-Euclidean interpolation as
presented by Arsigny et al. (2006) has been adopted herein, because of its particu-
lar simplicity and computational efficiency. A distinguishing characteristic of this
method is the absence of the Euclidean swelling effect, which can be intuitively
described as follows: when averaging two symmetric positive-definite matrices, the
determinant of the result turns out to be larger than the ones of the original two
matrices. More precisely, the log-Euclidean interpolation consists of a weighted
average Σ̄ of n VCMs, according to the following formula:

Σ̄ := exp

(
n∑
i=1

wi ln (Σi)

)
(3.28)

where the weights wi are suitably chosen, e.g. the normalised areal coordinates
shown in formula 3.3. The natural logarithm of each VCM Σi is obtained by ex-
tracting the natural logarithm of each eigenvalue dij and successively recomposing
the positive-semidefinite matrix as follows:

Σ = BᵀDB (3.29)

d̃ij =

{
ln(dij) if i = j
0 if i 6= j

(3.30)

ln(Σ) := BᵀD̃B (3.31)

Here B is the square matrix of the eigenvectors, while D and D̃ are the diagonal
matrices of the eigenvalues of Σ and ln(Σ), respectively. The variances σ2

δN
of the

interpolated perpendicular distances are then calculated by projecting the VCMs
along the normal direction n, which is the unit vector in the direction of the analysed
displacements, as follows:

σ2
δN

= nᵀ · Σ̄ · n (3.32)

1In the field of DTI, the spatial distribution of anisotropic water diffusion in biological tissues is
studied. For an overview, see the work of Le Bihan et al. (2001).
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The result obtained with this approach is an approximation of the VCMs that is
expected if the scanned points would coincide with the projections of the FE nodes
onto the interpolated surface.

3.3.3. Nearest neighbour interpolation
The third investigated method to assign a VCM to the interpolated displacements is
the nearest neighbour search, which is an intermediate solution between interpolat-
ing onto the nodes and onto the measured points, as the interpolation locations are
actually the nodes, but only a selection of them is used, i.e. the closest ones to each
measurement point, within a certain distance threshold. The NN approach is applied
on a plane whose normal coincides with the direction in which the displacements
are analysed. For each FE node the closest measured point is searched, and its 2D
Euclidean distance is computed. Only the TLS points lying at a distance below
a predetermined threshold are kept for the following computations. This threshold
should be chosen in such a way that the same measured displacement is not assigned
to several nodes. For example, if the FE nodes are regularly distributed on the sur-
face of the structure, the optimal size of the circle is half the spacing of the nodes. In
such a way, the number of nodes included in the interpolation is maximised, under
the condition that multiple assignments are avoided.

With a NN approach, an increase of the scanning resolution generally turns into an
increase in the number of FE nodes to which a deformation is assigned, until all
the visible FE nodes are ”monitored”, i.e. are associated to a measurement. Further
increases of the resolution cause a reduction of the average distance between the FE
nodes and the measured points.

Moreover, if a nearest neighbour approach is employed, a preventive screening and
filtering of the noise of the point cloud is recommended, because potential errors in
the estimation of the accuracy of a single measured point may be fully transferred
to the accuracy of the nodal displacements δN . For example, a noisy point cloud
could lead to a wrong calculation of the local incidence angle and thus affecting the
quantification of the cosine-dependent signal degradation (see eqn. 3.12).

3.3.4. Comparison of the interpolation approaches
A comparison of the performance of the presented interpolation methods is provided
herein figs. 3.13 and 3.14 for an exemplary case of the simulation described in
section 4.2. Moreover, the processing time needed to perform the calculations for
the three presented methods is summarised in tab. 3.1.

As fig. 3.14 shows, the accuracy of the point cloud to be interpolated are almost
constant across the whole surface of the scanned structure, as the vertical standard
deviation of its points range between 1 and 1.012 mm. Since the scanner is located
below the centre of the beam, the points closer to the beam ends have been acquired
with a larger incidence angle indeed. Moreover, in fig. 3.14 the effect of the removal
of skinny triangles is visible at the border of the scanned beam.
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method variance propagation log-Euclidean nearest neighbour
time [s] 1.28 83.74 0.15

Table 3.1: Interpolation methods: comparison of processing time

Although the most mathematically rigorous, the variance propagation method de-
livers results that may seem counter-intuitive (see fig. 3.13b). Because of the as-
sumption of uncorrelatedness among the points of the point cloud, the variance
propagation approach return values of σδN systematically lower than the measured
ones. Indeed, the value of σδN depends primarily on the relative position of the node
N with respect to the vertices A, B and C (see fig. 3.8), i.e. the weights in eqn. 3.3.

Differently from the variance propagation approach, both the log-Euclidean inter-
polation and the nearest neighbour search deliver results that smoothly interpolate
the input data. However, none of the two methods is outright superior to the other.
For instance, the log-Euclidean interpolation assigns variances to a denser set of
nodal displacements, because within the NN approach the number of nodes cannot
exceed the number of acquired points.

Furthermore, when comparing the computational effort needed by the tested meth-
ods, the NN search is the fastest one, while the log-Euclidean interpolation is more
than 500 times slower (see tab. 3.1).

The bottom line of this comparison is that, although all the three approaches are
viable, the engineer should choose the one that fits best with the assumptions and
purposes of the concrete application case. For example, variance propagation may
lead to underestimation of the variance of the nodal displacements if the uncor-
relatedness of the input cannot be guaranteed. In the simulations and application
presented further in this work, the NN approach has been pragmatically adopted,
because of its computational efficiency and aptness to the assumption of uncorrel-
ated measurements.
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Figure 3.13: Variance propagation (b), Log-Euclidean (c), and Nearest Neighbour
(d) interpolation outcomes for common input data (a). The FE nodes are colour-
coded according to their value of σδN
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Figure 3.14: Same content of fig. 3.13 (a), (b), and (c) with a different colour bar
to better highlight how the log-Euclidean and the NN approaches perform. The
FE nodes are colour-coded according to their value of σδN . In grey, the FE nodes
locations that have no displacement associated
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3.4. Estimation of parameters

3.4.1. Integrated monitoring

The interpolation of measurements and their accuracies described in this chapter
is used to calculate the displacements in correspondence of the FE nodes, in order
to identify the mechanical properties of the investigated structure. Although the
identification problem has been defined as different from the inverse problem of
back analysis (see fig. 3.1), inversion techniques are needed for its solution. When
facing an inversion problem, many approaches can be adopted, such as regression,
Bayesian inference, sequential Monte Carlo, or searching for the best parameters
with gradient descent or grid search methods. In this work, as optimisation method,
the least squares adjustment scheme has been adopted, in order to follow the idea
of integrated monitoring (Chrzanowski et al., 1991), as implemented by Lienhart
(2007).

The LSA, which comes in a closed-form expression, is the most established regres-
sion method within the geodetic community because of its computational efficiency
and the fact that it yields the maximum likelihood estimate in linear models with
normally distributed observations. Moreover, several extensions (e.g. outlier detec-
tion, study of reliability) can be easily implemented.

More formally, the LSA follows the Gauss-Markov model for weighted observa-
tions is (Niemeier, 2012)

F (ξ̂) = y + e, ej ∈ N (0,Σj) (3.33)

For the i-th iteration, after a linearisation of the functional model (Taylor, 1st order)
in proximity of the point ξi, the LSA is solved iteratively with respect to dξ̂i = ξ̂i−
ξ0
i . Herein, the subscript i indicates the i-th iteration, the superscript 0 indicates

the linearisation point, the hat ˆ denotes an estimated value, and the subscript 0

represents an a-priori value.

∂F (ξ)

∂ξᵀ

∣∣∣
ξ=ξ0i︸ ︷︷ ︸

Ai

dξ̂i = y − F (ξi)︸ ︷︷ ︸
dyi

+ei, ei ∈ N (0,Σyy) (3.34)

P = σ2
0Σ
−1
yy (3.35)

dξ̂i = (Aᵀ
iPAi)

−1Aᵀ
iP dyi (3.36)

Σξ̂iξ̂i
= s2

0i
(Aᵀ

iPAi)
−1 (3.37)

s0i =

√
eᵀ
iPei
r

(3.38)
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ξ̂i = ξ0
i+1 + dξ̂i (3.39)

where

• A is the design matrix, i.e. the Jacobian of the observations with respect to
the sought parameters;

• ξ0 is the vector of the parameters at the linearisation point;

• ξ̂ is the vector of the estimated parameters;

• dξ̂ is the vector of the estimated reduced parameters;

• y is the vector of observations;

• dy is the vector of reduced observations;

• e is the vector of the residuals, i.e. the random deviations;

• P is the weight matrix;

• σ0 is the a-priori variance per unit weight;

• Σyy is the variance-covariance matrix of the observations;

• Σξ̂ξ̂ is the variance-covariance matrix of the estimated parameters;

• s0 is the a-posteriori variance per unit weight;

• r is the redundancy of the system, calculated as the difference between the
number of rows and columns of A, i.e. the difference between the number of
observations and the number of parameters.

As for the convergence threshold on ξ̂ to stop the iteration, Niemeier (2012) sug-
gests to set it below the desired precision of the parameters (e.g. few mm for geo-
detic networks). Without a predefined required level of precision, a reasonable al-
ternative criterion to stop the iterations is the ratio between the change of the para-
meters dξ̂i and its standard deviation; the former should be at least one order of
magnitude smaller than the latter. Within this work, a difference of three orders of
magnitude has been employed as criterion, as formalised in eqn. 3.40:

min(
∣∣∣dξ̂i �√diag(Σξ̂ξ̂)

∣∣∣) < 1h (3.40)

where the symbol� represents the element-wise division. In this case, the latest up-
date of the parameters modifies the distribution of the residuals only by a negligible
amount.

Summarising, the identification algorithm is composed of two main steps: (i) the
linearisation of the FE model with respect to the sought parameters, and (ii) the
actual search of best fit parameters in terms of the sum of the squared residuals with
a least squares adjustment. Corresponding to the proposed method of integrated
monitoring as implemented by Lienhart (2007), the actual observation equations
included in the LSA and their associated covariance matrices are the following:
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dmeas + emeas = dFEM(û), Σdd,meas (3.41)

usys + esys = û−K(p̂)−1f̂ , Σsys (3.42)
p0 + ep = p̂, Σpp (3.43)

f0 + ef = f̂ , Σff (3.44)

where

• dmeas are the geodetic observations; in this work, they are the displacements
of the surface δN , interpolated from the scan data as explained in section 3.3;

• dFEM are values corresponding to dmeas, calculated from the nodal displace-
ments; in this thesis, they are the displacements of a subset of the FE nodes,
orthogonal to the reference surface;

• usys are pseudo-observations of the nodal displacements of the FE model,
which are set to be zero, for the reason further explained in the text;

• p0 are the a-priori values of the material parameters;

• f0 are the a-priori values of the forces;

• û are the estimated nodal displacements;

• p̂ are the estimated material parameters;

• f̂ are the estimated nodal forces;

• K is the stiffness matrix of the FE model;

• Σdd,meas, Σpp, Σff , and Σsys are the VCMs of the corresponding variables.

The eqn. 3.41 (measurement part) links the actual observations to the nodal dis-
placements of the FE model and depends on the type of sensors employed, while
the eqn. 3.42 (system part) describe the behaviour of the FE model and therefore
account for the knowledge about the structure and its properties. The eqn. 3.43 and
3.44 are stochastic constraints that state the prior knowledge about the forces and
the material parameters, respectively. In fact, Σpp and Σff are used to quantify the
uncertainty of the initial values of the parameters and forces, respectively.

