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Abstract

In this thesis, the two building data sets Microsoft Building Footprints and Google
Open Buildings are compared. For one, a direct comparison between the two is
made. Furthermore, it is tested which data set can be better used as training labels
for building prediction models. The direct comparison shows that both data sets
have a lot of inaccuracies. But the building areas of Microsoft Building Footprints
are more accurate. Additionally, Microsoft’s building counts are better. As training
labels, Microsoft’s data only did slightly better than Googles. The resulting building
prediction models catch the general form of most buildings. Some buildings and
holes aren’t detected by the model, the limited resolution being a key issue. Overall,
using Microsoft Building Labels over Google Open Buildings for building detection
is recommended. However, both options can still be tested with different comparison
approaches.
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Chapter 1

Introduction

A Comparison between two building data sets, Microsoft Building Footprints and
Google Open Buildings is made in this thesis. Their potential as training data for
building detection models is tested.

1.1 Motivation

This bachelor thesis is part of a project that aims to provide accurate, high-resolution
and up-to-date population mapping for the whole world using satellite imagery. In
a first step of the project, context variables including buildings, distance to road
and topography are computed from satellite imagery. After that, population counts
are predicted from those variables. Those population counts are valuable for the
International Committee of the Red Cross when providing humanitarian aid. For
example, in vaccine distribution, help of war refugees and response to natural dis-
asters, high resolution population maps are really useful.

1.2 Research Questions

The main goal is to compare the suitability of two existing building data sets, Mi-
crosoft Building Footprints and Google Open Buildings, as training labels for the
network. On one hand, the data sets themselves are compared to a ground truth.
On the other hand, it is compared which one helps creating better models with a
deep learning network.
A comparison of the quality of the building predictions for different locations is done
as well. It is shown what kinds of buildings the resulting model predicts well.

Additionally, a goal is to compare if images from Sentinel 1 or Sentinel 2 work
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Chapter 1. Introduction 7

better for predicting building footprints. It is also determined if a combination of
the two works achieves better results than just one.



Chapter 2

Data

2.1 Image Data

Image data is needed as input to train and run the deep learning model. Imagery
from the european satellite missions Sentinel 1 and Sentinel 2 is used. Sentinel 1
provides radar images (ESA (2023a)). 2 bands are available in a 10x10m resolution.
Only imagery from ascending satellites is used because it is available for all locations.
Mixing ascending and descending satellite imagery is avoided, since the data is
different due to different geometries. Sentinel 1 has the major advantage that it is
usable regardless of weather and daylight. Meanwhile, Sentinel 2 delivers 13 optical
bands (ESA (2023b)). However, only four of those bands are available in a 10x10m
resolution. Since the resolution is critical when detecting buildings, only those bands
are used. They contain the bands 2, 3 and 4, the three RGB channels and band 8,
the NIR (near-infrared) band.
For both Sentinel 1 and Sentinel 2, the median of all images for was computed for
each season.

Figure 2.1: Sentinel 1 (left)(ESA (2023a)) and Sentinel 2 (right)(ESA (2023b))
example
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Chapter 2. Data 9

2.2 Building Data

Microsoft Building Footprints (Microsoft (2023)) and Google Open Buildings (Google
(2023)) are the two data sets that are compared in this thesis. Both cover large ar-
eas in a number of regions. This potentially makes them useful as training and
validation labels for a building prediction model. Microsoft’s Buildings are available
for most continents, while Google’s data covers Africa and South East Asia (Figure
2.2).

Figure 2.2: Microsoft Building Footprints (left)(Microsoft (2023)) and Google
Open Buildings (right)(Google (2023)) coverage

However, both of those building footprints are not always accurate. They were
also determined from a deep learning model with satellite imagery as input ((Mi-
crosoft (2023)),(Google (2023)). This automated approach results in a lot of errors.

As shown in the example in Figure 2.3, buildings are often mapped in incorrect
shapes (middle and right image). Additionally, some containers are mistaken for
buildings in both data sets.

Figure 2.3: SpaceNet7 (left)((SpaceNet (2020)), Google Open Buildings (cen-
ter)(Google (2023)), Microsoft Building Footprint (right)((Microsoft (2023)) exam-
ple from Senegal

Those two building data sets are downloaded via Google Earth Engine. The
Microsoft Building Data was created from image data between 2014 and 2021. No
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more precise dates are known. The Bangladesh Google tile was created in August
2022, with the other Google tiles dating back to April 2021.

Another source of building footprints is the SpaceNet7 dataset (SpaceNet (2020)).
The SpaceNet buildings are the most accurate ones that are found. The buildings
were manually labeled which guarantees higher quality. For example in Figure 2.3,
it is visible that buildings are accurately mapped by the SpaceNet data set. No
other objects are mistaken for buildings either.

