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Abstract

As a promising indoor positioning solution, feature-based indoor positioning

systems (FIPSs) utilizing signals of opportunity as features are capable of

providing indoor location-based services to pedestrians. The extended use of

mobile devices with abundant built-in sensors has provided opportunities and

challenges to FIPSs. On the one hand, these built-in sensors enable to acquire

available location-relevant features for improving the positioning accuracy.

On the other hand, the limited power of mobile devices creates the need of an

FIPS capable of providing positioning services with affordable computational

cost. Nevertheless, several challenges still limit the performance of FIPSs and

hence prevent their widespread practical applicability. The positioning accu-

racy and computational burden have been so far particularly affected by: i)

scale of the physical and feature spaces, ii) measurability variations of fea-

tures, and iii) variability of feature values.

The objective of this thesis is to mitigate these variability issues and thereby

enhance the practical applicability of FIPSs. Common approaches to tackle

these problems include extending the positioning solution by fusing it with

additional sensors or Bayesian filters. This work focuses on resolving these

variability issues entirely within the context of FIPSs and thus improving its

fundamental positioning performance. This research is divided into several

modules aiming at: i) reducing the computational complexity to be quasi-

invariant to the scale of the feature and physical spaces, ii) adapting the dis-

similarity measure to be invariant to measurability variations, and iii) miti-

gating large errors in positioning by figuring in the variability of the feature

values. The outcomes of the individual modules constitute the core contribu-

tions of this thesis.

The first part (covered in Chapter 3) deals with the computational com-

plexity of the location estimation procedure. Compared to traditional FIPSs,

additional information of two types is obtained from a reference fingerprint

map (RFM). The first type of information are the measurable features within

individual subregions obtained by dividing the entire region of interest into

subregions. The second type of additional information are the selected fea-

tures relevant for location estimation regarding individual subregions. The

former is employed to select candidate subregions by set operations solely

based on the measurability of the individual features. The subregion selection

procedure is not affected by the measurability variations and it makes the lo-

cation estimation quasi-invariant to the scale of the physical space. The latter

is used to estimate the location within the selected subregions. Owing to the

finite number of relevant features of each individual subregion, the refinement

of the location estimation is independent from the scale of the physical and

feature spaces.

The second part (covered in Chapter 4) handles the measurability vari-

ations. The compound dissimilarity measure (CDM) is proposed for adap-
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tively quantifying differences in the feature space. The proposed CDM does

not require imputing the missing features in order to obtain a full measure-

ment vector, thereby avoiding introducing inductive biases to the dissimilar-

ity measure. The CDM combines a distance metric with set operations. The

set operations are used for adaptively weighting the contribution of individual

features concerning their measurability.

The third part (covered in Chapter 5) focuses on mitigating large errors

caused by the variability of the feature values. An iterative scheme capable of

figuring in the variability of the feature values into the location estimation is

proposed. The variability of individual features is quantified using an empiri-

cal standard deviation. The location-wise standard deviation is approximated

based on the measurements associated to the neighborhood of a given refer-

ence location. The contribution of the individual features to the dissimilarity

measure is regulated relative to their estimated variability values.

The experiments using a kinematically collected RFM have been em-

ployed to validate the presented solutions quantitatively and qualitatively. By

tracking the movement of pedestrians with a high precision total station, the

reference locations and their associated features are acquired simultaneously.

The feature values are measured by the sensors built into a hand-held mobile

device. In experiments with the real data, promising results have been ob-

served. Benefiting from the subregion and feature selections, positioning time

is reduced by up to 10 times while preserving the positioning accuracy. With

the combination of a distance metric and set operations, the accuracy for de-

tecting floors is increased from 81% to 94%. By introducing the location-wise

variability into an iterative positioning process, the positioning accuracy de-

fined as the percentage of locations whose radial positioning error is less than

2 m is improved from 65% to 86% when compared to the original kNN. In

addition, the spatial distribution of the variability of the feature values qualita-

tively reveals the correlation between the high variances of the feature values

and large errors.

In the course of this thesis some of the relevant challenges in FIPSs have

been addressed. The solutions proposed herein can therefore enhance the

practical applicability of FIPSs and contribute towards enabling final products

for providing indoor location-based services to pedestrians.
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Zusammenfassung
Als vielversprechende Indoor-Positionierungslösung können merkmalsbasier-

te Indoor-Positionierungssysteme (engl. feature-based indoor positioning sys-

tem, FIPS) die Opportunitätssignale als Merkmale nutzen und Fussgängern

standortbezogene Dienste in Innenräumen anbieten. Die weitverbreitete Nut-

zung mobiler Geräte mit den zahlreichen, integrierten Sensoren bietet dem

FIPS Chancen und Herausforderungen. Einerseits ermöglichen diese einge-

bauten Sensoren die verfügbaren, ortsrelevanten Merkmale zur Verbesserung

der Positionierungsgenauigkeit zu erfassen. Andererseits muss das Positionie-

rungssystem den Ortungsdienst, wegen der begrenzten Leistung der mobilen

Geräte, zu erschwinglichen Rechenkosten zur Verfügung stellen. Dennoch

schränken verschiedene Herausforderungen die Leistung von FIPS ein und

verhindern ihre weit verbreitete praktische Anwendbarkeit. Die Positionie-

rungsgenauigkeit und die Rechenlast wurden bisher insbesondere beeinflusst

durch: i) die Skalierung des Merkmals und der physikalischen Räume; ii) die

Messbarkeitsvariationen von Merkmalen; und iii) die Variabilität der Merk-

malswerte.

Das Ziel dieser Arbeit ist es, diese Variabilitätsprobleme zu mindern und

damit die praktische Anwendbarkeit von FIPS zu verbessern. Traditionelle

Ansätze zur Lösung dieser Probleme umfassen die Erweiterung der Positio-

nierungslösung durch die Fusion mit zusätzlichen Sensoren oder Bayes’schen

Filtern. Diese Arbeit konzentriert sich darauf, diese Probleme vollständig im

Rahmen des FIPS zu lösen und damit die Leistungen der Positionierungslösung

intrinsisch zu verbessern. Diese Forschung gliedert sich in mehrere Module,

die darauf abzielen: i) die Komplexität der Berechnung so zu reduzieren, dass

sie im Verhältnis zur Grösse des Merkmals und der physikalischen Räume

quasi invariant ist; ii) das Unähnlichkeitsmasses anzupassen, um gegenüber

Messbarkeitsvariationen unveränderlich zu sein; und iii) die Milderung grober

Positionierungsfehler durch die Berechnung der Variabilität der Merkmals-

werte. Die Ergebnisse der einzelnen Module bilden den Kernbeitrag dieser

Arbeit.

Der erste Teil (in Kapitel 3) befasst sich mit der rechnerischen Kom-

plexität des Verfahrens zur Standortschätzung. Im Vergleich zu herkömm-

lichen FIPS werden zwei zusätzliche Informationen aus einer Referenzfin-

gerabdruckkarte (engl. reference footprint map, RFM) abgeleitet. Die ers-

te Art von Informationen sind die messbaren Merkmale innerhalb einzelner

Teilregionen, die durch die Segmentierung des betrachteten Gebietes (engl.

region of interest, RoI) gewonnen werden. Die zweite Art sind die subre-

gional ausgewählten Merkmale, die für die Standortschätzung relevant sind.

Ersteres wird verwendet, um Kandidaten-Unterregionen durch Mengenope-

rationen auszuwählen, die ausschliesslich auf der Messbarkeit der einzelnen

Merkmale basieren. Das Subregion-Auswahlverfahren wird von den Mess-

barkeitsschwankungen nicht beeinflusst, und die Standortschätzung unter der

Rechenaufwand für die Positionsschätzung ist praktish unabhängig von der
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Grösse des physischen Raums. Letzteres wird verwendet, um den Standort in-

nerhalb der ausgewählten Unterregionen zu schätzen. Aufgrund der endlichen

Anzahl relevanter Merkmale jeder einzelnen Teilregion ist die Verfeinerung

der Standortschätzung unabhängig von der Grösse des physikalischen Raums

und des Merkmalsraums.

Der zweite Teil (in Kapitel 4) behandelt die Messbarkeitsvariationen. Ein

nicht vektorbasiertes Unähnlichkeitsmass wird vorgeschlagen, um Unterschie-

de im Merkmalsraum adaptiv zu quantifizieren. Das vorgeschlagene, zusam-

mengesetzte Unähnlichkeitsmass (engl. compound dissimilarity measure, CDM)

erfordert kein Anrechnen der fehlenden Merkmalswerte, wodurch das Einführen

induktiver Biases in das Unähnlichkeitsmass vermieden wird. Das CDM kom-

biniert eine Abstandsmetrik mit Mengenoperationen. Letztere dienen dazu,

den Beitrag einzelner Merkmale hinsichtlich ihrer Messbarkeit adaptiv zu ge-

wichten.

Der dritte Teil (in Kapitel 5) befasst sich mit der Minderung grober Fehler,

die durch die Variabilität der Merkmalswerte verursacht werden. Ein iterati-

ves Schema wird vorgeschlagen, welches in der Lage ist, die Variabilität der

Merkmalswerte in die Ortsschätzung miteinzubeziehen. Die Variabilität ein-

zelner Merkmale wird anhand einer empirischen Standardabweichung quan-

tifiziert. Die ortsbezogene Standardabweichung wird basierend auf den Mes-

sungen angenähert, die der Nachbarschaft eines gegebenen Referenzorts zu-

geordnet sind. Der Beitrag jedes einzelnen Merkmals zum Unähnlichkeitsmass

wird in Bezug auf seine geschätzten Variabilitätswerte geregelt.

Experimente mit einer kinematisch gesammelten RFM wurden verwen-

det, um die vorgestellten Lösungen quantitativ und qualitativ zu validieren.

Durch die Verfolgung der Bewegung von Fussgängern mit einer Totalstation

werden gleichzeitig der Standort und die zugehörigen Merkmale erfasst. Die

Merkmalswerte werden von Sensoren, welche in einem tragbaren, mobilen

Gerät eingebaut sind, gemessen. In Experimenten mit realen Daten wurden

vielversprechende Ergebnisse beobachtet. Durch die Auswahl von Subregio-

nen und Merkmalen wird die Positionierungszeit um das Zehnfache verkürzt,

während die Positionierungsgenauigkeit erhalten bleibt. Durch die Kombi-

nation einer Abstandsmetrik und Mengenoperationen wird die Genauigkeit

der Stockwerkserkennung von 81% auf 94% erhöht. Durch die Einführung

der ortsbezogenen Variabilität in einen iterativen Positionierungsprozess wird

die Positionierungsgenauigkeit, definiert als der Prozentsatz der Orte, deren

radialer Positionierungsfehler weniger als 2 m beträgt, im Vergleich zum ur-

sprünglichen kNN von 65% auf 86% verbessert. Darüber hinaus zeigt die

räumliche Verteilung der Variabilität der Merkmalswerte qualitativ die Korre-

lation zwischen hohen Varianzen der Merkmalswerte und groben Fehlern.

Diese Arbeit befasst sich mit einigen der aktuell wichtigsten Herausforde-

rungen in FIPS. Die hier vorgeschlagenen Lösungen können daher die prak-

tische Anwendbarkeit von FIPS verbessern und dazu beitragen, Endproduk-

te für die Bereitstellung von standortbezogenen Diensten in Innenräumen zu

ermöglichen.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Location awareness has become increasingly important in the era after the

Age of Discovery. Relying only on the astronomic phenomena and geomag-

netism is inadequate to satisfy the increasing demand of accurate location in-

formation. Benefiting from the sophistication of the radio technology, people

have been able to apply the radio waves to the positioning solutions regardless

of the weather conditions (Bhatta 2010). This gave rise to radio positioning

systems such as Decca, OMEGA, Gee, and Loran that have been used un-

til recently (Dippy 1946; Powell 1958). Later on, with the advancement of

electronic technologies and space engineering, global navigation satellite sys-

tems (GNSSs), pioneered by the global positioning system (GPS), have been

developed (Zaidi and Suddle 2006). These satellite-based positioning sys-

tems are capable of providing accurate position, velocity, and timing services

to both military and civil applications (Bhatta 2010).

Unfortunately, GNSSs do not work well in indoor environments. This is

primarily caused by the lack of clear line-of-sight propagation between the

satellites and the receiver, since the satellite signals are easily blocked by

buildings. To be able to provide sufficient location-based services (LBSs) to

pedestrians in indoor environments, where modern people spend more than

80% of their time, alternative positioning systems capable of working under

the indoor conditions are needed (Wu et al. 2018a).

Emerged about two decades ago, indoor object/pedestrian tracking sys-

tems have been attracting the attention of both academia and industry. Es-

1
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pecially in academia, the researchers have sought for indoor positioning sys-

tems, which are capable of yielding accurate and low-cost indoor LBSs. Nu-

merous technologies using ranges, angles or features as the observations, have

been explored and exploited for inferring the location (Mautz 2012). These

technologies make use of: i) ultrasound (e. g. Active Bat (Addlesee et al.

2001), Dolphin (Minami et al. 2004), or Cricket (Kolodziej and Hjelm 2006));

ii) infrared signals (Active Badge (Want et al. 1992), (Wang et al. 2017));

iii) radio frequency (RF) signals (e. g. radio frequency identification (RFID)

(Hightower et al. 2000; Xu et al. 2017), ultra-wideband (UWB) signals (Nor-

rdine et al. 2013; Alarifi et al. 2016), wireless local area network (WLAN)

channels (Padmanabhan et al. 2000; Youssef and Agrawala 2008; He and

Chan 2016), Bluetooth low energy (BLE) communications (Zhuang et al.

2016), frequency modulation (FM) signals (Cong et al. 2018), cellular net-

works (Schloemann et al. 2016)); iv) machine vision (Guan et al. 2016); v)

magnetic fields (Kasmi et al. 2015; Norrdine et al. 2016; He and Shin 2018);

vi) inertial sensors (Elloumi et al. 2016); and vii) visible light (Vadeny et al.

2016).

Irrespective of the used technology, the solution for indoor positioning

of pedestrians should be cost efficient (e. g. the infrastructure or deployment

burden), have a sufficiently high accuracy (e. g. a few meters or better), and a

large spatial coverage. Recent research reveals one type of promising indoor

positioning system, referred to as a feature-based (i. e. fingerprinting-based)

indoor positioning system (FIPS) owing to: i) the popularity of mobile devices

with abundant built-in and off-the-shelf sensors (e. g. inertial measurement

units (IMUs) or WiFi/BLE module); ii) the development of data processing

and interpretation (e. g. crowd sourcing and machine learning); and iii) the

availability of measurable location-relevant signals of opportunity (SoP) (He

and Chan 2016; Pei et al. 2016), i. e. any available signals that can be used for

positioning, but are not primarily deployed for this purpose.

The FIPSs that use the SoP, which are measured by the built-in sensors

of a mobile device, do not require any additional infrastructure and hardware.

However, due to the several challenges that require further investigations, their

practical applicability is still hindered. In the course of this thesis some of

these relevant challenges, such as computational complexity of positioning,

measurability variations of the features, and variability of the feature values,

are addressed.

1.2 Background of FIPSs

An FIPS consists of two phases: an offline referencing phase and an online

positioning phase. During the referencing phase, a world model, representing
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the relationship between the measurable features, e. g. received signal strength

from WLAN access points (APs) and their corresponding locations, is estab-

lished. This world model is traditionally denoted as the reference fingerprint

map (RFM), which is a more general terminology as the radio map. From the

perspective of continuous distribution of the measurable features, the RFM is

a model of the continuous field in the region of interest (RoI) (called phys-

ical space). During the online positioning phase, the user’s location is in-

ferred by matching the online measured features to the RFM according to ei-

ther the chosen similarity/dissimilarity measure (e. g. Euclidean distance) or

the selected probabilistic model (e. g. Gaussian process) with an optimization

scheme (e. g. maximum a posteriori (MAP)).

1.2.1 Characteristics of FIPSs

In order to achieve sufficiently accurate location estimation using the SoP

as features, the values of the SoP have to be location-dependent and have a

sufficient spatial gradient. The application of the location-relevant features

leads to the intrinsic characteristics of FIPSs. One characteristic is the mea-

surability variation, i. e. a specific feature is observable only in a part of the

physical space. The dimensionality of the feature space (i. e. the number of

the measurable features) varies over the physical space. The widely adopted

positioning algorithms, as described in Section 1.2.4, are only capable of tak-

ing vector-represented features as the input. This generates a large overhead

and deteriorates the performance in the online positioning phase, because the

values of the non-measurable features have to be imputed in order to fill the

missing elements of the feature vector. Another characteristic is the num-

ber of the measurable features needed to ensure a sufficient spatial coverage

throughout the whole RoI. Indeed, the minimum number of the measurable

features increases with the increase of the physical space. This leads to the

scalability problem related to physical and feature spaces, which has a large

impact on the computational complexity when inferring the user’s location. It

becomes especially critical when estimating the pedestrian’s location using a

mobile device, which has limited computational resources and requires a low

latency.

The employment of SoP and mobile devices contributes to another, pos-

sibly the most important, characteristics of FIPSs. In the context of SoP, the

quality of the measurable features is difficult to guarantee. On the one hand,

the availability of the SoP is priorly unknown. Especially the total number of

measurable features within the entire RoI is difficult to determine without a

site survey covering the whole RoI. On the other hand, unexpected changes

of SoP can occur, since their configuration and management are under the

control of other parties. Considering the mobile devices, the diversity of mea-

suring devices introduces further variations into the measurable features. On
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the one hand, the limited sensitivity of the sensor built into the devices also

leads to measurability variations and introduces measurement noise. One the

other hand, diverse specifications of the devices makes it difficult to: i) control

the quality when generating the RFM; and ii) preserve an adequate position-

ing accuracy when using a different device. These characteristics make it

challenging to employ FIPSs to a large variety of practical cases.

To sum up, the characteristics, originating from the intrinsic properties

of FIPSs in combination with the characteristics of the SoP and mobile de-

vices, have a strong impact on both phases of the FIPSs. The measurability

variations and the scalability problem (i. e. the scale of feature and physical

spaces) have little impact on the offline phase and they have to be handled

specifically during the online positioning phase. The characteristics resulting

from employing the SoP and mobile devices to FIPSs represent a tradeoff to

not requiring the extra infrastructure. The difficulties of controlling the qual-

ity of the RFM require specific treatment during either both, or at least one

of the phases of the FIPSs. During the offline phase, the process of collecting

the RFM should be well-controlled and the generated RFM should be kept up-

to-date in order to preserve the positioning performance. During the online

positioning phase, the feature-based positioning approach should be robust

enough to be capable of achieving adequate positioning accuracy even in the

case of the increased variability of measurable features.

1.2.2 Generation of the RFM

The generation of the RFM is the starting step of deploying an FIPS. Various

approaches, addressing the trade-off between the accuracy of the RFM and

the cost of time/labor, have been proposed for its generation (He and Chan

2016; Zhou and Wieser 2019b). These approaches can be divided into the

following groups:

• Measurement-based: This method is the most adopted method for the

RFM generation (Torres-Sospedra et al. 2014; Youssef and Agrawala

2008; Padmanabhan et al. 2000). A dedicated site survey is carried out

to collect the values of measurable features at given reference locations

with known coordinates within the RoI. Often, the measurement-based

RFM generation is conducted in the static way, i. e. the surveyor stands

still at individual reference locations when collecting the data. The re-

sulting RFMs can correctly reflect the relationship between the location

and features at the time of acquiring the data, but do not consider the

temporal changes of the SoP. Furthermore, such a measurement-based

way is labor-intensive and time-consuming. In addition, the generated

RFMs cannot reflect the influence of the motion status (e. g. orientation

or moving speed) of the pedestrians.
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• Model-based: Indoor propagation models (e. g. (El-Kafrawy et al.

2010; Bisio et al. 2014; Jung et al. 2011)) and ray tracing (Renaudin

et al. 2018) can be employed to generate the RFMs, especially in

the case of using radio frequency signal strengths as features. The

model-based approaches are cost-effective. However, the accuracy of

the generated RFMs depend on the validity of the model assumptions

(e. g. structures of indoor space, location of signal sources or mate-

rial properties of objects). Therefore, in the real world scenarios, the

RFMs generated using the model-based methods are less accurate than

the RFMs generated using the measurement-based approaches. In ad-

dition, it is difficult to incorporate a realistic motion model into the

model-based approaches.

• Crowd-sourcing-based: The crowd-sourcing-based approaches benefit

from the abundance of the built in sensors of the mobile devices. The

data collection can be done by an application running in the background

on the mobile device under the consent of the user for contributing the

data. In fact, crowd-sourcing-based approaches can be understood as a

special case of the measurement-based ones. In the context of crowd-

sourcing, the reference locations are either manually indicated by the

user (Wu et al. 2013; Li et al. 2013) or determined using pedestrian

dead reckoning (PDR) according to the readings of IMUs (Georgiou

et al. 2015; Zeinalipour-Yazti and Laoudias 2017; Wu et al. 2018b).

Crowd-sourcing-based approaches represent a low cost solution of col-

lecting a large amount of data using diverse types of mobile devices.

The generated RFMs include a variety of mobile devices as well as the

motion characteristics of pedestrians. However, the quality of the RFMs

is difficult to control. On the one hand, the reference locations—either

reported by the user or determined using IMUs—are inaccurate. On

the other hand, it is difficult to fuse the data collected by multi-users

using various devices. Each individual dataset is referred to its own

coordinate frame and has a different quality. These two factors require

a registration of reference locations and quality control when merging

different datasets to generate the RFMs (Gu et al. 2017, 2018).

• Regression-based: The regression-based approaches are widely used

for refining and not for generating the RFMs, with the goal of enhanc-

ing their quality (e. g. densify the reference measurements or denois-

ing the generated RFMs). It can be done by interpolation/extrapolation

(Sorour et al. 2015; Talvitie et al. 2015), kernel smoothing (Huang

and Manh 2016), or neural networks-based reconstruction (Zhou and

Wieser 2016; Zhou and Gu 2017). However, the quality of the RFMs,

refined using this type of methods, strongly depends on the quality of

the initially collected ones. In addition, regression-based methods have

high computational burden and the regressed models are difficult to in-
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terpret, especially when deep neural networks are employed (Deng and

Yu 2014; Hatcher and Yu 2018).

1.2.3 Maintenance of the RFM

In the FIPSs it is crucial that the RFM is kept up-to-data in order to control

its quality and thereby preserving the positioning performance of FIPSs for

a long-term. Most publications regarding this topic were published in past

four years but several keywords, such as maintenance, adaptation, update,

and renovation, are regularly used. The first three words are more frequently

used than renovation and have been utilized interchangeable in the literature.

Taniuchi and Maekawa (2015) proposed a method for automatically up-

dating the RFM based on PDR using the data provided by the IMU of the

mobile devices. They proposed a change detection step for determining

when the feature values in a sequence of measurements have been critically

changed using Bayesian information criterion (BIC). Tang et al. (2015) in-

troduced a fast fingerprint collection platform using unmanned ground vehi-

cles (UGVs) with LiDAR and other sensors for simultaneous localization and

mapping (SLAM). Both works do not consider the maintenance scheme and

directly replace the RFM with the newly measured feature values. In He et al.

(2017) the authors proposed a system for detecting the altered signals based

on affinity propagation clustering algorithm (Frey and Dueck 2007). Con-

sequently, the altered features are updated with new values using Gaussian

process regression (GPR). The Log-distance path loss model (LDPLM) was

employed for estimating the parameters of the Gaussian process when apply-

ing GPR. This model-based way has largely constrained the applicability of

their approach.

Various RFM update schemes have been introduced in 2018. Jung and

Han (2018) have proposed a method based on the evolutionary algorithm

for updating the available RFM using the crowd-sourced data, which has no

ground truth. Their updating process relies on LDPLM in oder to obtained the

positions of those unlabeled data. Sun et al. (2018) have proposed the RFM

update method using crowd-sourced data in which the updates are performed

Voronoi-wisely using neural network-based regression. Mendoza-Silva et al.

