
Inference, Learning and Attention Mechanisms
that Exploit and Preserve Sparsity in CNNs

Timo Hackel, Mikhail Usvyatsov, Silvano Galliani,
Jan D. Wegner, Konrad Schindler

Photogrammetry and Remote Sensing, ETH Zürich

Abstract. While CNNs naturally lend themselves to densely sampled
data, and sophisticated implementations are available, they lack the
ability to efficiently process sparse data. In this work we introduce a
suite of tools that exploit sparsity in both the feature maps and the
filter weights, and thereby allow for significantly lower memory footprints
and computation times than the conventional dense framework, when
processing data with a high degree of sparsity. Our scheme provides (i) an
efficient GPU implementation of a convolution layer based on direct,
sparse convolution; (ii) a filter step within the convolution layer, which
we call attention, that prevents fill-in, i.e., the tendency of convolution
to rapidly decrease sparsity, and guarantees an upper bound on the
computational resources; and (iii) an adaptation of back-propagation
that makes it possible to combine our approach with standard learning
frameworks, while still exploiting sparsity in the data and the model.

1 Introduction

Deep neural networks are nowadays the most successful tool for a wide spectrum
of computer vision task [18, 23, 31]. A main reason for their spectacular comeback,
perhaps even the single most important factor, is the enormous gain in computa-
tional efficiency brought about by massively parallel computing on GPUs. Both
the response maps (feature maps) within the neural network and the parameters
(filter weights) of the network form regular grids that are conveniently stored
and processed as tensors. However, while naturally suited for image processing,
regular grids are a suboptimal representation for data such as line drawings or
irregular 3D point clouds (Fig. 1). E.g., the latter are typically acquired with
line-of-sight instruments, thus the large majority of points lies on a small number
of 2D surfaces. When represented as 3D voxel grid they therefore exhibit a high
degree of sparsity, as most voxels are empty; while at the same time 3D data
processing with CNNs is challenged by high memory demands [3, 38, 24, 14].

A counter-measure is to make explicit the sparsity of the feature maps and
store them in a sparse data representation, see Fig. 2. Moreover, it can also be
beneficial to represent the CNN parameters in a sparse fashion to improve runtime
and – perhaps more important for modern, deep architectures – memory footprint;
especially if the sparsity is promoted already during training through appropriate

2 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

r = 163 r = 323 r = 643 r = 1283

ρ = 15.5% ρ = 9.1% ρ = 5.3% ρ = 2.7%

Fig. 1: Sparsity in 3D data analysis. The density ρ of occupied voxels is low in
3D data from Modelnet40, and decreases with increasing voxel resolution.

regularisation. It is obvious that, in a sufficiently sparse setting, a significant speed-
up can be achieved by performing convolutions directly, incrementally updating a
layer’s output map only where there are non-zero entries in the input map as well
as non-zero filter weights. This has recently been confirmed independently by two
concurrent works [8, 27]. Direct convolution guarantees that only the minimum
number of necessary operations is carried out. However, the selective updating
only at indexed locations makes parallelisation harder. This may be the reason
why, to our knowledge, no practical implementations with sparse feature maps
exist. In this work we develop a framework to exploit both sparse feature maps
and sparse filter parameters in CNNs. To that end (i) we provide a sparse Direct
Convolution Layer, as well as sparse versions of the ReLU and max-pooling layers;
(ii) we extend the back-propagation algorithm to preserve sparsity and make
our sparse layers usable with existing optimisation routines that are available in
modern deep learning frameworks, which have been designed for dense data; (iii)
we propose to add a density-dependent regulariser that encourages sparsity of
the feature maps, and a pruning step that suppresses small filter weights. This
regularisation in fact guarantees that the network gets progressively faster at its
task, as it receives more training. All these steps have been implemented on GPU
as extensions of Tensorflow, for generic n-dimensional tensors. The source code is
available at https://github.com/TimoHackel/ILA-SCNN. In a series of
experiments, we show that it outperforms its dense counterpart in terms of both
runtime and memory footprint when processing sufficiently sparse data.

Fig. 2: With suitable computational mechanisms, sparsity in the input can be
preserved throughout the CNN. Shown are the activations for one channel of the
1st, 2nd and 3rd convolution layers on MNIST for a dense network (left) and for
a sparse network with upper bound ρup = 15% (right).

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 3

2 Related work

Dense CNN for sparse data

Neural networks, usually of the deep, convolutional network flavour, offer the
possibility to completely avoid heuristic feature design and feature selection.
They are at present immensely popular in 2D image interpretation. Recently,
deep learning pipelines have been adapted to voxel grids [28, 19, 24, 38], RGB-D
images [34] and video [17], too. Being completely data-driven, these techniques
have the ability to capture appearance as well as geometric object properties.
Moreover, their multi-layered, hierarchical architecture is able to encode a large
amount of contextual information. A general drawback when directly applying
3D-CNNs to (dense) voxel grids derived from (originally sparse) point clouds is
the huge memory overhead for encoding empty space. Computational complexity
grows cubically with voxel grid resolution, but in fact high resolution would only
be needed at object surfaces.

