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Summary 
 
This project is related to the Global Climate Observing System (GCOS) Switzerland (CH), Call for Projects, 
Pillar 1 “Enhance and strengthen the Swiss climate observing system”, Priority 1.3 “Promote the integration 
of existing and emerging observation methods”. It is based on a finished project (Lake Ice Project, LIP) 
initiated by MeteoSwiss in the framework of GCOS CH “Integrated Monitoring of Ice in Selected Swiss 
Lakes” (Tom et al., 2019). It focuses on lake ice estimation over longer time periods but also methods that will 
enable a sustainable, reliable and long time series lake ice monitoring in the future. Lake ice, as part of the 
GCOS Essential Climate Variable (ECV) lakes, is an important factor (sentinel) for monitoring climate change 
and global warming. Since there are no systematic and reliable observations of lake ice in Switzerland in the 
past many years, we use various sensors and methodologies to operationally accomplish this. 
 
Regarding sensors, we use satellites (secure, large-area and repetitive coverage) to monitor some carefully 
selected lakes in Switzerland. Apart from MODIS/VIIRS optical sensors (for VIIRS with expected future 
continuity from the National Aeronautics and Space Administration (NASA)), we use the free and seemingly 
of guaranteed continuity Sentinel-1 and -2 data from European Space Agency (ESA), at a much better spatial 
resolution than MODIS/VIIRS, able to monitor also small lakes. Of particular importance is the usage of 
Sentinel-1 Synthetic Aperture Radar (SAR) microwave data to reduce the grave problem of clouds in 
Switzerland and also errors in cloud masks for the optical sensors. We also use Webcam data, which are 
becoming increasingly (and freely) available and are much less affected by clouds and are better suited for 
monitoring of small lakes, that are imaged as few pixels in satellite images. They also can provide “ground 
truth” (reference data) after manual interpretation. Since current Webcams have a rather poor image quality, 
are placed arbitrarily (not optimised for lake monitoring) and are usually fixed, we use a new, better quality 
Webcam with Pan-Tilt-Zoom (PTZ) capabilities at lake St. Moritz. We also explore the possibilities of crowd-
sourced lake images from the internet. A final platform/sensor that we use is Unpiloted Aerial Vehicles (UAVs) 
with an RGB camera, as a pilot project for lake ice but mainly possibly other climate and environmental 
applications and for validation of specific campaigns. Auxiliary data (especially temperature) from the 
meteorological stations close to the lakes can also provide support for better interpretation of the results.  Our 
optical satellite-based method obtains mean Intersection-over-Union (mIoU) scores of > 83.9%, on both 
MODIS and VIIRS data. On average, our Webcam approach achieves mIoU values of ≈87%. Furthermore, 
using Sentinel-1 SAR data, the proposed model reaches mIoU scores of  >90%. 
 
In summary, we propose a future-oriented sustainable system for lake ice monitoring, using mainly optical and 
SAR satellite sensors and for small lakes Webcams, which together form a stable data source, providing 
through Webcams also reference data. In our processing, we use state-of-the-art machine (especially deep) 
learning methodologies. 
 
  



1. Introduction 
 
Motivation. Climate change is one of the main challenges for humanity today, and there is a great necessity 
to observe and understand the climate dynamics and quantify its past, present and future state. Lake observables 
such as ice duration, freeze-up and break-up dynamics etc. play an important role in understanding the local 
and global climate change and provide a good opportunity for long-term monitoring. Lake ice is depleting at 
an increasing pace due to global warming, however a comprehensive and large-scale assessment of lake ice 
loss is partly not using all existing and emerging methodologies and technologies/sensors. The reduced lake 
ice affects winter tourism, cold-water ecosystems, hydroelectric power generation, water transportation, 
freshwater fishing etc., which further emphasises the need to monitor lake ice in an efficient and repeatable 
manner. Lake ice is a part of GCOS ECV lakes. This project is part of the GCOS Switzerland Strategy (GCOS 
Switzerland Strategy 2017-2026, 2017) and supports the GCOS Implementation Needs (GCOS 
Implementation Plan, 2016). 
 