(2018b) and Montoliu et al. (2018) have approached the RFM update task

from a different perspective. They focus on minimizing the workload of re-

collecting the data for the update, by optimally selecting the locations where

the data collection should be performed using the evolutionary algorithm. Ad-

ditionally the influence of missing features is mitigated using the imputation

schemes. Kernelized support vector regression (SVR) has been applied for

adapting the newly measured features to the available RFM. The work of

Peng et al. (2018) extends the proposed approach of Tang et al. (2015) in ap-
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plying a Kriging approach for updating the RFM by interpolating over the

UGV measured data. All above mentioned works neglect the changes that

might have occurred between the acquisitions and directly update the RFM

with the newly collected data using a selected regression-based approach.

Another group of works utilizes the PDR for the RFM update, e. g. (Wu

et al. 2018b; Yang et al. 2018; Tao and Zhao 2018; Zou et al. 2017). Based on

the measurements acquired together with PDR, different approaches (e. g. par-

tial least square regression (PLSR) (Wu et al. 2018b), GPR with extended

Kalman filter (EKF) (Yang et al. 2018), fireworks algorithm (Tao and Zhao

2018), or polynomial surface fitting mean (PSFM) method (Zou et al. 2017))

have been used for adapting the RFM. However, the performance of these

approaches is largely limited by the accuracy of the PDR.

1.2.4 Feature-based positioning algorithms

Inferring the user’s location from the online measured features can be under-

stood as a regression problem. In the context of feature-based positioning,

this regression problem is resolved in a data-driven way, i. e. a model for esti-

mating the user’s location is directly derived (or learned) from the RFM with-

out specifically assumed priors. Starting from the pioneering works of Pad-

manabhan et al. (2000) and Youssef and Agrawala (2008), the feature-based

positioning algorithms can be divided into two categories: deterministic and

probabilistic approaches.

Deterministic approaches. The deterministic methods employ a similar-

ity/dissimilarity measure (e.g., Euclidean distance, cosine similarity or Tani-

mato similarity) to match the online measured features to the RFM (Minaev

et al. 2017). The user’s location is estimated from the reference locations,

which are similar in the feature space, i.e. whose corresponding feature val-

ues obtained from the RFM are similar to the online measured ones. Often,

the k-nearest-neighbors (kNN) algorithm is used to calculate the user position

in this framework (Padmanabhan et al. 2000). Other advanced deterministic

algorithms, for instance support vector machine (SVM) (Wu et al. 2004), lin-

ear discriminant analysis (LDA) (Nuño-Barrau and Páez-Borrallo 2006) and

neural networks-based regression (Sun et al. 2018; Zhou and Wieser 2016),

show better positioning accuracy but have a higher computational cost than

kNN. The advantage of deterministic algorithms is their low computational

complexity. However, they cannot predict the accuracy of location estimation

and the accuracy assessment can only be performed with field experiments.

In the context of the deterministic positioning approaches, the measurabil-

ity variations have to be handled by the dissimilarity measure. Typically, the

measured features are formulated as a vector, which has the same dimension
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as the total number of the measured features contained in the RFM. The fea-

tures, which are not observable at a specific location, are imputed by a value

(e. g. a missing indicator) when representing them as a vector (Montoliu et al.

2018; Little 2015; Lee et al. 2012). However, the imputation of missing fea-

tures can introduce inductive bias to the dissimilarity measure. Furthermore,

the computational burden of imputing the features increases with the increase

of the feature and physical spaces.

Probabilistic approaches. The probabilistic approaches use the statistical

inference based on the RFM and the online measured feature values. Us-

ing the RFM, these approaches estimate the user’s position with maximum

likelihood estimation (MLE) or MAP. For example, Youssef and Agrawala

(2008) first approximate the probabilistic distribution of the RFM (e.g., mul-

tivariate Gaussian distribution) at each reference location and then estimate

the user’s location with an MAP algorithm. The accuracy of the estimated

positions using this probabilistic algorithm depends on the accuracy of the

estimated probability distribution of the feature values at each reference lo-

cation. Other probabilistic methods used for feature-based positioning are

based on expectation-maximization (Ouyang et al. 2012), Kullback-Leibler

divergence (Mirowski et al. 2012), or mixture of Gaussian processes (Ferris

et al. 2007).

The probabilistic algorithms usually require assumptions regarding the

stochastic properties of both feature values and RFM, such as the example

that each individual feature being identically and independently distributed

and the noise of the measured feature values having a Gaussian distribution.

Furthermore, a higher computational effort and more datasets are required to

train a probabilistic model than a deterministic one. Specifically, several mea-

surements of all measurable features at each reference location are needed to

estimate the distribution of the feature values for all locations, without apply-

ing interpolation (e.g., Kriging) (Seitz et al. 2010). The probabilistic algo-

rithms allow predicting the positioning accuracy without field tests, using the

assumptions.

1.3 Research goals

As discussed in the previous sections, several challenges still need to be re-

solved in order to ensure an adequate quality of indoor LBSs completely re-

lying on an FIPS, which employs SoP as features. In this thesis, several of

them, regarding the scalability problem, measurability variations, and vari-

ability of the feature values are addressed. The investigation is carried out in

various aspects by using methodological solutions and software techniques.
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Specifically, the following research questions are explored:

• How can the computational complexity of the indoor positioning be
constrained in order to make it (quasi-)independent of the scale of
the physical and feature spaces? Solving this question will enable

to compute the user’s location on a mobile device in the case of the

increase of the size of the physical space as well as the dimension of

the feature space. In addition, the low computational solution should be

able to preserve a sufficiently high positioning accuracy.

• Can the measurability variations of SoP be handled in an adaptive
scheme by exploiting their intrinsic properties? An ideal solution

for resolving this problem aims not only at mitigating the measurability

variation problem, but also at benefiting from it in order to improve the

performance of an FIPS. The goal of developing an adaptive scenario

for handling the measurability variations is to improve the positioning

accuracy while reducing the memory complexity of an FIPS.

• How can the large errors in positioning, caused by the spa-
tial/temporal variability of the feature values, be reduced? The goal

is to explore and exploit an approach, which is able to reduce large

errors in positioning completely within the framework of the FIPS.

This implies that the solution does not require additional information

(e. g. indoor maps) or extra infrastructural support (e. g. inertial naviga-

tion systems).

The solutions developed in the course of this thesis will enable mitigat-

ing the impact of the variability issues on the practical applicability of FIPSs

as well as on their positioning performance. This in turn will lead to the re-

duction of the computational complexity of positioning, to the adaptation to

measurability variations of SoP, as well as to the mitigation of large errors in

FIPS. By pursuing solutions completely within the context of FIPSs, several

benefits are foreseen. On the one hand, the enhanced FIPSs will be suitable

for applications with the limited computational and power resources (e. g. the

Internet of Things). On the other hand, it will be possible to further improve

their performance by combining them with other techniques (e. g. PDR or

Bayesian filtering).

1.4 Contributions and their relations

This thesis is written as a cumulative dissertation, in accordance with the

ETH Zürich, Department of Civil Environment and Geomatics Engineering,

Doctorate Ordinance of 2013. The core chapters (Chapter 3, 4, and 5) consist
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of the publications in their original versions, only with minor typographical

corrections1. In addition, they are complemented with an introduction (the

current chapter), a detailed description of the data acquisition used in the core

publications (Chapter 2) and finally with conclusions and outlook (Chapter

6).

1.4.1 Core contributions

This thesis contributes to the advancement of FIPS in the context of employ-

ing SoP, which are measured by the built-in sensors of a mobile device, to

provide adequate positioning services to pedestrians. Its main contributions

are: i) a method for kinematic generation of the RFM; ii) reduction of the

computational complexity; iii) adaptation to measurability variations; and iv)

mitigation of large errors.

Generation of the RFM (Chapter 2). The generation of the RFM used for

validating the proposed solutions of the research questions is discussed in

Chapter 2. This RFM has the following characteristics:

1. The measured SoP, which are available in a typical office building are

collected using a mobile device. This configuration fulfills the require-

ments stated in the research questions. On the one hand, these signals

are deployed for the purpose of providing the Internet access and are

managed by a third party. On the other hand, they are measured us-

ing the built-in sensors of the mobile device. The former reflects the

characteristics of SoP, whose detailed information (e. g. the configu-

ration of emission power or the number of signal sources) are priorly

unknown. The latter can justify the case of providing positioning ser-

vices to pedestrians using the mobile device and its built-in sensors.

2. The data collection is performed by a pedestrian who is continuously

tracked by a high precision position referencing system. The contin-

uous tracking is achieved by utilizing the automatic target recogni-

tion (ATR) mode of a total station. The trajectory of the pedestrian

is observed by periodically logging the highly accurate angle and dis-

tance measurements by the software developed using the GeoCOM pro-

gramming interface of the total station. The precisely tracked trajectory

enables to accurately retrieve the coordinates of locations, where the

fingerprints are obtained. The simultaneously acquired feature values

and their corresponding precise reference locations enable the gener-

ated RFM to reflect the mobility of pedestrians while at the same time

containing the trustworthy reference locations.

1The references are listed in the end of the thesis to reduce repetitions.
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The aforementioned characteristics make the presented approach to kinemat-

ically collect RFM a potentially very useful contribution to the field of indoor

positioning. The dataset collected for the experimental research parts within

this thesis has been made publicly available.

Reduction of the computational complexity (Chapter 3). In Chapter 3,

an approach for reducing the data requirements and computational complex-

ity during the online positioning phase, is proposed. The proposed approach

has two important aspects: i) it does not require to know the total number of

measurable features throughout the RoI when coarsely estimating the user’s

location; and ii) it is able to reduce the computational complexity of online po-

sitioning to the level, which is less dependent on the increasing size of the RoI

and on the number of the measurable features. The proposed approach ben-

efits from the fact that each individual measurable feature has limited spatial

coverage and its feature value is location-dependent. The core contributions

of Chapter 3 are as follows:

1. The primary step is to segment an RoI into subregions. For each in-

dividual subregion, a set of measurable features is summarized and a

subset of preselected relevant features is identified by analyzing the

collected RFM. These two analyses are carried out during the offline

phase. The yielded data are used for coarsely determining as well as for

refining the user’s location estimation.

2. Several subregions are identified as the coarse estimation of the user’s

location using a modified Jaccard index (MJI), which quantifies the sim-

ilarity between the features observed by the user and those available

within each individual subregion. The computation of the MJI only

takes the measurability of the features into consideration and does not

require the information of the total number of the measurable features

throughout the RoI.

3. An adaptive scheme is proposed for determining an adequate number of

subregions with the goal of making the generalization of the MJI-based

subregion selection approach to different indoor regions and different

features effortless. The scheme also enables adjusting the size of the

searching space when refining the user’s location.

4. The feature selection is achieved using an adaptive forward-backward

greedy search (AFBGS), which based on a given feature based position-

ing method (e.g. kNN) determines a subset of relevant features for each

subregion. Due to the fact that only a finite number of relevant features

of each subregion are chosen by the AFBGS, the computational com-

plexity of searching the refinement of the user’s location within those

selected subregions is independent of the total number of measurable

features and of the size of the entire RoI.
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5. In an empirical study using the kinematically collected RFM the pro-

posed subregion and feature selection reduce the processing time during

the online-stage by a factor of about 10, while the positioning accuracy

does not deteriorate significantly. In fact, in one of the two study cases

the 90th percentile of the circular error increased by 7.5% while in the

other study case we even found a reduction of the corresponding circu-

lar error by 30%.

Adaptation to measurability variations (Chapter 4). An innovative dis-

similarity measure is presented in Chapter 4. The dissimilarity measure quan-

tifies the difference between the observed features and the ones stored in the

RFM, with adaptive handling of the variations of the measurability of the fea-

tures, by combining vector-based distance metrics with set operations. The

proposed compound dissimilarity measure (CDM) is able to quantify simi-

larity of collected attribute/feature pairs where not all features are presented

in all measurements without imputing the value of the missing features. The

CDM overcomes a typical challenge in the context of feature-based position-

ing algorithms, which can only take the vector representation of the features

as the input. The core contributions of Chapter 4 are as follows:

1. The initial proposal of the CDM and different weighting schemes

are introduced. Compared to the vector-based distance metrics

(e. g. Minkowski), the merits of the proposed CDM are i) the data do

not need to be converted to vectors of equal dimension; ii) shared and

unshared attributes can be weighted differently; and iii) additional de-

grees of freedom within the measure allow to adapt its properties to

application needs in a data-driven way.

2. The parameters of the CDM are determined using grid search in com-

bination with the cross-validation. This makes the proposed CDM ap-

plicable to different FIPSs, which are built in different indoor environ-

ments and using various SoP as features.

3. The performance of the proposed CDM metric is evaluated on the kine-

matically collected RFM as well as on the three publicly available data

sets. On the publicly available data sets, CDM improves the accuracy of

identifying buildings and floors by about 5 percent points, when com-

pared to the conventional distance metrics. Furthermore, the 2d posi-

tioning errors in terms of root mean squared error (RMSE) are reduced

by a factor of two, and the percentage of position solutions with less

than 2 m error improves by over 10 percent points.

Mitigation of large errors (Chapter 5). An iterative scheme for feature-

based positioning using a new weighted dissimilarity measure with the goal
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of reducing the impact of large errors among the measured or modeled fea-

tures is proposed in Chapter 5. The estimation of the variability of individual

features during the offline referencing phase is carried out for understanding

the sources of large errors. The estimated variability of features is employed

to enhance the robustness of the location estimation. This is achieved by

weighting the contribution of each individual feature to the dissimilarity mea-

sure according to its STD value when inferring the user’s location. The core

contributions of Chapter 5 are as follows:

1. An empirical analysis of the spatial distribution of the raw measure-

ments contained in the kinematically collected RFM is carried out. The

spatial filtering and kernel smoothing (KS) are employed for improving

the spatial consistency of the raw measurements and for providing the

continuous representation of the RFM. These two techniques enable

to estimate the location-wise standard deviation (STD) of each individ-

ual feature using the median absolute deviation (MAD) of the feature

values associated to the neighborhood of a given location. The vari-

ability estimation is based on the assumption that the expect values of

features can be approximated using the measurements associated to the

neighborhood of a given location.

2. The iterative scheme adapts the contribution of each feature to the dis-

similarity measure according to its variability when searching the can-

didate estimation of the user’s position during the online positioning

phase. These searched locations are subsequently used for refining the

estimation of the user’s location.

3. Presented results of the estimated STD value show that each feature has

different variability throughout the RoI, i. e. the STD value is dependent

both on the feature as well as on the location. The distribution of large

errors (e. g. > 8 m) is similar to the pattern where high variance of the

feature values occur.

4. The experimental results show that the percentage of locations whose

positioning error is larger than 5 m is reduced from 10.2% to 2.6% (al-

most reduced by about three-fold), when compared to the performance

of kNN without the weighted dissimilarity measure. The maximum po-

sitioning error is reduced by about 40% as compared to that of kNN

with CDM.

1.4.2 Relation of the chapters

Although the major technical contributions (Chapter 3, 4, and 5) were devel-

oped over a period of 4 years, the publications used in this cumulative disser-

tation were published or submitted shortly before this thesis was presented.
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Therefore, given the recent review of the literature included in each chapter,

it was not considered necessary to include a separate literature review at this

point. The reader is referred to the related work presented in the individual

core chapters. The technical relation between the chapters is briefly sketched

out in Figure 1.1 and summarized as follows:

Kinematically 
collected RFM

(Chapter 2)

Reduction of 
computational complexity

(Chapter 3)

Adaptation to 
measurability variations 

(Chapter 4)

Mitigation of large 
errors 

(Chapter 5)

Figure 1.1: The relation between the chapters

• Foundation: Chapter 2 plays the role of providing the validation

testbed to the major publications. The kinematically collected RFM

and its continuous representation are discussed in this chapter.

• Reduction of the computational complexity: The main contribution

of Chapter 3 is an approach for reducing the computational complexity

during the online positioning phase. The proposed solution utilizes an

MJI, which is a similarity measure defined using only the pairwise mea-

surable features. The proposed approach has been employed in Chapter

4 and 5 for computing the weights of the CDM and for refining the

user’s location estimation according to the iteratively searched loca-

tions, respectively. Furthermore, the applicability of the kinematically

collected RFM is verified in Chapter 3.

• Adaptation to measurability variations: The motivation of Chapter

4 is to adaptively deal with the measurability variations without imput-

ing the values of arbitrarily missed signals and without requiring the

prior knowledge of the total number of the measurable features. The

exploitation of the MJI, used in Chapter 3, has shed light on combining

vector-based distance metrics with set operations. The proposed CDM

can take a variant number of relevant features as input for estimating

the user’s location. The non-vector way of computing the dissimilarity

measure has been further employed in Chapter 5.

• Mitigation of large errors: The approach proposed in Chapter 5 builds

on the relevant findings from Chapter 3 and 4. Based on the location-

wise robustly estimated STD of each individual measurable SoP, it

provides the potential of distinguishing large error cases occurred in
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FIPS and of identifying out-dated signals largely deviated from the ones

stored in the kinematically collected RFM. The latter could be used for

adaptively updating the RFM.

1.5 Relevance to science and society

In a broad context, this PhD project has been conducted in an inter-

disciplinary way. It is an application of data-driven approaches to indoor

positioning with the help of technologies commonly found in the field of engi-

neering geodesy. The solutions have been developed by using solely the SoP

for inferring the user’s location and have aimed at mitigating the impact of

variability issues, which jeopardize the practical applicability of FIPSs. This

refers to three specific research goals: i) reducing the computational burden

during the online positioning; ii) adaptively handling the measurability vari-

ations; and iii) mitigating large errors occurred in indoor positioning. The

relevance of this thesis is discussed in two aspects:

Scientific contributions.

1. The kinematically collected RFM has been made publicly available2.

This dataset is referenced by a high precision positioning system while

at the same time measuring the features using a mobile device. The

kinematically collected RFM can be used for benchmarking compari-

son of different positioning algorithms.

2. The explorations made during the early phase of this PhD project have

turned out valuable. On the one hand, four relevant papers, which fo-

cus on the topic of applying deep neural networks and graphSLAM to

location estimation and RFM generation/reconstruction, have been pub-

lished and have shown the potential of these techniques. On the other

hand, the focus of the PhD project and technical path to take have been

determined depending on the findings during the exploratory phase.

3. Each of the core chapters has presented a specific solution to each in-

dividual research question. These solutions can improve the practical

applicability of the FIPS, especially when using SoP as the features in a

large RoI. In addition, the proposed solutions are not only able to solve

the specific research question that this thesis is looking into, but are

also potentially applicable, either to other FIPSs, which employ differ-

ent signals as the features or other cases, which encounter the difficulty

of e. g. measurability variations.

2The dataset is accessible at https://zenodo.org/record/2647508#.XNBr8OgzZaQ.
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Promising practical applications. The solutions developed in this thesis

will facilitate the actual implementation of FIPSs in large buildings (e.g.,

throughout a mall or covering an entire airport) without the need for spe-

cial infrastructure or equipment, apart from the computers providing the ser-

vice. This will open up commercial opportunities but also facilitate better

user guidance and support. For example, positioning and trajectory track-

ing of the customers in big malls will (i) support the owners of the shops

by providing user and location specific advertisement and information (e.g.,

make customers aware of special offers in other areas of the mall or dynam-

ically place advertisement at highly frequented parts of the mall); (ii) assist

the management of the mall in monitoring and to a certain degree controlling

customer movement within the mall; and (iii) help the users to find desired

items easier or to exit the mall quicker in an emergency situation.



CHAPTER 2

ON GENERATING REFERENCE FINGERPRINT

MAPS

The offline referencing phase, one of the core phases of a feature-based in-

door positioning system (FIPS), is the key to deploying the positioning sys-

tem. The reference fingerprint map (RFM) is acquired in order to establish

the relationship between the location-relevant features and their correspond-

ing locations during the offline stage. The generated RFM is later used for

inferring the user’s location during the online stage. In this chapter, an RFM

kinematically collected using a mobile device with the help of a high precision

tracking system is described in detail. Firstly, an overview on the composi-

tion of the data acquisition system is briefly introduced. Secondly, the details

of the mobile-based RFM generation are presented in Section 2.2. Included

in this subsection are the description of the position referencing system, of

the acquisition of signals of opportunity (SoP) using the off-the-shelf sensors

integrated in mobile devices, and of the synchronization operation. Thirdly,

an analysis of the spatial distribution of the collected RFM and its continuous

representation are discussed in Section 2.3.

2.1 Overview of the data acquisition system

The data acquisition system consists of three blocks, which are shown in the

flow chart of (Figure 2.1) and defined as follows:

• Position referencing system: It is capable of kinematically tracking the

17
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Generated 
RFM

Synchronization

Data extractor

Location 
interpolation

Coordinating system

Position
referencing system

Tracking system

GeoCOM logger

Sensing listeners

Feature sensing 
application

Data logger

Figure 2.1: The schematic of the data acquisition system

surveyor (by targeting at the reflector mounted on top of a mobile de-

vice) with a high sampling rate (about 20 Hz) with the help of automatic

target recognition (ATR) function of a total station. The total station is

controlled by a software implemented in MATLAB using the applica-

tion programming interface GeoCOM provided by Leica Geosystems.

This software is able to automatically control the total station and log

the location data (e. g. time stamp, coordinates, distance and angular

values).

• Feature sensing application: It is an application developed for the

mobile device for the purpose of acquiring the feature values using the

built-in sensors (e. g. WiFi/Bluetooth modules). To fulfill the require-

ment of the operating system (Android) installed on the mobile device,

the application is implemented in Java and the data (e. g. signal val-

ues received from wireless local area network (WLAN) access points

(APs)) acquisition has to be triggering-based, i. e. the value of features

is passively measured when the signals (e. g. from WLAN APs or Blue-

tooth low energy (BLE) beacons) are detected by the built-sensors of

the mobile device. This triggering-based data acquisition scheme leads

to measurements of the features at arbitrary locations, since the signals

arrive at arbitrary time.

• Data extractor: The features and the locations (called reference loca-

tions), where the features are measured, are obtained using two differ-

ent devices. The merging of the data is therefore necessary. An ex-

tractor is designed and implemented in MATLAB. The data extractor is

used herein for synchronizing the time between the total station and the

mobile device and for determining the reference location. The former

is achieved by a cross-correlation-based time delay estimation (TDE).

The latter is the benefit provided by the high sampling rate of the posi-

tion tracking system. The detailed description of the tasks carried out

using the data extractor is given in Section 2.2. The measured feature
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values and their corresponding locations are collected as the raw RFM.

Compared to widely employed RFM collection schemes, such as stati-

cally measuring at each individual location or collecting via crowd-sourcing

(Mendoza-Silva et al. 2018a; Huang and Manh 2016; Wu et al. 2018b), the

implemented kinematic way of generating the RFM has two main advan-

tages: i) the data is obtained at arbitrary locations with precisely referenced

coordinates (cm-level); and ii) the kinematically collected features are more

similar to the real-case scenario with moving pedestrians. These two advan-

tages make the kinematically collected RFM more realistic as compared to

the RFMs used in other of feature-based indoor positioning studies.

2.2 Mobile-based RFM generation

In this section, we describe the procedures of creating the RFM by tracking

the mobile device using a total station. This procedure is able to simulta-

neously obtain the location-relevant features with the mobile application and

the ground truth of the trajectory using the ATR function of the total station,

which is controlled by the software via GeoCOM interface (Figure 2.2). The

data collection consists of four steps: i) setup of the total station; ii) tracking

of the mobile device with the ATR mode; iii) synchronization operation; and

iv) acquisition of the fingerprinting data.

Figure 2.2: The schematic of the data acquisition process with the tracking of

the total station

Setup of the total station. A total station measures angles and distances,

which are then mapped on a two-dimensional planar surface. The required lo-

cal coordinate system was established by arbitrarily selecting its origin and its

orientation of the coordinate system within the region of interest (RoI). A set

of 15 prisms (Leica GPR1 round prism) has been mounted on the ceiling and

is distributed along the floor of the RoI (Figure 2.3). The total station was used
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to measure the prism locations and establish the reference network, which is

employed to determine the location of the total station via free-stationing.

Figure 2.3: The configuration of the FIPS

Figure 2.3 depicts the the configuration of the FIPS. In the center of the

figure is shown, a floor plan of the RoI, including the location of the reference

prisms and several measurable WLAN APs. These WLAN APs are deployed

by the IT department for providing Internet access and are opportunistically

measurable. Each individual AP transmits the signals at the band of 2.4 and

5.0 GHz and has a built-in BLE beacon. For a visual impression, a photo

documentation around the floor plan shows the system setup.