Data sparsity

Therefore, more recent 3D-CNNs exploit the sparsity of occupied voxels prevalent
in practical voxel grids. In [9] a sparse CNN is introduced, which is however
limited to small resolutions (in the paper, up to 803) due to decreasing sparsity in
convolutional layers. Another strategy is to resort to an octree representation [32,
35]. Since the octree partitioning depends on the object at hand, an important
question is how to automatically adapt to previously unseen objects. While [32]
assume the octree structure to be known at test time, [35] learn to predict it
together with the labels. In [13] a coarse-to-fine scheme is used to hierarchically
predict the values of small blocks of voxels in an octree. Another strategy is to
rely only on a small subset of discriminative points, while neglecting the large
majority of less informative ones [21, 29, 30]. The idea is that the network learns
how to select the most informative points and aggregates information into global
descriptors of object shape via fully-connected layers. This allows for both shape
classification and per-point labeling using only a small subset of points, resulting
in significant speed and memory gains. Bilateral convolutional layers [16] map the
data into permutohedral space, thus also exploiting sparsity in the data, but do
not have a mechanism to exploit parameter sparsity. Recently [11, 10] advocate
the strategy to perform convolutions only on non-zero elements in the feature
map and find correspondences via hash tables. However, limiting activations to
non-zero inputs can increase the error and slow down learning.

Parameter sparsity

Several works address the situation that the model parameters are sparse. Denil
et al. [5] reduce the network parameters by exploiting low rank matrix factori-
sation. Liu et al. [22] exploit the decomposition of matrices to perform efficient
convolutions with sparse kernel parameters. Some authors [15, 6] approximate

4 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

convolutional filters to achieve a faster runtime, moreover it has been proposed
to reduce the number of parameters by pruning connections [12] or imposing
sparsity in an already trained network [37].

Direct convolutions

The works [27, 8, 26] are the most related ones to our approach, in that they also
perform convolutions in a direct manner to efficiently exploit sparsity in network
parameters and feature maps. While [27] use compressed rows as sparse format
for the filter parameters, neither [8] nor [27] uses a sparse format for both filter
parameters and feature maps. Parashar et al. [26] implement sparse convolutions
on custom-designed hardware to achieve an energy- and memory-efficient CNN.
Even though all three works follow a similar idea, only the latter exploits sparsity
in both the parameters and the data, with compressed sparse blocks; but requires
dedicated, non-standard hardware.

3 Method

It is a general theme of computing to speed up computations and reduce memory
usage by exploiting sparsity in the data. In the following section, we propose a
number of ways to do the same for the specific case of neural network layers,
always keeping in mind the specific requirements and limitations of modern
GPU architectures. Throughout, sparse tensors are represented and manipulated
in a format similar to Coordinate List1, which stores indices into the sparsely
populated grid and the corresponding data entries in separate tensors, and is
available in the “SparseTensor” implementation of Tensorflow. To minimise
memory overhead, the indices of the form {batch, indexx, indexy, ..., channel}
are compressed into unique 1D keys and only expanded when needed.

To achieve coalesced memory access, which permits efficient caching, the
tensors for feature maps are sorted w.r.t. batches and within each batch w.r.t.
channels. Likewise, filter weights are sorted w.r.t. the output channels and within
each channel w.r.t. the input channels. Compared to dense tensors, the sparse
representation naturally adds some overhead. For instance, in our implementation
we use 64 bit keys, and 32 bit depth for feature maps. Consequently, storing a
dense feature map (100% density) required 3× more memory. For densities <33%
the sparse representation is more efficient, and at low densities the savings can
be quite dramatic, e.g., at density 1% it uses 97% less memory.

Sparse convolution

Our convolutional layer is designed to work with sparse tensors for both feature
maps and filter weights. Feature maps are updated incrementally with atomic

1 We have also experimented with other sparse formats, like compressed sparse blocks;
but found none of them to work as well, in part due to limitations and idiosyncrasies
of current GPU hardware.

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 5

Algorithm 1 Direct Sparse Convolution with Attention

1: decompress filter and data indices from 1D to kD
2: for b ∈ [0 : batch count] do
3: for oc ∈ [0 : out channel count] do
4: initialize dense buffer with 0
5: for ic ∈ [0 : in channel count]) do
6: for {id, val} ∈ data(b, ic) do
7: for {fid, fval} ∈filter(oc, ic) do
8: compute uid with get update id(id, fid)
9: atomically add val · fval to buffer at uid

10: get non-zero entries from buffer
11: add bias to non-zero entries in buffer
12: select k largest responses from non-zero entries
13: compress ids of k largest responses from kD to 1D
14: write k largest features and ids as sparse output

operations, c.f. Algorithm 1, where atomic operations are small enough to be
thread-safe, even if no locking mechanism is used. In that respect it is similar
to two concurrent works [26, 27]. In practice, the incremental update is limited
by the current hardware design, since atomic operations are slightly slower than
non-atomics: at present, off-the-shelf GPUs do not offer native support for atomic
floating point operations in shared memory, although they do for more costly CAS
instructions. Yet incremental updating is significantly faster, because it performs
only the minimum number of operations necessary to obtain the convolution,
while avoiding to multiply or add zeros.

