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Abstract

Cocoa is the basic ingredient needed to produce chocolate. It is grown in many tropical
countries like Ivory Coast, Ghana, and Ecuador. For market research, big chocolate com-
panies need to know the overall acreage of cocoa and a rough estimation of annual yield to
adjust their buying strategy accordingly. Today, this is done manually by sending experts
to the field that regularly measure the size of cacao beans and estimate the area of cocoa
plantations.

The aim of this project is to combine satellite images of the new ESA constellation Sentinel-
2 and deep learning to segment cocoa planting sites in Africa and Latin America. What
makes this task particularly hard is the high similarity of cocoa and surrounding plants,
often smallholder farms especially in Africa, and the inhomogeneous acquisition frequency
due to frequent cloud coverage.

For this task, we have developed a complete method, from the preprocessing of Sentinel-2
imagery to classification of cocoa with a convolutional neural networks. Furthermore, we
have analyzed the properties and main features that play a key role in the process of cocoa
segmentation and next steps for the development of the project are suggested.
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1. INTRODUCTION

1 Introduction

Why is the use of land cover segmentation important for agriculture?
With the world’s population rapidly growing and nearly reaching eight billion people,
supplying all human beings with food is becoming one of the biggest challenges for the
humankind. The massive increase of the world population is augmenting the pressure on
the agricultural production and the need for reliable information of crop status all over
the Earth. This leads the agriculture to a critical situation where it has to optimize its
principles and methods of functioning to maximize their production. In order to achieve
these goals the management of the resources, especially in the developing countries, has to
be massively improved.

Figure 1: Forastero beans1

Often one of the biggest problem in agriculture is the lack of correct or complete information
about the crop distribution of the farms, the status of the plants or even the landownership
of the farms. By using land cover maps generated trough segmentation, a lot of problems
can be solved or at least simplified. For instance, predictions of the seasonal production
can be established with the information of the amount, type, distribution and health status
of the plants. This information can be not only important for the food supply of the own
country, but also for the economy of the country and the international market. Even the
anthropogenic influence of the human being on the Earth can be analyzed by the means
of global population, land use and land cover maps (Ellis and Ramankutty 2008). With
this information we can better understand the history and impact of the human kind on
the system Earth.

As outlined in the previous paragraph, land cover segmentation is a powerful analysis tool
that can be used in a multitude of scientific, technological and economic domains.

1https://www.barry-callebaut.com/about-us/media/press-kit/history-chocolate/theobroma-cacao-
food-gods
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1. INTRODUCTION

Why is the knowledge of cocoa segmentation important?
Cocoa is one of the most economically important crops on Earth. For the majority of
the producing countries it is one of the critical exports and for the consuming countries a
key import. It is typical that the countries with the highest consumption of cocoa do not
produce cocoa themselves, since these country usually do not have appropriate climates for
the production of this sensitive crop.

Cocoa is mostly produced in Africa, Asia and South America. In 2016 the biggest cocoa
producing countries were the Ivory Coast (1, 472, 313 tonnes per year2), Ghana (858, 720
tonnes per year2), Indonesia (656, 817 tonnes per year2) and Cameroon (291, 512 tonnes
per year2). The two biggest South American producing countries were Brazil (213, 843
tonnes per year2) and Ecuador (177, 551 tonnes per year2).

Unlike the more industrialized crops, 80 − 90% of cocoa is still produced in small farms3.
Most of the farmers work with outdated farming practices and have limited organizational
influence on the market. In the producing countries there are many different practices of
growing cocoa and its distribution has rapidly changed in the past decades. The typical
method of cocoa farming is the cocoa agroforest where cocoa is planted beside mature tim-
ber trees and under giant trees, to provide shades for the crops. In these agroforests cocoa
is often planted with other varieties of crops as this increases the income security of the
farmers over the whole year. The agroforests arose in a time where the population density
was low, land and forests abundant, fertilizers unknown and the limiting factors were labor
and capital. This method reduces the maintenance work and increases biodiversity, but
needs more land and cocoa is quite slow to mature (Ruf 2011).

Figure 2: Farm in Ecuador4

2Food and Agriculture Organization of the United Nations: www.fao.org
3Cocoa Market Update: http://www.worldcocoafoundation.org/wp-content/uploads/Cocoa-Market-

Update-as-of-4-1-2014.pdf
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1. INTRODUCTION

As population increased and migration intensified in the last decades, other strategies,
such as the full sun farming, became more favored. In full sun cocoa farming, the cocoa is
planted in a single layer structure and hybrid cocoa plants, that can resist the direct sun
exposure and give higher yields, are used. In a period of 20 to 25 years, the unshaded and
hybrid farms are more profitable than the shaded variant, since their peak yields are earlier
and higher (Obiri et al. 2007). Combined with the moderate use of pesticides, fertilizers
and herbicides, the abundant yield and return of unshaded cocoa farms can be maintained
for 25 to 30 years (Ruf 2007). For this method, large areas of forests and agroforests are
felled or burned to win land for new farming. This is called slash-and-burn farming. These
methods to acquire land have significantly damaged biodiversity and the forests of the
majority of the cocoa-growing countries, such as the Haut-Sassandra forest in Ivory Coast
(Barima et al. 2016) and the Bia Conservation Area and Krokosua Hills Forest Reserve in
Ghana (Asare et al. 2014). Figure 2 shows an example of a full sun cocoa farm in Ecuador.

All these issues around cocoa such as the amount and efficiency of cocoa production, bio-
diversity and forest preservation can be observed and analyzed trough cocoa segmentation
and cocoa mapping of the affected regions. But not only processes directly linked to cocoa
production can be distinguished. For instance, also migration and child labor on the farms
can be spotted.

Why do we use satellite images for the task of segmentation?
Data collection is a difficult task in most technical and scientific research fields. Before
satellites and air-based methods were available, the obtainment of the necessary data to
produce a map of a region was an expensive and long lasting undertaking, since the work
had to be manually fulfilled. Satellites provide large amount of data of vast areal extent
and high temporal resolution. This quantity of data would not be possible to obtain using
the typical land surveying methods.

Therefore, plenty of new remote sensing have been developed or refined in the past years.
For instance, space-based radar missions, such as Radarsat-2 launched in 2007, light de-
tection and ranging (LIDAR) missions, such as ICESat launched in 2003, or multispectral
imagery missions, such as Sentinel-2 launched in 2015.

Data collected by satellite is nowadays used in multiple applications. For instance, the
observation of the deforestation of the tropical forest in Central Africa in order to monitor
the change and optimize forest management (Duveiller et al. 2008), the mapping of galam-
sey gold mines in Ghana to analyze their relationship with the cocoa agriculture (Snapir
et al. 2017) or the mapping crop types to ”provide crucial information for agricultural
monitoring and management” (Inglada et al. 2016).

4https://www.confectionerynews.com/Article/2015/10/07/Chocolate-firms-eye-Ecuador-for-single-
estate-cocoa-Hacienda-Victoria

5https://news.mongabay.com/2016/07/huge-cacao-plantation-in-peru-illegally-developed-on-forest-
zoned-land/
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1. INTRODUCTION

Figure 3: Satellite image of a cocoa farm on forest zone in Peru5

Why do we use deep learning and convolutional neural network for this task?

Deep learning, a type of machine learning techniques, is a family of self-optimization meth-
ods that have more than one layer between input and output and, thus, show a complex
inner structure. The term deep learning was created by Rina Dechter in 1986 and a multi-
tude of varieties have emerged since then such as the multilayer perceptrons (Ivakhnenko
1965), backpropagation algorithms, deep neural networks and convolutional deep neural
networks (LeCun et al. 1989).

A big revolution in the field of computer vision has been going on since 2012 when it
started with the introduction of stronger convolutional deep neural networks such as the
AlexNet (Krizhevsky et al. 2012) that outperform all the previous classifiers at that time.
This evolution has been enhanced by the availability of big, already labeled data sets and
powerful GPU implementations.

Nowadays, convolutional deep neural networks are the front runner for the task of image
classification as it is a self learning method that combines different features and properties
of objects and can detect complex topological relations between different items in an image.

The objectives of this Bachelor thesis are:

• Develop a method for cocoa segmentation by combining deep learning methods and
satellite-based multispectral imagery and, thus, improve the feasibility of cocoa seg-
mentation.

• Analyze and identify the decisive properties and features of cocoa during the seg-
mentation process.

4



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

2 Theoretical Principles and Multispectral Images

2.1 Image Classification

Image Classification is the problem of assigning a certain label (object) to an image as a
whole or to each pixel of an image. This task of recognizing objects in images is not as
trivial for a computer as it is for a human being. What for a person is a banality represents
an immense challenge for programmers to implement. The main challenges of this task are
viewpoint variations, scale variations, deformations, occlusions, illumination conditions,
background clutters and intra-class variations (Karpathy 2018). A good classifier should
be able to overcome all these difficulties and still be accurate in its prediction.