Tracking of the mobile device with ATR mode. A 360◦ mini-prism (Leica

GRZ101) is mounted on top of the mobile device to be tracked with a total

station. This tracking procedure is automatically performed via the GeoCOM

interface and the software implemented in MATLAB1. This GeoCOM logger

can i) set and search the target mini-prism; ii) lock on the target and acti-

vate ATR mode; and iii) continuously determines the coordinates of the target

(Figure 2.4). Instead of only logging the coordinates, a list of full measure-

ments, including the distance, zenith angle, horizontal angle, and time stamp

(from the internal clock of the total station) is obtained. These measurements

are used both for computing the coordinates and for synchronizing the time

1An implementation of GeoCOM-based real time tracking in Python is available at

https://github.com/rvermeiren/Leica-GeoCOM-for-drone-tracking/tree/

master/scripts/src.
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between the total station and the mobile device. Herein the tracking func-

tion is carried out by a Leica MS50, which is able to acquire approximate 20

measurements per second (i. e. 20 Hz).

Establish 
GeoCOM 
connection

Set prism & 
measurement 

mode

Search target 
automatically

Lock on 
the target

Tracking & 
measuring Stop? Save the 

data

Figure 2.4: The flowchart of the logging software implemented using Geo-

COM

Synchronization operation. When measuring the signal strength values of

the WLAN signals with the mobile phone, it is simple to obtain the coordi-

nated universal time (UTC) of acquisition via online web services as well. On

the other hand, it is more difficult to obtain the UTC time stamp for the mea-

surements performed by the total station. The time stamp returned from the

total station via GeoCOM is a relative time stamp reporting the elapsed time

in milliseconds after the power on of the total station. The UTC time stamp of

the total station could be obtained using a dedicated global navigation satel-

lite system (GNSS) receiver. However, such a solution is not applicable in

indoor environments. In order to combine the observations from the total sta-

tion and the mobile device, a common time frame has to be established. This

synchronization operation is achieved by cross-correlation-based initial TDE

before acquiring the fingerprinting data. Herein the time drifts of the internal

clocks of both devices have not been taken into account because the duration

of each round (i. e. one continuously tracked trajectory) of the data collection

is less than 20 minutes. The internal clock drift of a typical Leica total station

(e. g. MS50) within one hour is about 200 ms (Gojcic et al. 2017). The time

drifts of the internal clocks in such a short time thus have little impact on the

common time frame.

Figure 2.5: The schematic of the synchronization operation

Motivated by Gojcic et al. (2017), the TDE is determined by minimizing
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the cross-correlation function between two simultaneously measured time se-

ries: i) the zenith angle measurement obtained using the total station; and ii)

the value of magnetic field measured by the mobile device. As depicted in

Figure 2.5, an artificial signal is generated by manually moving the mobile

device up and down while being tracked by the total station. When moving

the mobile device up (closer to the magnet), the zenith angle reduces while

the value of the magnetic field (denoted short as Mag.) acquired by the built-

in magnetometer of the mobile phone increases (Figure 2.6a). The changes

of the zenith angle and magnetic field values are vice versa when moving the

mobile device down.

(a) The measurements obtained by the magnetometer (top one) and the total

station (bottom one) used for synchronization.

(b) Cross correlation

Figure 2.6: Example of cross-correlation-based TDE

Figure 2.6 shows an example of the TDE obtained as the lag, which

minimizes the cross-correlation function of the data from the magnetome-

ter built into the mobile device and the zenith angle obtained by the total sta-

tion. Note that the highest achievable resolution of the cross-correlation-based

TDE is equal to the sampling interval (the longer one of the two devices).
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Therefore, the cross-correlation function is subsample interpolated using the

parabola-based method for approximating the lags, at which the minimum

cross-correlation value is achieved (Figure 2.6b). Considering the sampling

rate of the magnetometer (50 Hz) and the measuring rate of the Leica MS50

(20 Hz), the highest achievable time resolution is about 25 ms. This time reso-

lution is adequate for tracking the pedestrian with low mobility (e. g. walking

about 1.5 m/s) in indoor environments.

Acquisition of the fingerprinting data. The fingerprinting application is

developed in Java using the provided programming interfaces by Android,

especially the ones for network management, sensors and location providers
2. The application can be used to collect the received signal strength (RSS)

from WLAN APs/BLE beacons and the values from magnetometer and IMUs

(e. g. accelerometer, gyroscope) using the built-in sensors of mobile devices.

In Android, sampling of the features is triggered by a specific event (e. g. one

new signal has been detected). It means that the measured data of a given sen-

sor is logged/sampled by actively or passively triggering the corresponding

event. One relevant tip for fingerprinting using mobile device is the passive

triggering mode of WiFi/Bluetooth modules. This in turn leads to that the

measuring interval of these two modules is arbitrarily determined by the sam-

pling event, which is triggered by either the detection of new signals sources

or the large change of the signal values (Schulz et al. 2018). The typical sam-

pling rate of WiFi/Bluetooth modules built-in the Nexus 6P is about 0.67 Hz.

Owing to the low sampling rate, the reference location can be determined by

interpolating the coordinates, which can be obtained by the total station with

a high data acquisition frequency. The detailed description of the design of

the fingerprinting application can be found in e. g. Duewell (2019).

Data extraction. All pairs of measured data both from the total station and

the mobile device are used to generate the raw RFM by interpolating the lo-

cations where the features are measured according to the tracked trajectory

after the time synchronization. The signals from WLAN APs and BLE bea-

cons have been measured and extracted for generating the raw RFM. The

data collection has been carried out twice in the same office building. The

time interval between two rounds of data collection is about two months. The

characteristics of the collected RFM are summarized in Table 2.1. For the

RSS from WLAN APs, we have filtered the mobile WiFi beacons according

to the service set identifier (i. e. the name) of the APs. All BLE beacons are

stored in the raw RFM since the information for filtering the mobile ones are

not available. This also explains that a large number of newly measured BLE

beacons have been observed in dataset HIL-R2 as compared to dataset HIL-

2Details about the programming interfaces of Android is available on https://developer.

android.com/reference/packages.
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R1. The collected dataset has been made publically available such that other

users can perform benchmarking comparison with different algorithms (Zhou

2019). In the analysis of this chapter, we focus on analyzing the raw RFM,

which contains the RSS from WLAN APs.

Table 2.1: The summary of the raw RFM (WLAN and BLE). The dataset

HIL-Merged is obtained by fusing dataset HIL-R1 and HIL-R2.

WLAN BLE

# of samples # of features # of samples # of features

HIL-R1 3911 490 3380 278

HIL-R2 3714 434 2898 408

HIL-Merged 7625 537 6278 653

2.3 A world model of the RFM

In this section, the spatial distribution of the measured features contained in

the raw RFM is analyzed. The visualizations of them clearly suggests that a

filtering procedure is required because the raw measurements are quite noisy

(see Figure 2.7). In addition, a modified version of kernel smoothing (KS) is

introduced both for improving the spatial consistency and for providing the

continuous presentation of the RFM in the subsequent sections. The modified

version of the KS is capable of reducing the computational complexity and

mitigating over-smoothing problems of the traditional KS.

2.3.1 Spatial distribution of the raw RFM

Figure 2.7 shows the measured feature values of two APs. The characteristics

of the raw RFM are: i) the raw measurements are obtained at arbitrary loca-

tions and their density varies over space. The density variations are caused

by the inaccessibility (e. g. areas blocked by furniture or other objects) of the

RoI; and ii) the measured values in the neighborhood of a fixed location have

large variations and are quite noisy. These two characteristics are the motiva-

tion of proposing a world model of the RFM, which is able to continuously

represent the RFM.
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Figure 2.7: Examples of the raw RFM of two APs

2.3.2 Continuous representation of the RFM

Albeit any of interpolation approaches (e. g. splines) can be used to represent

the RFM, KS is selected as the world model of the RFM for two reasons: i) its

capability to filter out the noise; and ii) its flexibility in utilizing diverse spatial

kernels (Berlinet and Thomas-Agnan 2011). More specifically, a world model

F of the RFM is used to retrieve the measurement at any location l in the

RoI 3, i. e. := F (l).

Fundamentals of KS. KS can be formulated as an optimization problem in

reproducing kernel Hilbert space (RKHS) H K:

F ∗ = argmin
F ∈H K

| |
∑
i=1

d (F (li), i)+σ2‖F ‖2
H K (2.1)

where d is a dissimilarity metric, i. e. d : × �→ � and σ2 is the regular-

ization parameter, which are used for quantifying the difference between each

pair of measurements in the feature space and for stabilizing the optimization

against noise, respectively (Murphy 2012). is the raw RFM collected at dis-

crete locations throughout the RoI and consists of reference coordinates li and

its associated measurement i. The solution of the above problem (treated as

3A measurement is formulated as pairs of the unique identifiable attribute and its associated

values. A detailed definition and description can be found in the Section 3.3 in Chapter 3.
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the world model of the RFM) is:

F ∗(l) = z
′
l(G

′
G+σ2I|�|)

−1o (2.2)

where I|�| is the identity matrix of size |�| and o ∈ �|�| (oi = �i, i ∈
{1,2, · · · , |�|}) is the column-wise representation of the measurements stored

in the discrete RFM �. zl ∈�|�| is a column vector, which denotes the corre-

lation between the query point l and the reference locations stored in the RFM

�:

zl = [K (l, l1);K (l, l2); · · · ;K (l, l|�|)] (2.3)

where K (·, ·) is the kernel function (e. g. Gaussian or Matérn kernels). G is the

Gram-matrix of the selected kernel K (·, ·). The kernel function is employed to

approximate the variance-covariance matrix between the reference locations

when used for interpolating the feature values. More details about KS can be

found in e. g. Berlinet and Thomas-Agnan (2011).

Figure 2.8 shows the results of the smoothed RFM using the traditional

KS4. Herein the Matérn kernel is applied as the spatial kernel and its param-

eters: i) the length scale; and ii) the differential factor are set to 1.0 according

to the density of the reference locations contained in the raw RFM and 1.5 for

reducing the computational complexity, respectively (Pedregosa et al. 2011;

Murphy 2012). Compared to the raw RFM visualized in Figure 2.7, the tra-

ditional KS can filter out the noise to a certain degree and thus improving the

spatial consistency of the feature values. However, two flaws of the traditional

KS are exposed in Figure 2.8. One is the limited capability of filtering out the

noise. The KS cannot smoothen out the high intensity noises contained in

the raw RFM. This limitation leads to the low spatial consistency of feature

values in the regions where the associated raw measurements have high noise

(see Figure 2.8c and 2.8d). Another flaw is that the KS may smoothen the

feature values over the geometric boundaries (e. g. walls or corners) of in-

door regions (called over-smoothing problem). The former indicates that the

spatial consistency can be improved further. The latter degrades the discon-

tinuity of the RFM yielded by the indoor environments themselves. Indeed,

the discontinuity related to indoor environment is relevant for feature-based

positioning (Bong and Kim 2012). These flaws are addressed by introducing

spatial filtering and geometric constraints in Section 2.3.3.

Computational complexity of KS. As the solution shown in Equation (2.2),

the computational complexity of the KS (mainly from the matrix inversion) is

O(|�|3) (O(|�|2.373) using optimized algorithms) (Cormen et al. 2009) and

O(|�|2) with respect to the time and storage, respectively. The time cost

4Though KS can continuously represent the RFM, only the smoothed measurements at the

locations contained in the raw RFM are visualized for easy comparison.
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Figure 2.8: Examples of the kernel smoothed RFM taking the raw RFM as

the input to the traditional KS

increases almost cubically regarding the number of measurements contained

in the RFM. In fact, the online execution of KS for a big RFM (i. e. the area

of the RoI) can be very computationally expensive.

KS using the neighborhood support set. In order to reduce the computa-

tional complexity of KS to a fixed and an adaptable level, especially for the

online applications, we apply a variant to KS. Instead of using all measure-

ments stored in the RFM for solving the KS problem, only a subset of the

RFM in the neighborhood of a given location l is used for smoothing and in-

terpolating the measurements at that location. The neighborhood support set

includes only the observed measurements associated to the locations that are

within the circle with the radius of rKS centered at the location. We evaluate

the impact of the querying radius rKS on the computational complexity with

respect to the processing time and storage space, as well as the interpolation

performance (defined as mean absolute error (MAE) of the residuals) by cal-

culating the residuals between the estimated values only using queried RFM

and the ones using the whole RFM.

As can be seen in Figure 2.9, the MAE of the interpolation value using

KS decreases by about 400 times as the value of kKS increases from 0.5 m

to 8 m. Meanwhile, the processing time and storage cost increase by about

1000 times. In order to balance the value of residual and the computational

complexity, we find out that the residual has no apparent reduction and the

overall residual is low (Figure 2.9a) when rKS is larger than 5 m. At that radius

value, the process time of each KS query is around tens of milliseconds.
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Figure 2.9: The influence of the value of rKS on processing time, storage space

and residuals. The value of k = ∞ means that using all the training examples

for KS.

The smoothed RFM yielded from the modified KS is similar to that of the

traditional KS by comparing Figure 2.8 and 2.10. The modified KS is more

sensitive to the large variations occurred in the RFM, because it takes only

the neighborhood of a given locations for computing the interpolated features

values. In addition, the KS using the neighborhood support set can partially

alleviate the over-smoothing problem.

2.3.3 Enhancement of the traditional KS

Spatial filtering. The spatial filtering is employed to the raw measurements

in order to mitigate the impact of potential outliers on the KS. It in turn im-

proves the robustness of the KS. A spatial median filter is applied to approx-

imate the expected values of features according to the measurement, which

are associated to the neighborhood of the given location (Zhou and Wieser

2019a). Following Zhou and Wieser (2019a), the support set is defined as

the measurements collected at the up to 20 locations closest to a given loca-

tion that at the same time lie within a 2 m radius about the given location.

The spatially filtered RFM visualized in Figure 2.11 has much less variations
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Figure 2.10: Examples of the smoothed RFM yielded by the modified KS

using the raw RFM as the input

as compared to the raw measurements depicted in Figure 2.7. Owing to the

higher spatial consistency of the spatially filtered RFM, the output from the

modified KS also maintains high spatial consistency (see Figure 2.12).

AP 3 AP 6

H
IL

-R
1

(a) (b)

H
IL

-R
2

(c) (d)

Figure 2.11: Examples of the spatially filtered RFM
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Figure 2.12: Examples of the smoothed RFM using spatially filtered RFM as

the input to the modified KS

Geometric constraints. The over-smoothing, described in Section 2.3.2, is

caused by the modeling problem of the traditional KS. In the application of

modeling the RFM, the geometric constraints (such as walls) should be taken

into account while computing the spatial contribution of each individual mea-

surement. In order to introduce the geometric information into the KS, the

vector map that abstractly represents the geographical features of the RoI into

vectors (e. g. polygons) is required. Herein the geometric information of the

RoI is roughly represented as a set of polygons according to the floor plan

of the building. The impact of the geometric constraints on the KS is mod-

eled as a part of the distance between each pair of locations. In this way,

the spatial variance-covariance matrices approximated using a kernel func-

tion are affected by the geometric constraints. The physical distance between

any pair of reference locations is exponentially scaled up according to the in-

tersection between the line linking the two locations and the boundaries of

the indoor regions. The scaled distance reduces the correlations between the

locations, which are separated by the indoor structures when approximating

the variance-covariance matrix using the kernel function.

More specifically, the support set KS
q at the query point lq consists of the

locations, which lie in the circle with the radius of rKS centered at that location

(see Figure 2.13). Let di j and ci j denote the physical distance between the

location li and l j and the number of intersections between the boundaries and

the line linking these two locations, respectively. The exponentially scaled
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Figure 2.13: The schematic of the modeling of the geometric constraints

distance dexp
i j is computed as:

dexp
i j = (1+di j)

exp(λci j)−1 (2.4)

where λ > 0 is the scale factor for controlling the enlarge extent of the dis-

tance and is set to 1 herein. The exponential way of scaling the distance is

inspired by the fact that the intensity of radio frequency (i. e. electromagnetic

waves) exponentially decays when propagating through space. In addition,

Equation (2.4) ensures that the scaled distance is equal to the physical dis-

tance when ci j is 0, i. e. no obstacle exists between the locations. Figure 2.14

shows two examples of the smoothed RFM using the modified KS with the

combination of geometric constraints. The over-smoothing pattern becomes

much less apparent with the help of the geometric constraints as compared to

Figure 2.12, especially when encountering the boundaries between different

rooms.

2.4 Conclusion

A data acquisition system with the combination of high precision tracking

of the total station and off-the-shelf mobile devices with built-in sensors has

been employed to generate the RFM. The configuration of the referencing

system, the time synchronization, and the sensing scheme of the mobile de-

vice have been described in detail. The reference locations associated to the

measurements stored RFM are in the cm-level accuracy while their associ-

ated measured features are observed kinematically. These two characteristics

make this RFM a unique contribution to the indoor positioning research com-

munity. In addition, the spatial distribution of the collected RFM has been

analyzed and its world model have been proposed by applying spatial filtering

and the modified KS. The modified KS is capable of providing a continuous

representation of the RFM while reducing the computational complexity and
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Figure 2.14: Examples of the smoothed RFM using spatially filtered RFM as

the input to the modified KS with the geometric constraints

mitigating the over-smoothing problems of the traditional KS.
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Modified Jaccard Index Analysis and Adaptive

Feature Selection for Location Fingerprinting with

Limited Computational Complexity

Caifa Zhou, Andreas Wieser

Abstract

We propose an approach for fingerprinting-based positioning which reduces

the data requirements and computational complexity of the online positioning

stage. It is based on a segmentation of the entire region of interest into sub-

regions, identification of candidate subregions during the online-stage, and

position estimation using a preselected subset of relevant features. The sub-

region selection uses a modified Jaccard index which quantifies the similarity

between the features observed by the user and those available within the ref-

erence fingerprint map. The adaptive feature selection is achieved using an

adaptive forward-backward greedy search which determines a subset of fea-

tures for each subregion, relevant with respect to a given fingerprinting-based

positioning method. In an empirical study using signals of opportunity for

fingerprinting the proposed subregion and feature selection reduce the pro-

cessing time during the online-stage by a factor of about 10 while the posi-

tioning accuracy does not deteriorate significantly. In fact, in one of the two

study cases the 90th percentile of the circular error increased by 7.5% while in

the other study case we even found a reduction of the corresponding circular

error by 30%.

3.1 Introduction

Fingerprinting-based indoor positioning systems (FIPSs) are attractive for

providing the location of users or mobile assets because they can exploit sig-

nals of opportunity (SoP) and infrastructure already existing for other pur-

poses (He and Chan 2016). They require no or little extra hardware, (He and

Chan 2016), and differ in that respect from many other approaches to indoor

positioning like e.g., the ones using infrared beacons (Lee et al. 2004), ul-

trasonic signals (Hazas and Hopper 2006), Bluetooth low energy (BLE) bea-
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cons (Kalbandhe and Patil 2016), radio frequency identification (RFID) tags

(Bekkali et al. 2007), ultra-wideband (UWB) signals (Ingram et al. 2004),

or foot-mounted inertial measurement units (IMUs) (Gu et al. 2017). FIPS

benefit from the spatial variability of a wide variety of observable features

or signals like received signal strength (RSS) from wireless local area net-

work (WLAN) access points (APs) (Padmanabhan et al. 2000; Youssef and

Agrawala 2008; Torres-Sospedra et al. 2014; Jun et al. 2017; Mendoza-Silva

et al. 2018a), magnetic field strengths (Saxena and Zawodniok 2014; Torres-

Sospedra et al. 2015b; Xie et al. 2016), or RSS of cellular towers (Driusso

et al. 2016). Such signals are location dependent features, many of which can

easily be measured using a variety of mobile devices (e. g. smartphones or

tablets). FIPSs are therefore also called feature-based indoor positioning sys-

tems (Kasprzak et al. 2013). The attainable quality of the position estimation

using FIPS mainly depends on the spatial gradient of the features and on their

stability or predictability over time (Niedermayr et al. 2014).

Key challenges of FIPS, especially the ones using RSS readings from

WLAN APs are discussed e.g. in (Kushki et al. 2007) and more recently

in (He and Chan 2016; Yassin et al. 2017). The former publication focuses on

four challenges of FIPS utilizing vectors of RSS from WLAN AP as features.

In particular, the paper addresses i) the generation of a fingerprint database to

provide a reference fingerprint map (RFM) for positioning, ii) pre-processing

of fingerprints for reducing computational complexity and enhancing accu-

racy, iii) selection of APs for positioning, and iv) estimation of the distance

between a fingerprint measured by the user and the fingerprints represented

within in the reference database. Extensions to large indoor regions and han-

dling of variations of observable features caused by the changes of indoor

environments or signal sources of the features (e.g., replacement of broken

APs) are addressed in (He and Chan 2016).

Regarding generation of the RFM, various approaches have been proposed

(He and Chan 2016). Initially, the features were mapped by dedicated survey-

ing measurements (e. g. (Youssef and Agrawala 2008; Park et al. 2010)). The

resulting RFMs were accurate at the time of acquisition. However, such mea-

surements are labor-intensive and time-consuming. Approaches based on for-

ward modeling, e.g., using indoor propagation models (Jung et al. 2011; El-

Kafrawy et al. 2010; Bisio et al. 2014) or ray tracing (Renaudin et al. 2018),

were proposed as a cost-effective alternative, especially in case of radio fre-

quency signal strengths as features. However, the accuracy of the resulting

RFM depends on the validity of the model assumptions including the wave

propagation models, the geometry and material properties of the objects and

structures in the indoor space, and the location and antenna gain patterns of

the signal sources. For many real-world application scenarios it is thus typi-

cally lower than the accuracy of measurement-based RFM generation. More

recently, approaches for RFM generation using the sensors built into the mo-

bile user devices have been proposed. They can be differentiated according
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to the degree of user participation. Data collection for RFM generation can

be done by an application running in the background such that the user only

needs to consent to contributing data but not actively participate otherwise.

Other approaches require the user to manually indicate his/her location on a

map or to signal to the application that the current location corresponds to a

certain marked ground truth, see e.g. (Wu et al. 2013; Ledlie et al. 2011; Li

et al. 2013). For refining the RFM various approaches have been proposed,

e. g. interpolation/extrapolation (Talvitie et al. 2015; Sorour et al. 2015) or

kernel-smoothing (Huang and Manh 2016). We are not focusing on reducing

the workload for building the RFM. However, we validate the proposed ap-

proach using a kinematically collected RFM (see Section 3.4) which is similar

to a standard survey but less time-consuming.

The contribution of this paper is to reduce the online positioning computa-

tion complexity by introducing a specific approach to subregion selection and

feature selection into the online positioning process. The proposed approach

includes machine learning algorithms, i.e. algorithms whose performance on

the specific task improves with experience (Mitchell 1997) and which are

thus suitable for fingerprinting-based positioning (Bishop 2006). It is appli-

cable to FIPSs using opportunistically measured location-relevant features.

In case of FIPSs using SoP, the difficulty lies in both the type and number

of features varying across the region of interest. This introduces a critical

limitation which prevents the applicability of the aforementioned FIPS solu-

tions due to changes in the dimension of the feature space across time and

across location coordinate space. For instance, the fingerprinting-based po-

sitioning methods including the typical ones, e. g. k-nearest neighbors (kNN)

(Padmanabhan et al. 2000) and maximum a posteriori (MAP) (Youssef and

Agrawala 2008), and the advanced ones, e. g. fingerprinting-based position-

ing using support vector machine (SVM) (Wu et al. 2004), linear discrimi-

nant analysis (LDA) (Nuño-Barrau and Páez-Borrallo 2006), Bayesian net-

work (Nandakumar et al. 2012), and Gaussian process (Ouyang et al. 2012),

cannot be applied without special precautions for handling the varying dimen-

sion in such cases. Few previous publications address handling this problem

e. g. (Zhou and Wieser 2018a). Additionally, the computational complexity of

these fingerprinting-based positioning methods is proportional to the number

of reference locations in the RFM and the number of observable features. This

makes these approaches computationally expensive in large RoIs with many

reference locations and many available features unless introducing specific

means for mitigation. The discrepancy of the feature dimension and the com-

putational complexity problems are typically mitigated by introducing subre-

gion selection and feature selection (Zhou and Wieser 2018b; Kushki et al.