Since only 60 4x4km tiles are available, as we can see in Figure 2.4 (SpaceNet
(2020)), SpaceNet7 does not provide enough data to train a versatile deep learning
model. However SpaceNet7 data can still be used as verification.

Figure 2.4: SpaceNet7 Tiles

2.2.1 Data preprocessing

To compare the Microsoft and Google building data sets as training data for building
detection, the building data needs to be rasterized. This step is necessary for all
Microsoft and Google training and validation labels. Furthermore, the SpaceNet7
data needs to be rasterized to test the models.
The vector building tiles are rasterized so that they have the same amount of pixels
in x and y dimension as the corresponding imagery. That means the building labels
have the same resolution of 10x10 meters. All pixels whose center is covered by a
building polygon are marked as building area in this rasterization.
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2.3 Data Allocation

2.3.1 Direct Comparison

For the direct comparison of Microsoft Building Footprints and Google Open Build-
ings using SpaceNet7 as footprints, only areas that are covered by all three data
sets can be used. This limits the selection to just 8 4x4 km tiles (Figure 2.5). Most
of them are located in Africa, with one in Bangladesh. Three tiles near the city of
Cairo in Egypt are used.

Figure 2.5: Tiles for Direct Comparison and Model Testing

The countries of all tiles are listed here:

Country

Bangladesh
Egypt (3 tiles)
Ghana
Senegal
South Africa
Zambia

Table 2.1: List of Testing Tile Countries

2.3.2 Comparison of Model Predictions

The same 16 square kilometre tiles displayed in Figure 2.5 are used to test the build-
ing prediction models that are generated. Other than in the direct comparison, the
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rasterized building labels are used.

A lot of the training and validation tiles are selected to be nearby the testing
tiles. The idea is to train on tiles with similar geography for optimal learning.
Different tiles are used to ensure that correlation between training and testing data
is not too strong. Some tiles in other African countries are used as well (Figure 2.6).

Figure 2.6: Tiles for Training and Validation of Model

Training and Validation tiles from the following countries are used:

Country

Algeria
Bangladesh
Egypt (2 tiles)
Ghana
Guinea
Ivory Coast
Mozambique
South Africa (2 tiles)
Togo
Zambia

Table 2.2: List of Testing Tile Countries
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The raster data that is used, consisting of imagery and building labels, is split
into training, validation and testing data. For training and validation, data from the
same downloaded tiles is used. The left 80 % of each training+validation tile is used
for training. This means training+validation tiles contain 1782 x 2228 pixels, which
corresponds to around 17.8km x 22.3 km. An area of about 400 square kilometres is
covered. The 20 % on the right hand side of each tile is used for validation (Figure
2.7). The validation part makes up 446 x 2228 pixels or 4.5 km x 22.3 km. The
validation area for each tile is 100 square kilometers big.

Figure 2.7: Training Area (red) and Validation Area (blue) of Senegal, Sentinel 2
image



Chapter 3

Methods

To compare Microsoft Building Footprints and Google Open Buildings, two ap-
proaches are chosen. On one hand, the building data itself is compared to the
ground truth. On the other hand, it is tested which dataset produces a better build-
ing prediction model when used as training labels. In the end, the results from the
two different approaches are compared and discussed.

3.1 Direct Comparison of Building Data

The Microsoft and Google building data sets are directly compared the SpaceNet7
data set as a ground truth. Multiple metrics are computed to assess the quality of
both data sets. This also helps to determine the best possible results that can be
expected from the deep learning model.

3.1.1 Comparison Metrics

It order to assess and compare the quality of Microsoft and Google Buildings, both
are compared to the SpaceNet7 labels individually. The original vector data sets
are used to compute multiple metrics. For each test tile, the confusion matrix is
computed. It consists of the sizes of the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) areas computed by intersecting the building
areas.

TP are the tile sections where both data sets, the tested Microsoft or Google
buildings and the SpaceNet7 ground truth, predict building area. FP sections are
only marked as building area in the tested data, FN sections only in the ground
truth. TN sections aren’t marked as building area in either data set, which means
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the negative prediction of the tested data is correct. The following metrics are
computed with those formulas:

IoU (Intersection over Union) =
TP

TP + FP + FN

Precision =
TP

TP + FP

Accuracy =
TP + FN

TP + FP + TN + FN

Recall =
TP

TP + FN

F1− Score =
2(

1
Precision + 1

Recall

)

Each metric is then compared for Microsoft Building Footprints and Google
Open Buildings.