Aims. Existing observations and data on lake ice from local authorities, fishermen, ice-skaters, police, internet 
media, publications etc. are not well documented. Additionally, there has been a significant decrease in the 
number of such field observations in the past two decades. At the same time, the potential of different remote 
sensing sensors has been demonstrated to measure the occurrence of lake ice. In this context, we note that for 
our target region of Switzerland, the database at the National Snow and Ice Data Centre (NSIDC) currently 
includes only the ice-on/off dates of very few Swiss lakes, and only until 2012. Given the need for automated, 
continuous monitoring of lake ice, our goal is to explore the potential of artificial intelligence to support an 
operational system. We aim towards a machine (especially deep) learning-based system which monitors 
selected Alpine lakes in Switzerland and detects the spatio-temporal extent of ice. 
 
Brief overview of the work. Though satellite data is the best operational input for global coverage, close-
range Webcam data can be very valuable in regions with large enough camera networks (including 
Switzerland). Firstly, we use low spatial resolution (250-1000 m) but high temporal resolution (1 day) 
multispectral satellite images from two optical satellite sensors (Suomi NPP VIIRS, Terra MODIS). Here, we 
tackle lake ice detection using Support Vector Machines (SVM), XGBoost and Random Forests. Additionally, 
we analyse the long time series of MODIS (20 winters) and VIIRS (8 winters) to support estimates of the long-
term lake ice trends in Switzerland. To circumvent the problems due to clouds in optical satellite data analysis, 
we analyse the radar (Sentinel-1 SAR) data using Convolutional Neural Networks (CNNs). In order to improve 
the temporal resolution of the Sentinel-1 based approach, we also analyse the Sentinel-2 data using SVM and 
propose a combined monitoring system. Moreover, we investigate the potential of images from freely available 
Webcams (including the data from a Pan-Tilt-Zoom (PTZ) camera at lake St. Moritz) using CNNs, for 
independent estimation of lake ice. Additionally, we use Webcam data for validation of results from satellite 
data. We also make available a new benchmark dataset (Photi-LakeIce dataset) for Webcam-based data 
analysis. Furthermore, we apply the CNN pre-trained on this Webcam dataset on images uploaded to social 
media websites by citizens. Lastly, we fine tune the Webcam-based CNN on UAV images (RGB). Due to the 
limited extent of this report, we refer for more details to Prabha et al. (2020) and Tom et al. (2020a, 2020b). 
In these publications also references to relevant related work, which cannot be included here, can be found. 
 
Study area, time periods, and input data. Based on the experience from the previous project with 
MeteoSwiss (Tom et al., 2019), the four target lakes are: Sihl, Sils, Silvaplana and St. Moritz. These lakes 
freeze always (or almost always), with variable area (very small to medium-sized), altitude (medium to high), 
and surrounding topography (flat/hilly to mountainous). For satellite images, the lake outlines are digitised 
from Open Street Map (OSM) and have an accuracy of ≈25-50m. For Webcams, our algorithm determines the 
lake outline, largely automatically. To assess the performance of our MODIS, VIIRS, Sentinel-1, Sentinel-2 
and Webcam methodologies, the data from two full winters (2016-17 and 2017-18) are used, including the 
relatively short but challenging freeze-up and break-up periods. In each winter, we process all dates available 
from the beginning of September till end of May. In order to study the long-term trends, we also process 
MODIS and VIIRS data from all winters since 2000-01 and 2012-13 respectively, till winter 2019-2020. 
Additionally, we analyse the PTZ Webcam data from the winter 2018-19. The crowd-sourced images that we 
use are not time stamped. In addition, using UAVs, we collected data of lake Sils on five days during the break-
up period (two and three days from April 2018 and May 2019 respectively). Though we analyse only two lakes 
(St. Moritz and Sihl) using Webcam data, we process all four target lakes using the optical and radar satellite 
data. As reference data, we mainly used manual interpretation of Webcam images. For difficult cases, we used 



multiple images per day, multiple cameras, and neighbouring days, while in some cases more than one operator 
interpreted the data. The major difficulty was in separating water from thin, transparent ice. 
 