2007; Feng et al. 2012; Ouyang et al. 2012; Khalajmehrabadi et al. 2017).

In this paper we propose (i) subregion selection based on a modified Jac-

card index (MJI), (ii) a forward-greedy search to find an appropriate num-

ber of subregions, and (iii) an adaptive forward-backward greedy search



37 3.2. RELATED WORK

(AFBGS) algorithm (Zhang 2011) for selecting the relevant features for each

subregion. We demonstrate the application of the proposed algorithms to both

MAP- and kNN-based position estimation. We finally validate the perfor-

mance of the proposed approach by carrying out experiments in two RoIs

of different size using two types of opportunistically measured signals (i.e.,

WLAN and BLE). The selected acronyms are listed in Table 3.1.

The structure of the paper is as follows: A short review of the previous

publications addressing the approaches for subregion selection and feature

selection is given in Section 3.2. In Section 3.3, the MJI-based subregion se-

lection, AFBGS-based feature selection, and the modified online positioning

process are presented along with the computational complexity. We illustrate

and validate the performance of the proposed approach in Section 3.4 by ap-

plying it to an FIPS, which utilizes SoP as the location-relevant features, and

we compare the results to those obtained using previously proposed methods.

Table 3.1: Selected acronyms used herein

Acronym Meaning

FIPS fingerprinting-based indoor positioning

system

RSS received signal strength

SoP signals of opportunity

RFM reference fingerprint map

kNN k-nearest-neighbors

MAP maximum a posteriori

MJI modified Jaccard index

AFBGS adaptive forward-backward greedy search

LASSO least absolute shrinkage and selection op-

erator

MSE mean squared error

ECDF empirical cumulative distribution function

3.2 Related work

3.2.1 Subregion selection

The subregion selection process contributes to constraining the search space.

The selected subregions are treated as coarse approximations of the user’s lo-

cation. The process of refining the coordinate estimates is then carried out

only within these subregions, and the search space for the final estimate is

thus independent of the size of the RoI. There are mainly two types of ap-
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proaches for subregion selection1: approaches based on clustering and ap-

proaches based on similarity metrics. (Feng et al. 2012; Karegar 2017), and

(Chen et al. 2006; Ouyang et al. 2012) applied affinity propagation and k-

means clustering to divide the RoI into a given number of subregions accord-

ing to the features collected within the RoI. Both papers present clustering-

based subregion selection, and require prior definition of the desired number

of subregions and knowledge of all features observable within the entire RoI.

These clustering-based approaches take the fingerprint measured by the user

into account during the clustering process which thus has to be repeated with

each new user fingerprint obtained.

Similarity metric-based subregion selection relies on the identification of

the subregions whose fingerprints contained in the RFM are most similar to

the fingerprint observed by the user. They differ depending on the chosen

similarity metric. E.g., (Kushki et al. 2007) use the Hamming distance for

this purpose, measuring only the difference in terms of observability of the

features, not their actual values. Still, these approaches typically need prior

information on all observable features within the entire RoI when associating

a user observed features with a subregion. This may be a severe limitation

in case of a large RoI or changes of availability of the features. MJI-based

subregion selection as proposed in this paper belongs to similarity metric-

based subregion selection. However, the approach proposed herein requires

only the prior knowledge of the features observable within each subregion

when quantifying the similarity metric between the observations in the RFM

and in the user observed measurements.

3.2.2 Selection of relevant features

Approaches to the selection of features (or sparse representation) actually

used for positioning differ w.r.t. several perspectives. We focus on three as-

pects in their review: i) whether they take the relationship between positioning

accuracy and selected features into account, ii) whether they help to reduce the

computational complexity of position estimation, and iii) whether they are ap-

plicable to a variety of features or only features of a certain type. The chosen

features for positioning should be the ones allowing to achieve the best posi-

tioning accuracy using the specific fingerprinting-based positioning method or

achieving a useful compromise between accuracy and reduced computational

burden.

Previous publications focused on feature selection for FIPS using RSS

from WLAN APs and consequently addressed the specific problem of AP se-

lection rather than the more general feature selection. (Chen et al. 2006) and

1In other publications, subregion selection is called spatial filtering (Kushki et al. 2007),

location-clustering (Youssef et al. 2003), or coarse localization (Feng et al. 2012).
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(Feng et al. 2012) proposed using the subsets of APs whose RSS readings are

the strongest assuming that the strongest signals provide the highest proba-

bility of coverage over time and the highest accuracy. (Kushki et al. 2007)

and (Chen et al. 2006) applied a divergence metric (Bhattacharyya distance

and information gain, respectively) to minimize the redundancy and maxi-

mize the information gained from the selected APs. The limitations of these

approaches are i) they are only applicable to the FIPS based on RSS from

WLAN APs, and ii) they only take the values of the features into account

as selection criteria instead of the actual positioning accuracy. (Kushki et al.

2010) proposed an AP selection strategy able to choose APs ensuring a certain

positioning accuracy using a nonparametric information filter. However, this

approach uses consecutively measured fingerprints to select the subset of APs

maximizing the discriminative ability w.r.t. localization. This method there-

fore needs several online observations for estimating one current position.

In (Zhou and Wieser 2018b), a feature selection algorithm based on

randomized LASSO (Tibshirani 1996), an L1-regularized linear regression

model, for selecting the relevant features for positioning is proposed. Each

feature within the subregion is associated with an estimated coefficient. If

the coefficient is sufficiently different from zero the corresponding feature is

identified as relevant. However, this approach only connects the feature selec-

tion with the positioning error indirectly. Furthermore, LASSO-based feature

selection is equivalent to MAP if the likelihood is Gaussian and the prior dis-

tribution is Laplace (Park and Casella 2008). These two assumptions are not

necessarily justified with fingerprinting-based positioning. It is difficult to

find a proper value of the hyper-parameter of LASSO-based feature selection,

which makes the feature selection unstable (Fastrich et al. 2015). Finally, this

feature selection algorithm is prone to overfitting. Applying this approach to

select the relevant features for each subregion requires the number of obser-

vations in each subregion to be much larger than the number of the dimension

of the features (e.g., the number of observable WLAN APs or BLE beacons).

Normally, this requirement is not met in case of fingerprinting-based position-

ing using SoPs as the features.

In this paper, we thus propose an approach based on AFBGS to choose

the most relevant features for fingerprinting-based positioning. This method

differs from the previously mentioned ones in three ways: i) it takes the posi-

tioning error into account directly, i.e. the feature selecting process is directly

combined with the fingerprinting-based positioning methods that are used at

the online stage, ii) wrongly selected features from the forward greedy search

step can be adaptively corrected by a backward greedy search step (Zhang

2011), and iii) it is a data-driven algorithm adapting automatically to the num-

ber of observations of each subregion.
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3.3 The proposed approach

In this section, we briefly summarize the fundamentals of fingerprinting-based

positioning and present the main contributions of this paper to reduce the

computational complexity independent of the size of the RoI. In particular

we present i) candidate subregion selection according to MJI, ii) selection of

relevant features using AFBGS, and iii) adaptations of MAP and kNN-based

positioning with the combination of the previous two steps. Finally, we briefly

discuss the computational complexity of the proposed method.

3.3.1 Problem formulation

Each measured feature has a unique identifier and a measured value, e. g. the

measurement related to a specific Wi-Fi AP can be identified by the me-

dia access control (MAC) address and has a RSS. It is thus formulated as

a pair (a,v) of attribute a and value v. A complete measurement (i. e. fin-

gerprint) �u
i taken by user u at location/time i consists of a set of attribute-

value pairs, i. e. �u
i := {(au

ik,v
u
ik)|au

ik ∈�;vu
ik ∈ �;k ∈ {1,2, · · · ,Nu

i }}, where

� is the complete set of the identifiers of all available features and Nu
i

(Nu
i = |�u

i |) is the number of features observed by u at i. The set of keys

of such a fingerprint is defined as �u
i := {au

ik|∃(au
ik,vik) ∈ �u

i }. A discrete

RFM� := {(l j,�̃ j)|l j ∈�, j ∈ {1,2, · · · , |�|}} is given as a set of position-

fingerprint pairs representing the relationship between the location l and the

features� at different locations within the RoI�.

Specifically for the subregion selection, � is divided into M non-

overlapping subregions of arbitrary shape, i. e.�= ∪
i=1:M

�i, �i∩� j = /0|i � j.

This segmentation can take contextual information into account by defin-

ing the subregions such that one subregion lies only in e.g. one build-

ing, one floor, one room or one corridor. Thus, the concept is directly ap-

plicable to multi-building or multi-floor situations. Each of the measure-

ments (elements) of � is assigned to the corresponding subregion. The

subset of � corresponding to the gth subregion can thus be defined as

�g := {(l j,�̃ j)|l j ∈ �g, j ∈ {1,2, · · · , |�g|}},�g ⊆�, and the set of ob-

servable features in the corresponding subregion is denoted as �g := {a|a ∈
∪

j=1:|�g|
�̃ j,�̃ j of �̃ j,∃(l j,�̃ j) ∈�g}(g ∈ {1,2, · · · ,M}),�g ⊆�.

The positioning process consists of inferring the estimated user location

l̂ui = f (�u
i ) as a function of the fingerprint and the RFM where f is a suitable

mapping from fingerprint to location, i. e. f :�u
i �→ l̂ui . Herein we propose the

following solutions for mitigating the computational load associated with the

online stage:
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• identifying (during the offline stage) the most relevant features within

each subregion using the AFBGS such that the actual location calcula-

tion can be carried out during the online stage using only those instead

of using all features;

• selecting the subregion as a coarse approximation of the actual user

location based on MJI during the online-stage.

Within this paper we combine the above two steps with a MAP and kNN-

based positioning for performance analysis. We implement it in a way to keep

the computational complexity of the online stage almost independent of the

size of the RoI and of the total number of observable features within the RoI.

Continuous 
representation
(interpolation)

AFBGS-based feature 
selection

(Section 3.3) 

Extraction of the available 
features

 (Section 3.1)

Relevant information for 
MAP and kNN

Original RFM 

Interpolated RFM

Offline stage

Online 
measurement

Find the candidate sub-
regions according to MJI

(Section 3.2)

Find the candidate 
relevant features

(Section 3.4)

Compute the position 
using MAP or kNN

(Section 3.4)

Estimated 
position

Online stage

Pre-computed 
data

Figure 3.1: The proposed framework. In order to make the number of ref-

erence points within all subregions equal we interpolate the reference data in

the original RFM using kernel smoothing (Berlinet and Thomas-Agnan 2011)

to provide a denser regular grid of reference points. This interpolated RFM is

used to calculate the pre-computed data for online positioning.

3.3.2 Subregion selection using MJI

MJI, an indicator of similarity between the keys of the measured fingerprints

and the keys associated with the individual subregions in the RFM, is applied

to identify a set of candidate subregions most probably containing the actual

user location (Zhou and Wieser 2018b; Jani et al. 2015). We depict four qual-

itative examples in Figure 3.2. If the overlap between the features within a

subregion (according to the RFM) and the features within a user’s observa-

tion is large, the value of the MJI is high, otherwise, it is low. For a more

detailed discussion of MJI, see (Zhou and Wieser 2018b).
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(a) High MJI value (b) High MJI value

(c) Low MJI value (d) Low MJI value

Figure 3.2: Qualitative examples of MJI values: (a) a few features within the

current subset of the RFM are not measured, (b) there are some measured

features which are not in the current subset of the RFM, (c) the measured

features are only few of the ones in the current subset of the RFM, (d) there is

little overlap between the measured features and the ones in the current subset

of the RFM.

The m subregions with the highest values of the MJI are selected as can-

didate subregions for the subsequent positioning. Their cell indices are col-

lected in the vector su
m ∈ Nm for further processing. If the subregions are

non-overlapping, as introduced above, m needs to be large enough to accom-

modate situations where the actual user location is close to the border between

subregions and small enough to reduce the computational burden of the sub-

sequent user location estimation.

In order to determine a proper value of m, an indicator is introduced for

denoting whether a validation example is contained in the selected top m sub-

regions (indicator 1) or not (indicator 0). Throughout this paper we assume

that the user is actually within the RoI and thus within one subregion when

the subregion selection process is carried out. Given Mval validation examples

{(�val
n , lval

n )}Mval

n=1 , the indicator for the n-th example is thus defined as:

I(lval
n ,m) =

{
1, if lval

n ∈ ∪
j∈�lval

n
m

� j

0, otherwise
(3.1)
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where �
lval
n

m contains the indices of the selected subregions for this particular

validation example. The subregion selection loss is then defined as the frac-

tion of the validation examples for which the true location is not within the

selected subregions, i. e.

LMJI(m) = 1− ∑Mval

n=1 I(lval
n ,m)

Mval
. (3.2)

The subregion selection loss reduces as m increases. However, increasing

the number of selected subregions contradicts to the idea of reducing the com-

putational complexity of the online positioning. Balancing between subregion

selection loss and computational complexity is a multi-objective optimization

problem, and it has no single optimum. Herein we decided to select an appro-

priate number of subregions heuristically by analyzing plots of selection loss

versus m and choosing a value from which on the curve is flat. I.e., at which

further increasing m hardly reduces the loss.

3.3.3 Feature selection using AFBGS

In a real-world environment there may be a large number of features avail-

able for positioning, e.g., hundreds of APs may be visible to the mobile user

device in certain locations. Not all of them will be necessary to estimate the

user location. In fact, using only a well-selected subset of the available sig-

nals instead of all will reduce the computational burden and may provide a

more accurate estimate because the measured signals are affected by noise

and possibly interference. Furthermore, the number of observable features

typically varies across the RoI, e.g. due to WLAN APs antenna gain patterns,

structure and furniture of the building. However, it is preferable to use the

same number of features throughout the candidate subregions for assessing

the similarity between the measured fingerprint and the ones extracted from

the RFM during the online phase.

We therefore recommend selecting a number h of features per candidate

subregion for the final position estimation. To facilitate this selection dur-

ing the online phase, the relevant features within each subregion are already

identified beforehand once the RFM is available. We use the AFBGS (Zhang

2011) for this step. During the online phase h relevant features (possibly dif-

ferent for each subregion) are selected among the identified ones such that

they are available both within the RFM and the user fingerprint.

The combination of forward and backward steps within the algorithm2

2The forward part of the algorithm is referred to as matching pursuit for least square regres-

sion in the signal processing community (Barron et al. 2008; Mallat and Zhang 1993). In
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makes AFBGS capable of correcting intermediate erroneous selection of fea-

tures. We first shortly review both forward and backward greedy algorithms,

then present AFBGS.

Let�(hi) denote the set of indices of the selected relevant features of the ith

subregion. A fingerprinting-based positioning method f thus only uses these

selected features to estimate the position, i.e. f : �|�(hi) → l. The forward

greedy search algorithm adds features one at a time picking the one causing

the biggest reduction of a given loss at each step. Herein we use the mean

squared error (MSE), a widely applied loss function for regression problems,

as the loss metric for the feature selection. For instance, with �(hi) being

the set of h features selected for the ith subregion, the loss is the MSE of

the positions estimated for all validation examples using this particular set of

subregions:

LFS(�(hi)) =
1

Mval

Mval

∑
n=1

‖f (�val
n |�(hi))− lval

n ‖2
2 (3.3)

An example of applying the forward greedy search to select features for the

ith subregion is described in Table 3.2. This algorithm works well in case the

features are independent of each other. Otherwise the forward greedy search

might wrongly select non-relevant features. Such wrong selections cannot be

corrected by the forward greedy algorithm anymore. One remedy introduced

to solve this problem is the backward greedy search (Table 3.3), which starts

with all features and greedily removes them one at a time picking the one

associated with the smallest increase of the loss at each step. However, also

the backward greedy search has two disadvantages: i) it is computationally

costly because it starts with all features; ii) it is prone to overfitting if the

number of observations in each subregion is much lower than the number of

observable features.

A practically useful alternative is the AFBGS, i.e., introducing a backward

greedy search after each step of the forward greedy search. In this way the

backward search starts with a set that does not overfit, and it can correct wrong

selections made earlier. Features removed by the backward steps are treated

again as candidates during subsequent forward steps.

Table 3.4 shows the pseudocode of the implementation of AFBGS. This

algorithm adaptively identifies the relevant features for each subregion ac-

cording to the chosen minimum reduction ε and minimum relative increment

ν of the loss. The number of identified relevant features per subregion will

therefore vary across the RoI. In (Zhang 2011), the author recommended to

machine learning it is known as boosting (Bühlmann 2006).
3Herein the initial loss is defined as the MSE by using the median of all RPs as the estimated

position when no candidate feature is selected.
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Table 3.2: Pseudocode of the forward greedy search algorithm

Algorithm: forward greedy search

1: Input: {�val
n , lval

n }, n = 1,2, · · · ,Mval;

minimum reduction of the loss ε > 0;

maximum number of relevant features k ∈�;

all observable features �all

2: Output: relevant features �(hi) of ith subregion

3: �(0) = /0, initial MSE LFS(�(0))
3

4: for t = 1,2, · · · , |�i|:
5: �avail = �all\�(t−1)

6: �̂= argmin
�=�(t−1)∪β

LFS(�), ∀β ∈ �avail

7: �(t) = �̂

8: Δ = LFS(�(t−1))−LFS(�(t))

9: if (Δ ≤ ε or |�(t)| ≥ k):

10: break
11: end if
12:end for
13:return �(hi) = �(t): set of selected features

Table 3.3: Pseudocode of the backward greedy search algorithm

Algorithm: backward greedy search

1: Input: {�val
n , lval

n }, n = 1,2, · · · ,Mval;

maximum increment of the loss φ > 0;

minimum number of relevant features k ∈�;

all observable features �all

2: Output: relevant features �(hi) of ith subregion

3: �(|�i|) = �all

4: for t = |�i|−1, |�i|−2, · · · ,1:

5: �̂= argmin
�=�(t+1)\β

LFS(�), ∀β ∈ �(t+1)

6: �(t) = �̂

7: Δ = LFS(�(t))−LFS(�(t+1))

8: if (Δ ≥ φ or |�(t)| ≤ k):

9: break
10: end if
11:end for
12:return �(hi) = �(t+1): set of selected features

set ν = 0.5 which we do when applying the algorithm later on. According to

(Zhang 2011), AFBGS will terminate in a finite number of steps, which is no

more than �1+
LFS(�(0))

νε �, where LFS(�(0)) is the MSE by taking the median
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of all RPs as the initially guessed position.

Table 3.4: Pseudocode of the adaptive forward-backward greedy search

(AFBGS) algorithm

Algorithm: AFBGS

1: Input: {�val
n , lval

n }, n = 1,2, · · · ,Mval;

minimum reduction of the loss ε > 0;

relative increment of the loss ν ∈ (0,1);
all observable features �all

2: Output: relevant features �(hi) of ith subregion

3: t = 1, �(0) = /0, initial MSE LFS(�(0))

4: while (True)
5: �avail = �all\�(t−1)

6: �̂
forward = argmin

�=�(t−1)∪β
LFS(�), ∀β ∈ �avail

7: �(t) = �̂
forward

8: Δforward = LFS(�(t−1))−LFS(�(t))

9: if (Δforward ≤ ε)

10: break
11: end if
12: �backward = �(t)
13: c = |�backward|, �(c) = �backward

14: while (True)
15: if (|�backward| == 1)

16: break
17: end if
18: c = c−1

19: �̂
backward = argmin

�=�(c+1)\β
LFS(�), ∀β ∈ �(c+1)

20: �(c) = �̂
backward

21: Δbackward = LFS(�(c))−LFS(�(c+1))

22: if (Δbackward > vΔforward)

23: break
24: end if
25: end while
26: �(t) = �(c+1)

27: t = t +1

28:end while
29:return �(hi) = �(t): set of selected features
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3.3.4 The combination of subregion and feature selections

with fingerprinting-based positioning

In this part, we present the way to combine the previously proposed subregion

and feature selections with two widely used fingerprinting-based positioning

methods, namely kNN and MAP, to estimate the user location from the finger-

print Ou measured at the actual but unknown location lu. We assume that a set

of candidate subregions �u
m has been selected using the MJI-based subregion

selection. For each of the selected subregions �i, i ∈ �u
m, the set �(hi) of rel-

evant features has been chosen using AFBGS. While the cardinality of these

sets �(hi) will be different, both positioning approaches require the number

of features taken into consideration to be the same for all candidate locations.

So, we determine the set

�candidate
u =�u

i ∩�u (3.4)

of candidate features, where �u = ∪
i∈�u

m
�(hi). The candidate features are all

features actually observed by the user and available in at least one of the

candidate subregions �u
m. We finally rank these features by the number of

candidate subregions in which they are available. The h candidate features �u
h

ranking highest is used for fingerprinting-based positioning.

MAP uses a variety of discrete candidate locations l and applies Bayes’

rule to compute for each of them the degree to which the assumption that

the current location of the user is l is supported by the available RFM and

the currently observed fingerprint (Park et al. 2010; Madigan et al. 2005).

Further details regarding the combination of MAP with subregion and feature

selection are given in (Zhou and Wieser 2018b).

For kNN the k points lq within the RFM which are closest to the user’s

observation in feature space have to be identified. Assuming that their indices

are collected in the set �u
k the estimated location l̂ukNN of the user is obtained

from:

l̂ukNN = ∑
q

ωqlq,∀q ∈ �u
k , (3.5)

where the respective weights ωq are defined as proportional to the inverse

distance of the fingerprints in the feature space:

ωq =
1/d (�u

i ,�q)

∑p 1/d (�u
i ,�p)

,∀p ∈ �u
k . (3.6)

Herein, d :�×� �→ � is a chosen distance metric, e.g., Euclidean distance
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or Hamming distance, used to measure the dissimilarity between fingerprints.

The adaptation proposed by us consists of the construction of these observa-

tions � which contain exactly one row for each of the h candidate features

selected previously and collected in �u
h. Generally these vectors are much

smaller than for the standard kNN-approach, where they would need to have

one entry for each feature observed anywhere within the RoI. The proposed

online positioning approach is summarized in Table 3.5.

Table 3.5: Pseudocode of the proposed online positioning approach

Algorithm: Online positioning

1: Input: the user’s observation�u
i ;

the selected relevant features {�(h1),�(h2), · · · ,�(hM)} of M
subregions;

the precomputed data for MAP and kNN4

2: Output: the estimated location l̂ui of the user

3: �u
m := find the m candidate subregions according to the ranking of

MJI

4: �u
h := find the candidate features according to the ranking of the fre-

quency of the selected relevant features �u
candidate w.r.t. �(hi),∀i ∈ �u

m
5: l̂ui := using MAP or kNN according to �u

h and the precomputed data

6: return l̂ui : the estimated location

3.3.5 Computational complexity of online positioning

In this part, we analyze the computational complexity of the proposed ap-

proach and compare it to MAP and kNN-based positioning without subregion

and feature selection.

The runtime computational complexity of estimating one position using

MAP and kNN are O(αM(|�|2 +1)) and O(kα ·M log(α ·M)|�|) 5, respec-

tively, where α is the number of candidate locations in each of the M sub-

regions and k is the number of nearest neighbors used for positioning. The

computational complexity of the proposed method is instead approximately

equal to O(α|�u
m| · |�u

h|2) and O(αk|�u
m| log(α · |�u

m|) · |�u
h|) for MAP and

kNN, respectively. So, clearly the computational complexity of the proposed

approach is significantly less than for the MAP- and kNN-based position-

ing approaches without subregion and feature selection. Furthermore, it is

4For MAP, the precomputed data are the likelihood of the selected features of each subregion

and prior probability of each candidate location. For kNN, the precomputed data are the

observations of the selected relevant features of each subregion.
5We implemented MAP as proposed in Youssef and Agrawala (2008). The implementation

can be sped up using algebraic factorization (Bisio et al. 2016). For kNN, tree-based methods

(e. g. kd-tree) are used in the scikit-learn implementation (Pedregosa et al. 2011).
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independent of the size of the RoI and of the total number of available fea-

tures within the RoI. The proposed approach is to constrain and limit the

search to a set of candidate reference locations and selected features for the

online positioning. Though we only give the analytical formula of the com-

putational complexity of MAP and kNN, other fingerprinting-based location

methods will also benefit from the proposed approach, because the compu-

tational complexity of fingerprinting-based positioning is proportional to the

size of the search space.

