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This document provides supplementary information to support the main paper. It is struc-
tured as follows: Sec. 1 gives more information about the data and pre-processing used in
our experiments, not mentioned in the paper due to lack of space. We hope that the added
details will help readers to better appreciate the experimental results. In Sec. 2 we show
complementary results obtained with the proposed Lagrange FEM method on other datasets,
as well as the full large-scale reconstruction of the city of Enschede. Sec. 3 contains tech-
nical details and formal proofs that had to be omitted in the paper. Finally, Sec. 4 discusses
our formalism for the case of the Raviart-Thomas basis (instead of Lagrange P1), leading
to piecewise constant labels. We also show results in 2D and 3D and a comparison to those
obtained with the Lagrange basis.

1 Input Data
For our real-world experiments, we start from aerial images, cf . Fig. 1. To mitigate foreshort-
ening and occlusion, images are acquired in a Maltese cross configuration, with four oblique
views in addition to the classical nadir view. We orient the images with VisualSFM [10],
create depth maps from neighbouring views with Semi-global Matching [3, 8], and predict
pixel-wise class-conditional probabilities with a MultiBoost classifier [1]. The classifier is
trained on a few hand-labeled images, using the same features as [2]: raw RGB-intensities in
a 5×5 window, and 19 geometry features (height, normal direction, anisotropy of structure
tensor, etc.) derived from the depth map.

2 Additional Visualizations
We have tested our semantic reconstruction method on several (synthetic) 2D and (real)
3D datasets. Here we provide additional examples to give the reader an impression of the
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Figure 1: Input data. Left: aerial input images for one position (four oblique views to the
north, east, south, west, and a nadir image). Middle: oriented image block. Right: depth
map and class probabilities (visualised by maximum-likelihood labels).

variety of cases tested in our evaluation. We apply the same prior models as for our 3D
reconstructions. We prefer flat, horizontal structures in the model for the following label
transitions: ground-freespace, ground-building, building-roof and roof-freespace. The sec-
ond prior applies to the transition building-freespace and prefers vertical boundaries. Fig. 2
shows examples for different degradations of the synthetic input (many more cases were
tested). In the top row, we simulate imperfect classifier input by adding noise to the seman-
tic class likelihoods. In our experience, the method is still able to reconstruct the geometry
quite well, but sometimes assigns the wrong label. A closer inspection reveals that, locally,
the roof and building classes are confused in locations where the class likelihoods are sig-
nificantly wrong. The global geometry and labels in other regions remain unaffected. The
second row gives an example of missing input data, a frequent situation in the real world,
due to occlusions and constraints on camera placement. Fortunately, missing data does not
seem to greatly challenge our method. In fact, our method is specifically designed to work
well for these cases and complete the outline, relying on the prior assumptions about pair-
wise class transitions and class-specific local shape. In the last row we utilise only a sparse
control mesh, even near the surface. The method can still recover the geometry, but struggles
to determine the correct semantic labeling near the (unobserved) roof-to-building transition.
The adaptive version of our method is designed to avoid exactly that case. It refines the
control mesh near the predicted transitions, effectively increasing the resolution at the most
promising locations.

Fig. 3 shows city models obtained from two additional aerial datasets (Zürich, Switzer-
land and Dortmund, Germany), and a further patch from Enschede. These results qualita-
tively illustrate that our method works for different image sets and architectural layouts.

Finally, we show the complete semantic 3D reconstruction of Enschede. Fig. 4 shows
the model rendered in an oblique view, together with the corresponding viewpoint in Google
Earth, to illustrate its accuracy and high level-of-detail.

3 Proofs
In this section we give the technical proofs promised in the main paper, as well as further
details about the optimisation. We start with a discussion of the extension to non-metric
energies, and its consequences on the equivalence of continuous and discrete models.
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Figure 2: Example scenes of our 2D data set and results obtained with our Lagrange FEM
method. Left: Data term at vertices of the control mesh. Colors for the data cost indicate:
free space/empty space (cyan), building (red), ground (pink), roof (yellow), occupied space
(green) and no data cost (black). Middle: Semantic 2D model. Right: Classification result,
misclassified pixels are depicted in red.