There is a great variety of classifiers that are used nowadays in different tasks such as
robot applications, land cover segmentation or even autonomous driving cars. Some of the
classifiers are:

• Textual case-based reasoning: Type of classifiers that tries to analyze images
based on its textual characteristics. For instance, Co-occurrence matrix, Laws’ Tech-
nique (selection of filters is limited to the existing banks), Histogram of oriented
gradients and Local Binary Patterns (Wegner 2017).

• Extraction of interest points: These methods extract certain attributes of an
image to deduce its content. For example, Moravec corner detector, Harris corner
detector and Förstner corner detector (ibid.).

• Nearest neighbor classifier is one of the most basic classifiers. It compares two
images by calculating the sum of the distances between the pixels of the test image
and the training image. The distance can be computed with a L1 distance (linear
sum) or a L2 distance (square root of the quadratic sum). The classifier then chooses
the label (training image) with the smallest score (distance). The result gives an idea
of the similitude between the two images. The nearest neighbor classifier is really
simple to implement, but can neither detect spatially nor radiometrically translated,
rotated or scaled images (Karpathy 2018).

• k-nearest neighbors classifier is the general form of the nearest neighbor classifier.
It determines the k nearest training images to the test image and determines then
the label of this image. In the particular case that k = 1, the k-nearest neighbors
classifier turns into the simple nearest neighbors classifier. These methods have a
long testing time duration, as they have to compare the test image to every single
training image. There are new, more refined classifiers based on the same concept
such as several approximate nearest neighbor. The nearest neighbor classifiers
are not often used for classifying high-dimensional images due to the contradictory
interpretation of distances in high-dimensional color spaces (ibid.).

• Neural networks (see section 2.1.1)

• Convolutional neural networks (see section 2.1.2)

5



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

There is no best or universal classifier suited for every task, since each classifier has its
strengths and weaknesses. For instance, a convolutional neural network is a powerful clas-
sifier that once trained is really fast and accurate but needs a considerable amount of data
and time to be correctly trained.

2.1.1 Neural Networks

The conceptual structure of a neural network finds its origin in the biological structure
of a neuron. Even if there are a lot of different nerve cells in the human body and each
neuron has its own procedures and functions in the human system, there are also a lot
of similitudes between them and the neural network neurons (Figure 4). Both have con-
nections to previous neurons (dendrites), process the received information (nucleus) and
have an activation (axon) to decide whether or not to pass information to the next neurons.

Figure 4: Representation of a biological neuron (left) and a neural network neuron (right)
(Karpathy 2018)

Data split For neural networks, data sets are often divided into three separate sets that
have different functions during the classification process (Figure 5):

• Training data set is the data set used to train the model and its parameters in
order to fit the given problem.

• Validation data set is the data set used to evaluate the model fit during training. It
is used to fine-tune the hyperparameters that determine the structure of the network
and how it is trained.

• Test data set is the data set used to evaluate the model fit at the end of training.
Since the test data set has never been in contact with the model during training, it
is an independent evaluation of the result.

It is important to consequently separate the three data sets since they should be indepen-
dent from each other.

6



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

Figure 5: Data Split6

Main components The basic structural approach of a neural network has three main
components: a score function to assign the training data into predefined classes, a loss
function to determine the correlation between the result of the score function and the
ground truth and an optimizer to upgrade the parameter of the score function in order
to minimize the loss.

Linear classifier A simple score function is the linear classifier:

f(xi,W, b) = Wxi + b (1)

where xi are the pixels of an image flattened out into single column. W and b are the
parameters of the score function, called weights and bias vector.

The product Wxi performs parallel separate classifiers for each predefined class. The
number of rows of the weight matrix is the number of different classifiers and therefore of
distinct classes. These parameters are learned with the training data set. It is important to
note that after training these parameter, we do not need the training data anymore to test
further data sets. Therefore, a linear classifier is called a parametric approach. The result
of the linear classifier is a vector with one score for each class. Logically, the prediction of
the classifier is the class with the highest score. Since the linear classifier only performs a
matrix multiplication and an addition, it is a really fast method to obtain a prediction.

Loss function The result from the score function has to be transformed into a compa-
rable score. This is achieved by the loss function. A high loss implies that the classifier is
working badly and the prediction from the score function is far from the ground truth; a
low loss that the classifier is correctly identifying the images. There are two major methods
to calculate a loss: the Support Vector Machine (SVM) and the Softmax classifier
(Karpathy 2018).

The SVM loss is formulated as:

Li =
∑
j 6=yi

max(0, sj − syi +∆) (2)

6http://www.rpubs.com/charlydethibault/348566
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2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

where sj is the class score of the correct class and syi are the class scores of the other
classes. ∆ is a hyperparameter.

The SVM is a method that seeks the score sj of the correct class to be ∆ higher than the
score syi of the incorrect classes. The max(0,−) function is a threshold function, called
hinge loss. It sets every negative number to zero.

The Softmax classifier corresponds to the cross-entropy of the scores for each class:

Li = − log

(
esyi∑
j e

sj

)
(3)

where syi is the class score of the correct class and
∑∑∑

j e
sj the sum of all the class scores.

The Softmax function takes a vector and squeezes it into a vector with values between zero
and one, that sum up to one. From the point of view of probability theory, the output
can be seen as a generalized Bernoulli distribution that represents the normalized outcome
probability for each class.

Whereas the SVM loss directly sets the loss to 0 when the correct score is ∆ higher than
the score of the incorrect classes, the Softmax classifier also gives an information about
how much higher the predicted score is from the other ones. For example, the SVM loss
(∆ = 1) for [4, 4, 5] and [1, 2, 25] would be the same, however the Softmax loss would not.
In practice the SVM loss and the Softmax loss are equally used because there are no big
divergences between the results of both methods.

Optimization The optimizer tries to find the best possible set of weights W for the
given classification problem. Due to the fact that this is a nearly impossible task, the
optimizer attempts at each iteration to find a set of new weights W that is just a little bit
better then the previous one. By starting at a random matrix W and improving it at each
iteration, the optimizer slowly finds a good set of weights W .

Gradient descent is the most common method used to optimize neural networks. The gra-
dient descent computes the gradient of the loss function ∇WL(W ) with respect to the
parameters W . The loss function L(W ) is then minimized by updating the parameters
W in the opposite direction of the gradient. This can be compared to always walking
downhill until finding the lowest point of a valley.

The learning rate defines the pace at which the parameters are updated at each iteration.
This is an important hyperparameter that has to be determined during validation because
a high learning rate can prevent the optimizer to converge on the desired minima. The
learning rate is often adjusted during training to increase the amount details learned.

There are three different main variants of the gradient descent that vary between the ac-
curacy of the computed gradient and the computation time for each update. The batch
gradient descent always uses the whole training data set to compute the gradient of

8



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

the loss function. This computes the best possible gradient but is very time consuming.
On the contrary, the stochastic gradient descent (SGD) only executes the gradient
over a single training example. This method often works well because successive updates
frequently have the same direction. Compared to the batch gradient descent, the SGD is
less accurate, but therefore less time consuming. The mini-batch gradient descent is
midway between the two other methods, as it computes the gradient of small parts of the
training set, called mini-batches.

Some methods have been developed to optimize the SGD performance in difficult parameter
spaces. For instance, the momentum method that, by adding a fraction of the previous
update to the current update, reduces oscillation in parameter spaces with big slope dif-
ferences. This basic idea has been refined in methods such as the Nesterov accelerated
gradient that calculates the current upgrade with an approximation of the parameters of
the next step.

A recently created optimizer is the Adam optimizer (Kingma and Ba 2014). It is a
first-order gradient-based stochastic optimization combining the advantages of two other
established methods: the AdaGrad (Adaptive Gradient Algorithm (Duchi et al. 2011))
and the RMSProp (Root Mean Square Propagation). On one side, it adjusts the learning
rate during the training (AdaGrad) to perform bigger updates for infrequent and smaller
updates for frequent parameters. On the other side, it also adapts the learning rate (RM-
SProp) based on the average magnitude of the recent gradients. The Adam optimizers can
be seen as a heavy ball with friction rolling downhill in the parameter space (Heusel et al.
2017).

Neural Network Architecture A Neural Network can be interpreted as a sequence of
layers with a certain amount of neurons. Each neuron works like a linear classifier and the
outputs of the neurons of a layer are the inputs of the neurons of the next layer. There are
no cycles in neural networks as this would produce infinite iterations! The most common
type of layers is the fully-connected layer, in which every neuron of a layer is connected
to all the neurons of the next layers. Figure 6 shows an example of a simple neural net-
work with 2 hidden layers (layers between input layer and output layer) and 4 neurons per
hidden layer.