Besides the RFM further data required during the online positioning stage

can be precomputed already during the offline stage (Figure 3.1). This holds

in particular for:

• the set �i of available feature keys of each subregion required for cal-

culating the MJI at the online stage,

• the set �(hi) of relevant features of each subregion calculated using

AFBGS,

• and the conditional distribution (Prob(� j|l)) of the selected relevant

features within each subregion obtained from kernel density estimation.

At the online stage these pre-computed data are cached to the user device

to achieve location estimation while realizing mobile positioning. Further-

more, only the observed values of the features that are selected as relevant

ones in the RFM need to be loaded during the online positioning stage. The

proposed preprocessing steps also reduce the required storage space for sav-

ing the cached pre-computed data because these data only need to cover the

selected relevant features instead of all the features observable within the RoI.

3.4 Experimental results and discussion

In this section, we first describe the experimental configurations, including

the RoIs, data collection and the two different types of features used, namely

RSS from WLAN APs and BLE beacons. A detailed analysis of MJI-based

subregion selection, a comparison of different feature selection methods (ran-

domized LASSO, forward greedy, and AFBGS), as well as the positioning

accuracy and cost of time for positioning are illustrated for one RoI using

only WLAN RSSs. Finally, we apply the proposed approach to a larger RoI

using both types of observables.
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3.4.1 Testbed

In this section we analyze data obtained from real measurements collected

using a Nexus 6P 6 smartphone (for WLAN & BLE RSS) and a Leica MS50

total station (for position ground truth) within two RoIs in an office building

(Figure 3.3) which is covered by a plethora of WLAN APs signals and BLE

beacons7.

RoI 1 RoI 2 10 m

Figure 3.3: Two RoIs within one floor of an office building

We kinematically determined the RFM by recording data approximately

every 1.5 seconds while a user walked through the RoI and a total station

tracked a prism attached to the Nexus smartphone with an accuracy of about

5 mm. The recording rate is around 0.67 Hz. This is higher than typically

reported update rates for WLAN RSS and was achievable on this device by

changing the hardware settings of the scanning interval. At the online stage,

the RSS collection can be further accelerated by incremental scanning as dis-

cussed in (Brouwers et al. 2014). This approach is a compromise between

the high accuracy attainable by stop & go measurements at carefully selected

reference positions and the low extra effort of crowd-sourced RFM data col-

lection as outlined e.g. in (Radu and Marina 2013). For simplicity we do

not apply further pre-processing, such as filtering out the APs yielding low

RSS values, discarding rarely measured APs, or merging signals transmitted

from the same signal source on multi-frequencies although such steps could

further reduce the computational complexity and improve the results in a real

application.

6Herein we carried out all experiments using only one device. It is to be expected that also

the quality of the results obtained using our approach depends on the mobile device(s) used

for data collection, see (Bisio et al. 2013). However, we leave a related investigation for

future work.
7All APs and beacons had been deployed independently of this experiment and long before it

for the purpose of internet access. Each AP supports two frequencies (2.4 GHz and 5 GHz)

and has a built-in BLE beacon. There is no automatic power adjustment of the APs.
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In order to evaluate the performance of the proposed approach indepen-

dently an additional test dataset was collected. The coordinates of the test po-

sitions (TPs) as measured by the total station were later used as ground truth

for calculating the positioning error in terms of the Euclidean distances be-

tween estimated and true coordinates. The use of the tracking total station for

both RFM data collection and test point data collection meant that RSS data

did not have to be collected at any specific points (e.g. marked ones) within

the RoI or subregions, and it was not necessary to occupy the same points

again. We report the 50th, 75th and 90th percentile of the horizontal position-

ing error (i. e. circular error (CE) 50, CE75, CE90) defined as the minimum

radius for including 50%, 75%, and 90% of the positioning errors (Potort

et al. 2018). Furthermore, as an indicator for outlying position estimates (in

particular due to wrong subregion selection) we also report the percentage

of positioning errors exceeding 10 m, and as an indicator of computational

complexity the average time to calculate the position of the test point. Data

processing according to the proposed algorithms was implemented in Python

using the scikit-learn package (Pedregosa et al. 2011) as outlined in Figure

3.1.

The details for two RoIs are summarized in Table 3.6 and the numbers of

available features (i. e. visible WLAN APs or BLE beacons) are illustrated in

Figure 3.5. The number of available features changes throughout the RoI and

is thus also different in the different subregions. . Abrupt changes of feature

observability occur in some locations close to walls and close to support pil-

lars or cable/pipe products (not contained in the available floorplan). This is

caused by the uneven number of raw measurements assigned to each subre-

gion. In RoI 1, we carried out 5-rounds of one-day data collections about one

month apart. This allowed us to take both the spatial and temporal variations

into account when building the RFM. For RoI 2, the collected RFM is used as

an example for validating the performance of the proposed approach in case

of a more extended RoI. Though the area of RoI 1 is a subset of RoI 2, the two

RFMs are collected at different time and with different WLAN configurations
8. Both RoIs are divided into subregions of size 2×2m2 aligned with the floor

plan of the RoI. While such an alignment may not be necessary, it is useful as

it assures that individual subregions are not split by walls or other obstacles

possibly causing discontinuities in the feature space. In many applications of

FIPS a floor plan exists, and can thus be used for subregion definition because

it is required for the FIPS and the associated location-based services anyway.

In addition, some subregions contain no measurements (see Table 3.6). We

have no need to treat the empty subregions specifically because they will be

filtered out by subregion selection anyway without increasing the computa-

tional burden much.

8An upgrade of the WLAN (e. g. change APs) has been carried out after the data collection

of RoI 1.
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The originally observed RFM of each subregion is further densified

to a regular grid of about 25 reference points per m2 (i. e. spacing about

0.2× 0.2m2) by kernel smoothing interpolation (Figure 3.4) to mitigate the

non-uniform point density of the original RFM (Figure 3.1). This process

also ensures that data are available at the same location within one subregion.

In this paper, we use a Matérn kernel (the length scale is 1) for smoothing

the spatial distribution of the RSS and assume that the propagation channel

introduces the additive Gaussian white noise to the RSS. 9 The smoothly

interpolated raw measurements are rounded to integers for reducing the stor-

age requirements and for mitigating the impact of the quantization of RSS

values on the positioning performance (Torres-Sospedra and Moreira 2017a)

and the APs are treated as non-measurable if their RSS values are lower than

-100 dBm. The resulting gridded RFM is used for all further processing steps.

(a) Raw RSS (b) Kernel smoothed RSS

(c) Interpolated RSS ( 0.2×0.2m2 grid)

Figure 3.4: An example of the spatial distribution of RSS values as used for

RFM generation

9Assessing the impact of different uniform or non-uniform subregion shapes and sizes as

well as alternative interpolation strategies is beyond the scope of this paper and left for

future work.
10Due to the constraints (e. g. furnitures and decorations) of accessibility of the RoI, several

subregions have no observations. The numbers in parentheses denotes the numbers of

subregions containing at least one observation.
11The training data were obtained from the densified RFM obtained through kernel smoothing

of raw RFM data, while the test data are separately collected raw data. By coincidence, the

size of it is larger than that of the test data.
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Table 3.6: Summary of RFM characteristics

RoI
Area
(m2)

Number of
subregions 10

Number of features Training

data 11
Test
dataWLAN BLE

1 120 35 (34) 399 – 1525 509

2 1100 326 (285) 490 278 2855 476

(a) Using RSS from WLAN APs as the features

(b) Using RSS from BLE beacons as the features

Figure 3.5: The number of the available features of each subregion

3.4.2 Analysis using WLAN signals in RoI 1

Validation MJI-based subregion selection. The RoI 1 consists of 34 sub-

regions. Figure 3.6a shows the MJI for all pairs of subregions indicating that

the index is related to the Euclidean distance of the training data. This corre-

sponds to the expectation that the same APs are available in nearby subregions

while different APs are observed in subregions far from each other.

The MJI value is used here as an indicator of the similarity between the

features measured by the user and the ones available in the individual subre-

gions according to the RFM. We now use the loss function (3.2) to determine

a suitable number m of subregions for the MJI-based subregion selection. Fig-

ure 3.7a shows the loss as a function of m for RoI 1. The figure indicates that

the loss is almost constant if m exceeds 16. In consecutive parts of this sub-
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(a) (b)

(c)

Figure 3.6: Analysis of MJI between the subregions of RoI 1 (training data).

(a): Spatial distribution of the MJI. Apparent abrupt changes of MJI values

appear in the upright part. This is related to the spatial distribution of the

subregions. (b) Spatial distribution of the distance. (c) Schematic of subre-

gion division. Each subregion is indexed by an integer for this analysis. The

concrete number associated with a specific subregion is irrelevant.

section, we analyze the performance of feature selection and positioning ac-

curacy w.r.t. a given value of m ∈ {11,16,21,34}. In this range of m, we show

that a small compromise of subregion selection accuracy does not harm the

positioning accuracy too much, which is comparable to that obtained without

subregion selection, i. e. for m = 34 in RoI 1.

Validation of AFBGS-based feature selection. In this part, we compare

the feature selection performance using randomized LASSO as proposed in

(Zhou and Wieser 2018b) to feature selection using the forward greedy al-

gorithm and the AFBGS proposed herein. Since the latter two are directly

related to fingerprinting-based positioning we evaluate the feature selection

performance through the MSE of the position estimates calculated using the

selected features. In Figure 3.8, we illustrate the MSE for two arbitrarily

selected subregions using kNN and MAP. Regardless of the fingerprinting-

based positioning method and subregion, all the curves in this figure have a

similar pattern. We see that i) the MSE values achieved after applying for-

ward search and AFBGS-based feature selection converge faster and more
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(a) RoI 1 (WLAN) (b) RoI 2 (WLAN)

(c) RoI 2 (BLE)

Figure 3.7: The subregion selection loss with respect to the number of selected

subregions

consistently than after applying randomized LASSO-based feature selection,

and ii) randomized LASSO-based selection performance stabilizes with only

a large number of selected features (e. g. > 20). One explanation of this pat-

tern is that randomized LASSO selects the features based on a regularized

linear regression model instead of taking the fingerprinting-based positioning

methods into account. However, if a higher number of features is used for

positioning, the contribution of feature selection becomes less critical.

The difference of MSE between forward greedy search and AFBGS-based

feature selection is very small (Figure 3.8), because the selected features are

very similar in both cases, see Table 3.7. However, the AFBGS-based re-

sults are slightly better and we thus recommend it because of the increased

flexibility.
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Table 3.7: The selected features of subregion 17. (The unique identification

of AP is indexed from 0 to 398.)
Feature selection method Positioning method Selected features (top 5)

Randomized LASSO – 13, 107, 9, 80, 11

Forward greedy search
kNN 11, 270, 272, 144, 19

MAP 10, 398, 19, 20, 25

AFBGS
kNN 71, 11, 270, 272, 99

MAP 66, 71, 12, 140, 272

(a) kNN, subregion 11 (b) MAP, subregion 11

(c) kNN, subregion 21 (d) MAP, subregion 21

Figure 3.8: The MSE paths of two subregions. In the above test, the number

of the selected subregion is fixed, i. e. m = 21.

The processing time and positioning accuracy. Table 3.8 presents the pro-

cessing time12 for positioning one TP of RoIs 1 using WLAN signals as the

features. The positioning time of MAP based on the AFBGS selected features

within 21 selected subregions is about 2.9 seconds, which is almost 10 times

faster than that of using all features for positioning by searching over all the

subregions. The positioning time is also lower than when using LASSO for

feature selection. One explanation is that a lower number of features is se-

lected as relevant by the proposed algorithms than by LASSO, as shown in

12We used Python to implement the proposed method and evaluate the processing time using

the time package (https://docs.python.org/3/library/time.html#module-time).
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Figure 3.8. As for the positioning performance, the 90th percentile of the cir-

cular error (CE90) increases by less than 0.7 m for both MAP and MAP based

on the AFBGS selected features within 9 selected subregions as compared to

that of using all features for positioning and searching over the whole RoI. In

addition, the resampling and the subregion selection reduce the percentage of

large errors. So the reduced processing effort comes at the price of a small

loss in accuracy. If need be, the percentage of outlying position estimates

could be further reduced by position filtering taking the user’s motion or prior

knowledge like floor plans into account during subregion selection and posi-

tion estimation. This is beyond the scope of this paper and thus not further

investigated here.

3.4.3 Analysis using WLAN and BLE signals in RoI 2

In the larger RoI 2 both WLAN and BLE signals are extracted as fingerprints.

In this subsection, we present the results of applying the proposed algorithm to

that RoI and both signal types. As shown in Figure 3.7b and Figure 3.7c, MJI-

based subregion selection is applicable also in this case. The figure indicates

that there is no need to search within all subregions, but actually a subset is

sufficient. Appropriate numbers of the selected subregions are 32 and 38 for

using WLAN and BLE signals, respectively. These search spaces are less than

12% of the area of the RoI.

(a) WLAN (b) BLE

Figure 3.9: Examples resulting in large subregion selection error. In the fig-

ure, the white color filled pentagon indicates the ground truth of the TPs.

Figure 3.7 also shows that there is a small fraction of test points (e.g.

about 7% for WLAN signals and RoI 2) for which the correct subregion is

not among the selected ones even when choosing 30 subregions. This may

seem astonishing, but an investigation of the related test cases (see e.g., Figure
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Table 3.8: Comparison of positioning times and accuracies of RoI 1 (h =−1

denotes that the all the relevant features within the selected subregions are

used for positioning. These features are selected adaptively by AFBGS (see

Section 3.3.3) ; their number is thus different for different subregions.)

Methods
Values of
(m,h)

Mean positioning

time (s) CE50 (m) CE75 (m) CE90 (m)
Ratio of

large errors (%)

MAP (without interpolation) all 1.6 2.4 5.1 8.0 6.9

kNN (without interpolation) all 2.1×10−2 1.8 3.8 7.0 4.5

MAP (with interpolation) all 34.7 2.2 4.9 8.0 5.5

kNN (with interpolation) all 0.1 1.8 4.0 6.8 3.7

MAP (LASSO)

(11, -1) 2.4 2.9 5.4 9.0 8.6

(16, -1) 4.3 2.6 5.3 9.2 8.6

(21, -1) 6.5 2.7 5.3 9.2 8.6

(34, -1) 11.6 2.5 5.0 8.8 8.6

(34, 399) 34.7 2.2 4.9 8.0 5.5

kNN (LASSO)

(11, -1) 0.3×10−2 2.2 4.5 7.5 4.1

(16, -1) 0.5×10−2 2.3 4.3 7.4 4.7

(21, -1) 0.6×10−2 2.0 4.2 7.3 4.9

(34, -1) 1.0×10−2 2.2 4.0 7.1 4.7

(34, 399) 1.0×10−2 1.8 3.9 6.9 4.5

MAP
(Forward

greedy search)

(11, -1) 1.4 2.7 5.3 8.6 7.1

(16, -1) 2.5 2.7 5.6 9.2 8.4

(21, -1) 3.9 2.7 5.6 9.4 8.8

(34, -1) 6.9 2.7 5.5 9.3 8.3

(34, 399) 34.9 2.4 5.2 8.2 6.3

kNN
(Forward

greedy search)

(11, -1) 0.2×10−2 2.5 4.8 7.5 4.7

(16, -1) 0.3×10−2 2.8 5.1 8.2 5.5

(21, -1) 0.3×10−2 2.5 4.7 7.7 5.7

(34, -1) 0.5×10−2 2.3 4.7 8.4 5.3

(34, 399) 1.0×10−2 1.9 4.0 7.1 4.1

MAP
(AFBGS)

(11, -1) 1.3 2.6 5.0 8.6 6.9

(16, -1) 2.4 2.7 5.5 9.2 8.1

(21, -1) 3.7 2.8 5.5 9.1 8.4

(34, -1) 6.6 2.7 5.7 9.2 8.3

(34, 399) 35.0 2.3 5.2 8.0 5.9

kNN
(AFBGS)

(11, -1) 0.2×10−2 2.9 5.0 7.4 4.5

(16, -1) 0.3×10−2 3.2 5.5 8.2 4.5

(21, -1) 0.3×10−2 2.7 5.3 8.1 5.1

(34, -1) 0.4×10−2 2.8 5.0 8.7 7.1

(34, 399) 1.0×10−2 1.8 4.0 6.8 3.7
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(a) WLAN (b) BLE

Figure 3.10: Examples resulting in small subregion selection error. In the

figure, the white color filled pentagon indicates the ground truth of the TPs.

3.10) shows that this occurs mostly in cases where the gradient of the MJI

within an extended neighborhood of the test point is small. In that case a

few or individual additional or missing features can significantly influence

the ranking of the subregions in terms of MJI. We observe and need to expect

this case in larger, unobstructed areas like a hall without large furniture where

there is little variability in the IDs of the features observed (e.g., the visible

APs in case of WLAN RSS). This characteristic suggests that an augmented

scheme of selecting the subregions is required for future work, e.g. selecting

an adaptive number of subregions according to the spatial gradient of the MJI,

dividing the subregions of varying size, or including the feature values for

subregion selection in areas with little variability.

We present the positioning results of MAP and kNN using WLAN and

BLE signals as the features in Table 3.9 and Table 3.10, respectively . We

conclude from the results that the proposed subregion and feature selections

are beneficial for the positioning with respect to constraining the online posi-

tioning by reducing the processing time and increasing the positioning accu-

racy. In fact, the circular errors CE50, CE75, and CE90 as defined above get

smaller and the percentage of errors larger than 10 m reduces.

3.5 Conclusion

We proposed herein an approach to fingerprinting-based indoor positioning

using opportunistically measured WLAN and BLE signals as the features for

coordinate estimation. The main contributions are proposals to reduce data

storage requirements and computational complexity in terms of processing
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Table 3.9: Comparison of positioning times and accuracies of RoI 2 using

WLAN signal as the features (h =−1 has the same meaning as in Table 3.8.)

Methods
Values of
(m,h)

Mean positioning

time (s) CE50 (m) CE75 (m) CE90 (m)
Ratio of

large errors (%)

MAP (without interpolation) all 17.9 3.3 6.5 9.7 9.3

kNN (without interpolation) all 0.1 1.6 3.1 4.8 1.7

MAP (with interpolation) all 337.5 2.6 5.6 8.6 7.4

kNN (with interpolation) all 0.30 1.4 2.6 4.6 1.9

MAP (LASSO)

(11, -1) 3.8 3.1 5.6 8.7 7.4

(16, -1) 7.0 3.3 5.9 8.7 6.5

(21, -1) 10.0 3.4 6.4 9.2 8.0

(34, -1) 20.3 3.2 6.4 9.4 8.6

(34, 490) 43.7 2.6 5.1 8.1 6.1

kNN (LASSO)

(11, -1) 0.6×10−2 2.3 4.2 7.2 4.2

(16, -1) 0.8×10−2 2.3 4.3 6.8 4.0

(21, -1) 1.0×10−2 2.2 4.1 6.9 4.6

(34, -1) 1.6×10−2 2.3 4.2 6.6 4.4

(34, 490) 1.3×10−2 1.3 2.6 4.7 1.9

MAP
(Forward

greedy search)

(11, -1) 3.5 2.4 4.4 7.5 4.6

(16, -1) 6.2 2.4 4.7 7.7 5.0

(21, -1) 9.2 2.5 4.7 7.6 4.4

(34, -1) 17.7 2.7 5.4 8.6 6.5

(34, 490) 43.0 2.7 5.1 8.1 6.1

kNN
(Forward

greedy search)

(11, -1) 0.4×10−2 2.5 4.3 7.0 3.4

(16, -1) 0.5×10−2 2.3 4.5 6.9 5.5

(21, -1) 0.6×10−2 2.2 4.3 7.4 5.7

(34, -1) 0.8×10−2 2.0 3.9 6.3 3.8

(34, 490) 1.3×10−2 1.3 2.6 4.3 2.1

MAP
(AFBGS)

(11, -1) 3.4 2.6 4.6 7.4 5.0

(16, -1) 6.4 2.6 5.2 7.9 5.9

(21, -1) 10.3 2.7 5.1 7.9 5.7

(34, -1) 22.5 2.8 5.2 8.4 5.5

(34, 490) 46.2 2.7 5.0 8.0 5.9

kNN
(AFBGS)

(11, -1) 0.6×10−2 2.5 4.1 6.8 3.6

(16, -1) 0.7×10−2 2.5 4.5 7.2 4.2

(21, -1) 0.8×10−2 2.4 4.3 6.8 3.6

(34, -1) 1.2×10−2 2.0 4.0 6.4 2.5

(34, 490) 2.3×10−2 1.3 2.6 4.5 2.1
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Table 3.10: Comparison of positioning times and accuracies of RoI 2 using

BLE signal as the features (h =−1 has the same meaning as in Table 3.8.)

Methods
Values of
(m,h)

Mean positioning

time (s) CE50 (m) CE75 (m) CE90 (m)
Ratio of

large errors (%)

MAP (without interpolation) all 5.9 5.2 9.7 17.1 23.6

kNN (without interpolation) all 2.6×10−2 3.4 6.5 9.8 9.5

MAP (with interpolation) all 197.0 4.7 8.6 12.3 13.7

kNN (with interpolation) all 0.1 3.4 6.9 11.3 12.2

MAP (LASSO)

(11, -1) 2.0 3.8 7.8 11.0 13.1

(16, -1) 3.1 4.0 8.0 11.3 12.9

(21, -1) 4.4 4.2 8.0 11.7 14.4

(34, -1) 8.0 4.2 8.1 12.5 15.3

(34, 278) 23.5 4.3 8.4 13.4 15.8

kNN (LASSO)

(11, -1) 0.4×10−2 3.3 6.0 10.2 10.9

(16, -1) 0.5×10−2 3.2 6.6 10.3 11.2

(21, -1) 0.6×10−2 3.3 6.3 10.4 11.2

(34, -1) 0.9×10−2 3.3 6.5 10.5 11.4

(34, 278) 0.9×10−2 3.4 6.6 10.4 11.7

MAP
(Forward

greedy search)

(11, -1) 0.9 3.6 7.5 10.5 12.2

(16, -1) 1.4 3.9 7.8 11.2 12.7

(21, -1) 2.1 4.1 8.1 11.5 12.9

(34, -1) 3.9 4.0 8.2 12.6 15.1

(34, 278) 23.5 3.9 8.3 12.6 15.1

kNN
(Forward

greedy search)

(11, -1) 0.2×10−2 4.1 7.4 11.3 12.9

(16, -1) 0.3×10−2 4.4 7.6 12.4 15.6

(21, -1) 0.3×10−2 4.4 8.1 12.6 18.0

(34, -1) 0.4×10−2 4.7 8.8 13.5 20.9

(34, 278) 0.9×10−2 3.3 6.4 10.7 11.2

MAP
(AFBGS)

(11, -1) 1.0 3.6 7.4 10.9 13.1

(16, -1) 1.7 3.8 7.8 11.7 13.6

(21, -1) 2.5 3.9 8.0 11.9 14.1

(34, -1) 5.1 4.0 8.3 12.8 15.6

(34, 278) 23.5 4.3 8.3 12.9 15.1

kNN
(AFBGS)

(11, -1) 0.2×10−2 4.1 7.3 11.6 14.4

(16, -1) 0.3×10−2 4.3 7.9 12.2 17.0

(21, -1) 0.3×10−2 4.7 8.7 12.5 19.2

(34, -1) 0.4×10−2 4.8 8.6 12.6 18.5

(34, 278) 0.9×10−2 3.3 6.6 10.2 10.9
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time by segmentation of the entire region of interest (RoI) into subregions,

identification of a few candidate subregions during the online positioning

stage, and use of a selected subset of relevant features instead of all available

features for position estimation. Subregion selection is based on a modified

Jaccard index quantifying the similarity between the features obtained by the

user and those available within the RFM. Feature selection is based on an

adaptive forward-backward greedy search yielding a pre-computed set of rel-

evant features for each subregion. The reduction of computational complex-

ity is obtained both from the reduction of the number of candidate locations

needed to analyze during online positioning and from the reduction of the

number of features to be compared.

