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Motivation

Most 3D sensors deliver point clouds with holes due to deficiencies of the

acquisition process (e.g. specularities, occlusions). Our goal is to fill these holes.

Our Work

o Directly operates on the input point cloud: no conversion 

into a memory-demanding representation

o Locally learn 2D descriptors: projection of  the 3D 

geometry on selected K-planes

o Better complexity: we can do K-2d convolutions rather 

than volumetric convolutions

KAPLAN: local 3D descriptor

For a given plane of KAPLAN:

o Nearby points are first selected according to a

box constraint, to preserve locality.

o These points are then projected orthogonally

onto the plane to form 2D images.

The plane is discretized into a grid of R x R cells:

o Each cell collects information about

projected points that fall into it.

o We collect depth, normals, and a valid flag

indicating if any points have been projected to

a given cell.

Learning to fill empty cells through Supervision

Contributions
o A novel approach to shape completion for 3D point clouds that operates both 

locally and globally.

o KAPLAN, an efficient and scalable multi-view 3D representation.

o The combination of KAPLAN with a coarse-to-fine scheme allows the automatic

detection of holes to be filled (no regeneration of the complete object).
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Parameters study

Canonical planes minimise redundancy

while maximising the informative 

potential of KAPLAN descriptor

Higher resolution appears beneficial. 

However a more significant gain from 

resolution 15 to 35.

Comparison with state-of-the-art - Qualitative

PSR [1] PCN [2] Cascaded [3] OccNet [4] DeepSDF [5]

Training setup

Comparison with state-of-the-art - Quantitative
Ours

F1
 S

co
re

 (
↑

)
C

h
am

fe
r

(↓
)

F1 -Score

Ours and PSR perform best.

Interpretation: the input points are

not discarded and regenerated

contrary to other methods.

Chamfer Distance

Ours is on par with top baselines.

Airplane and Sofa clearly benefit

from the coarse-to-fine scheme.

Interpretation: these categories

possess large planar sufaces.

KAPLAN structure

A few KAPLAN are then sampled at selected query points from the input cloud.