The input layer has the function to pass the input data to the neural network. Each chan-
nel of the input data is then separately classified by the neurons of the first hidden layer
and passed on to the next layer. At the end, the output layer receives the result of the
network, which represent the class score from that iteration. This score is then transformed
into a loss, which then can be minimized by an optimizer. This procedure is then iterated
until reaching a satisfactory result. For a neural network, increasing the depth (amount of
hidden layers) of the network to more than 4 hidden layers does not imply any significant
improvement. This is not true for convolutional neural networks, where the depth plays
an important role (Karpathy 2018).

9



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

Figure 6: Basic neural network architecture (Karpathy 2018)

Data preprocessing Before training, data has to be preprocessed in such way that the
different images have approximately the same range and distribution of pixel values. This
is normally computed in two steps.

First, the mean subtraction is applied to the data in order to achieve a 0 centered data
set. The mean is calculated for each band separately or the whole image and then sub-
tracted from the bands or the whole image.

Secondly, the data is compressed between [−1; 1] using the normalization. For this, the
data is divided by the square root over the separate bands or the whole image.

The mean and square root of the data should only be calculated on the training data set
and then applied to the training, validation and test data sets. This assures that the 3
data sets are still independent from each other and that no information of the test set is
used during training. After these two preprocessing steps, the data is standard normally
distributed.

Regularization A common problem while training a model is overfitting. This occurs
when the parameters of the network are trained in such a way that the network ”fits” too
closely to the training data set and, thus, may not correctly classify other data sets (Figure
7 (a)). This can be monitored during training by surveilling the loss and the accuracy of
the validation data set. Figure 7 (b) displays an overfitting model. We can observe that at
a certain point the validation loss (test error) is not declining as the training loss (training
error). At that point, the model starts to overfit and we can stop the model (early stop-
ping) since it is the best solution for that training session. Regulation methods are added
to the neural networks to prevent overfitting. Two commonly used methods are L2 loss
regularization and Dropout.

7https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/
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2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

(a) Example of overfitting (Left: underfitting.
Center: good. Right: overfitting)

(b) Monitoring of the loss

Figure 7: Overfitting7

The regularization penalty R(W) is the sum of the L2 norm of the weights from the neural
network:

R(W ) =
∑
k

∑
l

W 2
k,l (4)

L = Ldata + λR(W ) (5)

The term R(W) is added to the data loss Ldata (SVM or Softmax) to prevent large weights
in the neural network. These large weights could influence the network not to use all the
given input data but only a small part of it. λ is a hyperparameter and defines the strength
of the regularization.

Dropout (Srivastava et al. 2014) is a new method that, added to other methods, efficiently
counteracts overfitting. The Dropout method consists in randomly dropping connections
between the different neurons during training. This should prevent the different units to
adjust too much to one another. Figure 8 shows a neural network before (left) and after
applying Dropout (right).

Figure 8: Dropout (Srivastava et al. 2014)

11



2. THEORETICAL PRINCIPLES AND MULTISPECTRAL IMAGES

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a class of neural networks used to analyze im-
age data. Introduced by LeCun et al. 1989, convolutional neural networks have produced
excellent results in the tasks of classifying handwritten digits and face detection. By us-
ing certain characteristics of the images, they reduce the amount of parameters and can
thus solve much more complex tasks than other standard classifiers. Since they have more
hidden layers (depth) than an ordinary neural network, they need also less preprocessing
because they can learn it by adjusting its own filters.

There are a lot of similarities between neural networks and convolutional neural networks
such as the hidden layers, the weighs and biases, the loss function and the optimizer. The
main difference is that convolutional neural networks use a multitude of different layers
and have a bigger depth than the neural networks.

The reasons why convolutional neural networks have become so popular in the past few
years are the availability of big, already labeled data sets, powerful GPU implementations
and new regularization methods such as the dropout method. This recent evolution favors
the development of convolutional neural networks.

Layers of a convolutional neural network In a convolutional neural networks there
are various types of layers (Karpathy 2018):

• Input Layer is the first layer of the network. As for the neural network (see section
2.1.1), it passes the input data to the model.

• Convolutional Layer is the core element of the vast majority of convolutional
neural networks. It can be seen as a set of learnable filters. However, each filter only
uses a small area of the input data through all the depth (channels) of this input.
The number of filters for every layer will represent the depth of its output.

Figure 9: Convolution8

8https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

12
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Figure 9 is an example of a convolution with a 3×3 kernel, stride = 1 and padding =
0. The stride defines the moving steps of the filter over the image and the padding
the width of the border zone filled with zeros. The kernel size, stride and padding
are hyperparameters and determine the size of the layer output.

• ReLU Layer: The rectified linear unit is an activation function:

f(x) = max(0, x) (6)

where x is the input of the ReLU layer. This activation function is applied element-
wise to the input. By this, the negative values are set to 0. The introduction of ReLU
layer in a model has shown to accelerate the convergence of the stochastic gradient
descent by up to a factor 6 compared to an equivalent model with the activation
function tanh (Krizhevsky et al. 2012).

Since in certain circumstances it has been observed that a ReLU layer can have the
effect of ”killing” the learning process (by reaching a point where the gradient com-
puted by the model is always 0, being equivalent to no learning), more sophisticated
varieties of this activation layer have been developed. An example is the Leaky
ReLU where the negative values are not directly set to 0 but are instead set to a
very small number to prevent this ”dying effect”.

• Pooling Layer is a downsampling layer. There are several forms of pooling such as
max pooling, average pooling or L2 norm pooling. The most common one is
the max pooling. This filter gives back as output the highest value of an area of the
size N ×M and repeats this with a certain stride. Figure 10 is an example of a max
pooling with size 2 × 2 and stride 2.

Figure 10: Max Pooling9

The purpose of the pooling layer is to reduce the amount of parameters and compu-
tations in a convolutional neural network. Additionally, it also controls overfitting to
a certain extent.

9https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-
Networks-Part-2/
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• Batch Normalization is often used to increase the stability of neural networks.
This layer normalizes the output batch of the previous activation layer. This is im-
plemented with a subtraction of the batch mean and a division by the batch standard
deviation. This is comparable with the data preprocessing completed before training.

The batch normalization allows the use of higher learning rates as it directly controls
the outputs of the different activation layers. It also accelerates the learning process
since the different layers do not have to learn themselves the normalization already
computed by the batch normalization layer. Additionally, it has a small regularization
effect (Ioffe and Szegedy 2015), sometimes even to the extent of eliminating the need
for dropouts in a model.

• Fully-Connected Layer is the same as in the neural network (see section 2.1.1).

• Transposed Convolutional Layer is an upsampling layer. This is used to upsam-
ple the data that has been downsampled with the pooling layers back to its initial
size. The transposed convolution can be seen as a backwards strided convolution.

Figure 11: Transposed convolution10

Figure 11 can be interpreted in two different ways. First, this illustration shows a con-
volution (from green to blue) with a 3×3 kernel on a 4×4 input with stride = 1 and
padding = 0. The size of the output is then 2×2. Secondly, it can also be interpreted
as a transposed deconvolution (from blue to green) of a 2 × 2 input image with a
3×3 kernel, padding = 2 and stride = 1. In this case, the output has the size of 4×4.

Architectures of convolutional neural networks There are a lot of different archi-
tectures that have been developed in the past years. They differ from each other in the
number, types and combination of different layers. Each one has its own strengths and
weaknesses and thus also its applications. Some of the best known architectures are:

• LeNet-5 (LeCun et al. 1998) is a pioneer in the world of computer vision. This model
has long time been used to recognize handwritten numbers. Since the computation

10https://nrupatunga.github.io/convolution-2/
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resources at that time were not as powerful as today, it had a small depth compared
to modern architectures.

• AlexNet (Krizhevsky et al. 2012) outperformed all the previous classifiers in 2012.
Having a similar architecture to LeNet-5, it was much deeper using SGD with mo-
mentum, dropouts and, for the first time, ReLU activation layers.

• GoogleNet, also called Inception, is an architecture from Google that won the
ILSVRC 2014 competition. It performs at such a high level that it nearly beats
the perception performance of a human being. It uses a new element (”Inception”
module) based on a lot of small convolutions to reduce the amount of parameters. As
a result, it reduces the number of parameters from 60 million (AlexNet) to 4 million.
It also has no fully connected layers.

• ResNet (He et al. 2015) is an 152-layer model and is the winner of the ILSVRC
2015 competition. The extreme depth of the ResNet has been a revolution combined
with the use of residual blocks that merge the output information from before and
after a block build of two convolutional layers. The ResNet model has shown results
outperforming the human being.

Data Augmentation The convolutional neural network is a classifier that, once trained,
is fast, efficient and thus really powerful, but requires a big amount of training data to
acquire good and stable results. Therefore, several techniques, such as data augmentation,
have been developed to increase the amount of data when data are scarce. There are
different types of data augmentation:

• Translation: The batches can be translated over the original image to create over-
lapping batches. This can be done with a fix or a randomly changing stride.