The experimental results corroborated the claim of reduced complexity

while indicating that the positioning accuracy is hardly reduced by subregion

and feature selection for the small RoI and even improves for the large RoI.

For both investigated RoIs, the time required for the position estimation in

the online stage was reduced by a factor of about 10 when using the selected

relevant features within 11 selected subregions instead of using all features

and searching over the entire RoI. For the small RoI (i. e. RoI 1), the in-

crement of the 90th percentile errors (CE90) is 7.5% (i. e. 8.6 m instead of

8.0 m). In the large RoI (i. e. RoI 2), the positioning accuracy using MAP re-

duces from 9.8 m to 7.4 m for WLAN signals and from 12.3 m to 10.9 m for

BLE. For kNN, the positioning accuracy does not change with subregion and

feature selection. Given a fixed number of candidate subregions and a fixed,

low number of features the computational burden of the entire algorithm is al-

most independent of the size of the entire RoI and of the number of available

features across the RoI.

Future research will concentrate on investigating the role of subregion def-

inition (shape, orientation, homogeneity) and possible benefit of optimization,

on taking into account a user motion model during subregion selection, on

handling temporal changes of the reference fingerprinting map, and on fully

integrating different types of features for improving the positioning accuracy.
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CDM: Compound Dissimilarity Measure and an

Application to Fingerprinting-Based Positioning

Caifa Zhou, Andreas Wieser

Abstract

A non-vector-based dissimilarity measure is proposed by combining vector-

based distance metrics and set operations. This proposed compound dissimi-

larity measure (CDM) is applicable to quantify similarity of collections of at-

tribute/feature pairs where not all attributes are present in all collections. This

is a typical challenge in the context of e. g. fingerprinting-based positioning

(FbP). Compared to vector-based distance metrics (e. g. Minkowski), the mer-

its of the proposed CDM are i) the data do not need to be converted to vectors

of equal dimension, ii) shared and unshared attributes can be weighted dif-

ferently within the assessment, and iii) additional degrees of freedom within

the measure allow to adapt its properties to application needs in a data-driven

way.

We indicate the validity of the proposed CDM by demonstrating the im-

provements of the positioning performance of fingerprinting-based WLAN

indoor positioning using four different datasets, three of them publicly avail-

able. When processing these datasets using CDM instead of conventional

distance metrics the accuracy of identifying buildings and floors improves by

about 5% on average. The 2d positioning errors in terms of root mean squared

error (RMSE) are reduced by a factor of two, and the percentage of position

solutions with less than 2m error improves by over 10%.

4.1 Introduction

The core idea of this paper comes from analyzing a particular challenge oc-

curring during the online step of a fingerprinting-based indoor positioning

system (e. g. using the received signal strength (RSS) from WLAN access

points (APs) as the features) based on the nearness in the fingerprint space

as the principle for localization (e. g. kNN). Each measured fingerprint con-

sists of a collection of actually observed attributes (e. g. identifications of APs

and corresponding signal strengths). Fingerprints measured at different lo-
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cations or at different times may contain different numbers of measurable

APs e. g. due to changed availability of APs or changed signal reception

conditions. In such cases it is not clear how the similarity/dissimilarity be-

tween such fingerprints should be assessed, and in particular, how the simi-

larity/dissimilarity between a fingerprint measured online (i.e. when the user

position is to be determined) and the fingerprints collected in the RFM1 should

be handled.

In a general context this belongs to the class of missing data problems

(Efron 1994) mostly addressed in the fields of data analysis, data mining and

machine learning (Little 2015). A comprehensive review of the missing data

problem is out-of-scope of this paper. Instead we focus on a concrete proposal

to handle this problem within the context of positioning. In previous publi-

cations the authors either formulated the online measurements into vectors of

equal length (Padmanabhan et al. 2000; He and Chan 2016; He et al. 2017)

or used only the measurability of the individual attributes as binary features

(Machaj et al. 2011). The former scheme requires filling in values for missing

attributes and ignoring newly measured ones. In this way it is easy to apply

vector-based distance metrics for computing the dissimilarity but there are

two disadvantages. One is the limited flexibility in dealing with missing or

newly available data, the other one is time and computational resource cost:

in most cases the number of all APs contained in the RFM is much larger than

the number of APs in an individual measured fingerprint. Therefore the vec-

torized data of uniform dimension which need to be composed and handled

typically have many more elements than the individual measurements. The

approach mapping the measured APs into a set of binary features, instead, is

efficient in the sense of computational burden for assessing dissimilarity but

it does not take the actual similarity of the measured values into account and

thus does not support exploiting the potential for accurate positioning.

After analyzing how this case is handled in previous publications, we

explore the possibility of estimating the dissimilarity between the measure-

ments which have the characteristics of partially missing observations of the

attributes without formulating them into vectors of equal length. To this end

we propose a non-vector-based dissimilarity measure (Section 4.3) which is a

compound of a typical distance metric (e. g. Minkowski) and set operations.

In addition, we exploit the applicability of the proposed compound dissim-

ilarity measure (CDM) by applying it to four datasets used for FbP and the

result proves the benefits of the proposed dissimilarity measure (Section 4.4).

1A RFM is a collection of fingerprints with labeled ground locations for representing the

functional relationship between the location and fingerprint.



CHAPTER 4. HANDLING MEASURABILITY VARIATIONS 66

4.2 Related work of distance metrics

The concept of distance metrics used for measuring the nearness between the

online measured features and the ones stored in the RFM is a key for the real-

ization of FbP algorithms. The Euclidean distance is one of the most prevalent

metrics in different research fields and communities (Cha 2007). However,

there is a variety of alternative distance metrics which may be more suitable

for certain applications. In (Cha 2007), Cha reported over 40 distance metrics

or measures and analyzed their capability of measuring the difference between

probability density functions (PDFs). Minaev et. al. (Minaev et al. 2017) fol-

lowed Cha’s research and applied them to an FbP algorithm kNN by using the

synthetic RSS from WLAN APs as the fingerprints and found that Lorentzian

distance performs best among them. In (Torres-Sospedra et al. 2015a), Torres-

Sospedra et. al. surveyed and analyzed the performance of different distance

metrics by applying them to a fingerprinting-based WLAN indoor position-

ing system which covers multi-buildings and multi-floors (i. e. UJIIndoorLoc
dataset). In this paper, we propose the concept of CDM joining it with the 8

distance metrics performing best according to (Minaev et al. 2017), and ap-

ply the CDM fingerprinting-based WLAN indoor positioning to using four

different datasets.

4.3 Compound dissimilarity measure

Suppose that there are several collections of measurements which need to be

compared but differ with respect to the number and type of data included.

For instance, the measurements in a WLAN-based indoor positioning system

consist of the RSSs from all available APs at individual locations. However,

only APs associated with RSS values exceeding the measuring sensitivity of

the used WiFi device are observable at the individual locations, thus the APs

measured at different points in space time will differ. Each measurement

consists of an attribute e. g. the media access control (MAC) address of the

respective APs, and an RSS value. The fingerprint at a particular location

is the collection of measurements actually made at that location. As stated

above, we propose an approach herein to estimate the similarity or dissimi-

larity between such fingerprints without reformulating all the measurements

with different attributes into vectors of equal length as in several other publi-

cations (He and Chan 2016; Mautz and Tilch 2011; Zhou and Wieser 2018b;

Padmanabhan et al. 2000).

Given n measurements denoted as {�i}n
i=1, each measurement consisting

of a set of paired attribute and measured value, i. e.�i := {(a,vi
a)|a ∈�i,vi

a ∈
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R}, i = 1, · · · ,n, where�i ⊆M is the set of the attributes of the ith measure-

ment. The initial idea of measuring the dissimilarity between�i and� j is by

splitting them into three parts (Figure 4.1), namely computing and weighting

the dissimilarity of the shared and unshared attributes differently:

dCDM(�i,� j) = ∑
a∈(�i∩� j)

g(vi
a,v

j
a)+

α

⎛
⎝ ∑

a∈(�i\� j)

g(vi
a,γ)+ ∑

a∈(� j\�i)

g(v j
a,γ)

⎞
⎠ ,

(4.1)

where g(·, ·) is a chosen distance metric, γ is a predefined value indicating a

missing measured attribute and the regularization values α ∈ [0,+∞) are in-

troduced to regulate or balance the contribution to the dissimilarity from those

mutually unshared attributes 2. The CDM offers additional degrees of free-

dom owing to the contribution of the hyperparameters (i. e. γ and α). Their

values can be determined in a data driven approach according to the specific

application.

Figure 4.1: The scheme of calculating the dissimilarity measure into three

parts

The basic CDM formulated in (4.1) weights the contribution from the

shared and unshared attributes differently. However, we additionally propose

two further variants of this measure which take also the actual numbers of

these attributes into account. The application examples will later indicate that

these are useful extensions. One is obtained by dividing the CDM in (4.1)

by the total number of attributes thus yielding the average dissimilarity of the

attributes, where | · | denotes the cardinality of a set, here:3

2Herein we regulate the contribution of unshared attributes equally due to there is no prior

assumption that can be used to determine which of them should have more influence on the

dissimilarity. In a specific application (e.g., feature-based positioning), it might be reason-

able to weight this two terms differently.
3The same symbol is used in this contribution also to indicate the absolute value of a scalar.
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dACDM(�i,� j) = dCDM(�i,� j)/|�i ∪� j|. (4.2)

We call this measure an averagely weighted compound dissimilarity measure

(ACDM). The second extension is obtained by weighting the terms in (4.1)

relatively according to the number of shared and unshared attributes, i. e.

dRCDM(�i,� j) = ∑
a∈(�i∩� j)

g(vi
a,v

j
a)+

α

⎛
⎝ω�i\� j ∑

a∈(�i\� j)

g(vi
a,γ)+ω� j\�i ∑

a∈(� j\�i)

g(v j
a,γ)

⎞
⎠ (4.3)

where ω�i\� j and ω� j\�i are calculated by

ω�i\� j =
|�i\� j|

(|�i ∩� j|+ ε)

ω� j\�i =
|� j\�i|

(|�i ∩� j|+ ε)

(4.4)

In (4.4), R � ε > 0 but ε � 1 is introduced for avoiding division by zero in

case there are no shared attributes at all. The relatively weighted compound

dissimilarity measure (RCDM) introduced in (4.3) yields a large dissimilarity

value in such a case. Comparing to the widely used vector-based distance

metrics, the CDMs have three advantages:

• The measurements do not have to be rearranged into vectors of equal

length.

• CDMs can be used to balance the contributions to the dissimilarity from

the shared and mutually unshared attributes.

• CDMs have hyperparameters and are capable of adapting to different

data.

Subsequently, we compare the three proposed CDMs by applying them

to FbP using different values of the hyperparameters and joining them with

selected distance metrics (see Section 4.4).

4The formula and nomenclature are from (Cha 2007) except the formula of Jaccard distance.

In all these equations xi and yi are the i-th element of the vectors x and y, respectively and d
is the dimension of x and y.

5I(·) is an indicator function and it yields 1 if and only if the condition is fulfilled.
6This formula is referred to (Minaev et al. 2017). γ is the indicator of a missing measured

attribute. In case of CDM, Hamming and Jaccard distances are equivalent.
7In (Marques et al. 2012), City Block is named Manhattan distance.
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Table 4.1: Distance metrics used herein

Metric Equation4

Lorentzian gLor(x,y) = ∑d
i=1 ln(1+ |xi −yi|)

Hamming 5 gHam(x,y) = ∑d
i=1 I(xi � yi)/d

Jaccard 6 gJac(x,y) = ∑d
i=1 I((xi�yi)& [(xi�γ) |(yi�γ)])

∑d
i=1 I((xi�γ) |(yi�γ))

Wave Hedges gWH(x,y) = ∑d
i=1(|xi −yi|/max(|xi|, |yi|))

Canberra gCan(x,y) = ∑d
i=1(|xi −yi|/(|xi|+ |yi|))

Clark gCla(x,y) =
√

∑d
i=1(|xi −yi|/(|xi|+ |yi|))2

City block 7 gCB(x,y) = ∑d
i=1 |xi −yi|

Minkowski gMin(x,y, p) = p
√

∑d
i=1 |xi −yi|p

4.4 An application of CDMs to FbP

In this section, we first describe the fundamentals of FbP, the widely used

positioning algorithm kNN, the chosen evaluation metrics, and four datasets

used for practical application and assessment. We then evaluate the perfor-

mance of the three CDM in terms of positioning results taking into account

only very few different values α . Then the cross validation (CV) method is

applied to search for particularly suitable values of α for a chosen distance

metric and dataset. We compare the positioning performance of the approach

using the CDM to that of kNN without CDM.

4.4.1 The baseline algorithm, performance criteria and

data sets

Fingerprinting-based positioning. The measured fingerprints for the pur-

pose of FbP have the characteristic of missing attributes because the coverage

of an AP is restricted by the transmitting power, free space loss, signal atten-

uation and the sensitivity of the receiver. The coverage is higher for higher

transmission power, higher sensitivity and lower attenuation. One benefit of

using CDM instead of vector-based distance metrics is that it avoids the need

for conversion of the measurements into vectors of equal length. Further ex-

perimental analysis in the consecutive sections shows that using CDM can
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also improve the positioning accuracy and stability.

Generally an FbP (e. g. using the signal strength from WLAN APs as

the fingerprints for indoor positioning) consists of two stages: offline fin-

gerprinting stage and online positioning stage. During the offline stage, a

RFM {(�i, li
)}N

i=1 representing the relationship between the measurements

(e. g. RSS) and locations is collected via carrying out a site survey (either by a

professional surveyor or by crowd-sourcing). During online positioning stage

a user measured observation�u is matched to the RFM using a FbP algorithm

f for estimating the user’s location lu (an estimated location is denoted as l̂u),

i. e. f :�u → l̂u.

Herein we use kNN, one of the most widely used FbP algorithms, as

the baseline positioning method for evaluation and comparison. UJIIndoor-
Loc (see Section 4.4.1) is a dataset including multiple buildings and multiple

floors. We use the hierarchical kNN according to (Torres-Sospedra et al. 2014)

for processing this dataset. For the other datasets we use kNN as follows:

• Computing the dissimilarity measure between the user’s measurement

and the ones stored in the RFM;

• Finding the k nearest reference points in the feature space, i. e. reference

points with the k smallest dissimilarity;

• Taking the average coordinates of these k reference points as the user’s

location.

More details about FbP and kNN can be found, e. g. in (Zhou and Wieser

2018b; Padmanabhan et al. 2000).

Evaluation of positioning performance. The Euclidean distance between

the estimated location l̂ and the ground truth location l is used as the basic

evaluation of the positioning error. In addition, we also use the statistical

values (e. g. mean or standard deviation), root mean squared error (RMSE),

and empirical cumulative distribution function (ECDF) with respect to the

error distance as further performance evaluation.

The implementation of the proposed CDMs and their relevant functions

are in Python and partially based on the scikit-learn package (Pedregosa et al.

2011) 8.

Available positioning datasets. We use four different datasets (both the

RFMs and validation datasets) from fingerprinting-based WLAN indoor po-

sitioning systems for evaluating and comparing the performance of the pro-

8http://scikit-learn.org/dev/index.html
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posed CDMs. The dtasets Alcala2017, Tampere and UJIIndoorLoc are avail-

able online 9 (Sansano et al. 2016) and more details about them can be found

in (Torres-Sospedra et al. 2015a, 2014). Another dataset HIL is described in

(Zhou and Wieser 2018b). These four datasets represent different FbP scenar-

ios with respect to area of indoor region, number of available APs, method of

fingerprint collection, and device heterogeneity. The summarized character-

istics of the datasets are given in Table 4.2.

Table 4.2: The characteristics of the datasets

Dataset
� Buil-
dings

� Floors �APs
� Training
samples

� Validation

samples10

Alcala2017 1 1 152 670 0

HIL 1 1 490 1525 509

Tampere 11 1 4 309 1478 0

UJIIndoorLoc12 3 4–5 520 3818 1110

In case of applying the proposed CDMs to FbP, we use a fixed value of γ
for indicating the missing attributes. In HIL, γ is set to -110 dBm and γ = 100

in other three datasets (Torres-Sospedra et al. 2014).

4.4.2 Evaluation and comparison of different CDMs

Herein we propose three versions to CDMs. However, we want to briefly

investigate whether FbP is less sensitive with respect to dataset and distance

metric included than the others. Since the results may also depend on α , we

use a few fixed values i. e. α = {0.5,1.0,1.25} for the analysis and compare

the results.

Figure 4.2 shows the RMSE of the positioning result using all three CDMs

with α = 1.0. Similar results are also obtained using the other two values of

α . From Figure 4.2 , we can conclude that the CDM relatively weighted

by the shared and mutually unshared attributes performs more stable than

that of other two CDMs in the sense that the RMSE of all four datasets of

using RCDM compounding with all eight distance metrics has the smallest

deviation. Therefore, we focus on the application of RCDM for the remainder

of this paper.

9http://indoorlocplatform.uji.es/
10In case there is no provided validation samples, we randomly split the training samples

into two datasets. 75% of them are used for training and the remaining ones are used for

validation.
11Herein we only use the data of one building from this dataset.
12The cleaning procedures are applied to this dataset, see .
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(a) Alcala2017 (b) HIL

(c) Tampere (d) UJIIndoorLoc

Figure 4.2: An example of RMSE of three CDMs with α = 1.0

4.4.3 Tuning the regularization value α

In order to find suitable values of α we carry out CV (Bishop 2006), a widely

used method for model selection, for various distance metrics and the four

datasets. CV can make full use of the training dataset by randomly splitting

it into several folds and iteratively using one of them as the temporal test

samples and the remaining ones as the temporal training dataset. Herein we

use 10-fold CV and search for the suitable value of α in the range of [0,3] with

the interval of 0.1 13. In this paper, we only illustrate that a useful value of α
can be found using CV. We leave a more thorough investigation of optimal

values of α for future work. In the consecutive part of this section, we mainly

show the results of HIL and UJIIndoorLoc using kNN (k = 1) as the FbP

algorithm with RCDM (compounding with Lorentzian and Minkowski) for

remaining the clarity. The results of other datasets and distance metrics are

also similar to what presented herein.

As shown in Figure 4.3 and Figure 4.4, there is a value of α resulting in

the minimum RMSE and maximum success rate for a chosen distance met-

ric and dataset. Regarding dataset Alcala2017, HIL, and Tampere, we select

13In Figure 4.3 and Figure 4.4, we only plot part of the cross validation result for reserving

the clarity.
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(a) Lorentzian

(b) Minkowski

Figure 4.3: CV boxplots of HIL (k = 1, RCDM)

the α which achieves minimum average value of RMSE of 10-fold CV as

the suitable value for a chosen distance metric and dataset. For UJIIndoor-
Loc, we use the regularization value which obtains the maximum average

success rate (Figure 4.4), defined as the percentage of correctly locating both

the building and floor, as the proper value of α , since in case of applying FbP

to multi-buildings and multi-floors, the success rate is a better indicator for the

positioning performance than using RMSE (Marques et al. 2012). One reason

using success rate instead of RMSE as the criterion is that the wrongly locat-

ing either the buildings or the floors introduces large positioning errors and

it makes that the RMSE is no longer a good indicator of positioning perfor-

mance. From the CV results shown in Figure 4.3 and Figure 4.4, the suitable

values of α for HIL and UJIIndoorLoc are 2.7 and 3.0, and 0.5 and 0.2 in

case of relatively compounding with both Lorentzian and Minkowski (p = 2)

distances, respectively.

4.4.4 Comparison of positioning performance

We compare the RMSE of the positioning result obtained using RCDM (using

the regularization value (α) found by CV) to the ones attained using vector-

based distance metrics (Figure 4.5). As shown in Figure 4.5 and Figure 4.6b,
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(a) Lorentzian

(b) Minkowski

Figure 4.4: CV boxplots of UJIIndoorLoc (k = 1, RCDM)

the proposed RCDM outperforms almost all eight original distance metrics on

all four datasets (except in case of compounding with Hamming and Jaccard

distances on Alcala2017 (see Figure 4.5a) and Wave Hedges and city block

distances on HIL (see Figure 4.5b). In addition, the reduction of the RMSE is

over two times comparing to that of without using RCDM and the deviation

of the RMSE of compounding with all eight distance metrics is much smaller

than that of the original ones. In Figure 4.6, the success rate of using RCDM

is higher than that of using the original distance metrics and the improvement

is up to 13% (Figure 4.6a).

According to the comparison of the ECDF of all eight original distance

metrics and RCDM of dataset HIL (Figure 4.7), we can conclude that the cu-

mulative positioning accuracy using RCDM is higher than that of using orig-

inal distance metrics. In addition, the maximum positioning error distance

using RCDM is much smaller than that without using RCDM. The FbP algo-

rithms achieving a small maximum positioning error distance make it easier

to constrain the upper bound of the positioning error.

In Table 4.3, we present the positioning results of applying the proposed

approach to UJIIndoorLoc. From the building accuracy, defined as the per-

centage of correctly identifying the building, it seems that there are some vali-

dation samples which are not placed in the correct building by the positioning
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Table 4.3: Positioning results of UJIIndoorLoc

Metrics Lor Ham Jac WH Can Cla CB Min

Building
accuracy (%)

w/o 99.76 96.65 99.67 99.92 99.92 99.92 99.92 99.84

w 99.92 99.92 99.92 99.92 99.92 99.92 99.92 99.92

Success
rate (%)

w/o 94.12 80.98 85.55 92.9 93.47 92.73 92.57 91.1

w 96.33 93.71 93.71 97.22 96.73 96.24 97.47 96.98

Median of
error distance (m)

w/o 1.78 2.04 1.73 2.76 2.48 2.65 2.89 3.92

w 1.44 2.07 2.07 1.48 1.53 1.64 1.38 1.47

80-percentile of
error distance (m)

w/o 9.35 14.72 14.76 11.06 10.65 10.65 11.19 13.76

w 8.36 11.58 11.58 8.12 8.34 8.79 7.96 8.11

(a) Alcala (b) HIL

(c) Tampere

Figure 4.5: Comparison of RMSE (k = 1, RCDM). In the figure, w and w/o

denotes the ones with RCDM and without RCDM, respectively.

algorithm, because the building accuracy of RCDM compounding with dif-

ferent distance metrics keeps the same, i. e. the building accuracy is saturated.

This saturation might be caused by the cleaning of the dataset (see ). Regard-

ing the success rate, it improves about 5% on average using the RCDM and

is over 97% of correctly identifying both the building and floor. In addition,

the median and 80-percentile positioning error distances using RCDM reduce

obviously except compounding with Hamming and Jaccard distances.
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(a)

(b)

Figure 4.6: Comparison of success rate and RMSE of UJIIndoorLoc (k = 1)

4.5 Conclusion

We propose a non-vector-based dissimilarity measure, named compound dis-

similarity measure (CDM), by combining a typical distance metric with set

operations for the purpose of measuring the dissimilarity between measure-

ments despite the possibility of missing attributes. The proposed CDM is

flexible because it includes hyperparameters, which can be tuned according

to the data and needs of the application. We apply the proposed CDM to

four datasets collected in fingerprinting-based WLAN indoor positioning sys-

tems and the positioning performance verifies the validity of it. Both the

accuracy of identifying buildings and floors, and the specific locations im-

prove obviously, which are over 5% and 10%, respectively. Although the

CDM is proposed herein starting from the idea of handling missing data in

feature-based positioning (FbP), it is applicable to other missing data prob-

lems as well (e. g. searching the correspondences of point clouds according to

sparsely described local features).
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(a) Without RCDM

(b) With RCDM

Figure 4.7: Comparison of ECDF between different distance metrics (HIL,

k = 1)
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Appendix

We clean the UJIIndoorLoc dataset from two aspects: i) the invalid samples,

and ii) the replicas in the training dataset. An invalid sample is a measurement

that all of the APs are filled with missing values. A replica of the measure-

ment is that at least two measurements are measured at the same location by

the same user using the same device in a short time range (e. g. less than 5

minutes).