As a result, the vectors dξ̂ and dy, the design matrix A and the covariance matrix
of the observations Σyy for a given iteration are as follows (iteration count i omitted
for readability):

dξ̂ =

dû
dp̂

df̂

 =

û− u
p̂− p

f̂ − f

 (3.45)
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A =


∂dmeas
∂u

I −∂u(p,f)
∂p

−∂u(p,f)
∂f

I

I

 =


Au

I Ap Af

I

I

 (3.46)

dy =


dmeas − dFEM(u)

0
p0 − p
f0 − f

 (3.47)

Σyy =


Σdd,meas

Σsys

Σpp

Σff

 (3.48)

where u denotes the set of nodal displacements, p the material parameters, and f
the nodal forces2.

The block Au of the matrix A in eqn. 3.46 contains the derivatives of the geometric
observations with respect to the nodal displacements e.g. the strain measured at
certain locations as in (Lienhart, 2007), or the displacements in certain directions
as herein. In fact, in this work, the interpolation and the calculation of the VCM
for a subset of the surface nodal displacements is solved beforehand, as described
in section 3.3. Therefore, the block Au of the matrix A is an identity matrix.

Conversely, for many observation types, it is possible to include the interpolation
step directly in the LSA. If such a strategy had been adopted in this work, the ob-
servations would have consisted directly in the acquired point clouds, and also the
input Σyy would have explicitly included the variances and covariances of the TLS
observations instead of the output of the VCM interpolation. Nevertheless, the lin-
earisation of some interpolation schemes would have turned particularly complex.
This holds for example, when the interpolation is performed by employing a nearest
neighbour search, which is non-differentiable.

The elements within the diagonal variance matrix Σsys should be chosen some or-
ders of magnitude smaller than the elements along the diagonal of the rest of Σyy. In
fact, the eqn. 3.42 is included for the sole purpose of connecting the measurements
with the material parameters and the forces. Theoretically, the relation

0 = u−K(p)−1f

should be included as a condition to be fulfilled into the LSA. Including it instead as
a set of pseudo-observations is conceptually more straightforward and adds flexib-

2In (Lienhart, 2007), the matrices Ap and Af are denoted as −Tup and −Tuf , respectively
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ility in case of model uncertainty. Indeed, choosing low variances for these pseudo-
observations lets them act practically as if they were conditions and tie the solution
to the linearised model. However, at the same time, the magnitude of the diagonal
elements within Σsys has to be sufficiently big to prevent the ill-conditioning of the
normal matrix AᵀPA, which has to be inverted in eqn. 3.37. In this work, the
entries of Σsys have been set to be 4 orders of magnitude smaller than the smallest
element on the diagonal of Σyy, and no ill-conditioning has been observed.

In the developed Matlab code, the calculations have been generally performed using
units of the international system (SI), for the sake of clarity and simplicity. With
this regard, it was noticed that the design matrix A of the LSA can contain rather
large values, depending on the stiffness of the structure. For example, the entries of
A can reach values of the order of 1012 Pa/m in case of steel structures. The vastly
different orders of magnitude of the non-zero elements in A may lead to numerical
issues e.g. a quasi-singular normal matrix. Even if such values do not jeopardise
the algorithm for the tested application examples, the numerics within the LSA
have been modified and improved by changing the unit of measurement of p and
Σpp so that the numerical values of the variances within Σpp have the same order of
magnitude of the ones within Σyy. In this way, entries of Σsys have approximately
the same relative weight with respect to both Σpp and Σyy. Moreover, numerical
values of the partial derivatives of the parameters with respect to each observation
are closer to the unity, thus reducing the numerical errors when estimating very
”stiff” parameters, which are scarcely sensitive to the observations, e.g. the Young
modulus of a very rigid material.

Throughout this thesis, only the displacements and material parameters are estim-
ated within the LSA, i.e. ξ =

[
dû
dp̂

]
. In fact, the focus has been laid on the problem

of identification rather than on the back analysis problem (see fig. 3.1), because
the former is of greater interest within the field of SHM. Even if there are concrete
applications of the back analysis problem for structures whose behaviour remains
in the linear elastic region (e.g. the estimation of static wind loads), the main ap-
plication field of back analysis is probably forensic engineering, which often deals
with plasticisation and failure modes. Moreover, only Young’s moduli E have been
estimated, because it is the main parameter determining the mechanical behaviour
of structural elastic members. Apart from the above-mentioned reasons, these limit-
ations of the analysis have also been motivated by the time constraints. It would be
extremely interesting to extend the evaluation of the method beyond these boundar-
ies.

A further important assumption made is that the geometry of the undeformed struc-
ture (i.e the size of the FE elements and their connectivity) is considered constant
across different measurement epochs. Indeed, especially when dealing with the
monitoring of damaged structures, the variability (in space or in time) of the stiff-
ness of a structure can be physically due to a local reduction of the cross sectional
surface due to phenomena such as delamination or corrosion, to discontinuities in
the mechanical continuum due to cracking or fatigue, or to an actual reduction of the
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material stiffness due to processes such as plasticising. However, at a macroscopic
scale, any of the mentioned phenomena has been interpreted as the latter case, i.e.
a change of E.

3.4.2. Pre-elimination

Since the most time-consuming part of the analysis is the FE evaluation and not
the calculation of the LSA, in his analysis Lienhart (2007) included all the nodal
displacements in the linearisation of the FE model within the LSA, i.e. the partial
derivatives of eqn. 3.42 within the design matrix A have been calculated for all the
nodes of the FE model. Although the same is valid for the work presented herein,
a reduction of the dimension of the design matrix A can be beneficial in respect to
(i) the RAM usage when storing the matrices involved in the LSA, especially when
inverting the normal matrix, and (ii) the reading of the nodal displacements from
text files. In order to reduce the computational burden of the two mentioned stages,
the nodal displacements involved in the LSA can be selectively chosen thanks to a
pre-elimination (Niemeier, 2012) of the parameters which are not of interest or are
not involved in the interpolation process.

More concretely, the vector of nodal displacements u can be split in two comple-
mentary subsets uobs and u¬obs. The former contains the nodal displacements that
have been observed, and the latter includes the nodal displacements that have no
associated observed value.

If the elements within u are permuted as shown, the quantities dξ̂, A, dy, and Σyy

can be rearranged then as follows:

dξ̂ =


dûobs

dp̂

dû¬obs

 =


ûobs − uobs

p̂− p

û¬obs − u¬obs

 =

 dξ̂1

dξ̂2

 (3.49)

A =


Au 0 Au¬obs

I Ap obs 0

0 Ap¬obs I

0 I 0

 =
[

A1 A2

]
(3.50)

dy =


dmeas − dFEM(u)

0

0

p0 − p

 (3.51)
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P = σ2
0Σ
−1
yy = σ2

0


Σdd,meas

Σsys, obs

Σsys,¬obs

Σpp


−1

(3.52)

For simplicity of representation, differently than eqn. 3.45, the vector of the obser-
vations does not include the nodal forces f . If they are included in the analysis, they
behave exactly like the material parameters p.

It is possible to notice that, within the block matrix A (see eqn. 3.50), Au¬obs = 0,
according to the provided definition of u¬obs. Moreover, the second element in the
block vector dy is zero, as it represents the discrepancies between the measured
deformations dmeas and their FE-derived equivalents ones dFEM.

As a result, it can be shown that the pre-elimination of the non observed nodal
displacements du¬obs from the vector dξ̂ does not affect the estimation of the re-
maining parameters.

Niemeier (2012) shows how the parameters dξ̂1 can be estimated separately from
the parameters dξ̂2 according to the following formula

dξ̂1 = (N11 −N12N
−1
22 N21)−1︸ ︷︷ ︸

Q11

Aᵀ
1Pdy (3.53)

where Q11 is the cofactor matrix, and the normal matrix N is subdivided as follows

N =

[
N11 N12

N21 N22

]
=

[
Aᵀ

1PA1 Aᵀ
1PA2

Aᵀ
2PA1 Aᵀ

2PA2

]
(3.54)

Similarly, the a-posteriori VCM of the parameters is

Σξ̂1ξ̂1
= s0Q11 (3.55)

After the substitution of the matrix blocks shown in eqn. 3.46 in eqn. 3.53,

dξ̂1 =

[
Aᵀ
uΣ
−1
dd,measAu + Σ−1

sys,obs Σ−1
sys,obsAp,obs

Aᵀ
p,obsΣ

−1
sys,obs Aᵀ

p,obsΣ
−1
sys,obsAp,obs + Σ−1

p

]−1

[
Aᵀ
uΣ
−1
dd,meas (dmeas − dFEM(u))

Σ−1
p (p0 − p)

]
(3.56)

which is the same expression that can be obtained by not including uobs in the LSA
as follows
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dξ̂ =

[
dûobs

dp̂

]
=

[
ûobs − uobs

p̂− p

]
(3.57)

A =

 Au 0
I Ap obs

0 I

 (3.58)

dy =

dmeas − dFEM(u)
0

p0 − p

 (3.59)

P = σ2
0Σ
−1
yy = σ2

0

Σdd,meas

Σsys, obs

Σpp

−1

(3.60)

Of course, if one is also interested in the nodal displacements of the whole structure,
it is possible to calculate them by running the FE evaluation one more time with
the estimated p̂ and f̂ as parameters. This could be the case when the monitoring
requirements include the inference of either stresses, strains or displacements of
parts of the structure that have not been directly monitored. With the computational
efficiency in mind, the LSA should include only the nodal displacements that have
been observed (uobs).

3.4.3. Partitioning of the structure
According to the presented identification scheme, p can be either a scalar when a
single parameter is estimated, or a vector that encompasses several parameters. In
fact, p does not necessarily include one or several entries per FE element, since it
can be typically assumed that multiple elements share the same value of the para-
meter. The entries of p can denote one or more distinct mechanical parameters
(e.g. the Young modulus and the Poisson ratio) for one or more different partitions
of the structure. The size and shape of the partitions have to be chosen with en-
gineering judgement. For example, the borders among partitions should possibly
trace expected actual discontinuities in the structure’s material properties, such as
different layers within a composite material, or successive concrete pourings within
a cast concrete structural member. Lacking specific assumptions, in this work the
partitions have been created by automatically subdividing the analysed structures
according to a regularly spaced 3D grid. A simple example of partitioning is depic-
ted in fig. 3.15.

3.4.4. Closed-loop validation
In this section, an initial performance analysis of the LSA is provided, as a more
in-depth discussion is given in sections 4.2, and 4.3, where simulations that also
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Figure 3.15: Exemplary sketch of the subdivision of a structure. In this case, a
simply supported beam subdivided along only one dimension

include the scanning are analysed, and in section 4.4, where a concrete use case is
detailed.

Closed loop simulations have been conducted, in order to investigate the depend-
ency of the results with respect to:

• the noise level of the measurements, which have been assumed constant for
all the observations;

• the number of the partitions;

• the a-priori values of the parameters p0, which have been assumed uniform
for all the partitions;

• the a-priori values of the accuracy of the parameters, which have been as-
sumed uniform for all the partitions.

The influence of the first three inputs listed above has been tested by varying them
for a selection of scenarios. The results of these closed-loop validation tests are
shown in figs. 3.16 to 3.19. Differently, the influence of Σpp on the stochastic
results of the LSA has been investigated with a Monte Carlo simulation, which is
described separately in the following section 3.4.5.