The sparse convolution is computed sequentially per output channel and
batch, but in parallel across input channels, features and filter weights. Its result
is stored in a temporary, dense buffer with batch size and channel depth 1.
This buffer increases quadratically for 2D images, cubically for 3D volumes,
etc.. Still, it is in practice a lot smaller than a typical dense tensor with correct
dimensionality for batches and channels, such that volumes up to 5123 can be
processed on a single graphics card (Nvidia Titan Xp, 12 GB).

Fig. 3: Fill-in (loss of sparsity) due to convolutions depends on the data distri-
bution. Uniformly distributed data is affected most strongly, e.g., in 3D every
3× 3× 3 filter will increase the density by a factor of 27, until data is dense.

6 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

Algorithm 2 Backpropagation for convolutional layer

1: initialize bp data with shape(input values) and 0
2: initialize bp filter with shape(filter weights) and 0
3: decompress filter and data indices from 1D to kD
4: for b ∈ [0 : batch count] do
5: for oc ∈ [0 : out channel count] do
6: initialize dense buffer with gradients(b, oc)
7: for ic ∈ [0 : in channel count]) do
8: for {id, val} ∈ data(b, ic) do
9: for {fid, fval} ∈filter(oc, ic) do

10: compute uid with get update id(id, fid)
11: get gradient g from buffer at uid
12: atomically add g · fval to bp data at id
13: atomically add g · val to bp filter at fid

Preserving sparsity with attention

Convolution with kernels larger than (1× 1) generates fill-in, i.e., it reduces the
sparsity of a feature map, by construction. See Fig. 3. This “smearing out” of the
sparse inputs usually only has a small influence on the output of the network,
see the experiments. But it considerably increases memory consumption and
runtime, especially when occurring repeatedly over multiple layers. In order to
guarantee upper bounds on the memory footprint and runtime of the network, we
apply a k-selection filter [2] on each output channel, keeping only the k strongest
responses. This can be seen as an approximation of the exact convolution where
small responses are suppressed, but using an adaptive threshold that suppresses
only as many values as necessary to maintain the desired degree of sparsity.

The parameter k controls the sparsity, and thus the memory consumption, of
the convolutional layers. Processes that aim to optimally direct and manage the
limited resources available for some cognitive task are commonly referred to as
attention. We have implemented two versions of our simple attention mechanism
via k-selection: (i) acts on the raw responses, so it prefers large positive responses,
making it similar to a rectified linear unit; (ii) picks the k values with the largest
absolute values, expressing a preference for responses with large magnitude. The
time complexity of this layer to convolve data of dimension k, resolution sd and
density ρd, with filters of size sf and density ρf , is

O
(
(ρd · ρf · skf · cin + log(skd)) · skd · cout · b

)
, (1)

with b the number of batches and cin, cout, the number of input and output
channels, respectively.

Pooling layer

Our sparse pooling layer has three straight-forward stages. First, assign features
to an output (hyper-)voxel, by dividing the data channels of their index by strides.

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 7

Second, sort the data w.r.t. voxels, so that responses within the same voxel are
clustered together. Third, apply the pooling operator separately to each cluster.
The time complexity for this is

O
(
ρd · skd · log(ρd · skd) · cin · b

)
. (2)

Direct sparse backpropagation

Our target for back-propagation is again to skip operations that can be avoided
due to sparsity. We must propagate error gradients only to all those features
which have produced evidence, in the form of non-zero responses during the
forward pass. Yet, the performance issues already discussed for the forward pass
apply also to the backward pass: back-propagation through a convolution layer
is itself a convolution that leads to fill-in, increasing memory use and runtime.

Contrary to the forward pass, it is not advisable to bound the fill-in with
the k-selection technique, since this will not prevent the back-propagated error
gradients from spreading to zero activations and vanishing, while smaller gradients
flowing towards non-zero activations might be missed. It is evident that this
effect could seriously slow down the training process. Hence, we propose to use a
stricter back-propagation, which only propagates errors L to non-zero features x
and model parameters w:

∂L

∂xi
=

{
0 for xi = 0
∂L
∂y

∂y
∂xi

, else
,

∂L

∂wi
=

{
0 for wi = 0
∂L
∂y

∂y
∂wi

, else
. (3)

Here, weights are considered equal to zero only if they have been explicitly
removed by pruning, so as to avoid suppressing the gradients of weights that
pass through wi =0 while changing sign. Note the similarity of our approximated
back-propagation to back-propagation through any layer with ReLU activation:
Conventional back-propagation sets values to zero in function of the layer output
yi, whereas we do so in function of the input xi.