• Invalid samples: We find that 76 out of 20013 samples in the training

dataset are invalid measurements by checking whether the RSS of all

APs of a measurement is indicated by a missing value (e. g. 100 used in

UJIIndoorLoc). We thus delete them from the training dataset.

• Replicas: These replicas are highly correlated and they might cause the

failure of the cross validation using the training dataset because it is

easy to get an over-optimistic results using a dataset containing replicas

for cross validation (Bishop 2006). This makes the parameter found by

cross validation not applicable to another test dataset. We find out there

are a lot of replicas in the training dataset (only 3818 out of 19937 ref-

erence measurements do not have a replica). We thus randomly sample

one of those replicas as the reference fingerprint for the training dataset

in our experimental analysis 14.

14Herein we use only one of the replicas as the reference fingerprint, however, it is useful that

grouping or averaging those replicas as one reference fingerprint.
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An Iterative Scheme for Feature-based Positioning

using a Weighted Dissimilarity Measure

Caifa Zhou, Andreas Wieser

Abstract

We propose an iterative scheme for feature-based positioning using a new

weighted dissimilarity measure with the goal of reducing the impact of large

errors among the measured or modeled features. The weights are computed

from the location-dependent standard deviations of the features and stored

as part of the reference fingerprint map (RFM). Spatial filtering and kernel

smoothing of the kinematically collected raw data allow efficiently estimating

the standard deviations during RFM generation. In the positioning stage, the

weights control the contribution of each feature to the dissimilarity measure,

which in turn quantifies the difference between the set of online measured fea-

tures and the fingerprints stored in the RFM. Features with little variability

contribute more to the estimated position than features with high variabil-

ity. Iterations are necessary because the variability depends on the location,

and the location is initially unknown when estimating the position. Using

real WiFi signal strength data from extended test measurements with ground

truth in an office building, we show that the standard deviations of these fea-

tures vary considerably within the region of interest and are neither simple

functions of the signal strength nor of the distances from the corresponding

access points. This is the motivation to include the empirical standard devia-

tions in the RFM. We then analyze the deviations of the estimated positions

with and without the location-dependent weighting. In the present example

the maximum radial positioning error from ground truth are reduced by 40%

comparing to kNN without the weighted dissimilarity measure.

5.1 Introduction

Feature-based (i. e. fingerprinting-based) indoor positioning systems (FIPSs),

one of the promising indoor positioning solutions, have been proposed using

various types of features (e. g. WLAN/BLE signal strengths (Padmanabhan

et al. 2000; Youssef and Agrawala 2008; Zhuang et al. 2016), geomagnetic
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field strengths (He and Shin 2018) or visible patterns (Guan et al. 2016)) for

providing indoor location-based services (LBSs) to pedestrians (Brena et al.

2017; He and Chan 2016; Pei et al. 2016). The positioning accuracy of the

state-of-the-art FIPSs using the received signal strength (RSS) of WLAN ac-

cess points (APs) is in the range of a few meters (Mautz 2012). This is ade-

quate for pedestrian indoor positioning and navigation in many cases. How-

ever, unexpected and unacceptably large errors (e. g. > 20 m in horizontal

coordinates (Torres-Sospedra et al. 2017)) can be observed in real environ-

ments. They jeopardize the practical usability of FIPSs (Wu et al. 2017;

Torres-Sospedra and Moreira 2017b). Such large errors may be caused by

large deviations of the measured or stored feature values when performing

the location estimation (Kaemarungsi and Krishnamurthy 2012).

In order to benefit from the attractive characteristics of FIPS while mit-

igating large errors, the trend is to combine the feature-based positioning

with other techniques. Such hybrid approaches combine the feature-based

information with e. g. pedestrian dead reckoning (PDR) (Li et al. 2016), map

matching (Wang et al. 2015, 2012) or infrared ranging (Bitew et al. 2015).

In addition, Bayes filtering methods, such as Kalman filters or particle filters

are used to improve the estimated trajectory of pedestrians by combining the

measurements with assumptions on the user’s motion (Li et al. 2016; Röbe-

saat et al. 2017). Merging different positioning solutions may help mitigat-

ing the impact of large errors of individual observations on the quality of a

specific type of LBSs. However, such approaches requires either deploying

additional infrastructure or providing extra information (e. g. the indoor map).

It would be useful to detect or mitigate large errors in FIPS using only intrin-

sically available data. This has attracted little research attention in the past,

see e. g. (Wu et al. 2017; Torres-Sospedra and Moreira 2017b; Lemic et al.

2019), and is the motivation for the present contribution.

We base our approach on the variability of the feature values at each in-

dividual location. Feature values measured during the positioning stage are

snapshots affected by noise. Even if the expected value of the feature has not

changed since the data collection for the generation of the reference finger-

print map (RFM), the measured value may be closer to the RFM value at a

different position than to the one at the correct position because of this noise.

It is therefore important to take the noise into account when assessing the sim-

ilarity of measured and stored feature values. We facilitate this by storing the

empirical standard deviations (STDs) in the RFM which is generated during

the offline phase for representing the relationship between locations and their

associated features. The estimation of the variability is carried out by em-

pirically analyzing the spatial distribution of the raw data (e. g. RSS values)

included in the RFM. It yields an extended representation of the RFM, which

contains not only the spatially smoothed feature values, but also the location-

wise estimated STD of each individual feature (see Section 5.4). These values

can then be used to mitigate the impact of large errors in FIPS. To this end
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we propose a weighted dissimilarity measure, which quantifies the difference

between the online measured features and the features stored in the RFM, by

adapting the contribution of the individual features to the dissimilarity mea-

sure relative to their estimated STD values (see Section 5.5.1). The posi-

tioning process is carried out in an iterative way because we need to assume

the user’s location, which is required for retrieving the STD of the online

measured features (see Section 5.5.2). Beyond the use further discussed in

this paper, the location-dependent standard deviations can also be employed

for identifying (large) changes of features which may need an update of the

RFM, see e.g. (He and Chan 2016; Tao and Zhao 2018; He et al. 2016).

The remaining of the paper is organized as follows: Section 5.2 summa-

rizes the work related to reducing large errors in an FIPS. The fundamentals

of the feature-based positioning are briefly described in Section 5.3. The ro-

bust estimation of the variability of the RFM and its application to positioning

are presented in Section 5.4 and 5.5, respectively. Finally, the evaluation of

the variability estimation as well as the positioning performance using the

iterative scheme are presented in Section 5.6 for a real world dataset.

5.2 Related work

Herein we focus on publications that address the detection and reduction of

large errors in an FIPS. We refer the interested readers to (Mautz 2012; He

and Chan 2016; Brena et al. 2017) for more general information about indoor

positioning. A comprehensive comparison of different feature-based indoor

positioning algorithms using various similarity/dissimilarity metrics is avail-

able in (Retscher and Joksch 2016; Torres-Sospedra et al. 2015a; Minaev et al.

2017). A short review of the methods used for generation or creation of the

RFM can be found in e. g. He and Chan (2016); Zhou and Wieser (2019b).

Torres-Sospedra and Moreira (2017b) provides a detailed analysis of the

sources of large errors when employing deterministic feature-based position-

ing approaches (e. g. kNN). The analysis is based on simulations for different

indoor scenarios. The authors consider the influence of several factors such as

the quantization error of signal acquisition, the density of the reference mea-

surements, and the selected dissimilarity metrics on the positioning error. The

analysis shows that large observation errors mostly occur at locations where

both the mean and the maximum value of the RSS are low. However, the

authors do not report about a validation of their analysis in a really deployed

FIPSs. On a related note, Kaemarungsi and Krishnamurthy (2012) proposes

to simply disregard features with a large standard deviation for the estimation

of the user’s position.

There are only few works that focus on reducing or estimating the posi-
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tioning errors based on the analysis of the RFM1. Wu et al. (2017) introduces

a weighted dissimilarity measure by computing the discriminative indicator

for each feature according to the Log-distance path loss model. However, the

variability of the online measured features which has an impact on the esti-

mation of the discriminative factor is not taken into account. In (Lemic et al.

2019) and (Li et al. 2019), the authors propose different regression models

(e. g. neural networks, random forest, or Gaussian processes) for estimating

the positioning errors and uncertainties that can be used to improve the per-

formance of tracking a pedestrian’s trajectory. Even if this is not the focus

of these papers, the results suggest that the regression-based error prediction

models cannot help to mitigate large errors because the predicted errors have

a large uncertainty.

Compared to previous publications, we carry out the variability analysis

of the RFM using a kinematically collected dataset, which includes not only

the noise originating from the short term fluctuations of the features mea-

sured by a mobile device, but also the noise introduced by the motion status

(e. g. moving speed and headings) of the mobile device. This setup is closer to

the realistic situation of positioning and tracking pedestrians. The estimation

of the variability is based solely on the raw RFM and is later used for reducing

large errors by introducing an iterative scheme with the weighted dissimilarity

measure in the online positioning phase.

5.3 Feature-based positioning

We start this section by introducing the fundamental concepts of feature-based

positioning and then briefly describe the process of kinematically collecting

the RFM.

5.3.1 Fundamental concepts

Each measured feature is uniquely identifiable and has a measured value. For

example, the signal from an AP, can be identified by its media access control

address and is associated with an RSS. Features are thus formulated as pairs

of attribute a and value v, i. e. (a,v). A measurement (i. e. fingerprint) �u
i

taken by the user u at the location/time i consists of a set of measured fea-

tures, i. e. �u
i := {(au

ik,v
u
ik)|au

ik ∈ �;vu
ik ∈ �;k ∈ {1,2, · · · ,Nu

i }}, where � is

the complete set of the identifiers of all available features and Nu
i (Nu

i = |�u
i |)

1Torres-Sospedra and Moreira (2017b) provides a complete discussion of the works focusing

on reducing large positioning errors by support of other technologies (e. g. PDR, or Bayes

filtering).
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is the number of features observed by the user u at i. The set of attributes of

�
u
i is defined as�u

i := {au
ik|∃(au

ik,vik) ∈�u
i } (�u

i ⊆�). The positioning pro-

cess consists of inferring the estimated user location l̂ui = f (�u
i )(l̂

u
i ∈ �d) as

a function of the measurement and the RFM F , where f is a suitable mapping

algorithm from the measurement to location2. F represents the relationship

between the location l and the measurement�, i. e. F : l �→�|l ∈� through-

out the region of interest (RoI) �. If the RFM is discretely represented, we

denote it as � := {(l j,�̃ j)|l j ∈�, j ∈ {1,2, · · · , |�|}} (where �̃ j = F (l j)).
A discrete RFM can be obtained e. g. by collecting fingerprints at different

known or independently measured locations within the RoI�.

5.3.2 Kinematically acquired RFM

The kinematically obtained dataset used as the basis for the RFM herein has

already been employed in (Zhou and Wieser 2019b). It was acquired using

a mobile device (Nexus 6P) whose ground truth location was continuously

measured with mm- to cm-level accuracy by a total station tracking a mini

prism mounted on top of the mobile device. This procedure enables to simul-

taneously obtain accurate reference coordinates and the fingerprinting data

collected by a pedestrian. The measurements were obtained at arbitrary lo-

cations lying on the trajectory of a pedestrian because the data acquisition on

the mobile phone is passively triggered by the status of measurable features

(e. g. the arrival of new features or the change of feature values) (Schulz et al.

2018). By carrying out a thorough site-survey, all the collected measurements

and their tracked trajectories were merged and used to generate the raw RFM.

Herein we use this dataset as the basis of our analysis. More details of its

acquisition and processing can be found in (Zhou and Wieser 2019b).

Figure 5.1a and 5.1b show examples of the raw data collected for RFM

generation, namely the RSS values from two WLAN APs. These are signals

of opportunity as the APs had been installed for providing Internet access

and the signals are their anyway, when using them for the purpose of indoor

positioning. The raw measurements have been acquired at arbitrary locations

throughout the RoI which consists of several rooms and corridors within an

office building.

2 The RFM F is omitted from the positioning algorithm f for simplicity. d (e. g. d = 2) is the

dimension of the coordinates.
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Figure 5.1: Examples of the raw and spatially filtered RFM of two arbitrar-

ily selected APs. Third row shows residuals between the spatially filtered

RFM and the raw RFM. The density of the reference locations over the RoI

varies due to different accessibility (e. g. areas blocked by furniture or other

facilities) and by different visiting frequency of the users.

5.4 Robust estimation of the feature variability

To estimate the noise of the measurable features at each location throughout

the RoI, the features would have to be measured (ideally consecutively) mul-

tiple times at each location. However, even for a relatively sparse set of ref-

erence points throughout the RoI this would be prohibitively time-consuming

and labor-intensive. We relax this requirement by assuming that the expected

feature values change only little within a local, spatial neighborhood. There-

fore, instead of estimating the standard deviation from the data collected only

at a single location, we use all feature values obtained within a certain ra-

dius about a chosen reference location. The corresponding data are identified

within the time series of data resulting while the user walked through the RoI.
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We denote these fingerprints as kinematically collected ones. The estimation

of the standard deviation is still possible if a sufficient number of measure-

ments is obtained in the proximity of each reference location (see Figure 5.1).

The measurements thus associated with an individual reference location con-

tain data obtained consecutively within a short time at slightly different posi-

tions, but also data collected a certain time interval apart (e. g. half an hour)

because the user passed most locations several times during the entire data

collection process. The resulting standard deviations thus reflect also the tem-

poral variability of the signals, and the impact of user motion during measure-

ment, which will also apply during the positioning stage. We thus consider

the kinematically collected RFM data suitable for the variability analysis.

Under the assumption that the expected value of each feature is locally

obtainable, the location-wise STD of each feature can be approximated based

on the measurements associated to the neighborhood of a given reference lo-

cation. More formally, we estimate the STD σ jk of k-th (k = {1,2, · · · , |�̃ j|})

feature at the reference location l j in the RFM �. These estimated values

of the STD are later included in the extended representation of the RFM,

i. e. � := {l j, �̃ j} with �̃ j = {(a jk,v jk,σ jk)|a jk ∈ �̃ j}. We start the estima-

tion of the feature values for the RFM by applying a spatial median filter to the

raw measurements in order to mitigate potential outliers. We proceed with the

kernel smoothing (KS) that enables us to reduce the impact of noise and ob-

tain a quasi-continuous representation of the RFM by interpolation. It allows

us to approximate the expected value of the measurements at any location

throughout the RoI. We perform spatial filtering and KS in two separate steps

because KS is non-robust and the preceding filtering allows us to remove out-

liers before filtering noise and interpolating. The location-wise STD for each

measurable feature is finally calculated as empirical standard deviation of the

raw measurements (before filtering and kernel smoothing) within a neighbor-

hood of the specific reference points. In the following, the individual steps of

the algorithm are explained in more detail.

As can be seen in Figure 5.1a and 5.1b the measured feature values in the

neighborhood of a given location may vary significantly. This is particularly

visible around locations with very low signal strength values, i.e. values close

to the sensitivity limit of the mobile devices. In order to mitigate the impact

of these variations on the representation of the RFM, we apply the spatial

filtering which replaces the originally measured feature value va of feature a
at the given location l by the median value of the values measured within the

neighborhood of l. We have chosen to defined the neighborhood as the set of

measurements collected at the up to m locations closest to l that at the same

time lie within the given radius r about l (see the schematic in Figure 5.2).

In the second step, we estimate a continuous RFM using KS in order to

be able to retrieve the expected measurements at any location within the RoI

(Berlinet and Thomas-Agnan 2011). Albeit KS can reduce noise by implicit



87 5.4. ROBUST ESTIMATION OF THE FEATURE VARIABILITY

Figure 5.2: Schematic representation of the spatial filtering

filtering, it is not robust and the results could therefore be severely contami-

nated by outliers in the measured features (Figure 5.3a and 5.3b). Therefore,

we apply KS to the media filtered data rather than to the original ones. Be-

cause the structure of the indoor region is not taken into account, KS tends

to smoothen the RFM over discontinuities like large changes of feature val-

ues or change from feature presence to feature absence over short distances

e.g. because of walls. This over-smoothing degrades the quality of the RFM

for certain features at certain locations. This may be relevant for positioning

(Bong and Kim 2012), especially when using radio frequency signals such

as WLAN whose propagation is highly influenced by obstacles. Herein we

employ a modified version of KS which uses only a subset of the data in the

neighborhood of a given location for approximating the expected feature val-

ues (Berlinet and Thomas-Agnan 2011). This alleviates the impact of over-

smoothing, while at the same time reducing the computational complexity

(Berlinet and Thomas-Agnan 2011; Cormen et al. 2009).3.

The distribution of the measured noise shown in Figure 5.4 clearly sug-

gests that the variances are location-dependent, are different for different fea-

tures, and cannot be represented as just a function of feature value or of geo-

metric distance from a single point per feature (e.g. the AP location). So, we

propose to model the STD as a location-dependent quantity, independently

for each individual feature. To this end, we compute the absolute residuals of

the raw data with respect to the spatially filtered and kernel smoothed RFM

in order a robust estimate of the STD. At the reference location l j in the

RFM �, the STD σ jk of k-th (k = {1,2, · · · , |�̃ j|}) feature contained in �̃ j is

computed by the median absolute deviation (MAD) of the measured feature

values associated to locations defined as the support set for spatial filtering.

The extended representation of the RFM with the estimated STD at location l j
is denoted as �̃ j = {(a jk,v jk,σ jk)|a jk ∈ �̃ j} and is continuously represented

using KS, i. e. �̃ j := F (l j).

3A detailed analysis of the over-smoothing problem, the computational complexity of KS,

and a discontinuity preserving approach to KS is beyond the scope of this paper and left for

future work.
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5.5 Iterative scheme for online positioning

Inspired by the finding that the variability of the features has a large effect on

the positioning error (Kaemarungsi and Krishnamurthy 2012), we employ the

robustly estimated STD of the features to reduce the impact of uncertain fea-

ture values when calculating the position estimate. We construct a weighting

scheme that reduces the weight of a feature with high STD relative to fea-

tures with low STD. Therefore, a discrepancy between online measured and

expected value of a feature with low STD has more impact on the dissimilar-

ity measure—and thus on the estimated position—than the same discrepancy

for a feature with a high STD. This dissimilarity measure is used to identify

which subset of reference locations is taken into account when inferring the

user’s location using deterministic feature-based positioning algorithms such

as kNN.

5.5.1 Weighted dissimilarity measure

Given the online measured features�u
i at the location lui , the weighted dissim-

ilarity measure d w between �u
i and the j-th reference fingerprint �̃ j stored

in the RFM is computed as:

d w(�u
i ,�̃ j) = ∑

a∈�u
i ∩�̃ j

wu
ik g(vu

ik,v jk)+

α1 · ∑
a∈�u

i \�̃ j

wu
ik g(vu

ik,γ)+α2 · ∑
a∈�̃ j\�u

i

wu
ik g(γ,v jk)

(5.1)

where g is the selected dissimilarity measure (e. g. Minkowski distance) and

γ is the missing value indicator (e. g. -110 dBm). This equation represents

a compound dissimilarity measure (CDM) as defined in (Zhou and Wieser

2018a), and correspondingly α1 and α2 are hyperparameters regulating the

contribution of mutually unshared features to the dissimilarity measure. How-

ever, the CDM herein uses a new distance metric, not covered in (Zhou and

Wieser 2018a), by location-wise weighting of individual features instead of

only weighting according to the respective observability. wu
ik is the weight

of the k-th feature at the location/time i and is computed by employing the

variability derived from the estimated expected measurement �̃u
i obtained at

lui . In case that the k-th feature in �̃i j (�̃i j := �u
i ∪ �̃ j) is not measurable

at location lui , the weight of the corresponding feature is set to the minimum

value of the weights of the measurable features thus reducing their impact on

the estimation of the location.
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We selected the softmax function (Murphy 2012; Gal and Ghahramani

2016)

wu
ik =

e−βσ−2
ik

|�̃u
i |

∑
l=1

e−βσ−2
lk

(5.2)

to calculate the weight of each feature using the estimated STD, where

�̃
u
i = F (lui ) and β > 0 is the scale factor for adapting the concentration of

the softmax function. The denominator normalizes the weights and makes

the solution invariant to the scale of the weights. We have also tried to use a

weight function corresponding to the one frequently employed for weighted

least-squares (and actually motivated by maximum likelihood estimation with

normally distributed observations), namely setting each weight proportional

to the inverse of the respective variance. However, the accuracy of the solu-

tions was worse than using the softmax function.

The weighted dissimilarity measure is used to identify the candidate loca-

tions, whose dissimilarity values are smallest among all reference fingerprints

stored in the RFM. We estimate the user’s location using kNN or weighted

kNN by averaging or weighted averaging (e. g. inversely proportional to the

value of dissimilarity measure) of the candidate locations. More details about

kNN and weighted kNN can be found in e. g. (Padmanabhan et al. 2000; Zhou

and Wieser 2019b).

5.5.2 Iterative scheme

The position estimation requires to calculate the weight of each feature. How-

ever, the weight depends on the standard deviation which in turn varies with

location. The required value can only be extracted from the RFM once the

location is known. We thus carry out the positioning in an iterative way by

i) assuming a position (initialization); ii) retrieving the STDs from the RFM,

calculating the weights and estimating the position (update step); and iii) re-

peating ii) until a termination condition of the iterative scheme is fulfilled.

These steps are explained in more detail in the following subsections.

Determination of the initial location. The initial location l̂(0)i of the user is

used to derive the weights for the first iteration. One straightforward way of

initializing is to choose the location estimated by the standard kNN without

the weighted dissimilarity measure (i. e. the traditional kNN). When process-

ing real world data we found out that the solution obtained at the termination

of the iterative process is quite stable when initializing the location even ran-

domly (see Section 5.6). This suggests that the positioning performance does

not depend strongly on the choice of the initial location.
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Update step. At the t-th iteration (t ∈ �+), the weights as well as the dis-

similarities are computed according to the variability obtained at the location

searched at the (t −1)-th iteration. The weight w(t)
ik of the k-th feature at loca-

tion/time i and the t-th iteration is defined as:

w(t)
ik =

e−β
(

σ (t−1)
lk

)−2

|�̃(t−1)
i |
∑

l=1
e−β

(
σ (t−1)

lk

)−2

(5.3)

where �̃
(t−1)
i is the estimated expected value of features with their STD at

location l̂(t−1). This updated weights are used to compute the dissimilarity

measure as defined in (5.1) and consequently to infer the estimated location

l̂(t)i at the t-th iteration using e. g. kNN algorithm.

Termination condition. Ideally the searching process should converge to a

fixed location. This state is assumed to be reached when the distance between

two consecutively obtained location estimated is lower than a given small

threshold. We denote this subsequently as converging state and terminate the

iterative process when

|l̂(t)i − l̂(t−1)
i |2 < dmin,

where dmin is the threshold, which we set to 10−3 m in the experimental analy-

sis later on. We found out that the iterative process proposed herein sometimes

enters a loop in which a (small) subset of locations are repeatedly obtained

as estimates in the same sequence. We denote this as the looping state and

introduce a second termination condition which is met when this state is rec-

ognized. We implement it as a threshold on the distance between the location

estimate obtained at the iteration t and the ones estimated at previous itera-

tions except the estimated location at the (t −1)-th iteration. More formally,

the second condition is satisfied and the iteration is terminated when

min
m=1,··· ,t−2

{|l̂(t)i − l̂(m)
i |2}< dmin.

Finally, the maximum number T of iterations is also limited (e. g. T =
100) in order to prevent long or endless search for a solution. If the search for

an estimate is terminated due to this condition, we denote it as max. state.

Assuming that the iterations terminate after T ′ iterations we select or com-

pute the final estimate of the position depending on the termination flag (TF)

εu
i ∈ {0,1,2}, indicating the respective state, as follows:

• Converging state: The location estimated at the T ′-th iteration is se-
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lected as the final estimate of the user’s location l̂ui , and εu
i is set to 0.

• Looping state: In this case the searched locations do not converge to

a single point. If the number of locations exceeds a certain minimum

(e. g. 4) and if the locations visited in the looping state are not farther

apart than a chosen maximum (e. g. 0.01 m) (see Figure 5.5) we use

the minimum covariance determinant (MCD) estimator4 for computing

the estimated location l̂ui of the user from the convex hull of the visited

locations. If the number of points is too low or if they are too far apart

from each other the situation is handled like the max. state. If the loop-

ing state termination condition is met and the MCD is reported as the

final estimate, the TF εu
i is set to 1.