Figure 3: Additional datasets. First row: Original aerial images. Second row: Semantic 3D
models obtained with the Lagrange FEM method for Enschede (left), Zürich (middle) and
Dortmund (right). For the latter, light green denotes an additional class grass and agricul-
tural fields.
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Figure 4: Large-scale semantic 3D reconstruction of Enschede (Netherlands), computed
from aerial images with our Lagrange FEM method. Top: View from Google Earth (not
used during reconstruction). Bottom: Our model from matching viewpoint.
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3.1 Non-metric priors: continuous vs. discrete

The main message of this section is that a non-metric model does not exist in the continuous
view, unless one imposes additional constraints on the function spaces. We briefly explain
why: Let’s look at the transition boundary between two labels i and k. Without additional
constraints, one can always introduce a zero set with label j between the two, i.e., a set
with Lebesgue measure 0 in the domain space. If the transition costs are not metric, then
the cost for the label pair {i,k} is potentially higher than the sum of the costs for {i, j}
and { j,k}. Inserting the zero set will avoid that extra cost and the energy will be under-
estimated. In other words, let S be a segmentation of Ω into regions Si and Sk, labeled with
i and k respectively. Assume further that their costs do not fulfill the triangle inequality
w.r.t. another label j. Then one can find a sequence of segmentations Sn := {Sn

i ,S
n
j ,S

n
k} with

S = lim
n→∞

(Sn): the label j disappears in the limit, such that lim
n→∞

infE(Sn) < E(S). Hence,
metric transition costs are a necessary condition for the lower semi-continuity of the energy
functional. Methods that try to resolve the issue with additional constraints on the function
space, for instance by demanding Lipshitz continuity of the labeling functions, are an active
research area, e.g. [4], but are beyond the scope of this work.

The above conceptual problem does have consequences for a practical implementation:
Any discretisation of the domain will ultimately consist only of a finite number of elements
of measurable (> 0) volume. Thus, the label j in the example will not disappear completely
from the solution, and the computed energy matches the solution. In practice, one can simply
prescribe a minimum edge length in the tesselation, since one cannot refine infinitely. Note
that this also constrains the Lipshitz constant of the labeling functions; they are restricted to
values between 0 and 1, such that the Lipshitz constant of functions f ∈P1(M) defined on the
mesh M = {V,F,S} is bounded by minv∈s,s∈S ||Jv||, cf . (1). Because we utilise a Delaunay
triangulation/tetrahedralisation of the domain and also limit the minimal dihedral angle, a
further constraint on the edge length implies a bound on the Lipshitz constant. Note also, our
analysis implies that a discrete solution in the non-metric setting does not have a continuous
counterpart, and consequently investigations of the limiting case, i.e., convergence analysis
after infinite refinement of the tesselation, are futile.

3.2 Gradient in the Lagrange basis

We show that gradients of functions in the P1 (Lagrange) basis are constant per simplex s
and given by:

∇φs = ∑
v∈s

φvJv (1)

Here, the coefficients φv ∈ R and Jv ∈ Rd denote a vector of length | fv||s|d , normal to the face
fv opposite to vertex v, and pointing inwards towards the center of the simplex. Recall that
| fv| is the area of face fv and |s| is the volume of simplex s.

The gradient can be obtained with basic algebra. First, notice that the gradient of φs in
(1) has to fulfill 〈vl − vk,∇φs〉 = φvl −φvk , meaning that integration along the edge leads to
the respective change in φs. After collecting a sufficient number of linear equations of this
form, one can directly solve the resulting linear system. Since Jv is, by definition, orthogonal
to all edges that do not involve vertex v, we arrive at (1).

Formally, we pick one vertex v of simplex s and compile for l = 1 . . .d (vl 6= v) equations
of the form 〈vl − v,∇φs〉 = φvl −φv. By construction, 〈Jvl ,vk− v〉 = δk=l . The vector Jvl is
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normal to face fvl . The scalar product of the edge (vl − v) and the normal is the ”height”
within the simplex, so with the chosen scaling of Jvl we have 〈Jvl ,vl− vk〉= 1 for any k 6= l.