• Rotation: The batches can be rotated to create new batches. This is usually done
with 90, 180 and 270 degrees to quadruple the amount of batches. However, it can
also be computed with finer angles.

• Flipping: The batches can also be flipped on an horizontal or an vertical axis.

• Scaling: The batches can also be created with differently scalings in order to obtain
more and less zoomed batches. This is the same as taking an image of the same
scenery from different distances.

• Radiometric Transformations: The batches can also be transformed in radiomet-
ric ways by brightening, darkening or changing the contrast of the batches. This can
be compared to taking the same image at different times of a day.
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Unbalanced data Another frequent problem of classifications are unbalanced data sets.
These are data sets where the proportion of the different classes in the images are widely
different. If this unbalance is too high, it can hinder the convolutional neural network to
correctly learn, since it will only predict the predominant class without considering the
other classes.

This can lead to deceptive results because the accuracy can easily reach values over 90 %
only predicting the more frequent class. This phenomenon is called accuracy paradox.
Different methods to avoid or minimize the effects of unbalanced data sets are:

• Collecting more data.

• Using other evaluation metrics such as recall, precision and intersection over union
(see section 4.1).

• Undersampling is a method that consists in eliminating the batches with solely the
majority class. This can help to eliminate redundant data, balance the proportion
between classes and thus accelerate the processing time and improve the results. But
it must be noted that important information can be lost during this process.

• Higher penalization for errors of the minority class. This is an efficient way to
increase the importance of minority classes during training.

2.2 Multispectral Images

A multispectral image is a superposition of sub-images of the same scenery taken at many
different wavelengths. The best known type of multispectral images is the RGB image,
composed of a red, a green and a blue sub-image (visible light), each representing a differ-
ent wavelength in the electromagnetic spectrum.

The discrete area of the electromagnetic spectrum covered by each sub-image of a multi-
spectral image is called a band. The sub-images are then stacked on a third dimension
to one single multispectral image. As a consequence, the multispectral images have the
dimension [height of the sub-images, width of the sub-images, number of bands]. While the
RGB image only has three bands, there are cameras able to measure a large amount of
bands not only in the visible but also in the non-visible part of the spectrum such as the
near infrared or the short-wavelength infrared. This possibility of extracting information
from different spectral bands has shown to be a powerful tool in a big variety of appli-
cations. The multispectral images are, for example, used for vegetation segmentation in
satellite imagery, for detection of skin diseases or for analyses of art works.

A disadvantage of multispectral images is the increasing need for memory and with that
the increasing processing time when working with them. However, this will not be a rele-
vant problem in the future since the speed, capacity and memory of computers are rapidly
increasing.
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Further, spectral signatures can be created from multispectral images. These are com-
positions of the single values of the electromagnetic energy reflected by a certain object for
each band. Spectral signatures result in distinct curves for every type of object containing
the complete information of the reflectance of this object.

This method is often used in remote sensing to characterize and thus differentiate between
various plants, soil, forest or other items on the earth’s surface. In our case, we assume
that the convolutional neural network will use the information of the spectral signature of
the different objects to segment the images between them.

2.2.1 Sentinel-2

Sentinel is one of the latest Earth observation missions from ESA. This project has replaced
older ESA-missions, which reached or are reaching their respective retirement dates, such
as the ERS missions (1991 - 2011). The Sentinel satellites are equipped with a wide range
of technologies, such as radars or multispectral imaging instruments used for land, ocean
and atmospheric monitoring. There are five different Sentinel missions, each focusing on
different aspects of Earth observation. Each mission has a constellation of two satellites to
provide a periodic coverage of observation data of the whole Earth11:

• Sentinel-1: land and ocean monitoring using radar imaging

• Sentinel-2: land monitoring focusing on vegetation, soil and coastal areas using
high-resolution optical multispectral imagery

• Sentinel-3: marine observation

• Sentinel-4 and Sentinel-5: air quality monitoring

General Information Sentinel-2 is a high-resolution, multispectral imaging mission
forming part of the Copernicus Programme, the largest Earth observation programme.
The Sentinel-2 system is composed of two satellites. The S2A satellite was launched on
the 23th of June 2015 and S2B on the 7th March 2017. Both satellites have an operation
lifespan of approximately 7.5 years. The constellation of two sun-synchronous satellites
flying in the same orbit with an altitude of 786 km and an inclination of 98.62◦ enables the
possibility of monitoring the Earth with a frequency of five days and to always maintain the
same angle of sunlight on the Earth’s surface. These properties are useful for the creation
of a consistent time series data collection.

11https://sentinel.esa.int/web/sentinel/home
12https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
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Figure 12: SENTINEL-2: 10 m (top) and 20 m (bottom) spatial resolution bands12

Bands Sentinel-2 measures 13 different bands. The spatial resolution depends on each
observed spectral band. They are grouped in different resolutions: four at 10m (Figure
12), six at 20m (Figure 12) and three at 60m.

Each band covers a part of the electromagnetic spectrum and, therefore, contains a certain
amount of information that can be valuable for segmentation:

• B2 (490 nm, blue), B3 (560 nm, green) and B4 (665 nm, red) are the three RGB
bands that cover the visible part of the spectrum.

• B8 (842 nm) is in the near-infrared and has a large bandwidth (115 nm). It is often
used in different indices such as the NVID, the normalized difference vegetation index
to separate vegetation from other objects.

• B5 (705 nm), B6 (740 nm), B7 (783 nm) are in the near-infrared between Band 4
and Band 8. With a spatial resolution of 20 m, they carry some extra information
about the spectral reflectance of the terrestrial surface.

• B11 (1610 nm) and B12 (2190 nm) are in the short-wavelength infrared. Since both
bands are good indicator of the moisture content of Earth’s surface, they are excellent
to differentiate between vegetation types.
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The bands with a 60 m spatial resolution are used to measure the atmospheric conditions
needed during the preprocessing of the images.

Product types The data measured by the Sentinel-2 satellites have to be preprocessed
before being ready for applications. There are different product types corresponding to the
different stages of this preprocessing13:

• Level-1B: The Level-1B product type contains the information of the top-of-atmosphere
radiance values in sensor geometry. It also includes geometric information needed to
generate the Level-1C product type

• Level-1C The Level-1C product type are 100x100km2 tiles containing the top-of-
atmosphere reflectance in cartographic geometry (ortho-images in UTM/WGS84 pro-
jection). This product is generated using a Digital Elevation Model to project the
imagery.

• Level-2A The Level-2A product type are bottom-of-atmosphere reflectance images
in cartographic geometry. They are also 100x100km2 in UTM/WGS84 projection.
At this moment, ESA is only generating this product type for images of the European
continent. The Level-2A product type can be individually created by the users from
the Level-1C product type using the ”Sentinel-2 Toolbox”, called SNAP (Sentinel
Application Platform).

13https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
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3 Methodology

In this section, we will illustrate the cocoa segmentation method developed for this project.
For this purpose, we will individually introduce each component of the method and explain
their importance, functioning and effect on the final results. Additionally, we will outline
some methods in order to better understand the learning process and identify the decisive
features during cocoa segmentation.

Considering that cocoa is planted with different techniques (section 1), we will distinguish
between full sun farming and agroforestry by using Ecuadorian farms as a model for the
full sun farms and Ghanian farms for the agroforestry.

3.1 Convolutional Neural Network

For the task of cocoa segmentation, we need a convolutional neural network that performs
a semantic segmentation, which is a classification at pixel-level. As opposite to classifying
the whole image to one label, semantic segmentation is necessary for this project because
we not only want to determine the presence of cocoa in the analyzed area but also its
distribution and the total amount.

The program developed in this project is implemented on TensorFlow, an open-source
software library for dataflow programming based on Python and developed by the Google
Brain team.

3.1.1 Architecture: U-Net

We choose an architecture based on U-Net (Ronneberger et al. 2015), a popular semantic
segmentation model. The U-Net model is an encoder-decoder architecture where the input
data are downsampled to a lower spatial dimension and then upsampled back to its initial
spatial resolution to allow a pixelwise classification. This architecture has shown good
results with small data sets and strong use of data augmentation methods.

The modified U-Net architecture (Nowaczynski et al. 2017) used for this project is only
build of convolutional, transposed convolutional, ReLU, batch normalization and maxpool
layers (see section 2.1.2). There are no fully-connected layers in this architecture, since
the upsampling part is achieved using only transposed convolutional layers. The structure
of the model can be seen in Figure 13. The main differences between the original U-Net
architecture and our modified U-Net model are changes in the input image dimensions and
various hyperparameters of layers, for instance the number of kernels per convolutional
layer.

The architecture is mainly build of BN CONV RELU and BN UPCONV RELU blocks
(Figure 13). The BN CONV RELU block is used during the whole model and is composed
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Figure 13: Modified U-Net architecture
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of:

• a batch normalization layer,

• a convolutional layer with 64 kernels of size = 3 × 3, stride = 1 and padding = 1,

• a ReLU layer (activation function).

