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RESEARCH ARTICLE

Automated localization of urban drainage infrastructure from public-access
street-level images
Dominik Bollera, Matthew Moy de Vitrya,b, Jan D. Wegnerb and João P. Leitão a

aDepartment of Urban Water Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; bEcoVision
Lab, ETH Zurich, Zurich, Switzerland

ABSTRACT
Comprehensive management of urban drainage network infrastructure is essential for sustaining the opera-
tion of these systems despite stresses from component deterioration, urban densification, and a predicted
intensification of rainfall events. In this context, up-to-date and accurate urban drainage network data is key.
However, such data is often absent, outdated, or incomplete. In this study, a new approach to localize
manhole covers and storm drains, using deep learning to mine publicly available street-level images, is
presented, tested, and assessed. Thus, the time-consuming and costly acquisition of the location of these
system components can be avoided. The approach is evaluated using 5,000 high-resolution panoramas
covering 500 km of public roads in Switzerland. The object detection approach proposed shows good
performance and an improvement over state of the art image-based urban drainage infrastructure compo-
nent detection. While the geographical localization of the detected objects still contains errors, the accuracy
achieved is nevertheless sufficient for some applications, e.g. flood risk assessment.
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1. Introduction

The sustainable development and management of urban drai-
nage systems depends on knowledge of the number, location
and characteristics of the components forming such systems.
However, even in countries with highly developed infrastructure
such as Switzerland, complete and accurate urban drainage
system infrastructure data are often not present or not easily
available (Maurer et al. 2012). This lack of information, e.g. not
knowing where drain inlets are located nor their hydraulic char-
acteristics, hinders comprehensive infrastructure asset manage-
ment. The lack of information is alarming, when considering the
immense replacement cost of urban drainage infrastructure (in
Switzerland it amounts to 100 billion Swiss Francs (Hoffmann,
Hunkeler, and Maurer 2014), which corresponds to approxi-
mately 10,700 Euros per inhabitant). Additionally, most urban
construction work requires detailed and accurate maps of under-
ground infrastructure to prevent damage and service interrup-
tions. For example, Agadakos et al. (2013) identified the need for
real-time access to urban underground infrastructure data and
developed a comprehensive decision making tool aiming at
supporting local construction interventions in the public space.

Besides facilitating infrastructure management, detailed infor-
mation on drainage system network topology is also essential for
simulating the hydraulic behavior of drainage systems. Simulation
results can be used to improve the operation of wastewater
treatment plants (Seggelke et al. 2005) or to assess flood risk and
evaluate mitigation options. For example, Hürter and Schmitt
(2016) found that the consideration of drain inlets in pluvial
flood models is especially important for moderate rain events.
Moreover, it has been shown that the location and cleanliness of
drain inlets significantly influences drainage and flood behavior in

urban areas (Chang et al. 2018; Leitão et al. 2017). With a predicted
increase in flood risks in many regions due to climate change
(Hirabayashi et al. 2013) and increased urbanization (Nirupama
and Simonovic 2006), accurate urban floodmodelling tools can be
relevant to help understanding the future flood scenarios.

In the complete absence of urban drainage system network
information, the surface elements of these systems (namely man-
hole covers and drain inlets), can serve as reference points for
inferring the location and topology of the network. This was
demonstrated by Commandré et al. (2017a), who used the loca-
tion of manhole covers in combination with digital elevation
models to estimate the topology of urban drainage system net-
works. Conventionally, drain inlets and manhole covers are
mapped during manual field surveys (hydraulic attributes are
usually also assigned to the components during these surveys),
which are both time-consuming and expensive.

In this study, a novel and scalable approach to automatically
identify and locate drain inlets and manhole covers, solely based
on publicly available images, is proposed. The approach is pos-
sible thanks to three recent developments: (i) the emergence of
national and global street-level imagery services, (ii) the improve-
ment of convolutional neural networks (CNNs) architectures and
their training processes for object classification and detection,
and (iii) the general availability of high-power computing. To test
the feasibility and viability of this approach on a regional scale,
Google Street View data covering 500 km of public roads from
five municipalities in Switzerland are analyzed.

2. Previous related work

In the past 20 years, the amount of data collected in urban
environments has proliferated, spurring the development of
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novel approaches for the localization of urban infrastructure
components. In addition, developments in computer processor
technology have led to a maturation of machine learning and
especially deep learning as modelling tools (Sejnowski 2018).
According to Voulodimos et al. (2018), deep learning methods
have been shown to outperform previous state-of-the-art
machine learning techniques in several fields, namely on com-
puter vision tasks. In previous research, hand-crafted filters and
machine-learning approaches with varying degrees complexity
have been applied to the problem of urban drainage infrastruc-
ture mapping. In each case, the specific method applied often
depends on the type and quality of data available.