Thus multiplying each side of our equation system by a matrix with the vectors Jvl , l =
1 . . .d as columns leads to: ∇φs = ∑l Jvl (φvl −φv). If we can show that ∑l Jvl =−Jv, then we
arrive at the desired expression (1). For vk,v j 6= v, 〈∑l Jvl ,v j− vk〉= 〈Jvl ,v j〉− 〈Jvk ,vk〉= 0
and 〈∑l Jvl ,vk−v〉= 〈Jvk ,vk−v〉= 1. All equations are also fulfilled by Jv in place of ∑l Jvl ,
which concludes the proof.

3.3 Data Term for Lagrange basis
We again start from the ideas in the main paper. We have to convert the continuous data
costs ρ i into discrete form (in a practical implementation, “continuous” means that the cost
can be evaluated at any z ∈ Ω). In our basis representation, we can get discrete cost values
for the basis elements by convolving the continuous cost with the respective basis function.
For simplicity, we consider the P1 basis function here. Thus, we seek a cost per vertex ρ i

v.
In detail we obtain:∫

Ω

xi(z)ρ i(z)dz =∑
s

∫
s
xi

s(z)ρ
i(z)dz = ∑

s

∫
s
∑
v∈s

φv p1
s,v(z)ρ

i(z)dz =

∑
v∈V

φv

(
∑

s∈N(v)

∫
s

p1
s,v(z)ρ

i(z)dz

)
︸ ︷︷ ︸

:=ρ i
v

= 〈ρ i
v,x

i
v〉. (2)

To numerically compute ρ i
v, we sample ρ i at a finite number of locations z ∈ Ω. For

each z we determine into which simplex s it falls, and accumulate the contributions of ρ i(z)
over all i = 1 . . .m, weighted by their barycentric coordinates. The final step is to scale ρ i

v
by ∑s∈N(v) |s|/d and divide by the sum of weights assigned to vertex v. In other words, we
compute the sample mean and scale it by the area covered by the vertex. In our current
implementation ρ is sampled at regular grid points, without importance sampling. This
simple strategy is indeed very similar to the method employed in [2, 7]. There, the data
cost is evaluated on a regular grid, by reprojecting grid vertices into each image, computing
the data term, and adding its respective contribution to the grid location. Such a “per-voxel
accumulation” is equivalent to integrating the data cost within the respective Voronoi-area
of a vertex in the dual grid: the latter is proportional to the number of regular samples that
fall into a Voronoi-cell and therefore have the respective vertex as nearest neighbour. Hence,
summing the individual contributions directly corresponds to integrating the data term within
the Voronoi region.

3.4 Grid vs. P1
Here, we detail why the grid-based version with finite differences (corresponding to [7]) can
be seen as an approximation of our proposed FEM discretisation with P1 basis elements, if
the vertices (cells) are aligned in a regular grid. Without loss of generality we consider a grid
of edge length 1, and note that in this case the gradient for a function f : Ω ⊂ Rd → R at a
grid point x, evaluated with forward differences becomes:

∇ f = ( fx+e1 − fx, . . . , fx+ed − fx)
T = ∑

i
ei fx+ei −∑

i
ei fx = ∑ fx+eiJx+ei + fxJx, (3)
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Figure 5: Left: Grid (green) and simplex mesh (red) cover the same domain, but are offset
against each other. Grid centers correspond to vertex positions. The gradient in a triangle
(middle) corresponds to the gradient computed with forward differences (right).

with ei the unit vector in direction i. We have used the identity ei = Jx+ei , according to the
definition in Sec. 3.2, and obtain the last equality from ∑l Jvl =−Jv, cf . Sec. 3.2. This is ex-
actly the formula for the gradient of the corresponding P1 function in the simplex defined by
the vertices {x,x+ ei}d

i=1. Accordingly, if implemented as finite differences, the constraints
on the dual vector field λ , see Eq. (2) from the paper, are only checked within the respective
simplex, but not in the whole domain (1/2 of the domain in 2D; 1/6 in 3D). Note also that,
with grid-aligned vertices, the simplex in question cannot be part of a partition of Ω ⊂ Rd ,
unless d ≤ 2: edges of adjacent faces would intersect.