2. Methods 
 
We use state-of-the-art machine (especially deep) learning approaches as the backbone for developing a multi-
sensor-based lake ice monitoring system and propose separate methodologies for optical satellite data (VIIRS, 
MODIS, Sentinel-2), radar satellite data (Sentinel-1 SAR) and RGB image data (Webcams, including a PTZ 
camera, crowd-sourced images, UAV images). 
 
Optical satellite data processing. In this project, we improve the existing LIP methodology (Tom et al., 2019) 
for MODIS and VIIRS data to reduce the training process. Additionally, multi-temporal analysis is performed, 
and two additional classifiers (Random Forest, XGBoost) are used for lake ice observation. As in LIP, we 
propose lake ice detection using optical satellites as a two class (frozen, non-frozen) semantic segmentation 
problem. The block diagram of the improved methodology for MODIS and VIIRS data processing is shown 
in Fig. 1. More details of our MODIS and VIIRS methodology (data analysed, ground truth, pre-processing 
steps, feature selection, hyper-parameter tuning etc.) can be found in Tom et al. (2020b). Additionally, we 
downloaded and pre-processed the Sentinel-2 data from the Google Earth Engine (GEE) platform and adapted 
the existing LIP methodology (SVM classification) for MODIS and VIIRS data to Sentinel-2 data. More details 
on the Sentinel-2 methodology can be found in Aguilar (2020). 
 

 

Figure 1. Block diagram of the methodology for optical satellite data. As opposed to MODIS and VIIRS, for 
Sentinel-2 processing we used only the SVM classifier and no feature selection was applied. 
 
Radar satellite data processing. Frequent cloud cover is a main limiting factor when optical satellite imagery 
is used for lake ice monitoring. which we overcome thanks to the ability of microwave sensors to penetrate 
clouds and observe the lakes regardless of the weather and illumination conditions. We downloaded the ESA 
Sentinel-1 SAR data (level 1, GRD product, IW mode) and pre-processed it (border noise removal, thermal 
noise removal, radiometric calibration and terrain correction) in the GEE platform. The data thus received from 
GEE is further filtered by log-scaling to adapt the data distribution for CNNs. Using Sentinel-1 amplitude data, 
we cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a 
state-of-the-art deep convolutional network (Deeplab v3+, Chen et al. (2018), see Fig. 2a). Though auxiliary 
data on temperature and wind are not used as an additional input to our CNN, such information is used to better 
interpret the results. For more details on the radar data processing methodology see Tom et al. (2020a) and 
Aguilar (2020). 
 
Webcam (incl. a PTZ camera) and crowd-sourced image processing. We improve the existing Webcam-
based lake ice monitoring algorithm (Tom et al., 2019) for lake ice detection (especially the generalisation 
performance across cameras and winters) with Deeplab v3+ CNN. Moreover, we design a variant of that 
model, termed Deep-U-Lab (see Fig. 2b), which predicts sharper, more correct segmentation boundaries. 
Additionally, we automate the lake detection step. Here, we model the lake detection as a two-class 
(foreground, background) pixelwise semantic segmentation problem and train another instance of the Deep-
U-Lab segmentation model. For static Webcams, we run the lake detector on summer images, to sidestep the 
situation where both the lake and the surrounding ground is covered with snow. Once the lake mask is 
determined, the state of the lake is inferred using Deep-U-Lab. In this step, pixels are labelled as one of four 



classes (water, ice, snow, clutter). As part of the work, we introduce a new benchmark dataset of Webcam 
images, Photi-LakeIce (Prabha et al., 2020), from multiple cameras and two different winters, along with pixel-
wise ground truth annotations (see Fig. 3 for some sample images). Additionally, we collected crowd-sourced 
lake images from the internet (Google search, Facebook, Instagram etc.) and used it for lake ice monitoring by 
fine tuning (transfer learning) a Deep-U-Lab model pre-trained on the Photi-LakeIce dataset. For more details 
on our Webcam and crowd-sourced data processing, see Prabha et al. (2020) and Prabha (2019). We also 
processed the images captured using a PTZ Webcam and compared it with the freely available Webcams. We 
note from our experiments that the images from the PTZ camera do not have significant advantages compared 
to the freely available Webcam images for the task at hand. For details on PTZ camera processing, see Prabha 
(2019). 
 