Neglecting zero-elements slightly reduces the efficiency per learning iteration,
since not all error gradients are propagated anymore. However, it has a number of
advantages: (i) The tensors used for back-propagation have fixed size and shape.
Therefore, one can still use optimisation frameworks that have been designed for
dense data, and expect fixed and known array dimensions; (ii) By considering
only gradients on non-zero elements of the forward pass, back-propagation can
be implemented in a clean and transparent manner. E.g. for convolutional layers
one obtains Algorithm 2, which is very similar to Algorithm 1; (iii) Once a filter
weight has been set to zero, it will remain zero. Below, we will describe how this
property can be used to guarantee that the network gets progressively faster at
its task as the learning proceeds and it sees more training data.

Adaptive density regularisation

There is a computationally more efficient way to encourage sparsity of the feature
maps, such that the sparsity thresholds are rarely exceeded in the first place,

8 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

and the more costly k-selection step is avoided. The ReLU non-linearity used in
most modern CCNs, by definition, truncates negative activations to zero while
leaving positive ones unchanged. This means that we can include a regularisation
that pushes down the values (not magnitudes) of filter weights and biases. By
doing so, more weights will be driven into the negative region, where they are
extinguished by the subsequent ReLU . Moreover, the same idea can be used to
reduce sparsity when it is not needed, and optimally use the available resources:
when too few activations are > 0, one drives the filter weights up, so that fewer
of them are suppressed by the ReLU . To achieve the desired effect, we simply
add a bias b to the L2-regularisation, so that the regulariser becomes

∑
(w + b)2.

The scalar b is positive when the density ρ is too large, and negative when it is
overly small:

b =

{
o+ b1 · (ρ− ρup) ρ > ρup (exceeds available resources)

−b2 · (ρup − ρ) ρ ≤ ρup (not using available resources)
(4)

with ρup the upper bound implied by the k-selection filter, and o, b1, b2 ≥ 0
control parameters. The offset o adds an additional penalty for exceeding the
available resources, since this case requires the use of the k-selection filter and,
hence, increases the computational load.

Parameter pruning

As explained above, our training algorithm has the following useful properties:
(i) The regulariser encourages small model parameters. (ii) The sparse back-
propagation ensures that, once set to zero, model parameters do not reappear
in later training steps. Together, these two suggest an easily controllable way
to progressively favour sparsity during training: At the end of every training
epoch we screen the network for weights w that are very small, |wi| < ε. If the
magnitude of a weight wi stays low for two consecutive epochs (meaning that
it was already close to zero before, and that did not change during one epoch
of training) we conclude that it has little influence on the network output and
prune it (one-warning-shot pruning). We note that a small weight should not be
pruned when first detected, without warning shot: it could have a large gradient
and just happen to be at its zero-crossing from a large positive to a large negative
value (or vice versa) at the end of the epoch. On the contrary, it is very unlikely
to observe a weight exactly at its zero-crossing twice in a row.

Since a weight, once set to zero, will not reappear with our sparse back-
propagation, every pruning can only reduce the number of non-zero weights. It is
thus guaranteed that the network become sparser, and therefore also faster at
the task it is learning, as it sees more training data. Note, it is well documented
that biological systems get faster at a task with longer training [33, 25].

4 Evaluation

In this section we evaluate the impact of density upper bounds and regularisation
on runtime and classification accuracy. The sparse network structures were

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 9

32
3

64
3

128
3

256
3

Resolution

0

0.1

0.2

0.3

T
im

e
 [

s
]

Runtime for Forwardpass Conv-Layer

dense

sparse,
f
 = 1.0

sparse,
f
 = 0.5

sparse,
f
 = 0.3

sparse,
f
 = 0.1

32
3

64
3

128
3

256
3

Resolution

0

5

10

15

T
im

e
 R

a
ti

o
 D

e
n

s
e

 t
o

 S
p

a
rs

e

Runtime Ratio

sparse,
f
 = 1.0

sparse,
f
 = 0.5

sparse,
f
 = 0.3

sparse,
f
 = 0.1

Fig. 4: Runtime [s] of a dense convolution layer in Tensorflow and of our sparse
convolution layer, for different resolutions r3. At high resolutions the sparse
version is much more efficient.

implemented into the Tensorflow framework and programmed in C++/CUDA
with a python interface. Our experiments were run on PCs with Intel Core i7
7700K processors, 64GB RAM and Titan Xp GPUs. Detailed specifications about
the different CNN variants used in the experiments (in both sparse and dense
versions) are given in the appendix.