Fig. 5 illustrates the specific case with d = 2. On the left, the regular grid (green) and the
triangle (simplex, red). Grid centers correspond to vertices in the (triangle-)mesh. The grid
corresponds to the discretisation used in [7], whereas the simplex mesh is used in this paper.
The gradient of the lower left triangle for the simplex mesh corresponds exactly to the one
computed via forward differences as shown in (3). Consequently, discretisation via finite
differences is a special case of our method, where the elements are layed out on a regular
grid, and the constraints are tested only in the upper right triangle (in the 2D case).

3.5 Adaptiveness
We have stated in the paper that our formulation is adaptive, in the sense that a hierarchical
refinement of the tesselation can only decrease the energy. We have also explained a way to
find the refined tesselation of Ω, by introducing additional vertices and splitting simplices s,
such that no faces f ∈ F are flipped; and we have put forward a procedure to initialise the
new variables. Here, we formally prove that the described scheme is sound.

Let (x∗,λ ∗,θ ∗) be the solution for a triplet M = {F,V,S}. And let M̂ = {F̂ ,V̂ , Ŝ} be the
refined mesh with V ⊂ V̂ and ∀ŝ ∈ Ŝ,∃s ∈ S with ŝ∩ s = ŝ. Furthermore, we define the sets
V̄ = V̂ \V and S̄ = Ŝ\S to denote newly introduced vertices and simplices. Our construction
works by induction, i.e. we introduce one vertex v at a time. The vertex is assumed to lie in
simplex s ∈ S, s = {vk}d+1

k=1 , which is split into simplices {s̄k}d+1
k=1 with s̄k∩ s̄l = /0,∀k 6= l. By

definition, vertex v̄ has the barycentric coordinates |s̄k|
|s| , i.e. v̄ = ∑

d+1
k=1

|s̄k|
|s| vk.

We initialize the labeling variables at new vertices v̄ ∈ V̄ via barycentric interpolation:
xi

v̄ = ∑vk∈s
|s̄k|
|s| x

i
vk

. Dual variables of the new simplices s̄k, and also the transition variables
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Figure 6: Updated data term after adding a new vertex.

xi j, are simply copied from their enclosing simplex s: λ i
s̄k

:= λ i
s , θ i

s̄k
:= θ i

s and xi j
s̄k

:= xi j
s .

The data terms at the new vertex v̄, as well as at the other vertices vk of simplex s, are
(re)computed following (2), see also Fig. 6. We call the new variables x̄, λ̄ , θ̄ and claim
that EM(x∗,λ ∗,θ ∗) = EM̂(x̄, λ̄ , θ̄) and that x̄, λ̄ , θ̄ is feasible. The latter is trivially the case
(cf . Eq. (11) from the paper); transition variables remain positive by construction, the newly
introduced labeling variables still fulfill the simplex constraints, and they induce the same
gradients in the new simplices as in the parent simplex. The same applies for the cost of the
regulariser in the new simplices: ∑i< j |s|||x

i j
s − x ji

s ||W i j = ∑i< j ∑s̄k∈s |s̄k|||xi j
s̄k
− x ji

s̄k
||W i j . More

interesting is the data cost. We introduce the notation ρv,s :=
∫

s p1
s,v(z)ρ

i(z)dz for the data
cost at vertex v, originating from the integral over simplex s. By induction, we need to only
verify the following equality for simplex s, which is split into {s̄k}d+1

k=1 :

∑
k

xi
vk

ρvk,s = ∑
k

xi
vk ∑

j 6=k
ρvk,s̄ j +∑

j
xi

v̄ρv̄,s̄ j = ∑
k

xi
vk ∑

j 6=k
ρvk,s̄ j +

|s̄k|
|s| ∑

j
xi

vk
ρv,s̄ j (4)

Recall we have ”old” vertices vk, s = {vk}d+1
k=1 and a new vertex v̄. According to (4), we must

verify:

ρvk,s=∑
j 6=k

ρvk,s̄ j+
|s̄k|
|s| ∑

j
ρv,s̄ j⇔

∫
s
ρ(z)p1

s,vk
(z)dz=

∫
s
ρ(z) ∑

j 6=k
p1

s̄ j ,vk
(z)+
|s̄k|
|s| ∑

j
p1

s̄ j ,v(z)dz. (5)