The test setup described herein is similar to the one described in section 4.2,
but instead of generating the scan data and interpolating the measured displace-
ments, these displacements have been simulated directly. Consistently with the as-
sumptions stated in section 3.3, the measurements are considered uncorrelated, i.e.
Σdd = σ2

dI. As for the properties of the structure, the beam is 2 m long, and simply-
supported. The cross section is 25 mm high and 150 mm wide, and the loads acting
on the beam are the self-weight (ρ = 7850 kg/m3) and a vertical concentrated load
of 4 kN at midspan. The concentrated load has been distributed among all the nodes
belonging to the midspan cross section, in order to reduce the stress concentration
in the FE model. The beam has been partitioned along its main axis in sections of
equal length (see fig. 3.15), and the Young’s modulus Etrue is equal to 210 GPa for
all partitions.

For the scenarios analysed in this section, the a-priori accuracy of the parameters
is equal for all the simulations, i.e. Σpp = σ2

E0
I , with σE0 = 10 GPa. For each

combination of σd and E0, the scenario has been analysed for the nine numbers of
partitions (1, 2, 3, 4, 6, 8, 12, 24, and 36). The figs. 3.16 to 3.19 show for every
partition the value of Ê with a round marker, and the associated accuracy with a
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vertical error bar that spans from Ê − σÊ to Ê + σÊ .

Sensitivity to the noise level of the measurements

The first remark on the sensitivity to the noise level of the measurements is that,
as expected, an increase of σd entails a growth of the standard deviation of the
estimations as well. This can be seen by comparing fig. 3.16 with fig. 3.17. This is
especially noticeable for a low number of partitions, because when there are many
of them (12 or more) all the σE are very close to σE0 anyway, thus not improving
the knowledge about them.

Concerning the value obtained for σÊ , the positive outcome is that, for all the simu-
lated cases, Etrue lies within the 1σ error bars. The measurements with σd = 1 mm,
which are technically feasible, helps to improve the knowledge of E for a single
partition significantly beyond the assumed initial uncertainty of σE0 = 10 GPa, and
still provides some contribution for the case of 2 partitions and for the central one
in case of 3 partitions.

On the other hand, the proposed method also shows some limitations. In fact,
σd = 1 mm is not accurate enough for estimating E with a spatial resolution smaller
than 0.7 m. However, this finding needs to be put into perspective: a deformation
of 2 m long steel beam with this shape under this load does not cause mm-level
variations of the deformations over short distances. Thus, TLS is not appropriate as
measuring system, and this is to be expected.

Sensitivity to the a-priori information on the parameters

The results of the LSA are sensitive to the a-priori information on the parameters
p0, even if their a-priori covariances Σpp is very large.

The effects of a deviation of E0 from Etrue can be seen by comparing fig. 3.16 and
fig. 3.18. These two figures present the results of two simulations that differ only
in the value of the initial guess of the material parameters. The former figure shows
the values of Ê and σÊ for E0 = Etrue, while the latter for E0 = Etrue+ 10 MPa. As
expected, the comparison indicates that a value ofE0 that strongly deviates from the
true one could lead to wrong estimates for the partitions of the structure that show
a low sensitivity to the measurements, for instance close to the pinned supports of a
simply supported beam. The larger the deviation E0 − Etrue, larger the error in the
least sensitive partitions.

The choice of E0 is crucial because, besides the stochastic constraints (see eqn.
3.43), also the initial guess of the parameters within the LSA plays a role. Indeed,
in the first iteration of the LSA, an initial guess of each parameter has to be chosen
(see eqn. 3.36), which reasonably coincides with their a-priori value p0.

However, when solving for a large number of partitions with rather homogeneous
material properties, this issue can be overcome by first running an identification for
just one partition for simple objects like a beam or a plate, and then subsequently
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Figure 3.16: Result of a closed loop simulation with σd = 1 mm, and
E0 = 210 ± 10 GPa. The horizontal axes show the position along the 2 m long
beam, while the vertical axes represent the estimated Young modulus of each par-
tition, in GPa. The vertical error bars depict the 1σ confidence interval for each
partition. The dashed black line represents the value of the ground truth Etrue = 210
GPa
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Figure 3.17: Same situation as in fig. 3.16 but with increased measurement noise of
σd = 2 mm
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Figure 3.18: Same situation as in fig. 3.16 but with a different initial value E0 =
220 ± 10 GPa
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Figure 3.19: Same situation as in fig. 3.18 but with increased measurement noise of
σd = 10 mm
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adopt the resulting value of the parameter as initial guess.

Sensitivity to the number of partitions

The effects of a different number of partitions is visible in each of the figs. 3.16 to
3.19. The most evident outcome is that an increasing number of partitions leads to
an increase in σÊ . In particular, the difference in σÊ between the case for 1 partition
or multiple ones is striking. More precisely, for a value of σd = 1 mm, the ratio
σÊ/Etrue amounts to 0.5% for one partition, 3.4% for two partitions, and 1.7% for
the central partition of three. For a value of σd = 2 mm instead, the ratio σÊ/Etrue

is 1.1% for one partition, 3.4% for two partitions, and 2.3% for the central partition
of three.

Moreover, one can clearly see that the dependence of Ê on the initial value E0 var-
ies depending on the position of the partition along the beam. For example, this is
visible in fig. 3.18, where the initial conditions E0 are set to 220 GPa, for all the
partitions, while Etrue = 210 GPa. The beam is more sensitive to changes of E at
midspan than close to the supports, because the bending moment has a parabolic
trend along the simply supported beam, with a maximum at midspan and null value
at the beam ends. Thus, as expected, Ê of the least sensitive partitions remain close
to the value of E0, while the Ê of the most sensitive partitions are much closer to
value of Etrue. This effect gets more evident for a larger number of partitions. In
the simulations with at least 3 partitions shown in fig. 3.18, even an ”overshooting”
effect is visible. The most sensitive partitions show an underestimated Ê, compens-
ating the overestimation of the least sensitive one due to E0 > Etrue.

For very large numbers of partitions (see fig. 3.18, 36 partitions), Ê shows a wave-
like pattern along the x direction. This is likely due to the anticorrelation between
the parameters of neighbouring partitions (see fig. 4.8).

Another observation that can be drawn from figs. 3.16, 3.18, and 3.19 is that the
subdivision of the structure in a large number of partitions leads to the a-posteriori
covariances of the parameters Σp̂p̂ to be equal to the a-priori ones Σpp, without
improving them. A clear example is visible for the case of 36 partitions in fig. 3.19.

In fact, while estimating the material parameters for a large number of partitions, if
the a-priori knowledge about the material parameters is very vague (i.e. the entries
within Σpp are very large), the weight of the geometrical observations d is larger
than the weight of the pseudo-observations p. This is consistent with the idea of the
whole analysis - the LSA should be driven by the measurements if they are suffi-
ciently accurate to improve the initial estimates. In the analysed case, the estimated
values of material parameters of the different partitions are strongly correlated (see
fig. 4.8) and hardly separable. The reason is that different distributions of the para-
meters E across the structure lead to very similar deformed configurations, leading
to a scattered distribution of Ê driven by the noise of the geometrical observations.
This issue could be addressed in future improvements of the implementation of the
LSA by adding stochastic constraints also on the difference of p between nearby
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partitions.

The scatter could be theoretically so large that during the iterative LSA one or more
Êi are estimated as negative, and no FE evaluation for the numerical calculation of
the local gradient would be possible anymore. Negative Young’s moduli have in-
deed no physical meaning. In addition, from a rigorous point of view, depending on
the type of parameters, the support of the a-priori probability density distribution of
the material parameters may not extend to an infinite interval for physical reasons.
For example, meta-materials aside, elastic moduli cannot be negative and Poisson
ratios are limited within the range [0, 0.5]. In fact, when the a-priori uncertainty on
a parameter is much larger than the parameter itself, the assumption of its normality
may not be plausible anymore. Besides the use of a distribution with a probability
density function that is supported on a semi-infinite interval, a first possible meas-
ure to overcome this issue is the definition of a location dependent σp across the
structure’s partitions, decreasing its value in proximity of the least sensitive areas.
Alternatively, the size of the partitions can be chosen adaptively i.e. with a higher
resolution where the sensitivity is higher.

Lastly, in figs. 3.16, 3.18 and 3.19 it is possible to notice that, when subdividing the
beam into two partitions, the standard deviation ofE is (i) much larger than the case
with only one partition, (ii) approximately independent of the measurement noise
level σd, and (iii) larger than the accuracy of the central partition when subdividing
the beam in 3 partitions. The last finding may appear counterintuitive, as σE could
be expected to grow monotonically when increasing the number of partitions. The
reason behind is that, given the symmetry of the monitored beam used as a study
case, estimating E for two partitions instead for one does not result in an increased
degree of freedom of the solution, as the estimated parameters are strongly correl-
ated.

3.4.5. Monte Carlo validation

The correctness of the stochastic output of the proposed LSA has been validated
with a Monte Carlo (MC) closed-loop simulation. The idea is to sample the a-priori
parameters p0 according to a freely chosen, yet plausible, dispersion Σpp, and then
to compare the empirical dispersion of the estimated parameters with their formal
one.

The used scenario is very similar to the one employed for the simulations described
in section 3.4.4, and the only difference is that the validation has been conducted
for two values of σE0 (10 and 20 GPa). The beam has been partitioned along its
main axis in 4 sections of equal length (see fig. 3.15, with m = 4); thus, p contains
four Young’s moduli, one for each partition, i.e. p = [E1, E2, E3, E4]. The size of
the sample amounts to 300 repetitions. The reason of this number, which is rather
low, were time constraints.

The parameters are sampled according to the following distribution:
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p0 ∈ N (ptrue,Σpp) (3.61)

where ptrue are the actual values of the parameters used for the generation of the
synthetic scenarios.

The results of the Monte Carlo simulations are presented in tab. 3.2. They confirm
that the stochastic output of the LSA is correct, because the deviations of ¯̂

E from
the value of Etrue are well within the estimated σÊ . Moreover, the ¯̂

E are correlated
with the sampled values of E0, as expected. The empirical standard deviations of
the sample sE0 do not exactly coincide with σE0 = 210 MPa because of the finite
number of samples.

The average a-posteriori standard deviation s̄Ê and the empirical standard deviation
of the 300 estimated Ê match quite consistently, as their difference never exceeds
7%, the value attained for the partition 1 in the scenario with σE0 = 20 GPa. In this
worst case, the Fisher test statistic F is

F =
s̄2
Ê

σ̄2
Ê

=
17.82

16.62
= 1.1449

which corresponds to a p-value of 0.007, given that the numerator and the denom-
inator degrees of freedom are 299 and 300, respectively.

Moreover, one can observe that σ̄Ê and sÊ are larger for the partitions close to the
supports (1 and 4) and smaller for the central ones (2 and 3). The reason is the differ-
ent sensitivity of different portions of the structure to the geometric measurements,
as already shown by the results presented in section 3.4.5.
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partition ID

1 2 3 4

Ē0 ± sE0 209.3 ± 10.1 210.3 ± 9.5 210.4 ± 10.5 210.2 ± 10.0
¯̂
E ± sÊ 209.3 ± 9.6 210.5 ± 5.9 210.5 ± 5.9 210.1 ± 9.6

σ̄Ê 9.2 5.8 6.0 9.4

σ̄Ê/sÊ 96% 98% 102% 98%

(a) Scenario with Etrue = 210 GPa, σE0
= 10 GPa

partition ID

1 2 3 4

Ē0 ± sE0 208.6 ± 20.2 210.6 ± 19.0 210.8 ± 21.0 210.5 ± 19.9
¯̂
E ± sÊ 208.7 ± 17.8 211.0 ± 8.9 210.9 ± 8.8 210.1 ± 17.8

σ̄Ê 16.6 8.9 9.1 17.3

σ̄Ê/sÊ 93% 100% 103% 97%

(b) Scenario with Etrue = 210 GPa, σE0 = 20 GPa

Table 3.2: Results of the Monte Carlo validation. Herein, a bar on the top of a sym-
bol denotes the average over the 300 samples, the symbol s denotes an empirical
standard deviation, the symbol σ denotes a formal standard deviation. E0 is the
sampled a-priori parameter, while Ê is the estimated value of the parameter within
the LSA. The first row shows how the 300 samples approximate the scenario spe-
cifications, the second row describes the distribution of Ê, and the third row the
estimated standard variation of Ê, averaged for the 300 repetitions.