To start with, we use a synthetic dataset of sparse random tensors to evaluate
the memory footprint and runtime of our convolutional layer and to compare it
against the dense layers of Tensorflow version 1.4 (compiled with Cuda 9.0 and
CuDNN 6.0). We conduct different experiments to evaluate the effects of our
sparse network on classification accuracy: First, the impact of upper bounds on
classification is evaluated by performing a grid search on the upper bound ρup in
the convolutional layers. For this experiment the MNIST data set [20] is used, as
it is small enough to perform grid search in a reasonable amount of time and
can be interpreted as sparse data (1D lines in 2D images). Second, the effects of
pruning on runtime and classification accuracy are shown using the Modelnet
data set [38], by varying the strength λ of the regularisation. Modelnet40 provides
3D CAD models of 40 different classes. Furthermore, the classification results of
different baseline methods are compared on this data set. Modelnet40 is trained
for 90 epochs with learning rate 0.001, using, using adagrad [7].

Resolution 323 643 1283 2563 5123

Dense [GB] 0.04 0.27 2.15 17.18 137.28
Sparse 32 [GB] 2 · 10−3 8 · 10−3 0.03 — —
Sparse 64 [GB] 3 · 10−3 0.013 0.05 0.2 0.8

Sparse Temp [GB] 3 · 10−4 0.002 0.016 0.13 1.07

Table 1: Memory consumption of a dense conv layer in Tensorflow and of our
sparse conv layer, for different resolutions r3, with ρup = 1/r, minibatch size 32
and output depth 8. At high resolutions the sparse version is much more efficient.

10 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

Runtime and Memory Footprint

For the evaluation of runtime, convolutions are performed on a sparse voxel grid
filled with random numbers. The resolution of the voxel grid r3 is varied between
r = 16 and r = 256. To achieve the expected data density of a 2D surface in a
3D voxel grid, the data density ρ as well as the upper bound on the per-channel
density ρup are set to ρ = ρup = 1

r . To run dense convolution at resolution
r = 256, the mini-batch size and channel depth had to be set to 1 (Protobuf
limits each single tensor to 2 GB), while the number of output channels was set
to 8. The density ρf of the filter weights is varied between 0.1 and 1. As baseline
we use the convolutional layer of Tensorflow [1], which performs convolutions via
the fast Fourier transform and batched general matrix-matrix multiplication from
cuBlas, as front end to cuDNN [4]. We note that processing only a single input
channel does not play to the strength of our sparse network. Moreover, Tensorflow
is able to use the full capability of the GPU, while our implementation is limited
to operating in global memory, due to the weak support for atomic floating
point operations in shared memory. The effect of this limitation is particularly
pronounced at small resolution and high density, whereas for high resolutions
and low densities its influence fades. In particular, at r = 256 and ρf = 0.1, we
are 14× faster with strong density regularisation, so that the k-selection step is
bypassed; and still 7× faster including k-selection filtering. See Figure 4.

Table 1 shows the memory requirements for dense and sparse convolution
layers at various resolutions r. Dense convolutions require only a single output
tensor. The sparse implementation uses tensors for indices and data as well as
a temporary buffer, which can be reused in all layers. For the experiment the
data type is 32bit floating point, for the indices we consider both both 32bit and
64bit.2 As expected, our sparse representation needs less memory at the sparsity
levels of realistic 3D point cloud data. In particular, our sparse version makes it
possible to work with large resolutions up to r = 5123, which is impossible with
the dense version on existing hardware.

Contribution of small feature responses

In the context of sparsity the question arises, whether zero-valued features
contribute valuable information. Two recent works tried to answer this question.
On the one hand, Graham et al. [11] found that they reach the same accuracies
as dense networks for their application, while completely neglecting zero-valued
features. On the other hand, Uhrig [36] concluded that for certain tasks zero-
valued features may be beneficial. For our network it is possible to assess the
importance of small feature responses (not limited to exact zero-values) by
training neural networks with varying upper bounds. For this experiment, CNNs
are trained on MNIST for 10 epochs without regularisation, using the adagrad
optimiser and a learning rate of 0.01.

The pixels in MNIST were set to zero when their value v ∈ [0, 255] was below
a threshold of v < 50, to obtain a sparse dataset with average density ρin = 0.23,

2 32bit indices can only be used for resolutions r ≤ 1283 due to buffer overflows.

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 11

0 20 40 60 80

Epoch

0

10000

20000

30000

40000

50000

60000

70000
N

o
n

-z
e

r
o

 F
il

te
r
 W

e
ig

h
ts

Parameters after each Epoch

no reg.