 
 

a) Deeplab v3+ architecture b) Deep-U-Lab version 

Figure 2. CNN architectures used in our lake ice monitoring system. 

 

 

Figure 3. Photi-LakeIce dataset. Rows 1 and 2 display sample images from cameras 0 and 1 (St. Moritz) 
respectively. Row 3 shows example images of camera 2 (Sihl, non-stationary, some rotations (R1, R2, etc.) are 
also displayed). The state of the lake: water(w), ice(i), snow(s), clutter(c) is also displayed in brackets. 
 
UAV data processing. We flew the ETHZ UAV above the lake Sils during two break-up periods and captured 
both RGB and thermal images of the partially frozen lake. Due to lower quality and resolution and time 
restrictions, the thermal images were not processed. The RGB data from the UAVs is geo-referenced (relatively) 



using the off-the-shelf Pix4d mapper software. We perform semantic segmentation of the RGB UAV images 
into 4 different classes (ice, snow, water and clutter). The clutter class represents all pixels (including 
background) except ice, snow and water. We fine-tuned a Deeplab v3+ model pre-trained on the Photi-LakeIce 
dataset with the UAV images in order to do so. We notice that, though the distributions of ice, snow and water 
classes in UAV images (RGB) are similar to that of Webcam images, the lack of domain knowledge for the class 
clutter requires an adaptation, that’s one of the reasons why we fine-tuned the CNN. 
 
3. Results 
 
MODIS and VIIRS results. To analyse the performance of our methodology on MODIS and VIIRS satellite 
data, we perform four-fold cross-validation tests (see Table 1 for results) and also plot the cross-validation 
results of four different classifiers (including two different versions of SVM), see Figs. 4 and 5. Here, we show 
the mean classification accuracy (mAcc) and mIoU scores. It can be inferred from Table 1, Figs. 4 and 5 that 
our approach achieves excellent results including the good generalisation performance across lakes (from the 
same geographical region) and winters. For more detailed results (timeline plots, qualitative results etc.) on 
VIIRS and MODIS data and detailed explanations, see Tom et al. (2020b).  
 
Table 1. Four-fold cross-validation results on MODIS and VIIRS data. The combined data of all the available 
lakes from both winters 2016-17 and 2017-18 are used in this analysis. 
 

Sensor Classifier Feature Vector mAcc (%) mIoU (%) 

MODIS  SVM Linear (SL) All 12 bands  93.4 83.9 

MODIS   Random Forest (RF) 10 bands (random) 98.9 97.2 

MODIS   XGBoost (XG) All 12 bands 99.3 98.3 

MODIS  SVM RBF (SR) All 12 bands 99.4 98.5 

VIIRS SVM Linear (SL) All 5 bands 95.1  88.4 

VIIRS SVM RBF (SR)  All 5 bands 97.1 93.1 

VIIRS Random Forest (RF) 3 bands (random) 97.6 94.5 

VIIRS XGBoost (XG) All 5 bands 97.7 94.5 

 
Fig. 5 shows that among the four classifiers used the SVM linear classifier generalises better across winters on 
MODIS data. Hence, we analyse the MODIS time series (from 20 winters) using the SVM linear classifier. 
The 20 winter decreasing lake ice trend detected by our SVM algorithm is shown in Fig. 6. In the first row, we 
plot the Freeze-Up Start (FUS), Freeze-Up End (FUE), Break-Up Start (BUS) and Break-Up End (BUE) dates 
(for lake Silvaplana) in each winter (predicted by our algorithm) on the y-axis and the winters in chronological 
order on the x-axis. Note that none of the four important dates occurred between the beginning of September 
till the end of November. Hence, we did not display these dates to avoid having useless dates on the y-axis. 
The solid curves show our predictions and the corresponding dotted curves (with the same colour) display the 
linear trend fitted for the respective results. Note that late freeze-up, early break-up and decreasing freeze-
duration trends can be inferred from this figure. Similarly, in the second row, we plot the increasing 
temperature trends recorded at the nearest meteorological station (Segl Maria). 
 