It is sufficient to show

p1
s,vk

(z) = ∑
j 6=k

p1
s̄ j ,vk

(z)+
|s̄k|
|s| ∑

j
p1

s̄ j ,v(z) ∀z ∈ s. (6)

The right hand side represents a linear function for each {s̄k}d+1
k=1 . We can check if both sides

agree on d + 1 points in each simplex, which is easy to verify. The locations we check –
substitute z on both sides of Eq. (6) – are {vk}d+1

k=1 and v. These are the defining vertices of
the d+1 simplices {s̄k}d+1

k=1 . Left and right hand side vanish, except for v and vk. Finally, we
get |s̄k|

|s| for v and 1 for vk on both sides.
In our adaptive version, we directly follow the proof and split simplices with the intro-

duction of a single new vertex. We emphasise again that this splitting schedule is merely a
proof of concept. The FEM discretisation allows for more sophisticated refinement schemes,
e.g., along the lines of [6], or flipping edges according to the energy functional, etc.

3.6 Optimisation
The energy (11) from the paper is given in primal-dual form, optimisation with existing
tools is straight-forward. We apply the minimisation scheme of [5], with pre-conditioning
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[9]. Internally, that algorithm however requires the projection onto the Wulff-shapes W i j,
which is slightly more involved.

3.6.1 Proxmap for the Minkowski sum of convex sets

Recall that, per label pair {i, j}, our Wulff-shapes are of the form W i j := Ψi j⊕B2
κ i j . They

are the Minkowski sum of two simple convex sets. Recall that the Ψi j encode the direction
dependent likelihood of a certain label transition. In our case, all Wulff-shapes permit a
closed form projection scheme, such that we solve the following sub-problem as proximal
step, independently per simplex s:

argmin
xi j ,x ji

1
2
||xi j− xi j||2 + 1

2
||x ji− x ji||2 + sup

w∈Ψi j⊕B2
κi j

wT(xi j− x ji)+ ι≥0(xi j)+ ι≥0(x ji). (7)

For the following derivation we rename the two sets W1 := Ψi j and W2 := B2
κ i j . In order to

decouple the argument within the regulariser, we introduce auxiliary variables {yk,zk}2
k=0

and additional Lagrange multipliers {µk,λk}2
k=0, and replace xi j and x ji respectively:

min
xi j ,x ji,yk,zk

max
µk,λk

1
2
||xi j− xi j||2 + 1

2
||x ji− x ji||2+

∑
k∈{1,2}

sup
w∈Wk

wT(yk− zk)+ ι≥0(y0)+ ι≥0(z0)−
2

∑
k=0

λ
T
k (x

i j− yk)−µ
T
k (x

ji− zk).

(8)

Optimality w.r.t. xi j,x ji implies:

xi j = xi j +
2

∑
k=0

λk and x ji = x ji +
2

∑
k=0

µk, (9)

which, after reinserting into (8), leads to:

min
yk,zk

max
µk,λk

−1
2
||

2

∑
k=0

λk− xi j||2 + −1
2
||

2

∑
k=0

µk− x ji||2+

sup
w1∈W1,w2∈W2

wT
1(y1− z1)+wT

2(y2− z2)+ ι≥0(y0)+ ι≥0(z0)+
2

∑
k=0

λ
T
k yk +µ

T
k zk .

(10)

Applying Fenchel-duality yields:

max
µk,λk

min
zk

−1
2
||

2

∑
k=0

λk− xi j||2 + −1
2
||

2

∑
k=0

µk− x ji||2

− ιW1(−λ1)− ιW2(−λ2)− ι≤0(−λ0)− ι≤0(−µ0)+
2

∑
k=1

(λk +µk)
Tzk.