 = 0.01

 = 0.02

 = 0.03

0 20 40 60 80

Epoch

200

400

600

800

1000

T
im

e
 [

s
]

Training Time per Epoch

no regularization

 = 0.01

 = 0.02

 = 0.03

0 20 40 60 80

Epoch

0.5

0.6

0.7

0.8

0.9

A
c

c
u

ra
c

y

Accuracy on Test Set

no regularization

 = 0.01

 = 0.02

 = 0.03

Fig. 5: Influence of adaptive density regularisation and pruning on (left) the
number of non-zero filter weights, (middle) the runtime per training epoch, and
(right) the accuracy on the Modelnet40 test set. Strong regularisation and pruning
save a lot of memory and time without noticeable impact on accuracy.

0 0.5 1

Upper Bound on Density

0.7

0.75

0.8

0.85

0.9

O
v

e
ra

ll
 A

c
c

u
ra

c
y

Classification Results

sparse cnn

octnet

dense tensorflow

16
3

32
3

64
3

128
3

Network Architecture

0.7

0.75

0.8

0.85

0.9

0.95

O
v

e
ra

ll
 A

c
c

u
ra

c
y

Classification Results

sparse cnn

octnet

Fig. 6: Performance of sparse network on Modelnet40, compared to the equivalent
dense network and Octnet. (left) accuracy for different upper density bounds;
(right) accuracy for different input resolutions.

while the upper bound ρup ranges from ρup = 0.035 to ρup = 0.095. Note that
even though letters can be interpreted as 1D lines in 2D images, the MNIST data
has a low resolution of only 28× 28 pixels. Hence, the data is still not extremely
sparse. Lower upper bounds guarantee a small memory footprint, and also yield
slightly faster runtime per epoch. The price to pay is slower convergence, because
some gradients are lost during backpropagation; and a slight performance penalty
for very strict bounds (< 1.5% for the strictest setting ρup = 0.035).

Regularisation and pruning

With our sparsity-inducing pruning and regularisation, we expect faster runtime.
In order to verify this behaviour, neural networks are trained on Modelnet40
with varying regularisation scales λ ∈ {0, 0.1, 0.2, 0.3}. The bias for density-based
regularisation is computed with b1 = b2 = o = 0.1. Stronger regularisation
decimates the number of (non-zero) filter weights faster, as shown in Figure 5. It
can also be seen that the number of parameters converges when only important

12 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

weights are left. The drop in non-zero weights also reduces runtime. After 90
epochs, a network regularised with λ = 0.3 is 51% faster than one trained
without regularisation and pruning, even though only the first nine out of twelve
convolution layers are set to be sparse. Strong regularisation initially causes an
increase in runtime, by driving up the number of non-zero weights to use the
available resources via the bias term b2. The classification accuracy for all tested
regularisation scales quickly converges to practically identical values, as shown in
Figure 5. We point out that pruning finds the most suitable sparsity pattern for
a given training set. When using a pruned model for transfer learning, it may be
safer to re-initialize the removed filter weights of the sparse representation with
zeros before fine-tuning.

Classification performance on Modelnet40

Finally, we compare our upper-bounded neural network and modified back-
propagation against a conventional net. To that end we run Octnet3, a dense
network without octree structure, and a sparse version of the same network on
Modelnet40, see Figure 6.

First, the input resolution is set to r = 163, while the upper bound on the
density is varied between ρin ∈ {0.06, 0.12, 0.33, 1.0}. Both, the conventional
dense network and Octnet converge to a similar overall accuracy of ≈ 0.83. For
a trivial upper bound ρin = 1.0 the overall accuracy of our sparse network is
also practically the same. Very low upper bounds up to ρin = 0.12 yield slightly
worse results on the 163 inputs, for the lowest bound ρin = 0.06 the drop in
performance reaches ≈ 3 percent points. Second, the resolution of the input is
gradually increased: r ∈ {163, 323, 643, 1283}. Both the sparse network and
Octnet yield similar results, for all resolutions. Octnet performs slightly better
on r = 323, while our bounded, sparse network has a small advantage at all
other resolutions. The two experiments suggest that reasonable upper bounds
and our sparse backpropagation do not reduce classification accuracy.

5 Conclusion

We have proposed novel neural network mechanisms which exploit and encourage
sparseness in both feature maps and model parameters. At practically useful
resolutions, our novel sparse layers and back-propagation rule significantly reduce
(i) memory footprint and (ii) runtime of convolutional layers for sufficiently
sparse data. Moreover, our approach guarantees upper bounds on the memory
requirements and runtime of the network. For classification tasks the performance
of our sparse network is comparable to its dense counterpart as well as Octnet.
In future work, it will be interesting to employ sparsity also for other tasks. Our
implementation is fully compatible with Tensorflow and has been released as
open-source code. We hope, that hardware support for sparse convolutions will
improve further on future consumer GPUs, as demonstrated by [26]; thus further
boosting the performance of sparse, high-dimensional CNNs.