 
 
 



 

 

Figure 4. Generalisation across lakes results (in %) on MODIS (top row) and VIIRS (bottom row) for the 
classifiers SVM Linear (SL), SVM RBF (SR), Random Forest (RF) and XGBoost (XG) on lakes Sihl, Sils, 
Silvaplana (Silv) and St. Moritz (Moritz). For each lake, the data from two winters (2016-17, 2017-18) was 
combined to perform this experiment. 

 

 

 

Figure 5. Generalisation across winters results (in %) on MODIS (top row) and VIIRS (bottom row) for the 
classifiers SVM Linear (SL), SVM RBF (SR), Random Forest (RF) and XGBoost (XG). For each winter, the 
data from all available lakes was combined to perform this experiment. 
 



 

 

Figure 6. Row 1 shows the results from 20 year MODIS time series processing of lake Silvaplana. Our machine 
learning-based predictions (solid line curves) and the corresponding linearly fitted trends (dotted line curves) 
are shown. In each winter, dates from the beginning of December till end of May are shown on the y-axis while 
the winters from 2000-01 (shown as 00-01, from September 1st 2000 till May 31st 2001) till 2019-20 (19-20) 
are shown chronologically on the x-axis. FUS, FUE, BUS and BUE denote freeze-up start, freeze-up end, 
break-up start and break-up end respectively. Row 2 shows the mean temperature plot (solid cyan curve, 
recorded at the Segl Maria meteorological station) and the corresponding linearly fitted (increasing) trend curve 
(dotted cyan curve) for each winter (September 1st till May 31st) on the y-axis against the winters in 
chronological order on the x-axis.  
 
Sentinel-1 and -2 results. The proposed CNN model for Sentinel-1 SAR data reaches mIoU scores of >90% 
on average (for all lakes), and >84% even for the most difficult lake. Additionally, we perform cross-validation 
tests and our algorithm generalises well across other lakes and winters. Table 2 shows the effect of the different 
polarisations. Note that the best results are obtained when both the polarisations are fed as input to the CNN. 
Sample qualitative results on SAR data are shown in Fig. 7. For detailed quantitative and qualitative results 
(generalisation across lakes and winters results, precision-recall curves, timeline plots etc.) and thorough 
discussions, see Tom et al. (2020a) and Aguilar (2020). Sample qualitative results on Sentinel-2 data using 
SVM is also shown in Fig. 7. For more results on Sentinel-2 data analysis, see Aguilar (2020). 



 

Figure 7. Sentinel-1 SAR data and Sentinel-2 analysis. Qualitative results for lake Sihl on a non-frozen day 
(row 1), lake Sils on a frozen day (row 2), lake Silvaplana on a non-frozen day with clouds (row 3), and lake 
St. Moritz (row 4) on a frozen day with shadow from clouds or nearby mountains are shown. For each lake 
we display the Sentinel-1 composite (RGB = VV, VH, 0) image (column 1), the ground truth (column 2), the 
predicted probability map from Deeplab v3+ (more red means more non-frozen and blue frozen), and the 
corresponding binary classification map (column 4). Additionally, column 5 shows the respective prediction 
from SVM, and in column 6, a pseudo RGB Sentinel-2 image (combining bands B4, B3, B2) for better visual 
interpretation. 
 
Table 2. Sentinel-1 SAR processing results. Per-class IoU values for frozen and non-frozen classes are shown 
to study the effect of different polarisations (VV, VH) as input. Data from all four lakes from winter 2016 − 
17 is tested using a model trained on the data from all four lakes from winter 2017 − 18. 

