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ABSTRACT

Fine-grained population estimation is important for several
domains, such as urban planning, public health, and human-
itarian action. Due to limited resources, population maps
with sufficient spatial resolution and temporal frequency are
not available for many developing countries. Population es-
timates are often based on statistics available at the national
or provincial level, which moreover are updated infrequently.
The United Nations produce estimates of population growth
rates, which are widely used to project population numbers
to a target year, starting from the most recent census data.
However, they use a simplified model of population growth
with uniform growth rates for all urban, respectively rural ar-
eas within a country. This neglects the complex dynamics
of population growth (e.g., growth rates in big cities are usu-
ally larger than in smaller urban areas) and leads to significant
errors in population projections. In this work, we propose a
methodology to estimate fine-grained population growth rates
and present experimental results for Mozambique.

Index Terms— population estimation, growth rate, fine-
grained, Markov random fields

1. INTRODUCTION

Precise population information is critical for urban planning,
disaster relief, and humanitarian actions. Population growth
is usually correlated with an increase in infrastructure, built-
up area, and socio-economic activities [1, 2]. Human popu-
lation growth is a complex process that differs in urban and
rural places, with a tendency toward higher growth rates for
the former. But even within urban agglomerations, different
population growth rates are common, depending on their sizes
[3]; additionally, the borders between areas shift, as smaller
settlements merge into urban centers. Another common pro-
cess is the in-situ urbanization of rural areas [4]: as a conse-
quence, it is expected that in the next three decades, the main
population growth will occur in developing countries, where
precise growth rates are often not known [2].

Although population censuses are performed regularly in
developed countries, the same cannot be said for many de-
veloping countries. An additional problem is that the census

data collected in developing countries is often spatially coarse
(e.g., only a single population count per region or province).
Recently, some works have explored how fine-grained popu-
lation maps can be derived from coarse census data with the
help of machine learning models [5, 6, 7]. They use multi-
modal, fine-grained geographical data as inputs to spatially
distribute the coarse population counts. Examples of inputs
that are predictive of population density are, among oth-
ers, building counts (extracted from remote sensing images),
nightlight images, and the distance to infrastructures such as
roads [6]. In particular, buildings were – unsurprisingly –
found to be highly predictive for population counts.

While the above methods are highly effective in disag-
gregating coarse census data, they remain dependent on the
availability of such census surveys, thus creating the need
for estimating population growth to be extrapolated beyond
census dates. The United Nations regularly publish popula-
tion growth rates of urban and rural areas in several countries,
which are used to extrapolate the most recent census data to a
desired target year.

A common limitation of population estimation methods is
that they are trained with UN projections as the regression tar-
get. Those projections assume a uniform population growth
rate in urban and rural areas, which is an oversimplification
of the reality: almost everywhere, population dynamics are
more complex, and even two different urban areas of com-
parable size, within the same country, may experience very
different growth rates. This variability can be seen in Mozam-
bique: Figure 1 shows the population growth rates in different
provinces of Mozambique, computed from the last censuses
of 2007 and 2017.

In this paper, we propose a method to predict popula-
tion growth rates from maps of built-up areas and historical
census data. We use a computational scheme based on the
Markov Random Field model to predict the growth rates, us-
ing built-up data from two different points in time, namely
(1) the last census year and (2) the target year. We defined
a number of built-up agglomerations and we enforce consis-
tent growth rates for agglomerations with similar characteris-
tics in terms of area, growth, and nightlights intensity. Our
method is evaluated for the country of Mozambique, a de-
veloping country for which census information is available at



Fig. 1. Growth rate in provinces of Mozambique between the
census of 2007 and 2017

two different points in time. The experiments show that our
predicted growth rates depict the true population growth more
accurately than those used for the UN projections and lead to
better regional population forecasts.

2. METHODOLOGY

The objective of our proposed method is to compute a pop-
ulation growth rate specific to a series of locally defined ag-
glomerations. In the following, we detail how these agglom-
erations were defined, and the computational approach to esti-
mate their growth rates using a Markov Random Field model
based on agglomeration similarity and regional consistency.

2.1. Defining urban agglomerations

To obtain a fine-grained estimation of population growth
rates, we define a series of urban agglomerations based on
built-up areas. These area can be located anywhere in the
country, both in urban or rural areas, and are defined by clus-
tering pixels related to built-up areas. To do so, we clustered
the spatial coordinates of the pixels containing built-up areas
from a rasterized urban settlements layer. We used DBSCAN
to perform the clustering, leading to NA different agglom-
erations. The building data was obtained from the open

repository World Settlement Footprints [8, 9]. The remaining
(non-building) pixels were assigned to the spatially closest
agglomeration.