The BN UPCONV RELU block is only used during the upsampling phase (right side of
the model) and is composed of:

• a batch normalization layer,

• a transposed convolutional layer with 64 kernels of size = 3 × 3, stride = 2 and
padding = 1,

• a ReLU layer (activation function).

The U-form of the architecture stands for the downsampling (left side) and upsampling
phases (right side) of the model (Figure 13). The downsampling is achieved with five max-
pooling layers with kernel size = 2 × 2, stride = 2 and padding = 0. As a result of the
hyperparameter choice of the pooling layer, the output size (height and width) of these
layers is always half of the input size. On the other side of the model, transposed convo-
lutional layers are used to upsample the data back to its initial size in order to be able to
determine the label for every pixel of the input batch.

It is important to note that, during the upsampling phase, the output of the transposed
convolutional layer is consistently concatenated with the same size data from the down-
sampling phase. This can be observed in Figure 13 pictured by horizontal arrows and the
box CONCAT. The concatenation is executed on the third dimension. This allows the
model to combine the more detailed information from the downsampling phase with the
much more generalized information of the upsampling phase.

The CONVOUT layer is a convolutional layer with 2 kernels of size = 1 × 1, stride = 1
and padding = 0 followed by a sigmoid function (activation function). The output of
the U-Net model is a vector with the class score between 0 and 1 of each pixel (”No
Cocoa”= 0/”Cocoa”= 1).

3.1.2 Training Details

The model is trained with multispectral images from the Sentinel-2 satellites. The class
score vector resulting from the U-Net architecture is then transformed into a loss score
using a Softmax cross-entropy function. The L2 loss of the weights is then added to the
cross-entropy loss in order to prevent overfitting (Regularization). The model is trained
using an Adam optimizer minimizing the total loss.

The hyperparameters of our network and their corresponding default values are:
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• Number of training epochs is adjusted in respect to the amount of batches of the
input data set for the respective training session.

• Learning rate is set to a standard value of 10−5.

• L2 regularization is set to a standard value of 10−2.

• Mini-batch size is the number of batches trained at once and thus used to compute
the training updates. This parameter is set to 32.

3.2 Ground Truth and Data Split

One of the most important components when performing a good classification is to have an
accurate and complete ground truth of the analyzed area. The information of the scenery
is often difficult to acquire since it mostly has to be manually assembled. As a consequence,
this part of the project data is usually the most incomplete and inaccurate part of the in-
formation used during segmentations. This problem also affects our project and has been
carefully handled.

In order to minimize the probability of incorrect labeling and, by that, of interfering with
the learning process of the convolutional neural network, the images are labeled in three
different classes:

• Cocoa

• Background

• Uncertain

This partition using a third class should prevent to falsely label cocoa pixels with the la-
bel ”background”. It is important to note that the pixels labeled as ”uncertain” will not
be used during training, since these would completely confuse the learning process of the
network.

Since data are sparse in our project, we decided to split our data set in only two indepen-
dent data sets: a training data set and a validation data set. The validation data set will
not only be used for the fine-tuning of the hyperparameters but also for the final test. The
validation data set will be independent enough to be a good reference for our experiments
since it will just have been sparsely in contact with the model before the final test.

3.2.1 Ecuador

In Ecuador the position of tree different farms was available (Figure 14); two in the region
of ”Los Ŕıos” and one in ”Guayas” (near the cities of Quevedo and Velasco Ibarra). Their
position was measured using a GPS antenna.
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Figure 14: Farms in Ecuador

We used Google Earth images to locate and map the farms, since the GPS points just
indicated the position of the farm entrances. This mapping task is doable since in Ecuador
cocoa is mostly planted in full sun farms, easy to recognize on satellite imagery. Unfor-
tunately, all the Google Earth orthophotos from the area of the farm in ”Guayas” were
blurred. Therefore, it was impossible to correctly identify and, thus, map the farm. We
decided to use only the other two farms in the region of ”Los Ŕıos”, which are next to each
other. Since the orthophotos of that region were very clear, we could easily locate, map
and create shape-files of the ground truth of both farms. The first farm has an area of 150
hectares and the second one an area of 125.

To correctly train the farms in Ecuador, we divided the area of the two selected farms into
two spatially separated areas, a big ”Training Area” and a smaller ”Validation Area”. This
subdivision is shown in Figure 15.

3.2.2 Ghana

In Ghana and Ivory Coast, we have a data set of approximately 175 farms, that have been
mapped between April 2016 and December 2017. These farms are well distributed over
both countries, mostly between the latitudes of 5◦N and 7◦N, and cover the regions of
Eastern (GH), Ashanti (GH), Western (GH), Comoé (CI), Lagunes (CI), Bas-Sassandra
(CI), Sassandra-Marahoué (CI) and Montagnes (CI). As for the farms in Ecuador, the
position of the farms was measured with a GPS-antenna.
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Figure 15: Farms in Los Ŕıos

The big difference between the farms in Ecuador and the ones on the African continent is
the difficulty to recognize the size and form of the farms from the Google Earth orthopho-
tos. This is due to the fact that most of the Ghanaian and Ivorian farms are still agroforests
and, as a consequence, are difficult to visually separate from other crops or even normal
forest.

Fortunately, we also had GPS positions of the borders of 15 farms. They are well dis-
tributed through Ghana. In order to prevent mislabeling, we decided to nearly only use
the bordered farms. But, since after discarding the really small farms (less then 10 pixels
in the Sentinel-2 image), only eight farms were left, we decided to add four farms from the
bigger data set in order to increase the amount of training information. Since the form of
these farm had not been measured, we just labeled a small area (10×10 pixels per farm) as
”cocoa” and left the rest (forest-like area) to the ”uncertain” class. In this way, we added
some more vital information to the Ghanian data set.
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(a) GPS points of the farm (b) Ground truth of the farm

Figure 16: Farm ER20 in East Ghana

3.3 Preprocessing

3.3.1 Procedure

The preprocessing procedure has been computed equally for all the Sentinel-2 images used
during this project:

• First, the Sentinel-2 imagery is downloaded from the ”Copernicus Open Access Hub”,
where the data of all Sentinel missions is publicly available. At this point, the image
is in the product type Level-1C. The worldwide product type Level-2A will be
directly available at the end of 2018.

• The Level-1C image is then processed to the product type Level-2A using the
Sentinel Application Platform (SNAP). This Toolbox can also be used to control
the quality of the images, perform band arithmetics and create masks such as cloud
masks.

• A GeoTIFF file is then created from the Level-2A image. The GeoTIFF format,
being a special form of the TIFF format (Tagged Image File Format), is a metadata
standard allowing the storage of georeferencing information in high spatial resolution.

• In a next step, the GeoTIFF file is clipped with the Shapefile of the ground truth
(labels) to one single raster graphic, in order to obtain an array with the pixel infor-
mation of the different bands and its respective ground truth class.

• At this point, we only select the bands with 10 m and 20 m spatial resolution: B2,
B3, B4, B8, B5, B6, B7, B11 and B12.

• The array is then subdivided into batches of a size 64 × 64 pixels. The batches
are created using different types of data augmentation methods such as overlapping
(using a fixed stride) and rotation (90, 180 and 270 degrees).
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• Mean subtraction and normalization are applied to these batches. The mean and the
standard deviation are calculated separately for every band of the training data set
and is then applying to the entire data set.

3.3.2 Selection of the Imagery

The images used for this project have been chosen considering the coverage area of the
image, the main crop season (September - February) and the percentage of cloud cover
when the data was acquired:

• Ecuador: We used imagery of the position MPU (Sentinel-2 code for the different
measurement positions) that covers the lower center part of the country

– 8th of November 2017: cloud coverage of 31.02%

• Ghana The Ghanian observation area, being larger than the one in Ecuador, is
distributed over four different Sentinel-2 images with the positions NWM, NXN,
NYM and NYN. Additionally, we choose four different imagery dates to increase the
amount of image data and have the possibility to use the temporal information of
the cocoa growth.

– 23th of December 2017: cloud coverage between 28.85% and 84.17%

– 2nd of January 2018: cloud coverage between 0.00 % and 20.19%

– 12th of January 2018: cloud coverage between 5.81% and 14.62%

– 27th of January 2018: cloud coverage of 0.00%

3.4 Analysis of the Learning Process

As mentioned earlier, convolutional neural networks are powerful classifiers that achieve
high accuracies in many different tasks. However, it is still difficult to determine which are
the factors and properties of the multispectral images that a convolutional neural network
uses to recognize and segment cocoa. In this section, we will analyze some components of
the convolutional neural networks and multispectral images in order to better understand
which aspects of the cocoa crop influence the classifier.