 
 VV, VH VH VV 

Non-frozen 90.4%  75.2%  88.6% 

Frozen 80.8%  39.7%  76.7% 

 
Results on Webcams and crowd-sourced data. We have tested the new Deep-U-Lab model’s ability to 
generalise across data from multiple camera views, lakes and two different winters. On average, it achieves 
IoU values of ≈71% across different cameras and ≈69% across different winters, greatly outperforming prior 
work (Tom et al., 2019). Going even further, our model even achieves 60% IoU on arbitrary images collected 
from photo-sharing web sites. Table 3 shows the quantitative results when 75% of the images from a camera 
is used for training and the rest 25% for testing. Note that our approach outperforms the current state-of-the-
art (Tiramisu network, Tom et al., 2019). A sample qualitative result is displayed in Fig. 8. For detailed 
quantitative and qualitative results and discussion, see Tom et al. (2020b) and Prabha et al. (2020). 
 
 
 
 
 



Table 3. Results (IoU) of same camera training/test experiments. We compare our results with the Tiramisu 
Network (Tom et al. 2019, shown in grey; results exist only for winter 16-17 and lake St. Moritz). Cameras 0 
and 1 monitor lake St. Moritz and camera 2 lake Sihl. 
 

Training set Test set Water Ice Snow Clutter mIoU 

Camera   Winter Camera   Winter 

Camera 0  16–17  Camera 0  16–17  0.98/0.70  0.95/0.87  0.95/0.89  0.97/0.63  0.96/0.77 

Camera 0 17–18  Camera 0 17–18  0.97 0.88 0.96 0.87 0.93 

Camera 1  16–17  Camera 1  16–17  0.99/0.90  0.96/0.92  0.95/0.94  0.79/0.62  0.92/0.85 

Camera 1  17–18  Camera 1  17–18 0.93 0.84  0.92  0.84 0.89 

Camera 2  16–17  Camera 2  16–17  0.79  0.62  0.81  —  0.74 

Camera 2  17–18  Camera 2  17–18  0.81  0.69  0.86  —  0.79 

 

 

Figure 8. (a) Example Webcam image of lake St. Moritz, from the Photi-LakeIce dataset, (b) lake detection 
result, (c) lake ice segmentation result, (d) corresponding ground truth labels and (e) the colour code used. The 
class clutter (green), though occasionally present in lake St. Moritz, does not occur in this example. 

 
Results of UAV data. We tested the CNN fine-tuned on the RGB UAV images and achieved very good results. 
A sample qualitative result is shown in Fig. 9. On a subset of the dataset that was manually labelled (21 
images), our algorithm obtained a mIoU of > 91% on all classes. 
 
 
 
 
 



   

   

a) input data b) prediction c) ground truth 

Figure 9. UAV data processing results. Colour code (blue: water, white: snow, grey: ice, green: clutter). 
Anything other than ice, water and snow is considered as clutter (including the background). 
In this project, we estimate the ice-on and ice-off dates. Table 4 shows the results for winter 2016-17 using 
mainly the Webcam and combined MODIS and VIIRS results. For both, the training was using data from 
winter 2017-18, while testing and here presented results were from winter 2016-17. Thus, the results are worse 
than training and testing from winter 2016-17 (see e.g. the MODIS/VIIRS ice-on/off dates in Manu et al., 
2019), but we do this on purpose to present results that should be more realistic with training from one winter 
and testing for multiple ones. When combining MODIS and VIIRS, we use the VIIRS results and when there 
are VIIRS gaps (e.g. due to clouds) we use the MODIS results. For reasons of completeness in the column 
MODIS+VIIRS we also present the dates from training using the winter 2016-17 (first MODIS, then VIIRS, 
whereby for MODIS and Silvaplana ice-on two dates were estimated).  
 
Table 4. Ice-on/off dates (winter 2016-17). Ground truth dates are shown in the order of confidence in case of 
more than one candidate. See also additional explanations in text. 
 