3.5. Considerations on calculations
This section includes a collection the most relevant encountered numerical issues
and insights about the calculation involved in the whole presented method. The
section 3.5.1 provides the context to understand the sections 3.5.2 and 3.5.3.

3.5.1. Description of the Jacobian Ap

The entries of the Jacobian matrix Ap = ∂u
∂p

(see eqn. 3.46) describe the sensitivity
of the displacements to a change in E of each partition. The number of columns of
the matrix m coincides with the number of partitions, while the number of rows n
coincides with the number of observed nodal displacements.

The derivative is numerically determined by calculating the symmetric difference
quotient
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Figure 3.20: Visual representation of the entries of Ap for different numbers of par-
titions. The two matrices are scaled horizontally differently, as they feature different
numbers of columns

∂ui(p)

∂pj
=
ui(p−∆p ej)− ui(p + ∆p ej)

2∆p

p ∈ Rm; i = 1, . . . , n; j = 1, . . . ,m

(3.62)

or by calculating the one-sided difference quotient

∂ui(p)

∂pj
=
ui(p)− ui(p + ∆p ej)

∆p

p ∈ Rm; i = 1, . . . , n; j = 1, . . . ,m

(3.63)

where ej represents the j-th unit vector of an Euclidean canonical orthonormal basis
{e1, e2, . . . , en}, and ∆p is the step size. In this work, ∆p has been kept constant
for all the elements of the vector p. More information about the size of ∆p is
provided in section 3.5.3. Computationally, a single evaluation of the FE model is
equivalent to determine u = u(pj) , because for each parameter pj , all the nodal
displacements u are calculated. Therefore, the calculation of a Jacobian matrix Ap

with m columns (i.e. a structure partitioned m times) needs 2m evaluations of the
FE model if symmetric difference quotients are calculated. Differently, if one-sided
numerical derivatives are employed, all the entries of Ap share the evaluation point
p and, as a result, only m+ 1 evaluations are needed. To reduce the computational
effort, in this work only right derivatives have been calculated.

Two visual representations of Ap are provided in fig. 3.20. The figures refer to a
simply supported beam, the vertical displacements of which have been measured in
616 equally spaced locations along the beam’s major dimension x. The estimated
parameters are the Young modulus of each partition, and the two sub-figures (a)
and (b) refer to a subdivision of the beam in 3 and 8 partitions, respectively. The
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disposition of the partitions corresponds to the one shown in fig. 3.15, and the nodal
displacements u are arranged in the same order, i.e. according to their x coordinate.
Consequently, each column of the two Jacobians represents the change in deformed
shape of the beam subject to a local change in stiffness within the j-th partition.
As expected, the highest values are primarily located in the centre of the matrix,
where the partitions that mostly influence the deflection of the beam are located.
Secondarily, the values along the main diagonal are larger than the neighbouring
ones because the effect of a change of stiffness of a partition has primarily effect on
the nodes located in its proximity. Moreover, the matrix is symmetric because of
the symmetry of the structure. Another visible property of the depicted Jacobians
is that the sum of all the elements belonging to the i-th row is the same for both the
matrices, even if they have a different number of partitions. In more formal terms,
given a FE model and a set of observations, for two Jacobian matrices Ap and Aq

with respectively mp and mq partitions:

∀i ∈ {1, . . . , n}
mp∑
j=1

ap i,j =

mq∑
j=1

aq i,j (3.64)

3.5.2. Numerical precision of the Abaqus output files

A first numerical issue that can arise while exporting the nodal displacements from a
FE solver, is their limited precision. Among the various ASCII output files provided
by Abaqus, two of them are particularly convenient to output the nodal displace-
ments: the Abaqus data (.dat) files returns the nodal displacements in a floating-
point 5-digit representation with exponent, while the result (.fin) files provide the
nodal displacements in double precision, i.e. with 15 to 17 significant digits. A
floating-point 5-digit representation is suitable to describe the field of deformation
with an acceptable level of precision, but when calculating the differences between
fields of deformation (for example when computing the numerical derivatives Ap)
a variation of the displacement field smaller than 0.01% cannot be distinguished
anymore. In fact, given the small sensitivity of the areas close to the supports, the
values within the matrix Ap may be impaired by quantisation errors. To overcome
this issue, the Abaqus result .fin files have been used, the precision of which is
sufficient for an accurate computation of Ap.

In order to exemplify the importance of an adequate numerical precision, a practical
case is shown in fig. 3.21. Herein, two data series show the vertical displacement
of a node due to a change in stiffness of a single partition of a beam. The only
difference between the two plotted data series in fig. 3.21 is the precision of the
representation, which correspond to the aforementioned .dat and .fin Abaqus output
files. The partition of the beam with variable stiffness is the leftmost one of 24,
while the analysed node is located at midspan. The specifications of this simulation
are the same for the closed-loop tests detailed in section 3.4.4, with the difference
that no random deviations of the measured displacements have been modelled.
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Figure 3.21: The function u = u(E) for a single node of a 2 m long, simply suppor-
ted beam. Examples of the effect of a limited machine precision on the evaluation of
the nodal displacements and their numerical derivatives with respect to the material
parameters

It is clearly visible that if the .dat output is used, the precision of nodal displace-
ments is limited to 0.001 mm. Although such precision is sufficient for the calcula-
tion of reduced observations dy in the LSA (see eqn. 3.47), the quantisation effects
would lead to a wrong computation of the design matrix A. In fact, the difference
quotients used to evaluate Ap (see 3.63) would be affected by strong numerical
errors, such as subtractive cancellation.

3.5.3. Step size for the numerical derivatives of a non-linear
function

Since the function u = u(E) for the simply supported beam described in section
4.2 is not linear (u ∝ 1

E
), the values of its numerically computed derivatives within

Ap vary depending on the step size ∆p (see eqn. 3.63). Analytically, the smaller
the step ∆p, the more accurate is the estimation of the local derivative. However, if
the step is too small, the numerator of the difference quotient may be comparable
with the numerical precision of its machine representation (epsilon), i.e. the dis-
tance to the next floating point number, for an unchanged exponent (see fig. 3.21).
The order of magnitude of the minimum step size that does not provoke such nu-
merical errors has been determined empirically, by calculating the value of some
selected elements of the Jacobian Ap for various step sizes. Indeed, the entries of
Ap mostly affected by quantisation and flooring errors are the smallest ones, i.e.
Apn,1 and Ap1,m, which correspond to the bottom-left and top-right cells in each of
the matrices depicted in fig. 3.20.

Fig. 3.22a depicts the value of Apn,1 for different values of the relative step size
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Figure 3.22: Search of a suitable step size for numerical differentiation. The effect
of a varying relative step size ∆p

p
= ∆E

E
on the numerical differentiation of two

entries within Ap. Case of a simply supported beam subdivided in 36 partitions
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∆p

p
= ∆E

E
. For comparison, also the corresponding values of the largest entry of

Ap is plotted in fig. 3.22b. It is possible to see show that for values of ∆E below
10-6 E, the calculation of the numerical derivative becomes unstable. Conversely,
for values of ∆p growing above 10−2E, the one-sided difference quotient estimates
the slope of a secant that progressively diverges from the local tangent. Therefore,
the step size has been restricted within the range from 10−2E to 10−4E, in order to
get an accurate estimate of local derivative without triggering numerical errors.

3.5.4. Precision of the LSA implementation
The minimum magnitude of the noise on the observations that can be handled cor-
rectly by the LSA has been investigated. To do so, another closed-loop simulation
has been performed and the ratio between the a-priori variance factor σ2

0 and the
a-posteriori one s2

0 has been analysed.

The model used for this analysis is conceptually similar to the one described in
section 3.4.4, although the size and the mechanical properties of the simulated beam
are different. The simply-supported beam is 6 m long, with a rectangular cross
section 30 cm wide and 40 cm high. The beam is loaded with 121 kN at mid-
span, and the modelled material is linear isotropic (E = 11 GPa, ν = 0). The beam
is discretised with a single partition of C3D8 finite elements, each with a size of
5×5×5 cm3. The observations consist of 197 displacements equally spaced along
the centre of the beam’s width, in correspondence of the location of the nodes. For
each side, the two outermost nodes have been excluded from the analysis because
of their limited displacements, because the extremities of the beam are vertically
constrained.

The idea behind this analysis is that by progressively decreasing the noise on the
observations, a set of residuals of the same order of magnitude of the numerical
errors inherent in the proposed algorithm shall be eventually reached. If the VCM
of the observations is correctly scaled, the expected value of the ratio σ2

0

s20
equals 1;

otherwise, the ratio s2
0/σ

2
0 diverges from the unity. For example, given r = 196

degrees of freedom, the χ2 test is rejected with a significance level α = 0.05 when
the following inequality is true:

s2
0

σ2
0

>
χ2
r(1− α)

r
=

229.7

196
= 1.17 (3.65)

As shown in fig. 3.23, the algorithm and its LSA work properly for noise with an
order of magnitude larger than 0.01 mm. For smaller noise levels, the χ2 test is not
satisfied anymore.
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4. Application cases

In order to evaluate the strengths and limits of the proposed method, three applica-
tion cases are presented herein: a steel beam, an alloy plate, and a cross-laminated
timber (CLT) slab. The first two examples are based on synthetic data, whereas the
third one is based on real data. Differently from the validation simulations detailed
in sections 4.2 and 4.3, the synthetic application examples include the generation
of realistic noisy point clouds. Moreover, the CLT slab is not the only real struc-
ture that has been monitored while developing this thesis. In fact, during an early
stage of development of the presented identification method, the deformation of a
snow structure has been analysed and the determination of its density and viscosity
has been attempted (Serantoni et al., 2017). However, this experiment has not been
included in the thesis as the employed method does not correspond to the formula-
tion presented herein, and therefore does not represent a valid testing. Nevertheless,
the gathered experience has been extremely useful for the definition of the meth-
ods’ requirements and for circumventing major pitfalls that can be encountered in
practice.

An important question to consider when interpreting the outcomes of the proposed
method is: within which limits can an estimate of the material parameters be con-
sidered equal to the expected ones? Or in other words: what is the relationship
between a certain structural damage and its effect on the estimation of the struc-
ture’s stiffness? How big is a useful detection? The answer depends strongly on the
kind of investigated structure, i.e. its geometry and its material. For example, let us
take as model the steel beam that is been analysed in section 4.2. If a 1 mm thick
uniform corrosion on a single face of a cross section takes place1, the height of the
cross section h decreases by 4%, determining a decrease of the flexural stiffnessEJ
of 11.5%. Indeed, the moment of inertia of a rectangular cross section is J = bh3

12
.