The most common methods found in the literature are
based on georeferenced aerial images. Niigaki, Shimamura,
and Morimoto (2012) detected manhole covers based on separ-
ability and uniformity of feature distributions using the
Bhattacharyya coefficient (i.e. an approximate measurement
of the amount of overlap between two statistical samples).
Also, by means of a circular geometric filter, Bartoli et al.
(2015) detected manhole covers in very high resolution aerial
images. This approach was further developed by Pasquet et al.
(2016) who combined it with a machine learning technique to
build a model to detect manhole covers. More recently,
Commandré et al. (2017b) applied a customized CNN to the
task, achieving the best results published to date for manhole
covers. For detecting drain inlets, Moy de Vitry et al. (2018)
proposed a multiview approach based on images taken from
an unmanned aerial vehicle (UAV). The authors used a Viola
Jones type classifier (Viola and Jones 2001) and moving win-
dow for detection, followed by clustering and cluster classifica-
tion steps to consolidate information from multiple views.
Nevertheless, the use of aerial images for manhole localization
has two main disadvantages that are intrinsic to the approach:
(i) the typical resolution of the highest-resolution images
(around 5–10 cm/pixel) is still very low when compared to the
typical size of manholes and drain inlets (50–100 cm), and (ii)
there is a large likelihood of the objects being hidden by trees
and vehicles. While hyperspectral airborne images provide use-
ful information for mapping urban road infrastructure (Herold
et al. 2003), the authors are not aware of such data being used
for detecting objects in urban areas.

Another approach is based on data collected at street level
with Light Detection And Ranging (LiDAR) technology. For
instance, Yu et al. (2015, 2014) have already achieved very
good results detecting manhole covers and drain inlets with
LiDAR data, which was collected from the ground in a very high
resolution. However, LiDAR data collection is still expensive and
the processing of LiDAR data is complicated when compared to
image processing, which puts this approach at a disadvantage.

The use of street-level images is also a possible way to
detect and locate drainage system manhole covers and storm-
water drain inlets. These images are are often collected with
a car-mounted camera rig. Timofte and van Gool (2011) were
the first to pursue this approach for mapping manholes in
images recorded from a moving van equipped with several
cameras. With this set-up, manholes were observed in multiple
images and from multiple viewpoints, thereby increasing the
likelihood of detection. At the same time, they faced many
challenges such as regular changes in illumination conditions

and substantial viewpoint variance given different positions on
the road. While Timofte and van Gool (2011) performed man-
hole cover detection with images collected specifically for that
purpose, it is also possible to use images collected by mapping
services such as Google Street View, Baidu, Yandex, Mapillary
and OpenStreetCam. In doing so, data collection can be per-
formed wherever the service is provided and costs can be
significantly reduced. Demonstrating the potential of this
approach, Hebbalaguppe et al. (2017) presented a method for
updating assets for telecommunication infrastructure using
Google Street View images of 2,048 × 2,048 px resolution and
a deep learning model. Recently, Krylov, Kenny, and Dahyot
(2017) also used Google Street View images to automatically
detect and geo-locate traffic lights and telegraph poles, achiev-
ing high object recall rates and localization accuracy within 2
meters. While these studies share certain similarities with the
present work, the problem addressed in this study is of parti-
cular difficulty due to the small size and typical locations of
drain inlets and manholes. The preferred use of Google Street
View images for these studies in comparison to images from
other street-level image repositories is explained by the less
variability of Google Street View images quality and their
higher resolution. Nevertheless, the approach presented in
this study would work with images from other street-level
image repositories.

3. Automatic object detection and localization
framework

3.1. Overview

The methodology presented in this study (Figure 1) is based on
the work of Wegner et al. (2016) and Branson et al. (2018),
which aimed to detecting urban trees and recognizing their
species from street-level panoramas combined with aerial ima-
gery. The good results obtained in those two studies motivated
us to consider the methodology and adjust it to the specific
case of the identification and localization of urban drainage
systems components, such as manhole covers and stormwater
drain inlets. First, street-level panoramas within a region of
interest are downloaded, along with their metadata. Then,
manhole covers and drain inlets are detected within the indi-
vidual panoramas. Finally, with the panorama metadata, the
geographical locations of the detected objects are estimated.