(11)

The latter summand requires λ1 =−µ1 and λ2 =−µ2:

min
µ0,λk

1
2
||

2

∑
k=0

λk−xi j||2+1
2
||

2

∑
k=1

λk+x ji−µ0||2+ιW1(−λ1)+ιW2(−λ2)+ι≥0(λ0)+ι≥0(µ0). (12)

In this last form, we can apply a few iterations of block coordinate descent on the dual
variables and recover the update for xi j,x ji from (9).
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4 Raviart-Thomas basis

4.1 Methodology

In this section, we show how to discretise the convex relaxation, Eq. (2) from the paper, for
the case of the Raviart-Thomas basis. For convenience, we restate the energy:

min
xi

max
λ i ∑

i

∫
Ω

ρ
i(z)xi(z)+〈xi(z),∇·λ i(z)〉dz, s.t. λ

i(z)−λ
j(z)∈W i j,

m

∑
i=1

xi(z)=1,xi(z)≥0. (13)

The Raviart-Thomas basis is chosen as a strong contrast to the (preferred) Lagrange
basis. With Raviart-Thomas functions, we model the dual functions λ in (13), within our trial
space. The Raviart-Thomas RTk(M) basis functions describe a div-conforming polynomial
basis of order k+1, i.e. the divergence of the modeled vector field is continuous across
simplices. We again discretise on a simplex mesh M = {F,V,S} with vertices v ∈V,v ∈ Rd ;
faces f ∈ F defined by d vertices; and simplices s ∈ S defined by d + 1 vertices, which
partition Ω: ∪ksk = Ω,sl ∩ sk = fk,l ∈ F .

RT 0(M) := {p : Ω→ Rd |φ(x) := ∑
s∈S

φs(x) with φs(x) := csx+ds,cs∈R,ds∈Rd ,

if x∈s and 0 else,and φs(x) is continuous for x ∈ fv(s) in direction ν
s
fv}. (14)

Here, we have used νs
fv to denote the (outward-pointing) normal of face fv of simplex s. By

convention the face fv is located opposite the vertex v. We construct our linear basis with
functions that are defined for each face fv in a simplex s, and can be described in a local
form as:

φ
0
s,v(x) := (x− v)

| fv|
|s|d

if x ∈ s and 0 else,

where we again let | fv| denote the area of the face and |s| the volume of the simplex. Let νs
fv

be the normal of face fv in simplex s, then the basis functions fulfill:

〈φ 0
s,u(x),ν

s
fv〉 := [u = v] ∀x ∈ fv, (15)

with [·] denoting the Iverson bracket.
These basis functions make up the global function space by enforcing a consistent orien-

tation. For each face f we can distinguish its two adjacent simplices s+ and s−, by analysing
the scalar product of the vector 1 and the normal ν

s±
f of the shared face f (by convention

again pointing outwards of the respective simplex). W.l.o.g., we define sis
±
f := sign〈νs±

f ;1〉,
i.e. s+f νs+

f = s−f νs−
f . The global basis functions per face fv are then given by:

φ
0
s,v :=

{
sisfv(x− v) | fv||s|d if x ∈ s

0 else.
(16)

In each simplex, our vector-field φs(x) ∈ Rd can then be defined in the following manner,
with coefficients φ fv ∈ R:

φs(x) := ∑
v∈s

φ fvφ
0
s,v(x).
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By construction, cf . (15),(16), the vector-field is continuous along a face x ∈ f in direction
of the face normal ν f (of arbitrary, but fixed orientation), i.e. for neighbouring faces s+ and
s− we have:

〈φs±(x),ν f 〉= sis
±
f 〈x− v±,ν f 〉

| f |
|s±|d

φ fv± = φ fv± . (17)

Here, v+ is the vertex in simplex s+ opposite to the shared face, and v− is the vertex in
simplex s−. Thus, our function in φ is a RT function iff for all neighbouring faces s± we
have φ fv+ = φ fv− . In other words, basis coefficients only exist for faces of the simplices.