16 3.2. Comparison of Model Predictions

3.2 Comparison of Model Predictions

In the second approach, both Microsoft and Google are used as building labels when
training a deep learning model. It is tested which building labels lead to the best
model. Imagery is put into the model as input and trained with the building labels.
A U-Net is used as the deep learning network. For testing, the SpaceNet7 buildings
are once again used as a ground truth. The SpaceNet data is used as building labels
in testing to examine the quality of different generated models. Evaluation metrics
are computed and Microsoft and Google models are compared.

3.2.1 Neural Network

The neural network is used for a random 128x128 pixel patch each time. A random
season of the imagery is used.
The U-Net is used as the architecture of the deep learning network (O’Sullivan
(2023)). It is a commonly used convolutional neural network for image segmentation.
Image Segmentation aims to assign a class to each pixel of an image. In our case, the
classes are building area and non building area. A U-Net contains an encoder and
a decoder part. First, the input image goes through the encoder part. The image
is downsampled here. It runs through multiple convolutional and pooling layers.
In convolution, a kernel is applied to every pixel. The pooling layers downsample
the image. Afterwards, the image runs through the decoder part. The image is
upsampled until the dimensions are the same as in the beginning. Deconvolution
layers increase the image dimensions. Skip connections between encoder and decoder
layers enable the flow of both high-level and low-level feature information to improve
segmentation performance.

Figure 3.1: U-Net Architecture (Freiburg (2023))
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The output of the model is compared to the building labels. The Binary Cross-
Entropy (BCE) Loss is computed to measure the measure the dissimilarity of the
predictions and the building labels (Godoy (2018)).
The BCE-Loss is computed as follows:

Average BCE Loss =
1

N

N∑
i=1

− [yi · log(pi) + (1− yi) · log(1− pi)]

The loss is computed for each pixel i. The p is the given pseudoprobability of
the model prediction that the pixel contains a building. The y is a binary value.
The value is 1 if the pixel actually contains building area according to the building
label.
BCE Loss is minimized in order to improve the model.
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3.2.2 Training Arguments

The following data settings are used:

Argument Entry

Number of workers 4
Batch Size 20
Crop Size 128
Scaling 8

Table 3.1: Data Settings

The used hyper parameters mostly remain the same for the different models.
The following training settings are used:

Argument Entry

Downsampling Steps 3
Number of Epochs 250
Optimizer Adam
Learning Rate 0.0001
Momentum 0.9
W-decay 1e-5
Learning Rate Scheduler Step
Learning Rate Step 10
Learning Rate Gamma 0.9
Gradient Clip 0.01

Table 3.2: Training Settings
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3.2.3 Evaluation Metrics

Multiple evaluation metrics are computed during training, validation and testing.
Different to the BCE Loss, they are not used by the U-net to improve the model.
They provide additional feedback about the quality of a model. The goal is to
compare different models. This way, the influence of using different building labels
as training can be detected. Also, the model quality for varying imagery and the
success on different testing locations is estimated.
The following metrics are computed:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− Score =
2(

1
Precision + 1

Recall

)
The positive or negative values from the predictions aren’t binary values, but

an estimate of the probability between 0 and 1. In order to compute those metrics,
they need to be transformed to binary numbers using a threshold. The threshold
specifies above what probability a 1 is assigned to a pixel. The threshold has a big
impact on the metrics and can be optimized.
If the average Recall is really low for a model, not enough buildings are being
detected leading to a high amount of false negatives. In that case, the threshold
needs to be decreased so more pixels are declared building areas in the predictions.
Meanwhile, it can also happen that too much building area is predicted. In that
case, the average Precision is low due to the false positives. The threshold would
have to be increased, only considering pixels where pseudoprobability is higher.
After the threshold is optimized on average, different predictions can be compared
using the evaluation metrics. The F1-Score contains both Precision and Recall as
weights. That makes it a good measurement for the quality of a prediction. That
is why the F1-Score is used to compare training labels, imagery and locations.
Even though some of the same metrics are computed, those metrics can not directly
be compared to the ones from the direct building data comparison in chapter 3.1.
Here, raster data is used instead of vector data, which might influence the results.
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Results and Discussion

4.1 Direct Comparison

4.1.1 Building Areas

Results

The metrics in Figure 4.1 show the difference between SpaceNet and the other 2
building datasets is quite substantial in general. The Microsoft data is a little closer
to SpaceNet, with all metrics being higher.