3.2. Data collection

Time-consuming and costly field surveys can be avoided by
utilizing data from street-level imagery services. In the case of
Google Street View, high-resolution, 360° panoramas can be
downloaded via the Google Street View Static API1. In this
study, a Python script was written to identify and download
all panoramas and their metadata within a user-defined region
via the Google Street View Static API. In a first approximation, it
can be assumed that the projection used to create the panor-
amas is cylindrical. The metadata provided with each panorama
includes the information about the vehicle position, as well as
the yaw and tilt of the camera rig at the moment the images for
the panorama were taken.
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3.3. The proposed approach to detect urban drainage
elements from street-level images

Object detection is the task of locating and classifying all
instances of known object classes within an image. Automatic
object detection in images starts with the extraction of object-
specific visual features, which can be used to predict an object’s
presence and location within the image. Prior to deep learning,
researchers manually engineered these image features accord-
ing to their knowledge and observations of the object’s appear-
ance. Today, according to Guo et al. (2016) CNNs are the most
suitable deep learning techniques for images, and given suffi-
cient training data, CNNs are able to learn these features
directly from annotated images.

3.3.1. Object detection model architecture
CNNs consist of multiple layers that consecutively extract fea-
tures, starting with the raw pixel values of the image. As the
image data advances through the network’s layers, the

extracted features become increasingly specific and discrimi-
native. Based on the last feature layer, the final image class is
predicted. The task of object detection is commonly distin-
guished in two parts: the localization of the object within the
image (region proposal), and the subsequent classification of
the proposed region. Region suggestion can be done in differ-
ent ways, ranging from simple methods such as a sliding win-
dow to advanced methods such as using a region proposal
network (RPN). The RPN was introduced with Faster R-CNN (Ren
et al. 2017) and currently represents a state of the art metho-
dology for region proposals. It shares convolutional layers with
the CNN used for classification and therefore reduces costs for
computing proposals significantly. Based on the shared con-
volutional features RPN regresses region bounds and object-
ness scores thereby identifying region proposals. The RPN and
the CNN for classification can both be trained end-to-end with
supervised learning (i.e. learning a function that maps an input
to an output using example input-output pairs). During train-
ing, region proposal and classification are optimized in
a parallel and synergistic manner, thereby unifying the net-
work’s internal parameters.

Presently, a great number of modern convolutional object
detectors variants have been proposed, each developed for
a specific application. For example, the architectures used for
real-time detections tend to have a simpler, more shallow
architecture (e.g. less layers) to generate faster predictions.
Deeper models, on the other hand, tend to achieve higher
accuracy (given sufficient training data), since they can extract
more complex and class-specific features from the images. This
increase in accuracy comes at the expense of speed and vice
versa. Huang et al. (2017) evaluated this speed/accuracy trade-
off for a selection of the current state of the art object detection
models. Since speed is not critical for the task at hand in this
study, as it is not a real-time application meaning that we can
afford a few days to obtain the results, an object detection
model with one of the highest detection accuracies was
selected: the Faster R-CNN as meta-architecture and Resnet
101 (He et al. 2016) as feature extractor. The model’s output
consists of a bounding box specifying the object’s boundaries,
a label specifying the object’s class and confidence score indi-
cating the model’s confidence in its prediction (details on the
calculation of the confidence score are, for example, presented
in the Convolutional Neural Networks for Visual Recognition
course notes, available at http://cs231n.github.io/linear-
classify/#softmax).

3.3.2. Tiling and stitching of images and annotations
By default, the selected model architecture rescales images to
a fixed size in order to keep the computational and memory
load under control. In the case of very high resolution panor-
amas, this rescaling would lead to a loss of information that is
necessary for detection of small objects, such as manhole cov-
ers and drain inlets that have diameters ranging from 50 to
100 cm. These objects are relatively small in the field of view of
a full panorama and require a high level of image detail to be
detected (Huang et al. 2017). Modifying the CNN to the resolu-
tion of the panorama would exhaust the computing resources.
Therefore, in this study the panoramas were tiled into smaller

Figure 1. Automatic framework to detect stormwater drain inlets and manhole
covers in street-level imagery and estimate their geographic location.
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images, and each tile was fed into the object detection model
separately (Figure 2).

Naturally, the annotations used for training and testing the
model must also be clipped. There is a negative side-effect of
this solution, since some objects and their annotations will be
clipped as well, sometimes leading to low-quality annotations
(e.g. annotations for barely visible objects at the edge of the
tile) that could mislead the training and evaluation of the
detection model. To counter this issue, the following criteria
(Equations 1, 2 and 3) were introduced to remove such
annotations.

width of tiled bounding box < βwidth; (1)

height of tiled bounding box < βheight; (2)

area tiled bounding boxð Þ
area original bound boxð Þ < βarea; (3)

where βwidth is the minimal width of the tiled bounding box,
βheight is the minimal height of the tiled bounding box, and βarea
is the minimal area ratio of the tiled bounding box. The para-
meters in Equations 1–3 were not tuned as: (i) it is not within
the objective of the present study; (ii) would require retraining
(a long process) and evaluating the model several times, and
(iii) the (expected) outcome would be a small performance
increase. The set of values for these parameters are presented
in Table B1 (in Appendix B).

