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Abstract

We exploit field guides to learn bird species recognition,
in particular zero-shot recognition of unseen species. Il-
lustrations contained in field guides deliberately focus on
discriminative properties of each species, and can serve as
side information to transfer knowledge from seen to unseen
bird species. We study two approaches: (1) a contrastive
encoding of illustrations, which can be fed into standard
zero-shot learning schemes; and (2) a novel method that
leverages the fact that illustrations are also images and as
such structurally more similar to photographs than other
kinds of side information. Our results show that illustra-
tions from field guides, which are readily available for a
wide range of species, are indeed a competitive source of
side information for zero-shot learning. On a subset of
the iNaturalist2021 dataset with 749 seen and 739 unseen
species, we obtain a classification accuracy of unseen bird
species of 12% @top-1and 38% @top-10, which shows the
potential of field guides for challenging real-world scenar-
ios with many species

1. Introduction
Fine-grained species recognition is essential for biodi-

versity monitoring. Identifying the species of observed an-
imals and plants is the basis for several important biodiver-
sity indicators, e.g., the number of different species in an
area, the abundance of individual species, and their geo-
graphical distribution. Many species are locally or globally
threatened by human activities, making it all the more im-
portant to monitor their distributions and support conserva-
tion efforts [6].

A bottleneck for automatic species recognition in the
wild has long been the collection of enough observations.
In the last years, the cooperation of experts and nature en-
thusiasts has enabled the emergence of community science
projects. Volunteers record and share images and locations
of their observations, which experts can curate and organ-
ise to obtain large-scale databases for biodiversity monitor-
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Figure 1. Zero-shot learning with field guides via prototype align-
ment. Class prototypes (depicted here as different colored vec-
tors) are learned using a shared feature extractor F between pho-
tographs and illustrations. At inference time the class with the
largest dot-product to z(x) is predicted.

ing. Examples include the iNaturalist [12] and eBirds [21]
projects. The eBirds platform alone has accumulated >34
million images for bird species, from ≈800’000 contribu-
tors. Those databases make it possible to train automatic
species recognition systems, which would be a valuable as-
set for scalable biodiversity monitoring.

When data collection is limited, one can use few-shot
learning if only few labelled examples are available for cer-
tain classes [25]. In the extreme case, Zero-Shot Learning
(ZSL) refers to the scenario where no training samples are
available at all for some target classes [1, 8, 16, 27]. This
requires class-wise characteristics (side information) rather
than labelled data, since labelled examples are not available
for training. Traditionally, professional as well as amateur
observers rely on field guides to recognise animal and plant
species in nature. This works remarkably well. Even if new
formats of field guides arise, such as interactive maps and
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Figure 2. Hierarchical representation of the Passeriformes order
of the iNat2021 dataset for Seen and i-hop unseen classes.

mobile apps to aid species recognition [7], the basic prin-
ciple remains the same: the field guide provides a clear,
representative visual example that emphasises the distinc-
tive properties and visual cues needed to identify a species
and to discriminate it from similar ones.

We make the following contributions: (1) We introduce
the Bird Illustrations of the World (Billow) dataset for fine-
grained zero-shot classification of bird species at an un-
precedented scale; (2) we propose a contrastive embedding
of the illustrations that enables existing ZSL algorithms to
leverage the high-dimensional side information contained
in Billow; and (3) we propose a novel zero-shot learning
scheme better suited for side-information in the form of il-
lustrations. Its fundamental principle is to train a model that
can process either illustrations or photographs and in both
cases arrives at the same predictions and aligns the class
prototypes from the illustrations with the photographs, as
depicted in Figure 1.