The application example presented herein has been designed with the following
specifications in mind:

• the maximum displacements of the structure lie within the range of the ac-
curacy typically achieved with a terrestrial laser scanner over distances of a
few meters (approx. 1-5 mm), in order to analyse both the cases in which the
signal-to-noise ratio for a single point of the point cloud is smaller or larger

1Corrosion allowance defined by the norm ISO 9223 for weathering steel, corrosion class C3 for
urban areas - mild class
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than 1;

• the stress is kept below the yield point in the whole structure, so as to comply
with the assumption of linear elastic material, as local non-elastic effects (e.g.
cracks, plastic hinges) cannot be modelled by the employed FE model;

• a simple geometry and easily-definable boundary conditions, to provide for
easy reproducibility in laboratory environment, in case of future real experi-
ments.

Because of these specifications, the most suitable materials to be analysed are the
one that can undergo large strains, i.e. they feature a large yield strain εy = fy/E
For example, concrete is not a suitable material to be monitored because it can un-
dergo only relatively moderate strain before cracking. Tab. 4.1 provides the main
mechanical properties of some common construction materials mentioned through-
out this thesis.

Table 4.1: A list of construction materials and their mechanical properties.

Material E [GPa] ν [-] ρ [kg/m3] fy [MPa] εy [µε]
Steel S235 210.0 0.30 7850 235 1119
Alum. alloy 5083 72.0 0.33 2650 228 3167
Concrete C25/30 31.5 0.20 2500 2.6 (tens.) 83
CLT C24 11.0 ∼0.4 436 24 2182

4.1. Numerical simulation tool
For the application cases described in sections 4.2 and 4.3, a numerical simulation
tool has been employed, in order to validate the entire workflow of the structural
identification, from the TLS data acquisition to the parameter estimation. This sim-
ulation tool integrates a generator of synthetic TLS point clouds upstream of the
identification algorithm, as described in the previous chapter. This tool can be used
for the following scopes:

• prediction of the expected accuracy of the results before the actual measure-
ments, in analogy to the pre-analysis of geodetic networks;

• configuration assessment, i.e. scenario simulation and optimisation of the
main scanning settings (i.e. location, resolution, and precision);

• validation of the accuracy of the algorithm (closed-loop simulation), i.e. the
resulting material parameters and their standard deviations are compared to
the ground truth values used within the simulation stage.

A conceptually similar tool has been developed for the optimal location of the scan-
ner by Soudarissanane (2016), who developed a greedy algorithm that returns a min-
imal number of stand points of the sensor, given a 2D scene and some constraints
on the admissible ranges of incidence angle and distance. Herein, the simulations
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have been conducted, instead of real measurements, in order to (i) better control
the boundary conditions and the noise levels of the observations, (ii) have nearly
arbitrary flexibility regarding the object shape and material properties, and (iii) set
the ground truth with a quasi-arbitrary level of precision for assessing the accuracy
of the results.

The synthetic scan generation needs the following data as input:

• a FE model of a structure and its location;

• a loading scenario of the structure;

• the scanner location and orientation;

• the scanning settings of the scanner, i.e. its resolution and accuracy.

From the operative point of view, the ground truth displacements between the refer-
ence and the deformed states are simulated directly while creating an Abaqus .inp
input file. Subsequently, two .obj geometry files that describe the shape of both the
reference and the deformed states of the structure are exported and used as input for
the synthetic scans. The boundary conditions (BC), although they can be chosen
freely, have been designed to be realistic and as simple as possible in order to be
able to validate the FE results with explicit analytical expressions, when possible.
The only important aspect is that the BC of the scanned model coincide with the
ones used within the solving FE model.

The levels of normally distributed noise that are applied to the simulated measure-
ments can be defined freely. However, due to the finite internal precision of the spe-
cific adopted implementation of the algorithm and the piecewise linear deformed
shape of the deformed FE mesh, the generation of synthetic scans introduces ad-
ditional numerical errors that attain the size of 0.02 mm. On one hand, this is
practically irrelevant because all market available scanners have significantly higher
noise levels (see tab. 2.1); on the other hand, this is theoretically relevant, because
the simulations cannot be used to investigate the achievable accuracies with lower
noise levels e.g. if new measurement technologies become available. The simula-
tion scenarios have been pragmatically restricted to noise levels σρ above 0.1 mm
(see fig. 3.23). In this way, the impact of the numerical errors does not exceed 20%.

The scanning random deviations have been modelled by simulating the measure-
ment process of a TLS, and adding random deviations on all the three recorded
observables, i.e. the range ρ, the horizontal angle ϕ, and the vertical angle θ. The
noise realisation is random for every simulated scenario, in order to approximate
reality and reduce the generation of biases due to a specific random realisation. An
explanatory bi-dimensional sketch is presented in fig. 4.1. In the actual 3D case,
both the vertical and the horizontal angles are considered. The scans are synthetic-
ally generated by intersecting the rays emitted from the centre of the instrument with
the FE mesh, the nodes of which are exported from Abaqus CAE as .obj format files
and then triangulated. The calculation of the coordinates of the point where each ray
intersects the triangulation of the FE nodes has been performed following the ap-
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Figure 4.1: Generation of synthetic scans, including the effects of random devi-
ations on angles and distances (2D situation for better readability). The scanner
with instrumental centre S sends a signal in the direction α + εα and records the
direction α. The actual beam intersects the surface in the point A, and the measured
distance is d + εd. As a result, the stored polar coordinates (d + εd , α) represent
the point A”, whereas an error-free scanning system (εα = εd = 0) would have
measured the point A0

proach developed by Möller and Trumbore (1997) and implemented by Tuszynski
(2019).

Additionally, in the validation tests, ΣÊÊ has been calculated by multiplying the
cofactor matrix for the a-priori variance factor σ0, instead of the a-posteriori one
s0. In this way, ΣÊÊ is not influenced by the incidental distribution of the residuals.
However, since the noise is generated accordingly to Σdd,meas, the ratio between
the posterior and the prior variance factors lies in the interval [0.99 - 1.01], i.e. very
close to the unity.

4.2. Simulated simply supported beam
The first of the two application cases with synthetic data consist in the analysis of
a simply supported beam. The results shown in this chapter extend and detail the
ones described in (Serantoni and Wieser, 2019). More precisely, the model consists
of a 2 m long, flat beam of S235 steel, with a cross section 150 mm wide and 25
mm high. S235 steel is a very common type of structural steel; its properties are
listed in tab. 4.1. The bar is subject to a three-point flexural test without torsion, and
the vertical load at mid-span (4 kN, marked as F in fig. 4.2) has been distributed
over the whole cross section, in order to minimise local deformation effects and to
approximate the ideal case of a simply-supported slender beam. The self-weight of
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the bar is taken into account. In this way, the structural scheme is a very simple one,
and the FE results could be validated by hand calculations.

In fact, the general shape of the Euler-Bernoulli bent beam is the following:

u(x) = −
x∫

0

 x∫
0

M(x)

E(x)J(x)
dx+ C1

dx+ C2 (4.1)

where M is the bending moment, J is the cross-sectional modulus of inertia, E
is the Young modulus of the cross-section, x is the curvilinear coordinate along
the beam, and C1 and C2 are integration constants that depend on the boundary
conditions, i.e. the kind of restraints at the beam ends and the applied load. In the
case of a simply supported beam u(0) = u(l) = 0 and, for a beam of length l, with
uniform cross-section, and with a concentrated load ad midspan F and a distributed
load q holds:

u(l/2) =
Fl3

48EJ
+

5ql4

384EJ
(4.2)

The simulated scans have a resolution in both azimuth and elevation angle of 1 gon
and cover the extrados of the beam, i.e. the bottom surface, where the longitudinal
fibres experience traction. Although actual scanners can scan at resolutions much
finer than 1 gon (see tab. 2.1), this value has been chosen because it is sufficient to
denote the measurement as areal, yet keeping the computational effort of the scan
generation low. Additionally, the choice of neglecting the correlations among the
point of the point cloud (see 2.1.2) is particularly valid for scans with moderate res-
olution, because the laser footprints do not overlap. The scan data of the sides of
the beam are not processed because there would be almost exclusively in-plane dis-
placement of surface points, and the laser scan is not sensitive with respect to them.
As for the standard deviations of the measurements, both the angular accuracies (see
eqn. 3.10) have been set equal to 0.5 mgon. Instead, six levels of range accuracy σρ
have been simulated (0.1, 0.5, 1, 2, 5, and 10 mm). For this analysis, the coordinate
system has been defined such that the centre of the beam extrados lies in the point
(0, 0, 2.5), the y-axis is parallel to the long edge of the beam, and the xy-plane is
parallel to the bottom and top surface of the beam (see fig. 4.2).

In order to constrain the horizontal rigid motion of the beam and preserve its sym-
metric deformation, the boundary conditions (x=0, y=0) have been applied to the
nodes located at midspan only.

In sight of potential future laboratory experiments, a test about the suitability of the
chosen finite elements have been conducted as well. Nevertheless, the choice of the
FE elements has no impact on the results of closed-loop experiments, as long as the
same type of element is used in both the stages of generation of the point cloud and
of identification of the parameters. Given a mesh made of elements with the size of
10× 10× 2.5 mm3, the vertical deflection at mid-span has been calculated for three
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Figure 4.2: Sketch of the experimental setup, including the system of coordinates
(in blue) and the sensor location (in red). The sketch is not drawn to scale

element types (C3D8, C3D8I, and C3D8R; see section 2.2) and compared with the
analytical solution for a slender beam according to the Euler-Bernoulli theory (see
eqn. 4.2). The results are summarised in tab. 4.2. The element that provides the
results most in agreement with the analytica deflection at midspan is C3D8R, and it
has therefore been chosen for conducting the simulation.

solution analytical FEM
C3D8 C3D8I C3D8R

u(l/2) [cm] -1.77 -1.65 -1.76 -1.77

Table 4.2: Choice of the finite elements: comparison of the deflection at midspan
with the analytic solution

Figs. 4.3 and 4.4 show the deformed steel beam, as modelled in Abaqus, while fig.
4.3 shows the 3D deformed shape, colour coded according to its vertical displace-
ments The grid-like pattern on the beam represents the individual C3D8R finite
elements. Both the field of deformations and the field of von Mises stresses are
symmetric with respect to the midspan section. The displacement in y direction is
approximately null for the whole beam, except for the Poisson effect (see fig. 4.4b).
The nodes close to the cross section at midspan do not move neither in x nor in y
direction because of the applied boundary conditions.

4.2.1. Results for a single sensor location
With the synthetic sensor placed in the location (0,0,0), the beam has been mon-
itored by using point clouds acquired with six different ranging accuracies. An

72



Figure 4.3: 3D deformed shape of the steel beam. The colour coding represents the
vertical displacement uz. The deformation is magnified 10x

(a) ux [m]

(b) uy [m]

(c) uz [m]

(d) von Mises stress [Pa]

Figure 4.4: Steel beam: spatial distribution of displacements in the three directions
and von Mises stresses
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example of the results obtained for σρ = 1 mm is shown in fig. 4.5. The results are
presented in the same format as the outcome of the validation shown in fig. 3.16.
The main difference is that for the results presented in this chapter the NN interpol-
ation step (see section 3.3.3) is also included in the analysis. Therefore, the noise
levels are not specified directly for the vertical displacement, but for the ranging
accuracy of the sensor σρ. Additionally, the position of the measurements reflects
the scanning pattern instead of directly corresponding to the nodes of the FE model.
Because of that, the pattern of Ê along the beam is similar for different numbers of
partitions (e.g. for m = 8 and m = 12).