Based on the camera’s orientation, assumed to be parallel to
the ground, the top part of the images would be sky or horizon,
which are not of interest for identifying manholes or drain inlets.
By looking at different images, the top 600 px of the images were
cropped, so that the image area to be analysed is reduced.

3.4. Localization

To project coordinates from image space to geographic coor-
dinates, a method specific to street-level 360° panoramas, pro-
posed by Wegner et al. (2016), was used.

3.4.1. Projection of image coordinates into real world
coordinates
The previously detected manhole covers and drain inlets are
represented by the image coordinates x; yð Þ of the bounding
box centers. Under the assumption of known camera height
and locally flat terrain, one can estimate the relative position of
an object’s location with respect to the position of the camera
latc; lngcð Þ based on Equations 4, 5 and 6.

ex ¼ sinsin x
2π
W

� π þ yawc

� �
z (4)

ey ¼ coscos x
2π
W

� π þ yawc

� �
z (5)

z ¼ �h

tan �y π
H þ π

2

� � (6)

where ex and ey are the metric distances of the object from the
camera in the east and north directions, z is the planar distance
from the object to the camera, h is the height of the camera
above the ground, W � H are dimensions of the panorama in
pixels, and yawc is the camera’s heading. To obtain the position
of the object in real-world coordinates (lat; lngÞ, it is sufficient
to transform the metric distances into relative latitude and
longitude using the earth radius R and add them to the location
of the camera (Equations 7 and 8).

lat ¼ latc þ arcsin ey; R
� �

(7)

Figure 2. The original panorama (1) was cropped to remove the sky, while its remaining part was split into tiles with horizontal and vertical overlap (2). The resulting
tiles were fed into the object detection model individually (3).
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lng ¼ lngc þ arcsin
ex

cos latcð Þ ; R
� �

(8)

3.4.2. Non-maximum suppression
The overlap between street-level images, as well as panorama
stitching artefacts and the buffered panorama tiling can cause
the same objects to be detected and then localized multiple
times. Non-Maximum Suppression (NMS) is the process of
removing any non-dominant detections, retaining a single
detection and location for each object. In this study, a greedy
NMS algorithm is implemented: given a set of predicted object
locations, the process starts by identifying the detection with
the highest confidence score and marking it for retention. All
surrounding detections within the specified search radius are
then suppressed. Of the remaining detections, the one with the
highest confidence score is identified and the process is
repeated until all detections have either been suppressed or
marked for retention. Although this approach is somehow
computational demanding, it is significantly smaller when com-
pared to the computational demand of training the faster
R-CNN.

4. Experiment

4.1. Data

4.1.1. Street-level panoramas and covered regions
Google Street View is one of the most widespread street-level
imagery services available, providing a homogeneous and
dense coverage of urban and suburban areas in many countries
around the world. In the USA and the UK for example, 99% of
public roads have been covered by Google Street View. In
Switzerland, Google Street View panoramas are captured
approximately every 10–15 m for urban and suburban roads,
and at larger intervals for motorways. The panoramas are cre-
ated by capturing images with a multi-camera rig, often
mounted on the roof of a car at a height of around 3 m. The
images are then stitched together into 360° panoramas of
apparently cylindrical projection.

To test the robustness of our framework at a regional level,
5,000 Google Street View panoramas of very high resolution
(13,312 × 6,656 px) were downloaded for five municipalities in
the canton of Zurich, Switzerland (Figure 3). Each panorama file is
between approximately 3 and 8 MB in file size. For each munici-
pality, 1,000 panoramas were downloaded (see Figure A1 in
Appendix A for example panoramas), covering in total approxi-
mately 500 km of roads. The selected regions contain various
types of drain inlets and manholes, which is assumed to be
representative of the diversity found at a regional scale. The
panoramas also contain variety in terms of lighting and season,
since the images were captured during different periods of time.

4.1.2. Manual panorama annotations
The panoramas downloaded in the previous step were manu-
ally annotated by marking objects of interest with a bounding
box and labelling each bounding box with its corresponding
class (manholes, drain inlets, and water supply network valves).
Valves were annotated as well so that the object detection

model can better learn the differences between the manholes
and valves, resulting in better performance for manholes.

Annotations were only made for objects that could be iden-
tified from their appearance, even if a distant object could
sometimes be correctly identified by a human due to their
placement on the road or sidewalk. Thus, the complexity of
the detection problem is limited to focusing on object appear-
ance and not context. Thanks to the spatial frequency of the
panoramas, far-off objects in the images can be disregarded
since often, another panorama is situated closer to the object
for detection. By setting these bounds to the detection pro-
blem, the rate of human errors made while annotating the data
is also reduced. The 5,000 panoramas used in this study were
annotated by an external company, corresponding to a total of
8,970 manhole covers, 6,714 drain inlets and 4,456 valves. The
annotation took approximately 167 hours.