Dates  Ground truth 
(Webcam manual 

interpretation)  

 MODIS + VIIRS Webcams  In-situ (temperature-
based) 

ice-on (Sihl)  1 January 2017 3 January 2017 
(3.1.17, 3.1.17) 

4 January 2017 28–29 December 2016 

ice-off (Sihl)  14 March 2017,          
15 March 2017  

10 March 2017 
(10.3.17, 12.3.17) 

14 February 2017 16 March 2017 
 

ice-on (Sils)  2 January 2017, 
 5 January 2017  

6 January 2017 
(6.1.17, 6.1.17) 

-  31 December 2016 

ice-off (Sils)   8 April 2017,  
11 April 2017  

31 March 2017 
(12.4.17, 7.4.17) 

-  10 April 2017 

ice-on (Silvaplana)   12 January 2017  15 January 2017 
(1.1.17/15.1.17, 

11.1.17) 

- 14 January 2017 

ice-off (Silvaplana)   11 April 2017  30 March 2017 
(8.4.17, 8.4.17) 

-  14 April 2017 

ice-on (St. Moritz)   15–17 December 2016  1 January 2017 
(18.12.16, no data) 

14 December 2016 
(15.12.16/16.12.16) 

17 December 2016 

ice-off (St. Moritz)   30 March–6 April 2017 
(data missing) 

7 April 2017 
(9.4.17, no data) 

18 March–26 April 2017  
(data missing) 

5–8 April 2017 



 
In table 4, the ground truth and in-situ (temperature-based) data were estimated in a very similar project just 
before the current one (Tom et al., 2019). The satellite results are influenced by the cloud problem, while with 
Webcams (influencing also the ground truth), due to technical problems, no data were acquired during some 
time periods. The above explain to a certain extent the time difference (sometimes significant) among the 
methods regarding the ice-on/off dates. Note, that the GCOS accuracy requirement for the estimation of ice-
on/off dates is +/- 2 days. 
 
Table 5 displays the intercomparison of the parameters of the various input data used in our analysis. 
Intercomparison of the pros and cons of our methodologies are shown in Table 6. 
 
 

Table 5. Intercomparison of parameters of used data (for lake monitoring). 
 

Parameter MODIS VIIRS Sentinel-
2 

Sentinel-1 
SAR 

Webcams Crowd- 
sourced 

UAV 

Temporal 
resolution 

1 day 1 day 5 days 1.5-3 days ≈ min – 1 hour random Variable, 
up to ms 

Spatial 
resolution 

250-1000 m 375-750 m 10-60m 10m ca. 4 mm to 4 m Random, 
generally in 
m-km range 

4 cm (for 
given data 

acquisition) 

Spectral 
resolution 

36 bands 
(0.41-14.24 

μm)   

 22 bands 
(0.41- 

12.01 μm) 

13 bands 
(0.44-2.2 

μm) 

C-band, 4 
polarisations 
(mainly VV, 

VH) 

RGB RGB mainly 
RGB 

Availability very good 
(via VIIRS 
continuity) 

very good very 
good 

very good 
(HV/ HH only 

partially 
available) 

Increasing, 
weakly controlled, 
mainly in touristy 

areas 

Huge, 
uncontrolled, 

mainly in 
touristy areas 

Increasing, 
increasing 

flight 
restrictions 

Costs free free free free free free UAV, costs 
per flight 

Cloud mask 
issues 

slight slight slight NA NA NA NA 

Cloud issues severe severe severe practically nil negligible negligible negligible 

 
  



Table 6. Intercomparison of the processing methods versus input sensor images. 
 

Parameter MODIS, VIIRS, 
Sentinel-2 

Webcams, Crowd-
sourced images 

Sentinel-1 SAR UAV images 

Automation High  High High High  

Training 
complexity 

Very little Medium (transfer 
learning greatly reduces 

training) 

Medium (transfer 
learning greatly reduces 

training) 

Medium (transfer 
learning greatly 
reduces training) 

Pixel-wise 
training labels 

Not necessary (fully- or 
non-frozen days used) 

Necessary Not necessary (fully- or 
non-frozen days used) 

Necessary 

Pre-training on 
large datasets 

Not needed Needed Needed Needed 

Processing load 
(common PCs) 

Very low (in the order of 
a few minutes) 

high, needs Graphic 
Processing Units (GPUs) 

high, needs GPUs high, needs GPUs 

Near-real time 
response 

Yes Possible (excluding 
training) 

Possible (excluding 
training) 

Possible (excluding 
training) 

 
4. Outreach 

 
A webpage (https://prs.igp.ethz.ch/research/current_projects/integrated-lake-ice-monitoring-and-generation-
of-sustainable--re.html) presents important project information (description, publications, free code/data links 
etc.). 
 