2. Bird Illustrations of the World Dataset

We introduce the Bird Illustrations of the World (Bil-
low) dataset for Generalized Zero-Shot Learning (GZSL)
in fine-grained classification. The dataset consists of illus-
trations from the Birds of the World project [5] collected
and organized by the Cornell Lab of Ornithology (CLO).
Billow includes 22’351 illustrations covering 10’631 dif-
ferent species, 2’279 genera, 249 families, and 41 orders.
All illustrations in the dataset share a standardized graphi-
cal style: side view in front of white background, in neutral
pose. Most species have illustrations for a male and a fe-
male specimens, some also include a close-up of the bird’s
head. CLO granted us consent to use the illustrations for
this research. The digital licence of the original artworks is
owned by the CLO. The artworks may be accessed with a
valid subscription to the Birds of the World project.

We use Billow with three datasets, namely Caltech-
UCSD Birds-200-2011 (CUB) [26] and the bird subsets of
iNaturalist 2017 [23] and iNaturalist 2021 [22]. The list of
species included in Billow covers almost all species of the

CUB dataset (196 out of 200), and also the overwhelming
majority of bird species from iNaturalist 2017 (895 out of
954) and iNaturalist 2021 (1485 out of 1486). Note that the
opposite is not true: even the 1485 bird classes of iNatu-
ralist 2021 are only a small fraction of the 10’631 species
present in Billow. This raises the question of whether we
can leverage the rich information contained in the Billow
dataset and combine it with a dataset of photographs, to
advance the state-of-the-art in fine-grained (bird) species
recognition.

For ZSL with CUB, there is a default split into 150 seen
and 50 unseen classes [27]. CUB uses common names, not
scientific names. Hence, previous work had to map the
common names to scientific ones, e.g., to leverage the hi-
erarchical label structure [4], or to utilize genetic informa-
tion [3]. We have revised these assignments, and only retain
mappings for which we found a one-to-one correspondence
between the common and scientific name. We obtained a
match in Billow for 196 out of the 200 CUB classes.

For the iNaturalist datasets, we propose a seen/unseen
split. Similar to previous ZSL work that uses ImageNet [9,
19], we construct several groups of unseen classes, which
have different distances to seen classes in the label hierar-
chy. We define the i-hop set as the set of all classes whose
distance to the nearest seen class in the taxonomic tree is
equal to i (i.e., they belong to the same super-class at the
i-th taxonomic level). For example, the classes in the 2-
hop set share the family (2nd level) with at least one seen
class, but do not share the same genus with any of them. We
consider the species, genus, family and order levels to ob-
tain 0-hop (i.e., seen classes), 1-hop, 2-hop and 3-hop sets.
Classes in the 4-hop set do not have members of the same
taxonomic group in any level of the seen set. The intersec-
tion of the Aves super-class from iNaturalist 2017 with Bil-
low contains 895 species. These are randomly split into 381
seen and 515 unseen classes. From the unseen ones we con-
struct the 4 different i-hop sets for validation. We repeat the
same procedure with iNaturalist 2021: the intersection of
its Birds super-category with Billow contains 1485 species.
These are split into 749 seen and 736 unseen classes. See
Fig. 2 for an illustration of the validation splits.

3. Method
In order to utilise these illustrations for ZSL, we explore

two different strategies. We first explore a two-stage strat-
egy, where we first learn a Contrastive eEncoding (CE) of
the illustrations that allows us to feed the codes into existing
ZSL methods at a second stage. See the full version of our
work for more details on this approach. We then develop a
more specialized method, named Prototype Alignment (PA),
where a single end-to-end network is trained to map both
illustrations and photographs to similar latent representa-
tions, in order to better leverage their similar structure.



In contrast to other types of side information for ZSL,
illustrations also belong to the visual domain. We leverage
this property and propose PA for ZSL with visual side in-
formation, which allows us to bypass the separate encod-
ing step required to use illustrations with previous ZSL-
methods. Inspired by [28], we explore a view of the prob-
lem through the lens of few-shot domain adaptation: The
source domain are illustrations, the target domain are pho-
tographic images.

Let s and x be samples from the source domain S and the
target domain X , respectively. We have access to samples
from all classes Y in the source domain, but only to samples
of the seen classes Yseen in the target domain. Furthermore,
we also do not have unlabelled samples of unseen classes in
the target domain.