4.2. Division of data into intra- and extra-regional
datasets

To assess the real world applicability and scalability of the
presented approach, it was investigated to what extent the
object detection model, trained on images from one region,
could be applied to images from that region or from nearby
regions. The panoramas were divided into two geographically
distinct groups, one for training, validation, and testing (intra-
regional datasets) and the other just for testing (extra-regional
dataset). The number of images used for training is the largest
subset of the total images in order to increase the performance
of the model; according to Sun et al. (2017) the performance on
vision tasks increases logarithmically based on volume of train-
ing data size.

4.2.1. Intra-regional datasets
The intra-regional datasets (for training, validation, and testing)
are formed by the annotated 4,000 panoramas for the city of
Zurich and the municipalities of Dübendorf, Fehraltorf and
Uster. The panoramas are randomly distributed into training,
validation and test datasets. The training dataset, with 3,060
panoramas (i.e. 76.5%), is used to learn the internal parameters
of the object detection model, while the validation dataset of
540 panoramas (i.e. 13.5%) is used to monitor and tune the
training process. The test dataset contains the remaining 400
panoramas (i.e. 10%) and was used to evaluate object detection
performance after training was completed.

4.2.2. Extra-regional dataset
The extra-regional dataset contains the 1,000 annotated panor-
amas for Adliswil, another municipality in the Canton of Zurich
(Figure A1). All panoramas in this dataset were used to test the
performance of the object detection model trained with the
intra-regional training dataset.

4.3. Training the object detection model

Model training is an iterative search for model parameters that
minimize the deviation (total loss as defined, for example, in
Barber (2012)) of the model detections from the ground truth,
represented in this study by the annotations. This search was
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performed with a backpropagation algorithm and stochastic
gradient descent. In the case of object detection, the total loss
to be minimized is the sum of the classification loss (i.e. devia-
tion of predicted class from ground truth class) and the regres-
sion loss (i.e. deviation of predicted bounding box from ground
truth bounding box).

The object detection model selected, a Faster R-CNN com-
bined with Resnet-101, was implemented with the standard
architecture without any further adjustments (full details on
R-CNN and Resnet-101 are presented in Ren et al. (2017) and
He et al. (2016), respectively) and trained using the Tensorflow
Object Detection API2. The decision of selecting this model was
based on the findings of Guo et al. (2016): CNNs are the most
utilized and most suitable deep learning techniques for images,
and, as previously described, on the results of the detailed deep
learning models comparison conducted by Huang et al. (2017).
To reduce the training time and the amount of required data,
the internal model parameters were initialized with the para-
meters of a model pre-trained on the MS Coco dataset (Lin et al.
2014). This dataset contains 328k images with 2.5 million anno-
tated common objects in natural settings.

The initialized object detection model was then trained with
the annotated panoramas from the intra-regional training dataset.
Before feeding the panoramas into themodel, the panoramas and
annotations were tiled (see Table B1 in Appendix B for chosen
parameters). Furthermore, the data were augmented; tiles were
randomly horizontally flipped to make the model less sensitive to
whether an object is located on the images’ left or right side. The
training was terminated when the total loss, computed for the
intra-regional validation dataset, converged after approximately
60 hours on a Nvidia Titan X Pascal 12GB GPU. Due to the long
training time, the large number of hyperparameters and the
(expected) marginal performance increase, no hyperparameters
were optimized in this study. Nevertheless, a promising adjust-
ment might be to add a smaller anchor3 to the Faster R-CNN,
complementing its three standard scales of 128 × 128, 256 × 256
and 512 × 512 px, which should improve the detection of small
objects such as valves. In contrast, varying the anchor’s ratiomight
be not as effective, as the used standard ratios of 1:1, 1:2 and 2:1
already cover the typical geometry of manholes, inlets and valves.
In addition, due to the rather low number of objects per image,
one could also decrease the set object proposals per image, which

Figure 3. Areas of study used to test the framework.
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potentiallywould lower the time for trainingand inferencewithout
any significant drop in object detection performance. The remain-
ing hyperparameters (e.g. learning rate, batch size and number of
epochs) can be tuned either manually or with automated proce-
dures such as random search or gradient descent (Luo 2016).

4.4. Assessing the object detection performance

To assess the performance of the object detection model, it was
fed with labelled tiles from the test datasets. For each tile, the
model returned a set of bounding boxes and confidence scores for
the detected objects in approximately 1 s (78 s for a full panorama
image and approximately 24 hours for the whole study area). The
confidence scores can be used to filter the detection results, e.g. to
only retain detections that have a higher probability of being
correct. The evaluation of the object detection performance was
based on the criteria used in the Pascal VOC image recognition
challenge (Everingham et al. 2010), which are widely accepted as
standard quantitative evaluation measures in computer vision. To
determine how well the detections match ground truth, the inter-
section over union (IoU) metric was used (Equation 9).