The following papers / posters were presented in scientific events: 
 

Tom M., Rothermel M., Baltsavias E., Schindler K., 2019. Semantic Segmentation of Ice in selected Swiss 
Lakes. 1st Swiss Workshop on Machine Learning for Environmental and Geosciences (MLEG), Dübendorf, 
Switzerland, January. Abstract available at: https://www.mleg.ethz.ch/wp-
content/uploads/2019/01/MLEG_abstracts.pdf (accessed on 26 October 2020). 

Prabha R., Tom M., Rothermel M., Baltsavias E., Leal-Taixe L., Schindler K., 2020. Lake Ice Monitoring 
with Webcams and Crowd-Sourced Images. Presentations of ISPRS 24th Congress (virtual), September, 
(accessed on 26 October 2020). 

Tom M., Aguilar R., Imhof P., Leinss S., Baltsavias E., Schindler K., 2020. Lake Ice Detection from 
Sentinel-1 SAR with Deep Learning. Presentations of ISPRS 24th Congress (virtual), September (accessed on 
26 October 2020). 
 
Publications during the project duration (see references below) include Tom (2020), Prabha et al. (2020) and 
Tom et al. (2020a, 2020b). A journal paper on MODIS/VIIRS time series analysis will be submitted shortly. 
 
5. Publication of data and software 
 
- Photi-LakeIce benchmark dataset (Webcam images) is available at: 

https://github.com/czarmanu/photi-lakeice-dataset 
- Code of our Deep-U-Lab approach (for processing of Webcams and crowd-sourced images) is available at: 

https://github.com/czarmanu/deeplab-lakeice-webcams 
Link to download the Deep-U-Lab model pre-trained on the Photi-LakeIce dataset: 
https://share.phys.ethz.ch/~pf/tommdata/Pre-trained_Model.tar.xz 

- Code of our Sentinel-1 SAR-based approach is available at: 
https://github.com/czarmanu/sentinel_lakeice 



Link to download the Deeplab v3+ model pre-trained on our SAR dataset: 
https://share.phys.ethz.ch/~pf/tommdata/Sentinel-1_SAR/pre-trained-model.zip 
 

6. Conclusions 
 
From our experiments and results, we conclude that the state-of-the-art machine (and especially deep) learning 
algorithms are very effective for lake ice observation using various sensors such as optical satellite data 
(VIIRS, MODIS and Sentinel-2), radar satellite data (Sentinel-1 SAR) and Webcam data. For SVM, best 
results were acquired by using the linear kernel and all the useful MODIS and VIIRS channels, while multi-
temporal analysis did not bring any remarkable improvement. Each sensor data and methodology has its pros 
and cons. Data from optical satellites faces problems due to clouds which is a bottleneck. This problem is 
practically avoided with Sentinel-1 SAR. Webcam images are particularly useful for monitoring small lakes 
and reducing the cloud problem. The availability of long time series of MODIS (since 2000) is useful to learn 
the decreasing Swiss lake ice trends. 
  
In this project, we showed that machine (and especially deep) learning, even if little explored for this 
application, is a powerful and robust tool for largely automated lake ice estimation. 
 
7. Outlook 
 
Improvements should be pursued for generalisation among different winters, lakes and Webcams, and these 
should be validated by new test data. The acquisition of reference data is time consuming and based on visual 
interpretation of images. To reduce this, one possibility is to estimate lake ice by multiple methods (if possible, 
more than two), and then compare the results, to increase their reliability. However, this may not be feasible 
on a daily basis. Sanity checks can include temperature from meteorological stations close to the lakes. SAR 
processing could be possibly extended by using polarimetric and interferometric information. Another possible 
future direction could be multi-sensor fusion approaches for lake ice monitoring using machine (deep) learning 
by mapping the input data to a new feature space independently of the type of the sensor data.  
 
An operational lake ice estimation should be based on optical satellite images, augmented by SAR ones. For 
small lakes and coarse spatial resolution optical satellite images, Webcams should be used. 
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