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 13

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: USENIX OSDI (2016)

2. Alabi, T., Blanchard, J.D., Gordon, B., Steinbach, R.: Fast k-selection algorithms
for graphics processing units. Journal of Experimental Algorithmics 17 (2012)

3. Brock, A., Lim, T., Ritchie, J., Weston, N.: Generative and discriminative voxel
modeling with convolutional neural networks. arXiv preprint 1608.04236 (2017)

4. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E.: CUDNN: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

5. Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al.: Predicting parameters in
deep learning. In: NIPS (2013)

6. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: NIPS (2014)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12 (2011)

8. Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3Deep: Fast object
detection in 3d point clouds using efficient convolutional neural networks. arXiv
preprint 1609.06666 (2017)

9. Graham, B.: Spatially-sparse convolutional neural networks. arXiv preprint
1409.6070 (2014)

10. Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with
submanifold sparse convolutional networks. arXiv preprint 1711.10275 (2017)

11. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv
preprint 1706.01307 (2017)

12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NIPS (2015)

13. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3d object
reconstruction. arXiv preprint 1704.00710 (2017)

14. Huang, J., You, S.: Point cloud labeling using 3d convolutional neural network. In:
ICPR (2016)

15. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint 1405.3866 (2014)

16. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters:
image filtering, dense CRFs and bilateral neural networks. In: CVPR (2016)

17. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.:
Large-scale video classification with convolutional neural networks. In: CVPR
(2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS (2012)

19. Lai, K., Bo, L., Fox, D.: Unsupervised feature learning for 3d scene labeling. In:
ICRA (2014)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11) (1998)

21. Li, Y., Pirk, S., Su, H., Qi, C.R., Guibas, L.J.: FPNN: Field probing neural networks
for 3d data. In: NIPS (2016)

22. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional
neural networks. In: CVPR (2015)

14 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

24. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: IROS (2015)

25. Nissen, M.J., Bullemer, P.: Attentional requirements of learning: Evidence from
performance measures. Cognitive Psychology 19(1) (1987)

26. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B.,
Emer, J., Keckler, S.W., Dally, W.J.: SCNN: An accelerator for compressed-sparse
convolutional neural networks. In: Int’l Symp on Computer Architecture (2017)

27. Park, J., Li, S., Wen, W., Tang, P.T.P., Li, H., Chen, Y., Dubey, P.: Faster CNNs
with direct sparse convolutions and guided pruning. In: ICLR (2017)

28. Prokhorov, D.: A Convolutional Learning System for Object Classification in 3-D
Lidar Data. IEEE Transactions on Neural Networks 21(5), 858–863 (2010)

29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature
learning on point sets in a metric space. arXiv preprint 1706.02413 (2017)

31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: NIPS (2015)

32. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: Learning deep 3d representations at
high resolutions. In: CVPR (2017)

33. Robertson, E.M.: The serial reaction time task: implicit motor skill learning? Journal
of Neuroscience 27(38), 10073–10075 (2007)

34. Song, S., Xiao, J.: Deep sliding shapes for amodal 3d object detection in rgb-d
images. In: CVPR (2016)

35. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs. arXiv preprint 1703.09438
(2017)

36. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity
invariant CNNs. arXiv preprint 1708.06500 (2017)

37. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: NIPS (2016)

38. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

Inference, Learning & Attention Mechanisms that Exploit Sparsity in CNNs 15

Appendix: Network architectures

Table 2 shows the network architectures of our experiments. Depending on the
type of data and the goal of the experiment, we used the following network
specifications (both for the dense and the sparse version, where applicable):

– For MNIST, we run OctNet3-242 with 10 output classes. ρ21 is set as specified
in the paper text and ρ22 = 2 · ρ21.

– For Modelnet40 we have c = 40 different output classes and employ the
following variants:

1. For the regularisation experiment (Figure 5) we use OctNet3-643 with
ρ41 = 0.06, ρ42 = 0.14, ρ43 = 0.33.

2. Figure 6 (left) has been generated with OctNet3-163 with varying upper
bounds ρ11 = {0.06, 0.12, 0.33, 1}, ρ12 = {0.12, 0.24, 0.33, 1}.

3. For Figure 6 (right) the following networks were used: OctNet3-163 with
ρ11 = ρ12 = 1; OctNet3-323 with ρ31 = 0.14, ρ32 = 0.33, ρ33 = 0.66;
OctNet3-643 with ρ41 = 0.06, ρ42 = 0.14, ρ43 = 0.33; OctNet3-1283 with
ρ51 = 0.02, ρ52 = 0.06, ρ53 = 0.14.