• Max. state: This case actually means that the position estimation us-

ing the weighted dissimilarity measure fails because no position can be

found where the measured features and the predetermined standard de-

viations are compatible. In this case, we can either report a failure of

the algorithm and not calculate a solution, or we can calculate an es-

timate ignoring the variability information. We have chosen the latter

herein. In particular, we determine l̂ui from all searched locations �̂ an-

alyzing the similarities between the user measured fingerprint �u
i and

the expected ones at the searched locations. Specifically, we employ

the modified Jaccard index (MJI), which has been used for identifying

subregions according to the measurability of features (Zhou and Wieser

2019b), as the similarity metric. The MJI value SMJI between �u
i and

the expected one ˜̂
�

(t)

i ( ˜̂
�

(t)

i := F (l̂(t)i )) at the searched location l̂(t)i of

the t-th iteration is computed by:

SMJI(�u
i ,

˜̂
�

(t)

i ) =
1

2

( |�u
i ∩ ˜̂
�

(t)

i |
|�u

i ∪ ˜̂
�

(t)

i |
+

|�u
i ∩ ˜̂
�

(t)

i |
|�u

i |
)

(5.4)

where�u
i and ˜̂

�
(t)

i are the sets of the measured features contained in�u
i

and ˜̂
�

(t)

i , respectively. The estimated user’s location l̂ui is then the one

that has the biggest MJI value among all searched locations �̂, i. e. the

one with the maximum number of common measurable features is se-

lected as the final estimate of the user’s location.

4MCD is a highly robust estimation of multivariate location and scatter. We use the imple-

mentation of MCD from scikit-learn (Pedregosa et al. 2011).
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5.6 Analysis of the variability estimation and po-

sitioning performance

We start this section by presenting the results of the location-wise variability

of each individual feature estimated using the kinematically collected RFM

data, which is discussed in detail in (Zhou and Wieser 2019b). We con-

clude this section with an analysis concerning the characteristics of iteratively

searched locations as well as the positioning performance of the proposed

iterative scheme.

5.6.1 Results of the variability estimation

Herein we set m = 20 and r = 2 m to obtain the spatially filtered RFM, which

visually has an adequate spatial consistency in the neighborhood of each lo-

cation. Figure 5.1c and 5.1d clearly show that the spatial filtering can reduce

the large variations contained in the raw RFM to a great extent. For further

analysis, we compute the residuals between the raw and the spatially filtered

RFM. The obtained residuals are close to zero-mean distributed and have a

location-dependent magnitude as illustrated in Figure 5.1e and 5.1f. Large

residuals occur either in regions close to the boundaries of the RoI (e. g. close

to the walls or corners of rooms and corridors) or at locations where the RSS

values are hardly measurable by the mobile phone. In both cases the features

are very likely affected by obstacles which also cause locally large variations

of the feature values.

Figure 5.4 shows the results of the estimated STD value using the MAD

of the measured feature values associated to the neighborhood of a given lo-

cation. As can be seen, each feature has a different variability throughout the

RoI, i. e. the STD value is dependent both on the feature as well as on the lo-

cation. This is the primary motivation that the variability is modeled location-

wise for each individual feature instead of simply expressing the variability as

a function of the measured feature value or as a constant value. The regions

where the feature values have a higher STD are clearly correlated to the lo-

cal variations of the measured feature value and the geometry of the building

(Figure 5.3 and 5.4). The high variances occur in the case that a low number

of measurements has been collected in the neighborhood region. These are

caused by the violation of the assumption that the expected feature values are

locally obtainable.
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Figure 5.3: Examples of kernel smoothed RFM of two arbitrary selected APs.

The results of the first two rows are yielded by taking the raw RFM and the

spatially filtered one (i. e. the ones depicted in the first two rows of Figure

5.1) as the input to KS, respectively. Third row shows the residual between

the kernel smoothed RFM using the spatially filtered one and the spatially

filtered RFM. Though the KS provides the continuous representation of the

RFM, we only visualize the smoothed features at the locations contained in

the raw RFM for easy comparison.

5.6.2 Results of iterative scheme for positioning

The proposed iterative scheme for feature-based positioning is implemented

using the application programming interface of scikit-learn package, a widely

used machine learning package in Python (Pedregosa et al. 2011). Herein we

present the results of the iterative positioning using kNN with the weighted

Euclidean distance as the dissimilarity metric for measuring the distance in the

feature space. The values of several hyperparameters have to be configured.
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Figure 5.4: Examples of the absolute residuals and estimated STD for two

APs

Regarding the weighted dissimilarity measure, as formulated in Section 5.5.1,

α1 and α2 are set to 3.0 by following the results reported in (Zhou and Wieser

2018a). The number of nearest neighbors k in the kNN algorithm and the scale

factor β of the softmax function are empirically set to 1 and 2.0, respectively.

Optimization of the parameters (e. g. using grid/random search or Bayesian

optimization (Wang and de Freitas 2014)) for achieving the best positioning

performance is left for future work.

Figure 5.5 shows several examples of the searched locations of the itera-

tive positioning with random as well as kNN initialization. Each individual

subplot depicts the results of the iterative positioning at a fixed test location.

The subplots depict the searched locations (red squares), the final estimation

(blue triangle or coral diamond), the estimation using the traditional kNN al-

gorithm, and the ground truth (black square)5. The initialization of the initial

location has only a minor impact on the iterative searching process in this

case because the RoI is relatively small. The initial location is determined by

arbitrarily taking one of the reference locations stored in the RFM in case of

random initialization. In addition, our schemes for determining the final esti-

mation of the user’s location from these searched locations do not achieve the

best potential positioning performance using the iterative scheme. Because

there are locations in ˆ that are closer to the ground truth but they are not

taken as the final estimation. This suggests that the iterative scheme for posi-

tioning has the potential to further improve the positioning performance if the

proper technique is applied to retrieve the final estimation from these searched

5In order to improve the readability, the initial location has not been visualized.
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locations. The optimal positioning accuracy (denoted as Ours (opt.) in Figure

5.8 and in Table 5.1) is defined by assuming that the technique for the final

estimation is capable of retrieving the searched location that is the closest to

the ground truth. As depicted in Figure 5.8, our scheme for retrieving the fi-

nal estimation can achieve comparable performance to that of the optimal one

when comparing the overall positioning accuracy. However, from Table 5.1,

it also suggests that the maximum positioning error can be reduced to a large

extent if the optimal positioning can be achieved.

kNN initialization Random initialization 1 Random initialization 2

L
o

c.
1

(a) (b) (c)

L
o

c.
2

(d) (e) (f)

L
o

c.
3

(g) (h) (i)

Ours (conv.)Ours (loop.)

Figure 5.5: Examples of iteratively searched location with different initializa-

tions. The locations with black circles are repeatedly searched in the same

sequence (i. e. the looping state) when using the iterative scheme.

Figure 5.6 shows the statistics of the TF, denoted by the percentage of

locations terminated with different conditions. In case of k = 1 about 83%

iterative search processes have terminated with the converging state. This is

about 35 percent points higher than in case of k = 3. We therefore set the

number of the nearest neighbors for kNN to 1. In addition, we have analyzed

the searched locations within the looping state cases are distributed on space.

Figure 5.7 shows the distribution of the maximum distance between points

within the same loop. Most of the maximum distances are significantly less

than 10 m, though, in some extreme cases we observed up to 60 meters. As

shown in Figure 5.8, the schemes proposed for the loop state (MCD or MJI)

are still capable of properly selecting position estimates close to the ground
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truth also in most of these cases.

Figure 5.6: Comparison of the percentage of locations terminated with differ-

ent conditions for k = 1 and 3. The max. state is not included in the figure

because it has not happened in the experimental analysis.

Figure 5.7: The maximum distance between the locations consisting of the

loop state for k = 1

The empirical cumulative distribution function (ECDF) of the radial posi-

tioning errors is presented in Figure 5.8. The proposed approach can signifi-

cantly improve the positioning performance as compared to the performance

of the traditional kNN and kNN with CDM. Using the algorithm proposed

herein, about 86% of the estimated locations have a positioning error smaller

than 2 m and around 97% of estimated locations have an error of less than

4 m. Compared to kNN, this represent an improvement of up to 20 and 10

percent points, respectively. The improvement is also up to 10 and 6 percent
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points as compared to kNN with CDM. The percentage of estimated loca-

tions whose error distance is larger than 5 m is reduced from about 10.2% and

6.7% to 2.6%, when compared to the traditional kNN, and kNN with CDM,

respectively. We also report the circular error (CE) defined as the minimum

radius for including a given percentage of positioning errors (e. g. CE 50 for

the 50th percentile) in Table 5.1. The maximum positioning error is reduced

by about 40%, from 37.0 m to 22.2 m when comparing kNN with CDM to

our approach. The CE 50, CE 75, and CE 90 are reduced by one third when

compared to the kNN without iterative positioning. Furthermore, in Figure

5.9 we illustrate and compare the distribution of the locations, at which the

positioning error is larger than 8 m using the original kNN. Figure 5.9a shows

that these locations yielding large errors are mostly located close to the acces-

sible boundaries of the indoor regions, i. e. close to corners of corridors and

rooms, or to the walls. This pattern is similar to the spatial distribution of high

variance of the feature values contained in the raw RFM as shown in Figure

5.4. Our approach can significantly reduce the number of occurrences where

the positioning errors are larger than 8 m.

Figure 5.8: Comparison of ECDF with respect to the radial positioning errors.

Table 5.1: Statistics of positioning errors (meters)

CE 50 CE 75 CE 90 Max. error

kNN 1.4 2.6 5.2 29.6

kNN (CDM) 1.1 1.9 3.7 37.0

Ours 1.0 1.5 2.2 22.2

Ours (opt.) 0.9 1.4 1.9 9.2
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(a) kNN

(b) Ours

Figure 5.9: Distribution of the locations yielding large errors (> 8 m) in posi-

tioning

5.7 Conclusion

We have proposed an iterative scheme for feature-based positioning, which is

based on the weighted dissimilarity measure, for reducing large errors occur-

ring in FIPSs. Appropriate weights for the individual feature can be obtained

by analyzing the variability of the kinematically collected raw data underly-

ing the RFM. The location-wise standard deviation of each feature is robustly

computed using the MAD between the raw data and the spatially smoothed

RFM. This variability information is stored as an additional layer of the RFM

and used for weighting the contribution of each feature to the dissimilarity

measure during the online positioning phase.

Using real WLAN RSS data collected along with location ground truth

in an office building, we could show that the noise of the raw observations

indeed depends on the location and on the feature. We have implemented

the proposed algorithms in Python and have validated the performance of the

proposed iterative scheme. Compared to kNN with CDM, the maximum po-

sitioning error is reduced by more than 40% and the iterative scheme can

improve the overall positioning performance. The positioning accuracy de-

fined as the percentage of the locations whose radial positioning error is less
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than 2 m is improved from 65% to 86% when compared to traditional kNN.

In future work, we will further investigate the proposed algorithms using

data from other environments. We will further investigate the loop state and

the handling of remaining outliers. Finally, we will investigate how the stan-

dard deviations modeled within the RFM can help to identify the need for

updates of the RFM.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

6.1 Summary

The results and findings of this thesis are the outcome of a study on the mit-

igation of variability issues encountered in feature-based indoor positioning

systems (FIPSs), which utilize signals of opportunity (SoP) as features. The

milestones of the research are represented by the major technical chapters

(i. e. Chapters 3, 4, and 5) of this dissertation. The main challenges jeopardiz-

ing the practical usability of FIPSs are the unknown prior information about

the measurable SoP as well as the limited control of their quality. In order

to overcome these difficulties, this thesis proposes solutions for tackling three

relevant research problems, which are the key to enhancing the applicability

of FIPSs. These problems and the proposed solutions are briefly summarized

as follows:

1. The first problem deals with the scalability issue intrinsically originat-

ing from FIPSs in the context of reducing the computational complexity

during the online positioning phase. The proposed solution is a hierar-

chical combination of a modified Jaccard index (MJI)-based subregion

selection and an adaptive forward-backward greedy search (AFBGS)-

based feature selection approach as discussed in Chapter 3.

2. The second problem tackled in the dissertation is the measurability vari-

ations of those SoP in the context of adaptively quantifying the differ-

ence between pairs of the measurements in the feature space. In order to

solve this, a non-vector-based dissimilarity measure, named compound

100
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dissimilarity measure (CDM), has been presented in Chapter 4. The

CDM combines a typical distance metric with set operations.

3. The third problem addressed by this dissertation relates to the mitiga-

tion of large errors in FIPSs. The proposed approach, as presented in

Chapter 5, is an iterative scheme for positioning with the weighted dis-

similarity measure, which adapts the contribution of each individual

feature to the dissimilarity measure according to the robustly estimated

location-wise standard deviation of each individual feature.

The proposed solutions have been validated using the kinematically collected

reference fingerprint map (RFM), which includes received signals from wire-

less local area network (WLAN) access points (APs) or Bluetooth low en-

ergy (BLE) beacons as features and has been presented in several relevant

publications. The scientific relevance of this work is primarily two-fold. On

the one hand, the proposed solutions can be extended to utilize any other kind

of location-relevant features and incorporated into different indoor application

cases, e. g. the Internet of Things. On the other hand, the individual solutions

can be employed in other fields aside from indoor positioning. For instance,

the proposed CDM is applicable to situations dealing with missing values

when quantifying the difference between pairs of vectors. This work also has

high potential impact to industry and therefore to society. The proposed solu-

tions contribute towards enabling final indoor location-based services (LBSs)

by improving the positioning accuracy while reducing the computational bur-

den.

6.2 Discussion of contributions

As previously stated, the objective of this thesis is to mitigate variability issues

affecting FIPSs in the context of providing indoor LBSs to pedestrians using a

mobile device and SoP measured by its built-in sensors. Throughout the study,

the potential of the proposed solutions to enhance indoor positioning has been

discussed in detail. In the following the most important points are highlighted.

Each subsequent subsection presents the individual solutions concerning the

aforementioned research questions.

6.2.1 Reduction of the computational complexity

The first contribution of this work relates to the reduction of data storage re-

quirements and computational complexity in terms of processing time. This

is achieved through segmentation of the entire region of interest (RoI) into
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subregions, identification of a few candidate subregions during the online po-

sitioning stage, and use of a selected subset of relevant features instead of all

the available features for the position estimation. The subregion selection is

based on an MJI quantifying the similarity between the features obtained by

the user and those available within the RFM. Feature selection is based on an

AFBGS yielding a pre-computed set of relevant features for each subregion.

The reduction of computational complexity is obtained from the reduction

of both the number of candidate locations needed to analyze during online

positioning and the number of features to be compared.

The positioning performance of the proposed approach has been evaluated

by employing the kinematically collected RFM as validation dataset. The time

required for the position estimation during the online stage was reduced by a

factor of about 10 when using the selected relevant features within 11 selected

subregions instead of using all the available features and searching over the

entire RoI. In addition, the positioning accuracy using maximum a posteri-

ori (MAP) is reduced from 9.8 m to 7.4 m when WLAN signals are used as

features and from 12.3 m to 10.9 m when features are obtained from BLE bea-

cons signals. For k-nearest-neighbors (kNN), the positioning accuracy does

not change with subregion and feature selection. Given a fixed number of

candidate subregions and a fixed, low number of features, the computational

burden of the entire algorithm is almost independent of the size of the entire

RoI and of the number of available features across the RoI.

6.2.2 Adaptation to measurability variations

A non-vector-based dissimilarity measure, named CDM, has been proposed

by combining a typical distance metric with set operations aiming at mea-

suring the dissimilarity between measurements despite possible missing fea-

tures. The adaptability of the proposed CDM is achieved with the inclusion

of hyperparameters, which can be tuned according to the data and needs of

the application. The proposed CDM is validated using the kinematically col-

lected RFM as well as other three publicly available datasets by analyzing

the positioning performance. Both the accuracy for identifying buildings and

floors, and for calculating specific locations improve significantly, reaching

improvements over 5 and 10 percent points, respectively. Although the CDM

is proposed herein aiming at handling missing data in feature-based position-

ing, it is applicable to other missing data problems as well (e. g. searching the

correspondences of point clouds according to sparsely described local fea-

tures).
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6.2.3 Mitigation of large errors in positioning

An iterative scheme for feature-based positioning, which is based on the

weighted dissimilarity measure, has been proposed for reducing large errors

in FIPSs. Appropriate weights for the individual features can be obtained by

analyzing the variability of the kinematically collected raw data underlying

the RFM. The location-wise standard deviation of each feature is robustly

computed using the median absolute deviation between the raw data and the

spatially smoothed RFM. This variability information is stored as an addi-

tional layer of the RFM and used for weighting the contribution of each fea-

ture to the dissimilarity measure during the online positioning phase.

Using real WLAN received signal strength data collected along with lo-

cation ground truth in an office building, we could show that the noise of the

raw observations indeed depends on the location and on the feature. We have

implemented the proposed algorithms in Python and have validated the per-

formance of the proposed iterative scheme. Compared to kNN with CDM,

the maximum positioning error is reduced by more than 40% and the iterative

scheme can improve the overall positioning performance. The positioning

accuracy defined as the percentage of the locations whose radial positioning

error is less than 2 m is improved from 65% to 86% when compared to tradi-

tional kNN.

6.3 Discussion of limitations

This dissertation, as discussed in the previous section, has contributed to rel-

evant topics of FIPSs. There is, however, potential room for further improve-

ment, as the proposed approaches have a number of disadvantages when com-

pared to alternative ones. Here the most important aspects of these limitations

are discussed.

Segmentation of the RoI. The segmentation of the entire RoI according to

the available indoor maps (or a floor plan of the RoI) has been applied to

achieve the coarse estimation of the user’s location and reduce the search

space for refining the location estimation according to the selected candidate

subregions (see Chapter 3). The role of the subregion definition (shape, ori-

entation, homogeneity) with the adaptation of the characteristics of the RoI

and possible benefit of optimization should be further investigated. Promis-

ing research directions worth considering are: i) a user motion model during

subregion selection, ii) temporal changes of the reference fingerprinting map,

and iii) integration of different types of features for improving the positioning

accuracy.
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Refinement of the iterative scheme. An iterative scheme has been proposed

for reducing large errors in FIPS and the results presented in Chapter 5 have

shown that this scheme can potentially improve the positioning accuracy. This

potential has not been achieved by the refined scenarios used in the chapter

and is worth looking further into from the perspective of retrieving the one

closest to the ground truth as the final estimation from the iteratively searched

locations. In addition, it would beneficial to explore the capability of identify-

ing large error cases from the distribution of the iteratively searched locations.

Computational complexity at the offline stage. The proposed solutions put

the extra computational burden to the offline stage as the price to pay for re-

ducing online positioning processing time and storage needs (Chapter 3), and

to enable employing the weighted dissimilarity measure (Chapter 5). The

available computation resources on a commonly used computer are able to

handle the offline computation in a reasonable time in a middle level scalabil-

ity (e. g. hundreds of measurable features in an RoI consisting of one floor of a

typical office building), affording the increment of the computational burden

in the situation of large scalability (e. g. huge RoI with millions of measure-

ments) would become critical. Therefore, the improvement of the computa-

tional efficiency (e. g. parallelization) and utilization of new computational

resources (e. g. GPUs) are of significance.

Optimization of hyperparameters. Although data-driven algorithms and

machine learning approaches can be employed without requiring explicit prior

knowledge of the intrinsic model built in the data, these methods have to be

tuned regarding their hyperparameters, which are nested in the machine learn-

ing algorithms. In the major chapters a naive parameter optimization scheme

(e. g. grid search) has been used for tuning the relevant parameters (e. g. the

nested parameters of kNN) for different applications independently. In future

work, it would beneficial to employ an optimization framework that is able to

search an optimal combination of parameters in the context of taking into ac-

count all the relevant parameters into one optimization procedure. Among the

available parameter search and optimization frameworks, Bayesian optimiza-

tion could be a promising candidate (Wang and de Freitas 2014; Shahriari

et al. 2016).

Fusion of the proposed solutions. The proposed solutions for mitigating

variability issues in FIPSs are performed in individual frameworks and can be

potentially fused into a single pipeline. This integral solution would output

an end-to-end solution while providing reduced positioning time, robustness

against measurability variations, and mitigation of large errors according to

the user measured features during the online positioning phase.
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6.4 Outlook

The advancements presented in this thesis should be helpful to raise awareness

of the progress in the field of indoor positioning, especially regarding the ap-

plication of data-driven algorithms. Most of the solutions have been inspired

by the state-of-the-art in the corresponding field as well as the knowledge and

advances in the field of machine learning and deep learning. In the follow-

ing, a few promising directions for future research are discussed, based on

the methodological and practical findings of the current dissertation. These

include open problems, proposals for future research and potential solutions

to the limitations encountered with respect to new technologies and method-

ology.

New sensing techniques. In the state-of-the-art of FIPSs, the prevalent radio

frequency signals, such as those from WLAN, BLE, and cellular networks,

are the most widely studied ones. However, the sensing techniques used at

present can be improved for obtaining new signals used as features for posi-

tioning. One promising signal is the radio frequency channel state informa-

tion (CSI) (Halperin et al. 2011; Schulz et al. 2018). The CSI measurements

can be used to model space, time, and frequency characteristics of the channel

by observing the received signals (both the magnitude attenuation and phase

shift) from multiple-input and multiple-output antennas. This WiFi sensing

technique has been applied using specific hardware design and its extension

to mobile devices is currently under development. The CSI measurements can

be employed for positioning and can potentially improve the performance by

modeling the signals according to the extended information, included in CSI,

about the medium and environment that the signals have traveled through.

Exploitation of advanced deep learning models. The advancements of

deep learning approaches have improved their interpretability and enabled

their applicability by better handling the variations of measurability. This es-

pecially refers to the development of graph neural networks (Battaglia et al.

2018). Graph neural networks allow to embed arbitrary topological represen-

tations into vectors, e. g. embedding one signal into a vector representation

according to the spatial-temporal topology, which is generated from the RFM.

In addition, recent advances in the application of deep neural networks to time

series analysis allow for the sequential deep learning approach to predict the

trajectory as fed with the raw measurements from inertial sensors by breaking

the cycle of error propagation with a sequence-based physical model. Ac-

cording to Changhao et al. (2018), this makes the proposed deep learning

model robust against unbound drifts problem, which are challenging topics

in traditional inertial navigation systems (e. g. pedestrian dead reckoning or

strapdown inertial navigation).
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ACDM averagely weighted compound dissimilarity measure

AFBGS adaptive forward-backward greedy search

AP access point

ATR automatic target recognition

BIC Bayesian information criterion

BLE Bluetooth low energy

CDM compound dissimilarity measure

CE circular error

CSI channel state information

CV cross validation

ECDF empirical cumulative distribution function

EKF extended Kalman filter

FbP fingerprinting-based positioning

FM frequency modulation

FIPS feature-based indoor positioning system

GNSS global navigation satellite system

GP Gaussian process

GPR Gaussian process regression

GPS global positioning system

IMU inertial measurement unit

kNN k-nearest-neighbors

KS kernel smoothing

LASSO least absolute shrinkage and selection operator
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LBS location-based service

LDA linear discriminant analysis

LDPLM Log-distance path loss model

MAC media access control

MAD median absolute deviation

MAE mean absolute error

MAP maximum a posteriori

MCD minimum covariance determinant

MJI modified Jaccard index

MLE maximum likelihood estimation

MSE mean squared error

PDR pedestrian dead reckoning

PLSR partial least square regression

PSFM polynomial surface fitting mean

RCDM relatively weighted compound dissimilarity measure

RF radio frequency

RFID radio frequency identification

RFM reference fingerprint map

RKHS reproducing kernel Hilbert space

RMSE root mean squared error

RoI region of interest

RP reference point

RSS received signal strength

SLAM simultaneous localization and mapping

SoP signals of opportunity

STD standard deviation

SVM support vector machine

SVR support vector regression

TDE time delay estimation

TF termination flag

TP test position

UGV unmanned ground vehicle

UTC coordinated universal time

UWB ultra-wideband

WLAN wireless local area network
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