IoU ¼ Bdetection \ Bgroundtruth
Bdetection [ Bgroundtruth

(9)

where Bdetection refers to the predicted bounding box while
Bgroundtruth refers to the reference bound box are the respective
bounding boxes of a detection and its corresponding ground
truth (if available). Only detections with an IoU score equal to or
larger than 0.5 and whose class match that of the ground truth
were considered to be ‘matches’. Matched detections are called
true positives (TP) and the rest are false positives (FP). Ground
truth bounding boxes that have not been matched with
a detection are called false negatives (FN).

Using these definitions, summarizing metrics of precision
and recall (Manning, Raghavan, and Schütze 2008) were con-
sidered. Precision is the fraction of detections that are true
positives (Equation 10), while recall is the fraction of ground
truth objects that were matched (Equation 11).

precision ¼ TP
TPþ FP

(10)

recall ¼ TP
TPþ FN

(11)

By varying the threshold applied to the detections’ confidence
scores, the relationship between precision and recall can be
visualized in a so-called precision-recall curve for each class.
The area below the precision recall curve is called the average
precision (AP) and is commonly used to summarize the perfor-
mance of an object detection model.

The F1-score (Equation 12) is one of the metrics that can be
used to assess the accuracy of a model. It is a function of
precision (Equation 10) and recall (Equation 11) values, and is
more robust to unbalanced class distribution than other per-
formance metrics, e.g. the Accuracy metric.

F1 ¼ 2 � precision � recall
precisionþ recall

(12)

4.5. Assessing the object localization performance

Due to the magnitude of the errors encountered (in the order
of several meters) and the absence of complete ground truth
data for the urban drainage system elements (e.g. inventory
map), the localization performance could not be reliably quan-
tified. Instead, the localization performance was evaluated qua-
litatively with a high-resolution orthophoto in which the actual
positions of the objects of interest can be deduced. The aerial
images for the orthophoto were taken in April 2015 and
May 2016, and are freely available from the online GIS system
of the canton of Zurich4. The magnitude of localization errors as
well as the lack of reliable reference data prevented an auto-
matic and comprehensive quantitative evaluation of localiza-
tion accuracy. Instead, locations in the data set were sampled
pseudo-randomly and evaluated in a GIS software, in which the
predicted object locations could be overlaid on high-resolution
aerial images and compared.

5. Results

5.1. Object detection performance

5.1.1. Intra-regional test dataset
The precision recall curve obtained for the intra-regional test
dataset is shown in Figure 4. Manhole covers showed the best
performance with an average precision (AP) of 0.831 and aver-
age recall (AR) of 0.873, followed by drain inlets (AP = 0.786;
AR = 0.829) (and valves (AP = 0.644; AR = 0.692)).This leads to
relatively high F1-score values of 0.851, 0.807 and 0.667 for
manholes, drain inlets and valves, respectively. The differences
in detection performance could be due to the typical size,
complexity, and variety of the objects. Typical object location
may also play a role, e.g. drain inlets are often found on the side
of the road, whilst manhole covers are usually located in the
centre of roads.

A representative selection of examples obtained from the test
dataset is displayed in Figure 5. Figure 5(a) shows a typical scene
with multiple objects of different classes. The model was able to
detect less common drain inlet types (Figure 5(b)) or even
objects under cars (Figure 5(c)). Furthermore, the model was

Figure 4. Precision recall curve for the intra-regional test dataset, containing 914
manhole covers and 669 drain inlets (and 484 valves). The IoU cutoff is set at 0.5.
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successful even under extremely challenging illumination condi-
tions such as bright light (Figure 5(e)) or shadows (Figure 5(f)).

There were also some cases that were difficult for the model
to detect the objects. First, not all of the objects of interest were
detected. These objects are often very challenging to detect,
detectable only by an experienced human and after close
examination. Second, the model also made false detections. For
instance, cast iron grates for other purposes were also detected
as manhole covers or drain inlets (Figure 5(d)). This example
shows that the model lacks a deeper understanding of the
relationship between interconnected parts, which is a known
issue of the CNNs. To omit false detections, one could increase
the threshold applied to the confidence score, since these detec-
tions tend to have a lower confidence score. However, some true
positives will also be omitted in the process. The nonlinearity of
this tradeoff is shown in the precision recall curve in Figure 4.