Fig. 4.5 shows that the value of Etrue lies within the 1σ error bars for all the
estimated parameters, except for the scenario with only 1 partition, for which
Ê − Etrue = 1.56 σÊ . Moreover, similarly to fig. 3.16, an increase of the number
of partitions provokes an increase in σÊ , the pattern of which is symmetric along
the x axis. This last two remarks are corroborated by figs. 4.6 and 4.7, respectively.
More precisely, for a realistic value of σρ = 1 mm, the ratio σÊ/Etrue amounts to
0.5% for one partition, to 3.4% for two partitions, and to 1.7% for the central par-
tition of three. These values coincides with the one shown by fig. 3.16, because
for this particular scanning setup the uncertainty on the nodal displacements almost
coincide by the uncertainty on the range measurements.

Fig. 4.7 shows the estimation of σÊ (i.e. the length of the error bars in fig. 4.5) for
different levels of noise σρ. As expected, the highest accuracy is obtained at mid-
span for all the scenarios. Moreover, the minimum number of partitions sufficient
to have no improvement in the estimation of Ê (i.e. σÊ ≈ σE0) for at least one
partition decreases for a growing σρ.

The dependence of σ̄Ê on σρ is shown in fig. 4.6. For each simulated scenario, σ̄Ê
is the average of all the σÊ across all the partitions. Predictably, all the relationships
are monotonically increasing and do not intersect, except for the scenario with 2
partitions, on the basis of its symmetric structure (see also section 3.4.4). As also
shown in fig. 4.5, the case of only one partition delivers much more accurate results
than the case of multiple partitions.

The correlations among different parameters have been investigated as well. Fig. 4.8
shows the correlation matrices for six scenarios (the combinations of three number
of partitions and two σρ). Each entry of the correlation matrix has been calculated
from the VCM of the estimated parameters as follows:

corr(Êi, Êj) =
σÊiÊj√
σ2
Êi
σ2
Êj

(4.3)

It is possible to observe that all the off-diagonal values are negative. This is a
plausible result because, if a partition has an overestimated value of E associated,
the other partitions should exhibit an underestimated value in order to compensate
and follow the general shape of the deformation, and vice-versa. More precisely,
the lower values close to the main diagonal imply that the anti-correlation is larger
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for the partitions that are close each other, while the large values in the centre of
the matrix hint again that the partitions that influence the global behaviour of the
beam the most are the ones close to midspan. Lastly, the absolute values of the
correlations decrease for an increasing number of partitions. The intuitive reason is
that a parameter change for a small partition influences the rest of the structure less
than a large one.

The fig. 4.9 explicitly shows the 2D scatter of the measurements and the elastic
curve of the nodes of the beam, for different levels of ranging noise σρ. In this
figure, the signal-to-noise ratio of the measurement can be immediately observed.
Is it also possible to observe that the point density decreases by moving from the
centre of the beam towards one of the supports, because of the relative position of
the scanner with respect to the bent beam. For the scenarios with σρ ≤ 5 mm, the
underestimation of the stiffness of the beam is quite moderate, despite the signal-
to-noise ratio is remarkably low.

4.2.2. Results for multiple sensor locations
Besides the analysis on different range accuracies and number of partitions, also the
effects of a change of sensor location have been examined. In practice, the estima-
tion of E has been repeated for 36 standpoints in the vicinity of the simulated beam.
σρ has been kept constant (2 mm) for all the simulated standpoints. Correspondingly
to the simulations detailed in chapter 3, E0 = Etrue = 210 GPa.

The output of this analysis are the two heatmaps depicted in figs. 4.10 and 4.11,
which represent the spatial distribution of Ê, and σÊ , respectively. The values have
been estimated in correspondence of the standpoints, while the colour coding has
been bi-linearly interpolated among them for visualisation purposes. The stand-
points are arranged on a non-regular 6×6 grid, the spacing of which is in both
dimensions [0, 0.125, 0.125, 0.25, 0.5, 1] m. Since the beam and the applied forces
have two perpendicular axes of symmetry parallel to the xy plane, only the sensor
standpoints belonging to the a single quadrant have been considered.

The most evident result is that both the accuracy and the precision of the identific-
ation degrade for standpoints far from the beam. No clear bias pattern is recognis-
able, as the Ê estimated with standpoints far from the beam show large instability
but no clear bias.

Moreover, the standpoints aligned with the longitudinal axis of the beam are the
ones delivering the most unstable results. Indeed, for these points, a small change
of configuration can cause a large change in the amount of scanned points on the
bottom surface of the beam. In fact, at a large distance, apart from the problems
caused by an unfavourable angle of incidence, only few rows of scanned points
might actually illuminate the surface of the structure. This effect would be less
problematic if the angular increment of the scan were smaller, so that the amount of
scanned points on the surface is less influenced by the scanner configuration.

Although these results contemplate only one realisation of the simulated point
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Figure 4.5: Result of a full simulation with σρ = 1 mm, and E0 = 210 ± 10 GPa.
The horizontal axes show the position along the 2 m long beam, while the vertical
axes represent the estimated Young modulus of each partition, in GPa. The vertical
error bars depict the 1σ confidence interval for each partition. The dashed black
line represents the value of the ground truth Etrue = 210 GPa.
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Figure 4.6: σ̄Ei for various number of partitions and various noise levels σρ, E0 =
Etrue = 210 GPa
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Figure 4.8: Correlation matrices for 3, 8, and 24 partitions and two noise levels σρ.
E0 = Etrue = 210 GPa
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(a) σρ = 0.1 mm (b) σρ = 0.5 mm

(c) σρ = 1 mm (d) σρ = 2 mm

(e) σρ = 5 mm (f) σρ = 10 mm

Figure 4.9: 2D view of the measured displacements (in red), the simulated dis-
placements (in black), and the FE nodes in the undeformed configuration (in blue).
Results for the scenarios with 1 partition. The scale is adjusted to account for the
various values of σρ
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cloud, it is possible to draw some indications about the position of the suitable
standpoints for a given accuracy in estimating Ê. For this application scenario,
the figs. 4.10 and 4.11 suggest that the standpoints within the region (x > 0.5 m,
y > 1 m) deliver an estimation of Ê that deviates from the Etrue below 7%, while
standpoints within the region (x > 0.125 m , y > 0.125 m) deliver results with a de-
viation from the Etrue below 1.5%. The maximal σÊ for the two mentioned regions
amount to 7% and 1%, respectively. In addition, given the large sensitivity to the
random deviations of the standpoint locations, a Monte Carlo simulation to evaluate
the heatmap of σÊ would be also beneficial.

Figure 4.10: Deviation of the estimated value Ê as percent ratio of the ground
truth Etrue. The contour of the scanned beam is outlined in blue and the black
dots represent the simulated standpoints, while the colour coding is are interpolated
between them
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Figure 4.11: Estimated standard deviation of the Young modulus σÊ . Values ex-
pressed as percent ratios to the ground truth Etrue. The representation of the contour
of the beam and of the standpoints is the same as in fig. 4.10

4.3. Simulated corner-supported plate

The second application case is very similar to the first one, presented in section 4.2.
Instead of a simply supported beam, the investigated object is a corner-supported
plate, which has a surface of 6×6 m2 and a thickness of 5 cm. Such specifications
have been chosen in order to account also for a planar object, and not only for a
linear one. The plate is synthetically scanned from a distance of 2.5 m, below the
centre of the extrados. The chosen material is the aluminium alloy 5083, which
is actually often manufactured in large plates, and it is commonly used for mar-
ine and chemical applications, because its chemical resistance, good strength, and
suitability to be welded. Its proprieties are listed in tab. 4.1.

As for the FE modelling, C3D8R elements with a size of 150×150×5 mm3 have
been used, and the plate has been restrained as follows:

• the four corners have been restrained vertically (uz = 0);

• one node of the plate has been restrained horizontally in both directions
(ux = uy = 0);

• a second node of the plate as been restrained horizontally in one direction
(ux = 0).

In this way, besides the four vertical supports, only the minimum number of re-
straints (three) prevents the rigid body motion of the plate within the horizontal
plane, and the deformation in the horizontal directions is symmetric. The 3D de-
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Figure 4.12: 3D deformed shape of the alloy plate. The colour coding represents
the vertical displacement uz. The deformation is magnified 10x

formed shape of the plate is depicted in fig. 4.12, while the displacements of the slab
in the three directions and the field of the von Mises stress are shown in fig. 4.13.

4.3.1. Results

Because of the square shape of the plate, it has been subdivided in 1, 2×2, 3×3,
4×4, and 5×5 partitions. The results of the identification of the Young’s modulus
are depicted in figs. 4.14 to 4.25.

Even if the analysis of the alloy plate is very similar to the one of the steel beam,
the graphical representation of the results is quite different because of the 2D ar-
rangement of the partitions. For each level of ranging accuracy σρ, two figures
are provided: the first one illustrates the distribution across the various partition of
Ê, while the second one shows their accuracies σÊ . The values of the results are
colour-coded.

Several remarks about these results coincide with what already observed in section
4.2.1:

• σÊ increases for growing values of σρ;

• the symmetry of the structure is reflected in the spatial distribution of both Ê
and σÊ;

• the least sensitive regions of the plate are the one close to the supports;

• the ground truthEtrue lies within Ê±2σÊ for all the cases with σρ ≥ 0.5 mm;

• the precision of the identification degrades of several orders of magnitude
when increasing the number of the partitions.
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(a) ux [m] (b) uy [m]

(c) uz [m] (d) von Mises stress [Pa]

Figure 4.13: Alloy plate: spatial distribution of nodal displacements and von Mises
stresses

Regarding the last remark, the uncertainty on Ê for the case of 5×5 partitions is
already very close to σE0 even for σρ = 0.1 mm, which is a very low value com-
pared to the accuracy of the most market available laser scanners (see tab. 2.1).
Therefore, for this application example, it is quite difficult to perform a successful
identification with a low level of granularity, i.e a large number of partitions. Any-
way, the opposite side of this statement is very positive: a very high precision can
be reached when using few partitions. In fact, for a value of σρ = 1 mm, the ratio
σÊ/Etrue amounts to 0.03% for one partition, and to 0.71% for 2×2 partitions. For
a value of σρ = 2 mm instead, σÊ/Etrue equals 0.06% for one partition, and 0.83%
for 2×2 partitions.

Lastly, for a very low ranging noise (σρ = 0.1 mm, see fig. 4.14) the values of Ê
are very scattered across the plate for 3×3 and 5×5 partitions, and the deviations
from Etrue abundantly exceed σE0 . The probable reason of such effect is that the
geometric measurement have a much larger weight within the LSA, and the solution
tends to ”overfit” the measurement noise.
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Figure 4.14: Alloy plate, Ê for different numbers of partitions, σρ = 1× 10−4 m,
Etrue = 72 GPa
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Figure 4.15: Alloy plate, σÊ for different numbers of partitions, σρ = 1× 10−4 m,
Etrue = 72 GPa
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Figure 4.16: Alloy plate, Ê for different numbers of partitions, σρ = 5× 10−4 m,
Etrue = 72 GPa
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Figure 4.17: Alloy plate, σÊ for different numbers of partitions, σρ = 5× 10−4 m,
Etrue = 72 GPa
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Figure 4.18: Alloy plate, Ê for different numbers of partitions, σρ = 1× 10−3 m,
Etrue = 72 GPa
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Figure 4.19: Alloy plate, σÊ for different numbers of partitions, σρ = 1× 10−3 m,
Etrue = 72 GPa

87



1x1 2x2 3x3

4x4 5x5

69

70

71

72

73

74

75

[GPa]

Figure 4.20: Alloy plate, Ê for different numbers of partitions, σρ = 2× 10−3 m,
Etrue = 72 GPa
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Figure 4.21: Alloy plate, σÊ for different numbers of partitions, σρ = 2× 10−3 m,
Etrue = 72 GPa
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Figure 4.22: Alloy plate, Ê for different numbers of partitions, σρ = 5× 10−3 m,
Etrue = 72 GPa
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Figure 4.23: Alloy plate, σÊ for different numbers of partitions, σρ = 5× 10−3 m,
Etrue = 72 GPa
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Figure 4.24: Alloy plate, Ê for different numbers of partitions, σρ = 1× 10−2 m,
Etrue = 72 GPa
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Figure 4.25: Alloy plate, σÊ for different numbers of partitions, σρ = 1× 10−2 m,
Etrue = 72 GPa
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4.4. Cross-laminated timber slab
This section refers to the publication (Serantoni et al., 2018), in which the Young’s
and shear modulus of a corner-supported cross-laminated-timber slab have been es-
timated. The behaviour of this object has been analysed because this slab is the
first real-scale, long-term test of an innovative glued connection allowing the bond-
ing of timber slabs parallel to the timber’s grain. The slab has been left outdoors
for several months, thus undergoing cyclical temperature and humidity changes.
More details about the project are provided by Zoellig et al. (2019). As fig. 4.26
illustrates, the monitored CLT slab is composed of four single square slabs glued
together, supported by four wooden posts.