2.2. Estimating growth rates

Once the NA agglomerations have been defined, we want to
learn a population growth rate, ↵i, for each agglomeration
i 2 [1, . . . , NA]. The aim of our model is then to estimate
local ↵i‘s, one per agglomeration. We start from the assump-
tion that the growth rate of the population is highly corre-
lated with the increase in built-up area between the two time
steps t � 1 and t. Indeed, creating built-up area layers is a
good proxy task that can be approached successfully with re-
mote sensing [10]. We use this intuition to create a Markov
Random Field (MRF)-based method [11] that will estimate
growth rates starting from:

• the built-up area map at the time of the last census bt�1
k ;

• the built-up area map for the target year btk;

• the known population counts of the last census pt�1
k ;

• an estimate of similarity between the different agglom-
erations, obtained by clustering the agglomerations in a
set of Q prototypes, obtained by K-Means. To cluster
every agglomeration i, we used as variables the built-
up total area, the built-up area growth, and the mean
nightlight intensity. This led to the cluster assignment
qi.

We assume the following relation between the populations
at the two time steps:

pti = pt�1
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Using the four input variables above and relations in
Eqs. (1) and (2), the MRF model can be employed to mini-
mize the following energy function U , aiming at finding the
most accurate population estimation for each agglomeration
i at time t, p̂t:
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where ctj is the population projection of the UN for admin-
istrative region j. In the equation, the following two energy
terms balance two effects:

• Similarity-based growth: this term favors consistency
between agglomerations with similar characteristics.
The term

�Sik =

(
1, if qi = qk
0, otherwise

(4)

ensures that agglomerations assigned to the same clus-
ter prototype q receive similar growth rates.

• Geographical consistency: this term favors that the to-
tal predicted population in each administrative region
(province) j 2 [1, . . . , NP ] corresponds to the regional
statistics. We do so by comparing ctj (the projected
population given by the UN for province j) to pti (the
sum of the populations estimated for all the agglomer-
ations within the province) for each agglomeration i in
province j. The term

�Gij =

(
1, if i 2 Pj

0, otherwise
(5)

ensures that only agglomerations geographically lo-
cated in province Pj are accounted for.

3. EXPERIMENTS

3.1. Dataset and experimental setup

To validate our proposed method we use official census data
of t � 1 = 2007 and t = 2017 from Mozambique. For val-
idation purposes, we assume that the census data of 2017 is
not known during the training of the MRF. As stated above,
the built-up area maps were extracted from the World Settle-
ment Footprints [8, 9]. We set the value of � = 1 for the
experiments. We use as administrative regions the NP = 440
districts of Mozambique.

3.2. Results

We summarize our results in Table 1. After training the MRF,
we obtained the estimated populations for 2017 and com-
pared it the UN projections for 2017, using the metrics R2,
MAE (Mean Absolute Error) and MAPE (Mean Absolute
Percentual Error). Additionally, we also report of using our
method constraining the projections by the total population
of the country (which basically corresponds to turning off
the second term of the energy function, the Geographical
consistency).

It can be observed that the MRF-based methods achieves
smaller error compared to the UN projections, and also that

Table 1. Performance of methods for population estima-
tion. ‘MRF - country’ correspondos to our proposed method
without the geographical consistency potential. All methods
are evaluated at the province level using the census data of
t = 2017 as ground reference.

Method R2 " MAE # MAPE #
UN extrapolation 0.901 90806 15.45
MRF - district (ours) 0.939 80646 14.29
MRF - country 0.932 80941 14.55

the MRF constrained by district or the whole country obtain
similar results. Figure 2 shows a map of percentual errors
of the population estimated for several districts of the capital
city of Maputo. We can observe that in some districts the
error of the UN projections is very high, and the MRF can
considerably reduce the error in those regions.

These results could potentially be improved by using a
built-up areas layer extracted from images temporally closer
to the census date. However, one needs to keep in mind the
considerable effort to create that layer both in terms of data
involved and computing power required [8]. Alternatively,
one could also use projections in existing built-up area data,
such as those contained in the Global Human Settlement Lay-
ers [12].

4. CONCLUSION

Recently proposed methods for fine-grained population esti-
mation in developing countries often depend on the presence
of census surveys, which are updated irregularly at best. In
between census dates, one needs to use coarse growth statis-
tics to estimate populations, but the official growth statistics
(e.g. from FAO) are often inaccurate. In this paper, we
have presented a method to estimate fine-grained population
growth rates that can then be used to update population es-
timates for years without census data. Our method depends
mainly on historic census data and built-up area maps that can
be obtained regularly from free satellite imagery. We propose
to estimate the growth rates in fine-grained units, which we
call agglomerations, obtained by performing spatial cluster-
ing. The MRF energy function that we used tries to obtain
similar growth rates for agglomerations that are similar, while
constraining the results to respect the original population pro-
jections for a particular administrative region. In the results
we showed that our proposed method can attain results with
lower estimation errors than the UN population projections.



Fig. 2. Map of population estimation errors for the Metropolitan area of the capital city of Maputo, Mozambique.
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