The variables we are interested in are the labeling functions xi, which are members of
our test function space, composed of piecewise constant functions per simplex:

U0(M) := {u : Ω→ R|u(x) := ∑
s∈S

us(x), with us(x) = us if x∈s and 0 else}. (18)

Before we can utilise our new basis to discretise (13) we need a way to enforce the
constraints on our dual variables λ i(z)−λ j(z) ∈W i j for all z ∈Ω. It is sufficient to enforce
the constraints on the dual functions λ in (13) only at the face midpoints z fv := 1/d ∑w∈ fv w
of faces fv ∈ s. This ensures the constraints are also valid for any point in the simplex
s. Because the Wulff shapes are convex, it is sufficient to prove that a vector field φ(x) ∈
RT 0(M),φ(x) := ∑s∈S φs(x) at any point x ∈ s can be written as a convex combination of the
values at the face midpoints:

φs(x) = ∑
fv∈s

αz fv
φ(z fv),with ∑

fv∈s
αz fv

= 1.

After some elementary algebra it turns out that, if x = αivi, then αz fv
:= (1−d ·αi) encode

this convex combination. Furthermore, the value of φs at a location x ∈ s can be found by
linear combination of basis coefficients at the vertices of s:

φs(x) = ∑
v∈s

sisfv(x− v)
| fv|
|s|d

φv. (19)

4.2 Discretisation
With these relations, we can discretise the energy (13) for labeling functions xi ∈U0(M) and
dual vector-field λ i ∈ RT 0(M). First, we convert the continuous data costs ρ i into a cost
per simplex ρ i

s, which can again be achieved by convolving the cost with the respective (per
simplex constant) basis function: ρ i

s :=
∫

s us(z)ρ i(z)dz =
∫

s ρ i(z)dz. In practice, the integral
is computed via sampling. Next, we discretise the second part of our energy with the help of
the divergence theorem and (17):∫

Ω

xi(z)∇·λ i(z)dx=∑
s∈S

∫
S
xi

s∇·λ (z)dx=∑
s∈S

∫
∂S

xi
s〈λ (z),ν(z)〉dz= ∑

v∈s,s∈S
xi

sλ
i
fv | fv|sisfv (20)

As shown, we need to verify the constraints only at face midpoints z fv . The vectors λs(z fv)
are linear in the basis coefficients for any z ∈Ω, and the discretised version of (13) becomes

min
xi

max
λ i ∑

s∈S
ρ

i
sx

i
s +∑

v∈s,s∈S
xi

sλ
i
fv | fv|sisfv , s.t. λ

i
s(z fv)−λ

j
s (z fv) ∈W i j, xi

s ∈ ∆ ∀i< j,v∈s,s∈S.

(21)
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Here, we let ∆ encode the unit simplex. Finally, for every simplex s, we replace the constraint
set ∑i< j λ i

s(z fv)−λ
j

s (z fv)∈W i j in the same manner as for the Lagrangian basis. We introduce
auxiliary variables and Lagrange multipliers yi j

s, fv ,∀i < j, and exploit Fenchel-Duality to
obtain

max
λ i

s

min
yi j

s
∑
v∈s

∑
i< j
||yi j

s, fv ||W i j−∑
v∈s

∑
i
〈λ i

s(z fv), ∑
j:i< j

yi j
s, fv − ∑

j: j<i
y ji

s, fv〉=

max
λ i

s

min
yi j

s
∑
v∈s

∑
i< j
||yi j

s, fv ||W i j−∑
v∈s

∑
i

λ
i
fv

(
| fv|sisfv
|s|d

[
∑
f̄∈s

(z f̄−v)T
(

∑
j:i< j

yi j
s, f̄− ∑

j: j<i
y ji

s, f̄

)])
.

(22)

Furthermore, recall that we use Neumann conditions at the boundary of Ω, which translates
into coeffients λ i

f = 0, ∀ f ∈ ∂Ω. Combining (21) and (22), we get the (metric) energy for
the Raviart-Thomas discretisation:

min
xi,yi j

max
λ i ∑

s∈S
∑

i
ρ

i
sx

i
s + ||y

i j
s, fv ||W i j + ι∆(xi

s)

+∑
v∈s

∑
i

λ
i
fv | fv|sisfv

(
xi

s−
1
|s|d

[
∑
f̄∈s

(z f̄−v)T
(

∑
j:i< j

yi j
s, f̄− ∑

j: j<i
y ji

s, f̄

)]) (23)