We train a feature extractor network F that takes input
samples from either domain and outputs a latent representa-
tion z. The last operation in F is an L2-normalization layer
η(·). During training, we keep a memory bank in each do-
main, with a prototype z of each class. For the illustrations
in the source domain, that representation can be interpreted
as the class embedding ϕ(yk)

(s) that is used for ZSL. Note
that, in contrast to previous approaches [15, 28], we do not
keep an instance-wise memory bank, which would lead to
intractable memory demands for larger datasets.

For the sake of simplicity, we omit the domain indicator
in the following where possible. In every iteration, we up-
date the memory bank in each domain ϕ(yk) with the latent
representation of the new samples, with momentum m with
ϕ(yk)← η

(
(1−m)zk+mϕ(yk)

)
. To promote compact and

discriminative class representations, we apply a contrastive
in-domain loss via a projection head h:

Lc

(
zi, ϕ(yi)

)
= − log

exp
(
1
τ h(zi)h(ϕ(yi))

)
∑

k∈C exp
(
1
τ h(zi)h(ϕ(yk))

) .
(1)

In contrast to [28] we refrain from applying a cross-domain
contrastive loss to close the domain gap. Instead, we
sidestep the gap by using the class prototypes from both
domains for classification, so as to force the network F to
produce class-discriminative features. To obtain class log-
its, we compute the dot-product between an image embed-
ding z and the class embeddings ϕ(Y) from both domains,
ŷ(s) = z · ϕ(Y)(s) and ŷ(x) = z · ϕ(Yseen)

(x). These serve
as input to a cross-entropy loss Lcls for supervision:

LCE

(
ŷ(s), ŷ(x),y

)
= Lcls

(
ŷ(s),y

)
+ Lcls

(
ŷ(x),y

)
.

(2)
Eq. 2 encourages sample representations that are discrim-
inative w.r.t. prototypes from the other domain, which in
turn aligns the two domains. Note also that the second term
in Eq 2 is only computed for seen classes, as it depends on
ϕ(Yseen)

(x). The complete loss function is L = L(s)+L(x),

such that

L(d)=
∑

i∈B(d)

(
λ(d)
c Lc(zi, ϕ(yi))+λ(d)

ce LCE(ŷ
(s)
i , ŷ

(x)
i ,yi)

)
,

(3)
where B(d) denotes indices of the samples from domain
d ∈ {S,X} in the mini-batch. Hyperparameters λc, λce

are used to balance the different losses. At test time, we can
simply use the logits ŷ = F (x) · ϕ(Y)(s) for classification.

(a) Seen, unseen and harmonic mean (H) Top-k accuracy. Average of 5
runs ± standard deviation.

top-1 top-10
Model S U H S U H
iNat2017
CE 33.1± 0.8 2.6 ± 0.2 4.7 ± 0.3 66.3± 1.5 23.6± 0.2 34.8± 0.3
PA 23.0± 0.3 8.8 ± 0.4 12.8± 0.5 63.8± 0.5 32.9± 0.6 43.5± 0.6
iNat2021mini
CE 24.2± 0.2 3.9 ± 0.2 6.7 ± 0.3 56.4± 0.4 26.5± 0.4 36.1± 0.3
PA 20.8± 0.4 12.7± 0.4 15.7± 0.2 56.8± 0.4 38.5± 0.5 45.9± 0.3
iNat2021
CE 36.6± 0.8 2.1 ± 0.1 3.9 ± 0.2 69.7± 0.3 19.6± 0.3 30.6± 0.4
PA 20.9± 0.3 12.2± 0.3 15.4± 0.2 56.6± 0.2 37.8± 0.5 45.3± 0.4