5.1.2. Extra-regional test dataset
The precision recall curve for the extra-regional test dataset is
shown in Figure 6. The average precision achieved was 0.723 for

manhole covers and 0.745 for drain inlets (valves show an average
precision of 0.495). Compared to the intra-regional test dataset
results, a significant drop in performance can be seen for all object
classes. The AP obtained for manhole covers dropped by 0.108
(12.9%), and the AP of drain inlets decreased by 0.041 (6.3%). The
AR and F1-scores show a similar trend and are, respectively, 0.780
and 0.750 for manholes, 0.795 and 0.769 for drain inlets, and 0.560
and 0.525 for valves. This decrease in performance was expected,
since peculiarities of the extra-regional dataset (e.g. lighting con-
ditions, appearance of roads and infrastructure in Adliswil) were
not necessarily represented in the intra-regional training data on
which the model was trained.

5.2. Localization performance

Figure 7 provides an example that illustrates the common
localization errors encountered in the results.

The situation shown in Figure 7 is representative of the mag-
nitude and systematic nature of localization errors, which could
not be quantified because of the lack of ground truth

Figure 5. Examples of successful and unsuccessful object detections from the test dataset. (a) All three classes. (b) Less common drain inlet type. (c) Below a car. (d)
False detection due to similar features. (e) Bright conditions. (f) Shady conditions.
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information and the magnitude of localization errors. The object
closest to the camera is a manhole cover (G1) that is visible twice
in the panorama due to stitching errors. The corresponding
detections (D1.1 and D1.2) were estimated to be about two
meters away from G1 (two valves (G2, G3) located about ten
meters from the camera on each side of the road were also
detected (D2, D3). Their predicted locations overshoot their
actual locations by three to four meters). About 20 meters

away from the camera, two drain inlets (G4, G5) were detected,
but their estimated locations overshoot by about 10 meter (D4.1
& D4.2, D5.1 and D5.2). Both drain inlets were detected twice due
to the tiling of the panorama. In this specific case, the issue of
duplicate detections could be resolved by applying non-
maximum suppression. One object (M) is not visible in this
particular panorama and was therefore not detected. However,
the missed object is visible in another panorama, where it is
detected and localized. Overall, one can see that the localization
error increases with the distance between the object and the
camera, and an erroneous camera location adds error to the
location of all the camera’s detections.

6. Discussion

6.1. Comparison of object detection performance to
previous work

In comparison to the approaches published to date, our
approach achieved much higher object detection performance.
The comparison with previous publications is made on the
basis of the reported precision and recall, or average precision
when available (which is a more comprehensive metric for
comparison but not reported in all publications). It is important
to note that since different datasets and different scenes were
used for each approach, the conclusions that can be drawn
from this comparison are limited.

Figure 6. Precision recall curve for extra-regional test dataset, containing 2,264
manhole covers and 1,845 drain inlets (and 706 valves).

Figure 7. Example of a road in which infrastructure was detected. (a) Portion of one street-level panorama, with object detections (DX) represented by bounding boxes.
(b) Aerial image of the same road section, including the estimated locations of the detections from (a) and indications of the manually labeled ground truth (GX).
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For manhole cover detection in aerial images, Commandré
et al. (2017b) reported a precision of 75% with a recall of 49%,
whereas in the present study 80%precision and 70% recall (for the
extra-regional test dataset) were obtained. However, the apparent
performance gain of our approach should not be only attributable
to the very high resolution data and the more advanced object
detection model, but also a difference in how performance was
measured: Commandré et al. (2017b) had access to a inventory
database as a ground truth, whereas in this study manual image
annotations to evaluate precision and recall were used, thereby
disregarding obstructed objects in our evaluation. This may give
an artificial advantage to our approach. In terms of computational
cost, the approach of Commandré et al. uses a similar classifier but
only analyzes one aerial image in contrast to multiple high-
resolution street-level images. Because of this, their approach is
expected to be faster than the current approach in most situa-
tions. With regards to drain inlets, Moy de Vitry et al. (2018)
achieved an average precision of 0.73 thanks to a multiview
approach with images taken from an unmanned aerial vehicle
(UAV). In comparison, the average precision achieved in this study
was 0.786 (for the intra-regional test results). Although Moy de
Vitry et al. use a comparable amount of image data, the classifica-
tionmethod is simpler, so computational effort is probably slightly
below that of the present approach. Hebbalaguppe et al. (2017),
who used Google Street View images to detect telecom infrastruc-
ture, report a precision of 54% with a recall of 47% for manhole
detection. Despite the similar type of images, our approach still
attains higher performance, probably thanks to the higher image
resolution and more advanced detection model. Given that their
approach uses the same tools as the present study, the computa-
tional cost should be similar, save for differences due to image
resolution.

In summary, the street-level approach to urban drainage
systems infrastructure detection appears to achieve best-in-
class performance levels. Unfortunately, due to the different
datasets and evaluationmethods used in previous publications,
it is not possible to fully determine which aspects of our
approach most enhance detection performance. These factors,
which could be investigated in the future, are (i) the high detail
of street-level images, (ii) the object detection model, (iii) the
inclusion of multiple similar classes in the annotations, (iv) the
overlapping views of the street level images, and (v) the lower
viewpoint in street level images.