To extend it to non-metric pairwise costs, as in the Lagrangian case, we need to impose
additional assumptions. One possibility is to utilise basis functions for the dual variables,
which are continuous in all directions at the faces. In that case, it is only necessary to check
the constraints at the faces and not for each face in each simplex, i.e. the variables for yi j

s+, f

and yi j
s−, f merge into one set. Another possibility is to only force the normal component

along the faces of λ to be contained in the Wulff-shapes. In this direction, RT is already
continuous and the Lagrange multipliers y can be merged. This line of attack leads to a
scheme that is remarkably similar to belief propagation on a Markov random field, in the
sense that the discretisation lacks a continuous counterpart to begin with, and may lead to
stronger grid artifacts. We stop at this point and leave an investigation of such models to
future work.

4.3 2D results
Fig. 7 illustrates the result we obtain with the Raviart-Thomas FEM method (RT). We use
the same (perfect) baseline setting as for the Lagrange FEM method (P1) in the main paper.
In that setting, the RT method achieves 97.5% of overall accuracy and 92.8% of average
accuracy. While these results confirm that also the RT method is sound, they also show its
limitations compared to the Lagrange basis. Simplices not aligned with object boundaries,
straddling multiple labels, will necessarily introduce errors in the reconstruction. Note that
we do not used edge information to guide the meshing; especially since such information
is not available for our target application, semantic 3D reconstruction. We refer to the 3D
qualitative comparison (cf . Sec. 4.4) for a more detailed analysis of the differences between
the two methods.

NB: Further to this manuscript, the supplementary material contains a short video, which
shows the diffusion of the indicator function over 1000 iterations for both proposed methods.
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Figure 7: Left: Synthetic 2D scene. Colors indicate ground (gray), building (red) and roof
(yellow). Middle: Zoom of the control mesh. Right: Reconstructed semantic 2D model.

Figure 8: Quantitative evaluation of Raviart-Thomas FEM method w.r.t. different degrada-
tions of the input data.

We perform also the same series of experiments where we incrementally add different
types of perturbations, cf . Sec. 5 of the main paper. Fig. 8 shows the corresponding behaviour
of our RT method. Generally speaking, both models shows a similar sensitivity to defective
inputs, but with a small edge for the Lagrange method, which consistently reaches higher
overall accuracy.

4.4 3D results

Fig. 9 shows a quantitative evaluation of the Raviart-Thomas basis, equal to the one of the
Lagrange basis presented in the main paper. As before, the colors encode building (red),
ground (gray), vegetation (green), roof (yellow) and clutter (blue). We summarise the out-
comes in Tab. 1. The differences between the Lagrange basis and octree are vanishingly

Figure 9: Quantitative evaluation of Scene 1 from Enschede. Left: One of the input images.
Middle left: Semantic 3D model obtained with our Raviart-Thomas FEM method. Middle
Right: Back-projected labels overlayed on the image. Right: Error map, misclassified pixels
are marked in red.
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small, on the other hand we notice a bigger gap between the Raviart-Thomas basis and oc-
tree. We also present a qualitative comparison of the two bases in Fig. 10. The differences
are immediately apparent, which confirms the numbers given in Tab. 1. Raviart-Thomas
labels entire simplices, so the reconstruction consists of piecewise constant elements. On
the contrary, the Lagrangian basis has the advantage that the labeling functions are linear
and can be interpreted as (signed) distance functions, such that a smooth iso-surface can be
extracted, here done with marching tetrahedra. Despite the piecewise constant reconstruc-
tion, the RT basis measures metric quantities – in contrast to, for instance, Markov random
fields, where pairwise distances between the simplices would have to be designed explicitly
to achieve similar effects.

Data set Error measure Tetra P1 Tetra RT Octree MB

Scene 1 Overall acc. [%] 84.0 81.9 83.9 82.5
Average acc. [%] 81.1 79.1 80.6 81.4

Table 1: Quantitative comparison of our two proposed FEM methods with octree model [2]
and MultiBoost input data [1].

Figure 10: Reconstruction with Raviart-Thomas (left) and with the Lagrange basis (right).
We deliberately select a low resolution, choose flat shading and plot mesh edges, to accentu-
ate the differences. Please refer to the text for details.
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