(b) Unseen n-hop validation sets top-k accuracy. Average of 5 runs.
top-1 top-10

N -hop 1 2 3 4 1 2 3 4
iNat2017
CE 2.3 3.4 2.9 1.6 35.1 27.8 19.0 13.8
PA 9.1 9.9 9.3 7.0 42.3 35.4 30.5 25.1
iNat2021mini
CE 5.2 4.0 3.6 2.3 35.0 26.3 24.2 18.6
PA 12.8 13.6 11.5 11.8 44.7 40.0 34.7 31.2
iNat2021
CE 2.6 1.9 2.1 1.6 27.3 19.6 16.4 13.3
PA 12.3 13.3 11.4 10.6 44.8 39.2 33.6 30.4

Table 1. GZSL on iNaturalist Datasets with Billow. CE: Con-
trastive Encoding of illustrations and TFVAEGAN. PA: Prototype
Alignment. Best method is bold.

4. Results
Following the convention in GZSL literature, we evalu-

ate the performance of each algorithm using held out sets
of samples of the seen classes (S) and unseen classes (U)
separately. The harmonic mean of these two numbers (H) is
also reported.

4.1. Zero-Shot Recognition, iNaturalist 2017 and
2021

We first explore using Billow illustrations for ZSL using
the iNaturalist 2017 and 2021 datasets. We report experi-
ments using CE with TFVAEGAN [18] in a two-stage ap-
proach, and experiments using Billow illustrations directly
with PA. On all iNaturalist datasets we observed an im-
proved performance of PA over the CE. This was consistent
on all three datasets evaluated on all top-k metrics. With
PA we observed a harmonic mean H@top-10 of 45.3% and
45.9% for iNat2021 and its iNat2021mini, respectively (see



Tab. 1a). For CE we observed a decreased performance with
the larger training dataset for iNat2021 (H@top-10 30.6%
and 36.1%). These results indicate that further regulariza-
tion may be needed for large datasets.

Table 1b shows that the hierarchical distance to the near-
est seen classes correlates strongly with performance on the
unseen datasets. In line with previous results, CE showed
a decrease in performance with respect to PA. This was
consistent over all i-hop sets. This is aligned with what
has been observed in ImageNet for ZSL [9, 14, 19]. How-
ever, it seems that ZSL on ImageNet is more challenging
than in iNaturalist as the label distance on ImageNet classes
might not be as meaningful as with taxonomic distances of
species.

4.2. Zero-Shot Recognition, CUB

We also compare our CE and PA methods using CUB196,
which contains the 196 CUB classes also contained in Bil-
low, divided into 148 seen and 48 unseen classes, respect-
ing the split proposed in [27]. Class embedding vectors
were generated from illustrations using CE. These embed-
dings were used in combination with TFVAEGAN [18],
CE-GZSL [11], and LsrGAN [24] to evaluate their perfor-
mance as class side information ϕ(y) in a ZSL setting. In
Table 2a (top) we observe that the best results with CE are
obtained in combination with TFVAEGAN.

In Table 2a (bottom) we present an evaluation of vari-
ous supervised and unsupervised domain adaptation meth-
ods for ZSL. This was tested with DANN [10], MDD [29],
MCC [13], ProtoDA [28] and CCSA [17]. Although DANN
and ProtoDA did not completely collapse towards the seen
classes, they fail to fully translate knowledge from the
source domain into the target domain. Our PA approach on
the other hand achieves the best performance, well above
that of domain adaptation baselines and the CE approach.

Furthermore, we compared CE encodings of Billow il-
lustrations with other types of side information in Table 2b
using CUB191, the subset of 191 CUB classes overlapping
with other types of side-information and Billow, divided
into 145 seen and 46 unseen classes. As in the previ-
ous experiment, the split proposed by [27] is respected and
the class embedding vectors were generated from illustra-
tions using our Contrastive Encoding. We used these em-
beddings in combination with TFVAEGAN, CE-GZSL and
LsrGAN. We compare Billow with the following sources
of side-information ϕ(y): binary attributes [26], visual de-
scriptions [20], DNA [3], and word2vec [2]. These experi-
ments show that the representation power of Billow’s con-
trastive embedding is comparable to that of word2vec and
DNA embeddings. In terms of comparison among the ex-
isting methods we can observe that TFVAEGAN achieves
the best results in both scenarios.