3.4.1 Importance of the Different Bands

In this section, we will determine which bands of the Sentinel-2 multispectral images have
pivotal information for the segmentation process. Therefore, we will test different combi-
nations of bands and compare the test results of the different trainings:

• RGB Bands (B2, B3 and B4): This is equivalent to taking an image with a normal
three band camera. If this combination reaches comparable results, then we will be
able to say that the use of multispectral images is unnecessary for this task.
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• Dropping each band separately: This will reveal if one of the nine bands is
indispensable for cocoa segmentation.

• NDVI Band (B4 and B8): The normalized difference vegetation index is a well-
known index often used for vegetation segmentation.

• RGB-NIR Bands (B2, B3, B4 and B8): Combined RGB and near infrared cameras
are nowadays a popular tool for image segmentation.

Beside these combinations, we will also further analyze bands that have shown some sig-
nificant relevance during these experiments.

3.4.2 Spectral Signature of Cocoa

As outlined in section 2.2, spectral signatures are often used to differentiate between differ-
ent surface objects and show clear visible differences between various plant types. There-
fore, we will analyze the spectral signature of cocoa and nearby elements such as forest or
other plants. Further, we will investigate the different correlations between these objects
and their spectral signature.

• In Ecuador, we will compute the spectral signature of cocoa, forest, bare soil and a
neighbor crop field.

• In Ghana, we will compute the spectral signature of cocoa from two different farms
for three different dates.

• Last, we will compare the spectral signatures of cocoa between Ecuador and Ghana.
Additionally, we will also compute the spectral signature of two Ghanian forests
(Mamiri Forest Reserve and Boin Tano Forest Reserve) in order to obverse the dif-
ference between tropical forests and agroforests.

These three analyses will give us information about the distinctness between cocoa and its
nearby areas, the evolution of the cocoa crop and the difference between cocoa in full sun
farming (Ecuador) and in agroforests (Ghana).

To compute the spectral signature of an object, we will cut out a certain area covered by
that object and calculate the mean value for each band reflectance values separately. This
results in one mean value per band. For the spectral signature of cocoa in Ghana (third
analysis), we will additionally average the reflectance values over the three data acquisition
dates.

3.5 Cocoa Segmentation in Ghana

Since the situation in Ghana with the agroforests farming and the small amount of suitable
information is particularly difficult, we approach this issue separately in this section.
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The data set used to train the Ghanian farms is sparse (12 small farms) and really unbal-
anced (proportion between cocoa and the rest of the image is smaller then 1/30). These
two factors, also being present in the Ecuadorian data set, are more extreme in the Gha-
nian data set. The sparsity and imbalance of data are two big problems while training
a convolutional neural network because the model is fed with a very small amount of in-
complete information. We will try to use different techniques to counteract these two issues.

3.5.1 Temporal Data

The first method used to deal with the problem of the limited quantity of data is the use of
multispectral images from different dates. These temporal data give to the network extra
information about the growth process not only of the cocoa crop but also of the other
plants surrounding them, such as shading trees.

Therefore, as mentioned in section 3.3.2, we selected Sentinel-2 images from four different
days in December 2017 and January 2018. The multispectral images of the same area are
then stacked over one another on the band dimension, in order to obtain an input image of
the size 64 × 64 × 36. This change of the input dimensions does not alter the architecture
(see section 3.1.1) or the hyperparameters, still set to the standard parameters defined in
section 3.1.2. By following this method, we will have multispectral images of certain areas
with the information of the development of the farms during December and January.

3.5.2 Unbalanced Data Set

Methods that artificially create, select and delete information of the original data set in
order to diminish the imbalance between classes are:

Data augmentation A method described in section 2.1.2 to increase the amount of
data in a data set is data augmentation. For this project, we only used the translation and
rotation methods. We implemented the translation by creating overlapping 64 × 64-pixel
batches from the original multispectral images. Then, these batches are rotated by 90, 180
and 270 degrees to quadruple the amount of batches. These two augmentation methods
have been applied not only on the Ghanian but also on the Ecuadorian data set.

We did not use scaling as a data augmentation method since the Sentinel-2 imagery is al-
ways taken from the same satellite altitude and this would have created useless information
for the convolutional neural network.

Undersampling We used the method of undersampling in different degrees to compare
the effects of this technique. Undersampling consists in setting a minimum amount of cocoa
per batch and thus eliminates the batches with a lower amount of cocoa. As a consequence,
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the proportion between cocoa, background and uncertainty in the data set will prominently
shift toward cocoa.

We tested different values of the minimal amount of cocoa per batch. For the batch of
size 64 × 64, we computed the undersampling for the values 100 and 200, representing a
minimum of 2.5% and 5% of cocoa per batch.

Batch size Another possibility to counteract the imbalance of our Ghanian data set is
to reduce the batch size (height and width) from 64 to 32. This reduction will decrease the
area covered by a batch by four and thus, combined with selective undersampling, create
a multitude of batches with a higher percentage of cocoa.

This method will also reduce the amount of information of the surrounding of the farm fed
to the convolutional neural network. Consequently, the results will give us an indication
about the importance of the environment of the farms for cocoa segmentation.
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4 Results and Discussion

4.1 Evaluation

The most common way of evaluating the results of a binary classification problem is the
use of the concepts of Recall, Precision, Accuracy and Intersection over Union. These four
auxiliary variables visualize the correctness of our predictions. To define them, we need to
introduce first the notions of ”True Positive”, ”True Negative”, ”False Positive” and ”False
Negative”.

Four cases arise in a binary classification. True Positive occurs when the condition (”there
is cocoa”) is true and the prediction is positive (”predicts cocoa”), True Negative when
the condition is true and the prediction is negative (”predicts no cocoa”), False Positive
when the condition is false (”there is no cocoa”) and the prediction is positive and False
Negative when the condition is false and the prediction is negative. These four cases can
easily be assembled in a so-called confusion matrix (Table 1).

ground
truth

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

Table 1: Confusion matrix

From these different auxiliary variables we can compute many ratios. The most used ones
are:

• Accuracy is the most intuitive of these variables. It represents the ratio between
the sum of all the correct predictions and the total population:

Accuracy =
TruePositive+ TrueNegative

TruePositive+ FalsePositive+ FalseNegative+ TrueNegative

• Recall (Kent et al. 1955) is the ratio between the True Positive and the sum of the
positive conditions. It indicates the part of the positive conditions that has been
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correctly predicted:

Recall =
TruePositive

TruePositive+ FalseNegative

• Precision (Kent et al. 1955) is the ratio between the True Positive and the sum of
the positive predictions. It characterizes the predictions that are correct and thus
actually useful:

Precision =
TruePositive

TruePositive+ FalsePositive

• Intersection over Union (IoU), also known as Jaccard index (named after the
Swiss botanist Paul Jaccard), is the ratio between the intersection and the union of
the predictions and the conditions (Figure 17). This metric, being a good a midpoint
between Recall and Precision, will be used as the main comparison metric:

Figure 17: Intersection over Union

4.2 Ecuador: the case of full sun farms

The data set used to train the Ecuadorian farms is processed from a Sentinel-2 image from
the 8th of November 2017. The two farms are full sun cocoa plantations and will therefore
be a good indicator for the usability of this method on this kind of farms.

Using data augmentation (Rotation and Translation), we obtain a training data set of 8190
batches and a validation data set of 1027 batches. The learning rate is set to 10−5 and the
L2 regularization to 0.01. The U-Net model is trained during 18 epochs, corresponding to
circa 4.600 training iteration with mini-batch size 32 and lasting 5 min and 50 sec.

The evaluation of the results is shown in Figure 18. At the end of the training process, we
computed the final metric on the validation data set:

• Final recall: 93.0%

• Final precision: 98.8%
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Figure 18: Results of the Ecuadorian training and validation data set
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• Final intersection over union: 92.0%

These are impressive results considering the limited amount of training data. We notice
that the precision of the predictions is nearly 100%. This means that the convolutional
neural network rarely assigns cocoa to a pixel labeled as background in the ground truth.
This error is known as false positive error or type I error.

When examining the loss and accuracy curves (Figure 18 (a)), no signs of overfitting can
be observed since the training and the validation curves nicely converge to the same values
and no significant drifting apart occurs. On the intersection over union curve, we can see
that the intersection over union of the validation reaches a much higher value than the
training. This is probably due to fact that the training area (Figure 15) contains more
complex shapes and a higher diversity of plants.

In Figure 19, the visualization of the RGB image, the ground truth and the prediction
of a batch from the validation data set are shown. A visualization of the superposition
of the ground truth and the prediction can be found in Figure A.1. We observe that the
convolutional neural network has correctly recognized the longitudinal form of the farm.
However, although identifying the rough shape of the farm, the classifier has some diffi-
culties with the cloud on the upper part of the validation area. This is due to the fact
that multispectral images do not contain any information of the Earth’s surface covered by
clouds, since the multispectral camera only measures the reflectance of the cloud. Hence,
we recommend in a further step to incorporate a method to detect clouds and handle them
separately from the rest of the data set.