4.4.1. Modelling
The cross-laminated timber is a composite material made of several stacked solid
wooden boards glued together. The boards are alternatively oriented in two dir-
ections, generally 0° and 90°, and their number is often odd. In fact, wood is an
orthotropic material, i.e. its mechanical properties differ depending on the direc-
tion along which they are measured. CLT structural slabs are often employed in
construction as wall and floor elements because they are able to withstand both in-
plane and out-of-plane loads. The CLT is an example of engineered wood, and,
compared to solid wood, it features more standardised mechanical properties; fur-
thermore, single structural members made of CLT can be manufactured in a wider
range of shapes. An overview on the CLT and its mechanical properties is provided
by Schickhofer et al. (2016).

For this example application, the material properties have been defined following
the standard DIN EN 384:2016, expressing the Young modulus parallel to the grain
E90 as a function of the mean Young modulus parallel to the grain Em. Similarly,
the rolling shear modulus Gr is expressed as a function of shear modulus G. The
values of the three Poisson ratios along the principal directions (see fig. 4.27) are
taken from (Bodig and Jayne, 1982). Therefore, the material properties have been
defined as shown in tab. 4.3, and the symmetric compliance tensor C (i.e. the
inverse of the stiffness tensor) of the orthotropic material depends only on E and it
assumes the following form:

C =



1
E

−νRL
E/30

−νTL
E/30

0 0 0
−νLR
E/30

1
E/30

−νTR
E/30

0 0 0
−νLT
E/30

−νRT
E/30

1
E/30

0 0 0

0 0 0 1
E/16

0 0

0 0 0 0 1
E/16

0

0 0 0 0 0 1
E/160


(4.4)

The wood of the analysed CLT is made of spruce, and belongs to the strength class
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Figure 4.26: Representation of the CLT slab, including the supports and the FIBC.
Image courtesy of Marcel Muster

Figure 4.27: Definition of the principal directions of timber: longitudinal (L), trans-
verse (T) and radial (R). Modified from (Fahrni, 2016)
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E0 E90 G Gr νLR νLT νRT

Em
Em
30

Em
16

G
10

0.37 0.42 0.47

Table 4.3: Timber stiffness relations and values of the Poisson’s ratios. The first in-
dex indicates the direction of application of the force, while the second one indicates
the direction of the reaction

C24, which denotes a characteristic flexural strength of 24 MPa. Therefore, ac-
cording to the standards DIN EN 384:2016, its nominal value of Em is 11 000 ±
2249 MPa. The density of the CLT amounts to 436 kg/m3.

4.4.2. Measurements

The slab has been monitored in three epochs: some hours after the construction,
with the slab still supported in several locations by shoring props (epoch 0); 20 hours
later (epoch 1); and 44 hours later (epoch 2), after the application of 12 flexible
intermediate bulk containers (FIBC) filled with cobbles. Thus, between the epochs
0 and 1 the structure was expected to deform because of its own weight only, while
the deformations between the epochs 1 and 2 is due to the applied live load. The
point cloud has been acquired with a Faro Focus3D X330 scanner, the specifications
of which are listed in tab. 2.1.

The slab’s extrados was scanned from below (see fig. 4.28a). At epoch 0, a single
scan was performed. Since some occlusions were noticed while visualising the
point cloud of epoch 0, at epochs 1 and 2 the scans were taken from four standpoints.
The four scans were registered with the software package Faro Scene, with the aid
of chequerboard targets mounted at the base of the vertical supports of the slab as
stable references within each epoch (see fig. 4.28b).

The supports have likely shortened because of the applied loads, and the measured
deformations were corrected for this effect by subtracting the bi-linear form fitting
the vertical displacement observed at the four corners. In fact, the rigid motion of
the slab is not relevant for the purposes of this analysis, only the slab deformations
are. An example of measured displacement field after the correction for the sinking
supports is provided in fig. 4.29b.

Moreover, the vertical displacements obtained with the laser scans have been suc-
cessfully validated against a sample of 19 bolts, the vertical displacement of which
has been measured with classical geometric levelling. The comparison of the meas-
ured displacements of one example bolt located at mid-span along an edge of the
CLT slab is plotted in fig. 4.29a.
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(a) Laser scanner beneath the extrados of the slab (b) Flat chequer-
board target

Figure 4.28: Photos of the TLS monitoring of the CLT slab

(a) Validation of the TLS displacements with
levelling, 1σ error bars

(b) Field of displacements between epochs 1
and 2

Figure 4.29: Comparison of the TLS and levelling monitoring of the CLT slab. The
position of the levelling bolt, the displacements of which are shown in in sub-figure
(a), is represented by a white circle in sub-figure (b) and indicated by an arrow in
fig. 4.26
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Figure 4.30: Vertical loads applied to the CLT slab. The 12 squares indicate the
mass (in kg) and the location of each FIBC. The drawing dimensions are expressed
in mm. Image courtesy of Marcel Muster

4.4.3. Analysis

The symmetric CLT slab is 6×6 m2 large and 26 cm thick. All the layers are 2 cm
thick, except the two innermost ones that are 3 cm thick. Each layer of the CLT has
been modelled singularly, and the bond between the layers has been assumed to be
rigid. The size of the voxels used in the voxelisation step and of the FE elements of
type C3D8 is 15×15×1 cm3.

The total live load amounts to 97.9 kN and includes the vertical pressure exerted by
the twelve FIBC filled by cobbles, and by the weight of a plastic cover supported by
a light timber shed used to protect the slab from rain and snow. The vertical pres-
sures exerted by each FIBC have been modelled individually, and their individual
mass and position is depicted in fig. 4.30.

The main difference between the research presented in (Serantoni et al., 2018) and
the analysis presented herein is the use of the integrated monitoring approach as
defined by Lienhart (2007) and the identification of distinct material parameters
for different partitions of the structure, as described in chapter 3. Moreover, the
displacement has been calculated as described in eqn. 3.6, instead of calculating
directly the distance between the deformed point cloud and the mesh obtained from
the reference point cloud. The range noise σρ is equal to 2 mm herein, correspond-
ing to the range accuracy (1σ) specified in the specification sheet of the used laser
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scanner (see tab. 2.1). This is a quite conservative assumption, because the value
of range accuracy provided by the specification sheet2 is stated to hold for a surface
with 10% reflectivity at a distance of 10 m, and the normal of which is pointing
towards the sensor. As for the angular accuracy, no data are available. The beam
divergence (1/e , half angle) is equal to 0.19 mrad, but this value cannot be con-
sidered a reasonable proxy for the angular accuracy, as there exists no established
relationship between these two quantities. Therefore, an angular accuracy of 0.004°
has been assumed, similar to a comparable laser scanner produced by a different
manufacturer (Z+F Imager 5016, see tab. 2.1). As a result, because of the model-
ling of the random deviations described by eqn. 3.12, the spatial distribution of the
σδ across the slab is rather uniform.

Herein, the surface curvature has been assumed negligible, and the normals over
the entire analysed surface area are approximately parallel to the vertical, i.e. the
z axis of the coordinate system. Therefore, the interpolation of the node-wise per-
pendicular displacements can be simplified by projecting the scanned points onto
the surface of the reference FE model along the z axis. The distances between each
point and its projections are then used as measured values of the signal to be in-
terpolated. In this application case, all the forces are directed vertically and the
main direction of the structure’s deformations is vertical as well, as no large lateral
displacements are expected.

4.4.4. Results for a single partition
The three different scenarios corresponding to the three possible time intervals
among the three measured epochs are listed in tab. 4.4. Each scenario is named
after the epochs of the scans involved to derive the reference and the deformed
point clouds, e.g. the scenario ”0:2” encompasses the scans taken at the epochs 0
and 2. The numerical results of the identification for a single partition are presented
in tab. 4.4, and they show that the estimated Young’s deviate up to 13.7% from the
a-priori value, with a minimum deviation of -4.5% for the scenario ”0:2” Although
plausible, unfortunately it was not possible to validate these results by a planned
independent destructive test, which was part of a project at a different chair. Indeed,
the destructive test has been postponed to a later date, posterior to the writing of the
present thesis.

Table 4.4: CLT slab, results of the three analysed scenarios for a single partition

scenario loads E [MPa] σE [MPa] s2
0/σ

2
0 [-]

0:1 self-weight 12 287 206.9 0.434
1:2 live load 12 511 68.5 0.704
0:2 self weight + live load 10 509 42.3 0.823

Concerning the accuracy of the model, we observe that the smallest σE is obtained
for the scenario ”0:2”. This is plausible because this is the scenario that features
2faro.com
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the best signal-to-noise ratio, as the measured displacements are the largest and the
sensor accuracy is the same for all scenarios. This phenomenon can be qualitatively
appreciated also looking at fig. 4.31 and fig. 4.32, which show the measured and the
FE-calculated displacements of the slab, along with the spatial distribution of their
differences i.e. the residuals within the LSA. The two figures refer to the scenarios
”0:1” and ”0:2”, respectively. In particular, the displacements vary up to 26 mm,
while the deviations between the predicted and the measured displacements never
exceed 5 mm, and for the majority of nodes they remain below 1.5 mm.

In addition, the calculated variances are probably underestimated because they do
not entirely take into consideration all the error sources of the TLS acquisition,
such as mixed pixels. Moreover, the discrepancies between the behaviour of the
FE model and the one of the actual structure are also probably present. In fact, the
boundary conditions applied to the FE model may be oversimplified, especially as
regards the constraints. This hypothesis is also supported by the values of the ratios
between the a-priori and the a-posteriori variance factors (see tab. 4.4), which are
lower than the unity.