6.2. Analysis of the localization error sources

Various sources of error could have contributed to the localiza-
tion errors illustrated in Figure 7. First, the recorded camera
position, collected via GPS, has some level of error. This can be
seen by comparing the true camera position (CT), estimated
from the panorama, and the recorded camera position (CM).
The magnitude of the GPS error observed in this study is in the
range of two to four meters, consistent with official reports on
the accuracy of GPS measurements, which state a 95% confi-
dence interval of 1.89 m for horizontal errors in single-
frequency GPS receivers (WAAS T&E Team 2017).

The second possible source of error is the recorded heading
yaw of the camera. This error component is virtually perpendicular
to the camera’s line of sight, and increases with the increasing

planar distance of the object from the camera . For example, an
error of 10° in the yaw results in a deviation of approx. 1.7 m at
a distance of 10m. Third, an error is introducedwhen the assumed
height of the camera relative to the object is incorrect, which
occurs if the camera height h in Equation 6 is incorrect or if the
local road surface is not planar. Again, this error increases with the
distance of the object from the camera. For example, at a distance
of 10 m, an error of 0.5 m in the camera height results in a 1.7 m
localization error. Fourth, inaccurate panorama stitching, inaccu-
rate bounding boxes and the assumption that the object centroid
is in the middle of the bounding box result in inaccurate specifica-
tion of the object’s centroid (x,y). These errors are expected to
result in localization inaccuracies that are in the range of the object
dimensions, and are therefore negligible when compared to the
previously mentioned sources of error.

Finally, while the panoramas are assumed to have
a cylindrical projection, this may not actually be the case,
translating to a systematic error in the localization. Even if the
assumption holds, errors can still be introduced during panor-
ama stitching. Stitching errors occurred frequently in the
panoramas used in this study, manifested as distortions and
artefacts, such as that seen for the manhole in Figure 7(a).

6.3. Practical applications and future vision

Although the achieved detection performance can be considered
good, the large localization errors observed currently restrict the
application of our method to situations where precise geographic
locations are required. For example, such information could be
used to support urban flood modelling: Jang, Chang, and Chen
(2018) showed that even when drain inlet locations are con-
strained to a 5 × 5 m grid, flood extents are still better estimated
than when only manholes are used to route water between the
surface and the drainage pipes. For other applications, such as
inventory updates and drain inlet cleaning condition monitoring,
higher localization performance is preferred, which involves
addressing the sources of error listed in the previous section.
Technically, it is already possible to produce street-level imagery
with centimeter precise geolocation. This can be done with exist-
ing GPS technology such as Real-Time Kinematic (RTK) GPS, image
registration, or assimilation of other sensor data such as LiDAR.
Similarly, uncertainties in camera orientation and lens distortion
are also relatively straightforward to resolve. Finally, the camera
equipment and stitching software is continuously being improved,
thereby providing better panorama quality.

7. Conclusions

In this work, it is shown that automatic analysis of street-level
images to detect urban drainage systems infrastructure compo-
nents is already feasible; the approach presented and demon-
strated in this work can be implemented around the globe,
wherever street-level images are available, as a first step to help
tackle the current lack of information on urban drainage systems
infrastructure. Filling this knowledge gap will contribute to more
sustainable infrastructure management and improve the accuracy
of urban flood models, used for urban flood risk assessment and
management. Future work should focus on improving the process
of localization, by, for example combining both street-level images
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and high resolution imagery from unmanned aerial vehicles, and
assessing the transferability and usability of the proposed
approach.

Notes

1. https://developers.google.com/maps/documentation/streetview/
intro.

2. https://github.com/tensorflow/models/tree/master/research/
object_detection.

3. An anchor is a reference square box defined by its ratio and scale.
For each image location (defined by a sliding window) the original
Faster R-CNN implementation considers multiple anchors (nine in
total: three scales and three ratios) (Ren et al. 2017).

4. https://maps.zh.ch/.
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Appendix A. Examples of Google Street View panoramas from the different municipalities (Zurich canton)
used in this study

Figure A1. Examples of Google Street View panoramas for each selected municipality (Zurich canton, Switzerland). (a) Adliswil. (b) City of Zurich. (c) Dübendorf.
(d) Fehraltorf. (e) Uster.
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Appendix B. Parameters for the tiling step

Figure A1. (Continued).

Table B1. Parameters for tiling.

Parameter Chosen value

Tile size 1,024 × 600 px

Tile’s horizontal overlap 78 px
Tile’s vertical overlap 78 px
Minimal width of tiled bounding box (βwidth) 10 px

Minimal height of tiled bounding box (βheight) 10 px
Minimal area ratio (βarea) 0.3
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