Figure 19: Visualizations of a validation batch

We can also observe in Figure 19 that the greatest part of the incorrect predictions happen
on the border of the farm. Thus, we suggest the possibility of integrating edge detection

36



4. RESULTS AND DISCUSSION

methods to improve the results on the transitions between ”cocoa” and ”background”.

Furthermore, it is important to note that the results of this section are the training out-
come of a data set with only two, very similar farms. Therefore, these results have to
be validated with a larger data set containing more farms distributed trough the whole
country before being able to confirm the viability of this method on all full sun farms.

4.3 Analysis of the Learning Process

In this section we will analyze which aspects and properties of the convolutional neural
network and the multispectral images are decisive during the process of cocoa segmenta-
tion. This will give us a better understanding of the learning process and, thus, provide
the necessary knowledge to optimize the different steps and sub-procedures of this method.
The detailed explanation of the different analyses can be found in section 3.4.

4.3.1 Importance of the Different Bands

We compared the results of the trainings (Table 2) with different combination of bands
from the Ecuadorian Sentinel 2 image. The first run with all the bands (B2, B3, B4, B5,
B6, B7, B8, B11 and B12) has an intersection over union of 92.0%. This will be the refer-
ence point to compare the other runs.

In a first step, we analyzed the importance of multispectral images by only testing the RGB
bands. We observe that the RGB-bands alone (Figure 2: IoU = 45.3%) are not enough to
properly detect cocoa. The cocoa predictions were randomly distributed over the validation
area and did not have the characteristic form of the validation (Figure 16). This means that
the use of multispectral images and bands further than the visible electromagnetic waves
are important for cocoa segmentation. This statement is further confirmed by the result of
the training run without the visible bands (Figure 2: IoU = 92.7%); the intersection over
union being comparable to the reference run. This can be explained by the fact that RGB
is mostly used for the detection of textural features and structural patterns. This is quite
unnecessary because the image resolution of the Sentinel-2 data is 10 × 10 m and no tex-
ture should be recognizable in the images since there is more than one tree per image pixel.

Band B11 (1610 nm) is important, since the run without band B11 only reached an in-
tersection over union of 83.1%, nearly 10% less than the reference run. The other bands
do not show significant differences compared to the reference run when dropping them out
during training.

It is interesting to observe that the traditional methods such as NDVI (B4 and B8) and
RGB-NIR (B2, B3, B4 and B8) show comparable results to the reference run with all the
bands. The differences in the results between these two methods and the reference run is
due to the accuracy of the predictions in the border region of the farm.
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Accuracy Recall Precision
Intersection
over Union

All Bands 96.7% 93.0% 98.8% 92.0%

Only RGB 72.3% 51.6% 78.9% 45.3%

Without RGB 96.7% 95.0% 97.4% 92.7%

Without B2 96.6% 95.3% 96.6% 92.2%

Without B3 96.1% 91.7% 98.7% 90.6%

Without B4 96.1% 92.1% 99.0% 91.3%

Without B8 95.6% 93.4% 96.2% 90.0%

Without B5 96.3% 92.4% 98.9% 91.5%

Without B6 96.8% 95.1% 97.4% 92.8%

Without B7 97.1% 94.3% 99.3% 93.7%

Without B11 91.9% 83.5% 99.4% 83.1%

Without B12 96.1% 92.1% 99.6% 91.7%

NDVI Bands 93.8% 89.1% 95.4% 85.4%

RGB and NIR 95.2% 90.8% 97.2% 88.5%

Only Band B8 92.3% 87.2% 94.8% 83.2%

Only Band B11 87.3% 82.0% 83.9% 70.9%

Only Band B12 90.5% 86.7% 90.1% 79.2%

Bands B8, B11 and
B12

95.0% 90.0% 98.2% 88.5%

Table 2: Band Analysis

From these results, we can deduce the importance of the bands B8, B11 and B12. This
follows the poorer results of the training without band B11 and the good results of the
NDVI and RGB-NIR trainings. When training these bands alone, the convolutional neu-
ral network reaches higher intersection over union than for the RGB training. All three
single-band combinations segmented the general form of the farms, but poorly segmented
their border areas.

Furthermore, it is interesting to note that the combination of bands B8, B11 and B12 only
gives a slightly lower result (Figure 2: IoU = 88.5%) than the reference run. This is not
surprising since bands B11 and B12 (short-wavelength infrared) are good indicators of the
moisture content of the soil and vegetation and are therefore often used to differentiate
between different types of vegetation.

4.3.2 Spectral Signature of Cocoa

As explained in section 3.4.2, spectral signatures carry information about the reflectances
of different objects of the Earth’s surface. We will therefore try to find a relation between
the different land covers and their spectral signature.
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Figure 20: Spectral signatures of cocoa, forest, bare soil and another crop type in Ecuador

Cocoa in Ecuador First, we analyzed the situation in Ecuador calculating the spectral
signatures of cocoa, forest, an empty field and an unknown crop cultivated beside the cocoa
farms. The reflectances of the multispectral bands are illustrated as triangles in Figure 20.

First, we observe that, while in RGB (first three bands) bare soil differentiates itself very
well from cocoa, forest and other crops have a similar RGB signature compared to cocoa.
The difference between these types of vegetation gets more conspicuous when observing
the near infrared (700 nm−1400 nm) and the short-wavelength infrared (1400 nm−3000
nm).

Furthermore, bands B11 (1610 nm) and B12 (2190 nm) being good indicators of the mois-
ture content of surface objects, we deduce that the cocoa fields and the neighbor crop are
irrigated since these two bands have higher values compared to the forest or the empty
field. This is not a surprise as the Ecuadorian farms are full-sun plantations that need
strong care and thus also intensive irrigation.

Cocoa in Ghana In Ghana, we computed the spectral signatures of two farms (ER6
and ER20) for three different dates in January (Figure 21).

It is interesting to note that, while there is a small difference between the spectral sig-
nature of the two farms on the same day, this difference is nearly constant for the three
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Figure 21: Spectral signatures of two farms in Ghana on three different days

January dates. We can thus deduce that the farms have a similar growing process that can
be learned by the convolutional neural network and, therefore, used during segmentation
when training with temporal data (Section 3.5.1).

A significant evolution with time occurs in the visible part of the electromagnetic spec-
trum. This indicates a color change of the agroforest. This should mostly correspond to
the development in association with the shading trees covering the farm. Hereby, we can
say that the growth and development of the shading trees are a potential key in the process
of detecting cocoa.

Furthermore, a diminution of the water content in the cocoa plants can be observed, as
band B11 and B12 decrease during January. This is probably due to the fact that the
rainy season ends in November and that January is on average the month with the lowest
amount of precipitations in Ghana.

Comparison between cocoa in Ecuador and Ghana In order to better understand
the relationships, similarities and differences between full sun cocoa, agroforest cocoa and
normal rain forest, we computed the spectral signature of all these types of vegetation
(Figure 22).

The biggest differences between the spectral signatures is noticeable in the bands B8 (842
nm, third from right), B11 and B12. First, a major gap can be observed between the
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Figure 22: Spectral signatures of two Ghanian farms, the Mamiri Forest Reserve, the Boin
Tano Forest Reserve and an Ecuadorian farm

Ecuadorian cocoa and the rest of vegetation types. As mentioned above, this might be
due to the fact that Ecuadorian farms are irrigated and Ghanian are not. This shows
the discrepancy between the two countries and the delay in the development of farming
techniques that the majority of African countries have compared to South American ones.

In Ghana, the difference between the agroforests and the forest is minor compared to
Ecuador. This is not surprising considering that agroforests often contain the same trees
as a normal forest functioning as shading trees for the cocoa crops. Nevertheless, some
small differences between the spectral signatures of forest and cocoa agroforest can be ob-
served.

These small differences, combined with the parallel growing process of cocoa when using
temporal data, should contain enough spectral distinctness for the task of cocoa segmenta-
tion in agroforests. Furthermore, the importance of the bands B8, B11 and B12, deduced
in section 4.3.1, can clearly be seen in the three analyzed figures in this section.

4.4 Ghana: the case of agroforestry farms

The Ghanian data set is composed of twelve small farms and is, because of the small
amount of available data, really unbalanced. These farms are agroforests, as explained in
the introduction (section 1), and will therefore be a good indicator of the feasibility of our
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method for this kind of cocoa farms.

Since the situation is more complex than for the full sun farms, we introduced some meth-
ods in section 3.5 to counteract the issues of the sparsity and imbalance of the data set. In
this section, we will discuss the results and effects of these methods.

First, we will compare and analyze the use and outcome of temporal data and undersam-
pling. Here we understand by non-temproal data the non-stacked and by temporal data the
stacked batches (section 3.5.1) of the four different dates in December 2017 and January
2018 for which data are available.