16 T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, K. Schindler

O
ctN

et3
-1

6
3

O
ctN

et3
-2

4
2

O
ctN

et3
-3

2
3

O
ctN

et3
-6

4
3

O
ctN

et3
-1

2
8
3

O
ctN

et3
-2

5
6
3

co
n
v
(1

,
8
,
ρ
1
1)

co
n
v
(1

,
8
,
ρ
2
1)

co
n
v
(1

,
8
,
ρ
3
1)

co
n
v
(1

,
8
,
ρ
4
1)

co
n
v
(1

,
8
,
ρ
5
1)

co
n
v
(1

,
8
,
ρ
6
1)

co
n
v
(8

,
8
,
ρ
1
1)

co
n
v
(8

,
8
,
ρ
2
1)

co
n
v
(8

,
8
,
ρ
3
1)

co
n
v
(8

,
8
,
ρ
4
1)

co
n
v
(8

,
8
,
ρ
5
1)

co
n
v
(8

,
8
,
ρ
6
1)

co
n
v
(8

,
8
,
ρ
1
1)

co
n
v
(8

,
8
,
ρ
2
1)

co
n
v
(8

,
8
,
ρ
3
1)

co
n
v
(8

,
8
,
ρ
4
1)

co
n
v
(8

,
8
,
ρ
5
1)

co
n
v
(8

,
8
,
ρ
6
1)

m
a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)

co
n
v
(8

,
1
6
,
ρ
1
2)

co
n
v
(8

,
1
6
,
ρ
2
2)

co
n
v
(8

,
1
6
,
ρ
3
2)

co
n
v
(8

,
1
6
,
ρ
4
2)

co
n
v
(8

,
1
6
,
ρ
5
2)

co
n
v
(8

,
1
6
,
ρ
6
2)

co
n
v
(1

6
,

1
6
,
ρ
1
2)

co
n
v
(1

6
,

1
6
,
ρ
2
2)

co
n
v
(1

6
,

1
6
,
ρ
3
2)

co
n
v
(1

6
,

1
6
,
ρ
4
2)

co
n
v
(1

6
,

1
6
,
ρ
5
2)

co
n
v
(1

6
,

1
6
,
ρ
6
2)

co
n
v
(1

6
,

1
6
,
ρ
1
2)

co
n
v
(1

6
,

1
6
,
ρ
2
2)

co
n
v
(1

6
,

1
6
,
ρ
3
2)

co
n
v
(1

6
,

1
6
,
ρ
4
2)

co
n
v
(1

6
,

1
6
,
ρ
5
2)

co
n
v
(1

6
,

1
6
,
ρ
6
2)

sp
a
rseT

o
D

en
se()

sp
a
rseT

o
D

en
se()

m
a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)

co
n
v
(1

6
,

2
4
,
ρ
3
3)

co
n
v
(1

6
,

2
4
,
ρ
4
3)

co
n
v
(1

6
,

2
4
,
ρ
5
3)

co
n
v
(1

6
,

2
4
,
ρ
6
3)

co
n
v
(2

4
,

2
4
,
ρ
3
3)

co
n
v
(2

4
,

2
4
,
ρ
4
3)

co
n
v
(2

4
,

2
4
,
ρ
5
3)

co
n
v
(2

4
,

2
4
,
ρ
6
3)

co
n
v
(2

4
,

2
4
,
ρ
3
3)

co
n
v
(2

4
,

2
4
,
ρ
4
3)

co
n
v
(2

4
,

2
4
,
ρ
5
3)

co
n
v
(2

4
,

2
4
,
ρ
6
3)

sp
a
rseT

o
D

en
se()

sp
a
rseT

o
D

en
se()

sp
a
rseT

o
D

en
se()

m
a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
co

n
v
(2

4
,

3
2
)

co
n
v
(2

4
,

3
2
)

co
n
v
(2

4
,

3
2
)

co
n
v
(3

2
,

3
2
)

co
n
v
(3

2
,

3
2
)

co
n
v
(3

2
,

3
2
)

co
n
v
(3

2
,

3
2
)

co
n
v
(3

2
,

3
2
)

co
n
v
(3

2
,

3
2
)

m
a
x
P

o
o
lin

g
(2

)
m

a
x
P

o
o
lin

g
(2

)
co

n
v
(3

2
,

4
0
)

co
n
v
(3

2
,

4
0
)

co
n
v
(4

0
,

4
0
)

co
n
v
(4

0
,

4
0
)

co
n
v
(4

0
,

4
0
)

co
n
v
(4

0
,

4
0
)

m
a
x
P

o
o
lin

g
(2

)
co

n
v
(4

0
,

4
8
)

co
n
v
(4

8
,

4
8
)

co
n
v
(4

8
,

4
8
)

d
ro

p
o
u
t(0
.5

)
fu

lly
-co

n
n
ected

(1
0
2
4
)

fu
lly

-co
n
n
ected

(c)

T
a
b

le
2:

In
o
u

r
eva

lu
atio

n
,

w
e

u
se

d
iff

eren
t

O
ctN

et3
n
etw

o
rk

a
rch

itectu
res,

sim
ila

r
to

th
o
se

also
u

sed
b
y

R
iegler

et
al.

[32]

