KAPLAN: A 3D Point Descriptor for Shape Completion

Audrey Richard¹, Ian Cherabier¹, Martin R. Oswald¹, Marc Pollefeys^{1,2}, Konrad Schindler¹

¹ETH Zurich, ²Microsoft Zürich

Motivation

Most 3D sensors deliver *point clouds with holes* due to deficiencies of the acquisition process (e.g. specularities, occlusions). Our goal is to fill these holes.

Our Work

- O *Directly operates on the input point cloud*: no conversion into a memory-demanding representation
- Locally learn 2D descriptors: projection of the 3D geometry on selected K-planes
- o **Better complexity:** we can do K-2d convolutions rather than volumetric convolutions

KAPLAN: local 3D descriptor

Input Point Cloud (incomplete)

For a given plane of KAPLAN:

- Nearby points are first selected according to a box constraint, to *preserve locality*.
- o These points are then *projected orthogonally* onto the plane to form 2D images.

- o *Each cell collects information* about projected points that fall into it.
- We collect *depth*, *normals*, and a *valid flag* indicating if any points have been projected to a given cell.

KAPLAN structure

A few KAPLAN are then sampled at selected query points from the input cloud.

Training setup

Comparison with state-of-the-art - Quantitative

F1 -Score

Ours and PSR perform best.

Interpretation: the input points are not discarded and regenerated contrary to other methods.

Chamfer Distance

Ours is on par with top baselines.

Airplane and Sofa clearly benefit from the coarse-to-fine scheme.

Interpretation: these categories possess large planar sufaces.

Comparison with state-of-the-art - Qualitative

Parameters study

$R\left(K=3\right)$	$CD[\times 10^3] \downarrow$	$F1\uparrow$
15×15	0.46	93.50
35×35	0.31	94.29
49×49	0.26	94.41
65×65	0.17	95.33
85×85	0.13	95.51
105×105	0.12	95.60

Higher resolution appears beneficial. However a more significant gain from resolution *15 to 35*.

K (R = 35)	$CD[\times 10^3] \downarrow$	$F1\uparrow$
1 tangential	1.56	93.15
2 random	1.91	93.04
3 canonical	0.31	94.29
5 random	1.89	93.08
9 canonical	0.28	94.39
12 random	1.90	93.08
27 canonical	0.27	94.50

Canonical planes minimise redundancy while maximising the informative potential of KAPLAN descriptor

Contributions

- A novel approach to shape completion for 3D point clouds that operates both locally and globally.
- o KAPLAN, an efficient and scalable multi-view 3D representation.
- o The combination of KAPLAN with a coarse-to-fine scheme allows the automatic detection of holes to be filled (no regeneration of the complete object).

References

- [1] M. M. Kazhdan, M. Bolitho, H. Hoppe. Poisson surface reconstruction. In Eurographics, 2006
- [2] W. Yuan, T. Khot, D. Held, C. Mertz, M. Hebert. PCN: point completion network. In *3DV*, 2018.
- [3] X. Wang, M. H. A. J., G. H. Lee. Cascaded refinement network for point cloud completion. In CVPR, 2020.
- [4] L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, A. Geiger. Occupancy networks: Learning 3d reconstruction in function space. In *CVPR*, 2019.
- [5] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, S. Lovegrove. DeepSDF: Learning continuous signed distance functions for shape representation. In *CVPR*, 2019.

Learning to fill empty cells through Supervision