• Undersampling on Non-temporal Data:

Minimal amount
Percentage

of cocoa
Accuracy Recall Precision

Intersection
over Union

0 2 − 3.5% 56.5% 0.0% / 0.0%

100 5% 45.2% 0.0% / 0.0%

200 7% 73.7% 47.4% 99.2% 47.2%

Table 3: Results of the final validation using undersampling on non-temporal data

‘

• Undersampling on Temporal Data:

Minimal amount
Percentage

of cocoa
Accuracy Recall Precision

Intersection
over Union

0 2% 53.2% 0.0% / 0.0%

100 5% 75.7% 61.1% 99.7% 58.2%

200 7% 49.8% 44.2% 99.6% 44.1%

Table 4: Results of the final validation using undersampling on temporal data

First, it is clear that the use of undersampling is vital when training such a sparse and
unbalanced data set. This is clearly recognizable in the first rows of Tables 3 and 4 since
in both cases training without undersampling did not predicted any cocoa (IoU = 0.0%).

Some increase in the training stability seems to occur when training with temporal data.
This is shown by the fact that the temporal data already gives cocoa predictions with
low undersampling while non-temporal data is still useless. For non-temporal data, the
minimum number of cocoa pixels per 64 × 64 batch has to be set to at least 200 to show
cocoa predictions.

42



4. RESULTS AND DISCUSSION

It is interesting to note that all the training sessions with cocoa predictions have led to
extremely high precision values (over 99.0%). This was already the case in Ecuador (sec-
tion 4.2). This shows again that the convolutional neural network does nearly not predict
cocoa on ground truth background (false positive error or type I error). Thus, it is clear
that the increase of the recall is the more complex task during cocoa segmentation.

Furthermore, it must be said that all the trainings with temporal data have resulted in
final training accuracies of approximately 95.0%. This is a perfect example of the accuracy
paradox introduced in section 2.1.2 where the accuracy is extremely high but the values
of the other evaluation metrics are considerably lower. This indicates that, even after ap-
plying strong undersampling, our data set continues to be quite unbalanced and therefore
less-than-ideal for the given task.

In Table 4, we can observe a slight decrease of the intersection over union value when in-
creasing the amount of undersampling. This might be due to the fact that undersampling
eliminates a lot of batches and thus also a great deal of relevant information that the con-
volutional neural network could need during the segmentation process, such as information
about the borders and the surroundings of the farms.

Batch size In order to increase the percentage of cocoa per training batch, we proposed
in section 3.5.2 to compute batches of the size 32 combined with the use of undersampling.

The validation results quickly reached intersection over union values over 80.0% when ap-
plying undersampling. Along with it, the percentage of cocoa per training mini-batch
reached values between 15.0% and 25.0%. Therefore, the percentage of background drops
considerably, since the areas directly surrounding the farms are mostly labeled as uncertain.

Furthermore, the predictions were not only distributed over the ground truth cocoa but also
over the majority of the ground truth uncertain. This outcome being suspicious, we decided
to validate the trained model on Sentinel-2 imagery of the forest area of the Höggerberg in
Switzerland as we were sure not to find cocoa in this area of the world. The Swiss valida-
tion of the trained model predicted non-existent abundance of cocoa in the forest of Zurich.

Therefore, we deduced that the model generally predictes forest areas. This is surely caused
by the missing forest information in the background label when reducing the batch size.
Since these results look far from good, we decided to continue working with the batch size
64. Nevertheless, we assume better results are possible with the batch size 32, in case more
data or better information on the farm surroundings are available.

Analyzing the best choice of hyperparameters We will further discuss the best
results achieved on the Ghanian data set. The set of hyperparameters chosen for this
training run is:
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Figure 23: Results of the Ghanian training and validation data set
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• Use of temporal data,

• Undersampling with 100 pixels as minimal amount of cocoa per batch,

• Batch size of 64.

The evaluation of the results is shown in Figure 23 and the final metric can be found in
the second row of Table 4.

The loss and accuracy curves in Figure 23 indicate that overfitting occurs to some extent
during training. This is probably due to the small amount of data. However, the recall
and intersection over union curves seem to nearly converge and, thus, we can say that the
overfitting is not excessive and can be neglected.

Figure 24: First visualizations of a validation batch

Figures 24 and 25 are visualizations of the RGB image, the ground truth and the predic-
tion for the validation farm of the Ghanian data set. A visualization of the superposition
of the ground truth and the prediction can be found in Figures A.2 and A.3. In Figure
24, we perceive that the convolutional neural network finds the rough position and form
of the farm. However, there is still a hole in the middle of the farm and the predicted
borders do not match the ones on the ground truth. These imperfections can have two
opposite causes. On one side, we cannot estimate how accurate the GPS points that form
the ground trut, have been measured. On the other, the amount of data given to the
convolutional neural network is below the usual amount of data used to train this kind of
methods. Furthermore, since agroforests can be as diverse as normal forests, it can be that
we do not have enough farms covering all possible types of vegetation found in agroforests.

Figure 25 shows the same farm as Figure 24 just shifted a bit to the left. In this visual-
ization, we see that the convolutional neural network predicts some cocoa in the ground
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Figure 25: Second visualizations of a validation batch

truth uncertain area beside the ground truth farm. Since we do not have any information
about the area around the farms, we cannot say if these areas have or not cocoa. Yet, when
observing the overlapping batches, we can see a spatial congruence between the different
batch predictions.
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5 Conclusions

The main aim of this Bachelor’s thesis was to test the feasibility of cocoa segmentation
by combining the use of satellite multispectral imagery and deep learning methods. The
second objective was to analyze and, thus, understand the learning process and determine
the decisive properties of convolutional neural networks and multispectral images during
cocoa segmentation. Considering that cocoa is cultivated with different methods depend-
ing on the country, we analyzed our method separately for full sun farms and agroforesty
farms, using Ecuador and Ghana as representatives for both farming methods.

We can assert that the method developed during this project works very well for full sun
farms, such as the ones found in countries like Ecuador. However, since these remarkable
results have only been achieved on two farms, they need to be validated using a bigger
data set with larger amounts of farms distributed trough Ecuador or, even, with farms
from other countries using full sun farming.

We showed the need for multispectral imagery and information of near-infrared and short-
wavelength infrared reflectance for the task of cocoa segmentation. Along with it, we found
a significant difference between the spectral signature of cocoa cultivated in full sun farms
and agroforests. This reinforces the initial decision to treat full sun cocoa and agroforest
cocoa farms separately.

In the case of agroforestry, we cannot affirm the applicability of our method due to the un-
certainty associated with of our results. However, they indicate some promising directions
towards the use of this method for agroforestry.

Furthermore, we propose some improvements and next steps for our project:

• Implementing a more powerful architecture.

• Increasing the amount of data not only in Ghana but also in Ecuador. This will
solve the issue of the data sparsity and additionally decrease the imbalance of the
data set. In addition, it will further validate our results and give the possibility of
definitively proving the feasibility of the method.

• Increasing the information of the surrounding of the farms. This will, on the one
hand, counteract the imbalance of the data set and, on the other hand, validate the
cocoa predictions that at this point of the project are still uncertain.

• Implementing a method to detect clouds and threat them separately from the rest
of the data set. This should be integrated in a complete and more sophisticated man-
agement of the cloud problem that occurs when using satellite multispecral imagery
in tropical regions.

• As a consequence of the previous point, introducing more labels to separate different
type of crops and vegetation. This will increase the complexity of the model and
help the convolutional neural network to better understand the surrounding of the
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agroforest farms. For instance, improving its ability to separate streets from different
types of vegetation. Of course, this requires that the surrounding of the farms is
accurately mapped.

• Computing larger time series. In a future step, the idea of temporal data could be
generalized to all available cloud free Sentinel-2 images over a span of a year. This
will increase the amount of information, not only of the cocoa growth, but also of
other types of vegetation such as shading trees that form part of an agroforest.

• Adding batches of uncultivated forest to the data set. This will, when using
undersampling, help to give the convolutional neural network enough information
about other types of vegetation to distinguish between normal forest and agroforest.

• Implementing a penalization method for errors on the minority class of the un-
balanced data set. This will force the convolutional neural network to take this class
more into account.

• As a last step, performing a hyperparameter fine-tuning will allow us to find
the optimal set of hyperparameters for cocoa segmentation and, thus, also the best
possible results.
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A Appendix

A.1 Additional Visualization of Predictions in Ecuador

Figure A.1: Visualization of the superposition of ground truth and the predictions for an
Ecuadorian farm
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A.2 Additional Visualization of Predictions in Ghana

Figure A.2: First visualization of the superposition of ground truth and the predictions for
an Ghanian farm

Figure A.3: Second visualization of the superposition of ground truth and the predictions
for an Ghanian farm
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