Further, the difference between the estimated and the nominal material parameters
could indicate either that their real values slightly differ from the nominal ones, or
that the FE model has a limited correspondence to reality. First, the volume occu-
pied by the glue in the vertical joint and between the timber layers has been mod-
elled as filled by timber as well. Second, the cyclical changes in temperature and
humidity, provoked some minor superficial cracks, which are not included in the
employed FE model. Third, the TLS measurements may have been locally affected
by the biasing effect of some mixed pixels located very close to the surface. These
mixed pixels are due to cables hanging and to the wooden safety supports below the
slab extrados, which were located especially in area beneath the centre of the slab.
Since the timber is stiffer than the glue, and the presumed mixed pixels would be
located below the slab, these two effects would lead to an underestimation of the
slab’s stiffness. Other geometric artefacts may also have been generated by surface
irregularities scanned from different standpoints. Indeed, the point clouds have been
cleaned by only removing the points that recognisably do not belong to it, however
no further outlier removal algorithm has been implemented. In order to mitigate
the effects of such artefacts, it is possible to follow three strategies: assign in the
LSA lower weights to the affected nodes by increasing their associated variances;
include in the processing the unbiased deformations only; or implement an outlier
detection and removal algorithm. The third option would actually be the prefer-
able one, because the first one would mix the handling of systematic and random
deviations, whereas the second one would need detailed prior information about
the biases. Although the discussion on outlier detection algorithms is outside the
scope of this thesis, for this application example, their implementation within the
LSA is not recommended. In fact, outlier detection methods such as data snooping
(Baarda, 1968) and Danish method (Krarup, 1980) are computationally expensive
because they require multiple iterations of the LSA. Since the available measure-
ments are homogeneous (i.e. vertical positions acquired with TLS and geometrical
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Figure 4.31: CLT slab, scenario 0:1, 1 partition. Spatial distribution of the
FE-calculated nodal displacements (grey mesh) and the measured ones (coloured
mesh). The colour coding represents their difference

Figure 4.32: CLT slab, scenario 0:2, 1 partition. Same representation as fig. 4.31
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levelling), a more sensible option is to screen the outliers at the level of the geomet-
rical observations.

4.4.5. Results for multiple partitions
The three scenarios have been analysed for four sets of partitions (1, 2×2, 3×3,
4×4), similar to the simulations described in section 4.3. Also the visualisation of
the results is similar: the figs. 4.33 to 4.38 present the estimated Young moduli
Ê and their standard deviations σÊ in colour-coded 2D plots. In all the figures
depicting Ê, the central value of the colour bar coincides with E0 = 11 GPa. Unlike
the results presented in section 4.3, when subdividing the CLT slab in multiple
partitions, the σÊ close to the supports is not larger than in the centre of the slab. The
reason of this difference could be the spatial distribution of the mentioned mixed
pixels, which are actually concentrated below the centre of the slab.

Moreover, the fact that the CLT slab is composed of 4 glued pieces (see fig. 4.26)
leads to the reasonable expectation that the variability of Ê within a quarter is smal-
ler that across different quarters. However, this cannot be clearly seen in any of the
figs. 4.33, 4.35, and 4.37. What can be observed instead, is that for every scenario,
both the patterns of Ê and of σÊ appear to be consistent among the 3 analyses in-
volving more than one partition, suggesting that the pattern of the results depends on
the actual distribution of the measurements and not on the local random deviations
of the acquired point clouds. For example, the bottom-right quarter appears less
stiff than both the bottom-left and the top-right quarters for all the analysed epochs
(see figs. 4.33, 4.35, and 4.37). Similar to the application case of the alloy plate
(see section 4.3.1), the subdivision in multiple partitioning worsen considerably the
formal accuracies σÊ .

Lastly, figs. 4.39 and 4.40 show the same kind of results as figs. 4.31 and 4.32.
By comparing them, it is possible to see that, despite the partitioning provides more
degrees of freedom to the deformed shape, the quality of the fit does not increase
remarkably, as the residuals are due mainly to random deviations and point-wise
systematic errors.

Summarising, TLS is a suitable technique for this task, on the quite stringent con-
ditions that the FE model accurately reproduces the actual and boundary conditions
applied to the monitored structure, and that the systematic measurements errors are
properly taken into account.
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Figure 4.33: CLT slab, Ê, scenario 0:1

1x1 2x2

3x3 4x4

0

0.5

1

1.5

2

[GPa]

Figure 4.34: CLT slab, σÊ , scenario 0:1
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Figure 4.35: CLT slab, Ê, scenario 0:2
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Figure 4.36: CLT slab, σÊ , scenario 0:2
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Figure 4.37: CLT slab, Ê, scenario 1:2
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Figure 4.38: CLT slab, σÊ , scenario 1:2
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Figure 4.39: CLT slab, scenario 0:1 4×4 partitions. Spatial distribution of the
FE-calculated nodal displacements (grey mesh) and the measured ones (coloured
mesh). The colour coding represents their difference

Figure 4.40: CLT slab, scenario 0:2 4×4 partitions. Same representation as in fig.
4.39
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5. Conclusion and outlook

This research represents a first step towards the automation and combination of
TLS deformation monitoring and its mechanical interpretation, thus shifting and
widening the paradigm for geodetic monitoring tasks. More specifically, this work
expands the range of applications of the integrated monitoring approach, as it em-
bodies a novel method to perform the numerical identification of structures by using
point cloud data acquired with terrestrial laser scanners in multiple epochs.

This method has been developed in the framework of integrated analysis, which
relies on the linearisation of a FE model within an iterative LSA. The criterion
underlying the LSA is the matching of the FE-calculated displacement with the
measured ones. Given the flexibility of the integrated monitoring approach, the
method is well suited to process complementary data from additional sensors and
sources. For example, sensor fusion could be used to overcome the limitations of
TLS in detecting in-plane displacements.

Within the LSA, the functional relationship between forces, displacements, and ma-
terial parameters is established by linearising the output of the FE model with re-
spect to the desired parameters, which are either nodal forces or material parameters
within the stiffness matrix. In this way, the FE model it treated as a ”black box”,
and any FE solver can be theoretically used for the scope. Within this thesis, the
software package Abaqus has been used.

Because of the interest in exploiting TLS technology to the best of its capabilities,
the point cloud data have been used not only for the determination of the deforma-
tions of the investigated object, but also to generate the mesh of the FE model. The
generation of the FE model has been conducted by voxelising the volume enclosed
by the point cloud of the investigated structure’s surface. This method has been
developed in order to effectively model free-form 3D objects.

Besides the TLS-measured displacements, which are calculated applying classical
methods of geodetic areal deformation monitoring, also their accuracy has been de-
termined and passed as an input to the LSA. In particular, the variance-covariance
matrices of the TLS-acquired points have been modelled by considering the accur-
acy of the two angular measurements, the accuracy of the ranging unit, and the un-
certainty increase due to non-perpendicular angles of incidence. This stochastic in-
formation has been subsequently interpolated at the FE nodes by using three distinct
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approaches: (i) the classical variance propagation, (ii) the Log-Euclidean interpola-
tion, and (iii) the nearest neighbour search. After a comparison of the performance
of these three alternative approaches, the approach (iii) has been adopted because of
its computational efficiency. However, all three approaches represent viable options
and they may be selected according to the assumptions and properties that hold for
the specific application case.

The estimation of the parameters has been detailed in its general formulation and
for the specific application case of areal displacements. Particular focus has been
dedicated to the pre-elimination of the non-observed nodal displacements, and to
the possibility of automatically subdivide the FE mesh in several partitions, in or-
der to estimate multiple parameters for different portions of the structure. The LSA
has been then validated with closed-loop tests, including a Monte Carlo simula-
tion, which suggested that the hypothesis of equality between the empirical and the
formal standard deviations is not rejected for α > 0.007.

Moreover, some additional investigations on the numerics of the method imple-
mentation lead to the conclusions that (i) an accurate numerically differentiation
requires precise FE displacements, e.g. in double precision, (ii) the suitable range
for the step size used for the numerical differentiation is from 4 to 2 orders of mag-
nitude smaller than E, and (iii) the size of the numerical biases intrinsic in the
implemented realisation of the algorithm is 0.01 mm.

Lastly, the proposed method has been applied on three structures: a simulated steel
beam, a simulated alloy plate, and a real CLT slab. The measurements of the two
simulated scenarios have been created by using a self-developed synthetic point
cloud generator, which takes into account the position of the sensor, its resolution
and its accuracy specifications. Additionally, the point cloud generator has been
also embedded in a simulation tool that enables to plan the measurements and to
predict their expected accuracy before their actual execution.

The application examples showed that the method works and it is particularly ac-
curate when evaluating one value of the Young modulus for the whole structure.
For example, when using data from a laser scanner with σρ = 1 mm, the accuracy
of the estimation of E is below 0.5% for two considered application cases. The
method shows some limitations when estimating a large number of parameters, as
they affects strongly the precision of the results, especially if the a-priori informa-
tion on the corresponding parameters is far from their actual values. Moreover, a
low sensitivity of the different partitions with respect to the sought parameters af-
fects the accuracy of their estimation. Lastly, despite the absence of ground truth
data, the results of the application case with real data are plausible, with a deviation
of 4.5% from the presumed values of E. Various assumptions have been made
across this work and the most critical one is that the structural constraints are expli-
citly specified in the FE model, relying on the engineer’s physical understanding of
the investigated structure, as the CLT application case demonstrates.

The developed method could be further extended and validated by implementing
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the following improvements.

• The set of modelled error sources that may affect the results should be en-
larged, considering further effects such as the registration error, the scan-
ner instability, the atmospheric effects, and the reflectivity- and intensity-
dependent biases.

• Although conceptually equivalent to the identification of the material para-
meters, the determination of the loads acting on the investigated structure
(inverse problem) should be tested and validated.

• The simulation tool should be embedded in a multi-dimensional grid search
algorithm that determines a-priori the optimal scanning setup (i.e. resolution,
accuracy, standpoint location) for a given monitoring case. Additionally, such
planning tool could also be used to define a procedure that helps to decide the
location and the type of additional geodetic sensors, by analysing the sensitiv-
ity of the desired parameters to the available measurements. Such an analysis
would not need the acquisition of actual measurements, but only a FE model
of the structure.

• The simulation tool should embed a sensitivity analysis module, in order to
quantify the relative importance of each scanning setting with respect to each
estimated parameter. This could be accomplished with the use of an uncer-
tainty quantification framework such as UQLab (Marelli and Sudret, 2014).

• The method could be tested on a wider range of application cases, including
a broader range of materials, shapes, TLS properties, and surface properties.
Furthermore, the application of the method to detect and localise damages in
a structure could be investigated as well.

To conclude, the presented method extends the range of application of TLS in the
field of SHM. In fact, it enables the automatic generation of the geometry of the
FE model from TLS data, the extension of the analysis of the monitored structures
from the determination of geometrical deformations to the identification of material
parameters, and the simulation and the prediction of the expected accuracy before
the execution of the actual measurements. The method is effective for the identific-
ation of various kind of structures, the geometry and the deformation of which are
derived by TLS data. A potential application of the proposed method is the struc-
tural health monitoring of structures such as free-form structural members or parts
of cultural heritage buildings.
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A. Acronyms

AMCW Amplitude-Modulated Continuous-Wave

ASCII American Standard Code for Information Interchange

BC Boundary Condition

BIM Building Information Modelling

C2M Cloud-to-Mesh

C2C Cloud-to-Cloud

CLT Cross Laminated Timber

FEM Finite Element Method

FIBC Flexible Intermediate Bulk Container

GNSS Global Navigation Satellite Systems

InSAR Interferometric Synthetic Aperture Radar

LSA Least Squares Adjustment

NN Nearest Neighbour

NURBS Non Uniform Rational B-Splines

PDE Partial Differential Equation

RMS Root Mean Square

RS Reference System
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SI Système International d’unités

SOFO Surveillance d’Ouvrages par Fibres Optiques

TLS Terrestrial Laser Scanning

VCM Variance-Covariance Matrix
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4.16 Alloy plate, Ê for different numbers of partitions, σρ = 5× 10−4

m, Etrue = 72 GPa . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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R. Jäger, M. Bertges, J. Reiner, and M. Bertges. Integrierte Modellbildung
zum permanenten Monitoring von Bauwerken und geotechnischen Anlagen. In
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E. Oñate. Structural analysis with the finite element method: linear statics: volume
1: Basis and solids. Springer Science & Business Media, 2013a.
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