(a) Experiments with Billow on CUB196. Top: CE Billow (Contrastive
embeddding of Billow, ours), combined with GZSL methods. Bottom:
End-to-end methods to use Billow, including PA (Prototype Alignment,
ours) and domain adaptation methods

ϕ(y) Model S U H

CE Billow
(ours)

CE-GZSL 42.0 ±1.1 25.2 ±1.5 31.5 ±1.2
LsrGAN 69.7 ±0.3 6.4 ±0.5 11.6 ±0.9
TFVAEGAN 45.5 ±13.1 31.5 ±5.5 35.8 ±1.2

Billow
(end-to-end)

DANN† 24.3 ±1.8 17.5 ±2.3 20.3 ±1.6
MDD† 1.4 ±0.4 0.7 ±0.4 0.9 ±0.4
MCC† 6.5 ±0.5 5.8 ±0.8 6.1 ±0.4
ProtoDA 13.8 ±0.9 13.8 ±1.8 14.4 ±2.0
CCSA 73.5 ±0.7 0.1 ±0.0 0.1 ±0.1
PA (ours) 69.7 ±0.6 36.1 ±1.5 47.5±1.5

(b) Experiments with Billow on CUB191. Comparison with other types of
side-information (ϕ(y)) used with CUB.

ϕ(y) Model S U H

Binary
attributes

CE-GZSL 59.8 ± 1.9 48.4 ± 0.7 53.5 ± 0.7
LsrGAN 63.6 ± 0.2 20.4 ± 0.5 30.9 ± 0.6
TFVAEGAN 63.4 ± 2.2 52.8 ± 1.4 57.6 ± 0.2

Visual
descriptions

CE-GZSL 66.4 ± 0.3 65.0 ± 0.6 65.7 ± 0.4
LsrGAN 58.7 ± 0.3 54.2 ± 0.8 56.3 ± 0.4
TFVAEGAN 67.8 ± 2.1 68.4 ± 2.1 68.1 ± 0.4

DNA
CE-GZSL 39.5 ±1.2 13.5 ±0.8 20.1 ±0.8
LsrGAN 69.7 ±0.1 3.9 ±0.2 7.4 ±0.4
TFVAEGAN 30.8 ±0.4 20.3 ±1.0 24.5 ±0.7

word2vec
CE-GZSL 49.1 ±1.7 25.9 ±0.7 33.9 ±0.5
LsrGAN 62.0 ±0.5 16.5 ±0.4 26.1 ±0.5
TFVAEGAN 45.6 ±1.0 27.2 ±0.9 34.1 ±0.9

CE Billow
(ours)

CE-GZSL 42.7 ±1.5 27.9 ±0.8 33.8 ±1.0
LsrGAN 69.2 ±0.2 7.0 ±0.2 12.7 ±0.4
TFVAEGAN 45.3 ±14.1 31.6 ±5.4 35.6 ±1.1

Table 2. GZSL on CUB. Seen, unseen and harmonic mean (H)
Top-1 accuracy. Average of 5 runs ± standard deviation. Best
method for each dataset and ϕ(y) is bold.

5. Conclusion
Our experiments show that using field guides as side in-

formation for ZSL is feasible, expanding the set of fine-
grained ZSL experiments to datasets with more natural
distributions such as iNaturalist2017 and iNaturalist2021.
iNaturalist experiments show that, while state-of-the-art
ZSL combined with the contrastive encoded illustrations
achieves reasonable results, our proposed PA consistently
outperforms it.

Species recognition would benefit from further stud-
ies on how to incorporate information from a taxonomic
tree into the method to improve performance, such as by
explicitly modelling species similarity and patristic dis-
tances [14]; or modelling different sexes of the same bird
species separately. While we have focused this work on il-
lustrations of birds, there are many other field guides that
could potentially be exploited in ZSL. We hope that our
work inspires more research in this direction to assist ef-
forts in biodiversity mapping and conservation.
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