Figure 4.1: Metrics of Microsoft and Google with SpaceNet as ground truth

20
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Discussion

Microsoft’s metrics are better than Google’s. That suggests that the quality of the
Microsoft data set is higher. Especially the recall is much better. However, both
data sets are far off from the SpaceNet ground truth. F1-Scores lie at around 0.5.
The low Recall values suggest that a lot of buildings area is missed. Meanwhile, the
low precision values show that a lot of false building area is found in does data sets.

4.1.2 Building Counts

Results

In terms of building counts per tile, Microsoft and Google have recorded too many
buildings compared to the SpaceNet ground truth. However, the Microsoft Building
counts are much closer.

Figure 4.2: Building Counts of Testing Tiles

Discussion

The results suggest that the Microsoft data set is better. Building count is an
important metric with the general goal of population density mapping in mind. The
amount of buildings is used to calculate inhabitants of an area.
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4.2 Comparison of Model Predictions

4.2.1 Comparison of Training Labels

Results

The best model created with Microsoft Building Labels is compared to the best
model from Google Building Labels. The test metrics are slightly better for the
Microsoft model.

Figure 4.3: F1-Scores Training Labels

Discussion

Microsoft buildings are more similar to SpaceNet than the Google buildings accord-
ing to section 4.1 . That’s why it is expected that the models trained with Microsoft
labels produce a better F1-Score. However, the difference in F1-Score is really small
at -0.0083. Only 8 testing tiles are used and make for a small sample size. That’s
why it can’t be clearly stated that the models from Microsoft training worked better
than the ones from Google. For both data sets, the predictions have a lot of room
for improvement.
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4.2.2 Best Model

Description

The best model according to the evaluation metrics in the test tiles is obtained when
using Microsoft Building Footprints over Google Open Buildings as training labels.
Furthermore, only Sentinel 2 imagery was used for the best model.

Output

As seen in Figure 4.4, the overall building structures are captured by the network.
However, in some dense areas, the buildings are to thick. Small gaps between
buildings go unnoticed and not every building is recognised individually. At the
same time, some buildings are missed in areas with few, isolated buildings.

Figure 4.4: SpaceNet labels (left)(SpaceNet (2020)) and Model predictions (right)
for Senegal tile
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On average, recall is slightly above 0.5 for the best model. That means only half
of the building areas are found. Meanwhile, precision lies below 0.5. More then half
of the predicted building areas do not actually contain buildings.

Figure 4.5: Metrics of Best Model

Discussion

The deep learning model often fails to catch small gaps between buildings and small
isolated buildings. The limited resolution is probably a main contributor to those
issues. A lot of smaller building geometries can’t be derived from 10x10 meter
satellite images. The rasterization of the vector building data to a 10x10 meter
raster is causing issues too. The rasterized building labels are less representative of
the actual buildings, which makes training more difficult.

Considering no higher resolution image data is available, those issues are hard
to avoid. The resolution sets a limit for the evaluation metrics that can be achieved.
For the building rasterization, a different rasterization method might improve the
results. Instead of only considering the center of the pixel, pixels that intersect
with a building polygon anywhere could be considered building areas. This way,
buildings smaller than 10x10 meter would always be considered. At the same time,
the models might overpredict the building area this way. Another approach could
be to consider what percentage of each pixel is covered by building area and using
that in training.



Chapter 4. Results and Discussion 25

4.2.3 Different Locations with Best Model

Results

When the F1-Scores of the different testing locations are compared, big differences
come up. The gap between the highest F1-Score (0.693, Egypt1) and the lowest
F1-Score (0.255, Ghana) is immense.

Figure 4.6: Different locations with Best Model
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Discussion

A comparison between the location with the highest F1-Score (0.693, Egypt1 tile)
and the one with the lowest F1-Score (0.255, Ghana) makes sense. As seen in Figure
4.7, the individual buildings in the Egypt1 tile are much bigger than the ones in the
Ghana tile. This explains the major difference in F1-Score. The limited resolution is
much less of an issue for the prediction in Egypt1, since all buildings are big enough
to be spotted.

Figure 4.7: Rasterized SpaceNet Labels - Egypt1 (left) and Ghana (right)

For Ghana, the model struggles to predicts the various small buildings. Figure
4.8 shows the model predictions for the two tiles.

Figure 4.8: Predictions - Egypt1 (left) and Ghana (right)
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A closer look at part of the Ghana tile helps explaining the low F1-Score. Look-
ing at the Sentinel 2 image in 10x10 meter resolution (Figure 4.9, left), it is hard to
spot the individual buildings even by eye. The model doesn’t predict the buildings
accurately (4.9, right).
However, this image section shows that the model succeeded at differentiating build-
ings and some other objects with similar pixel colors. Empty spaces (top left corner)
and roads weren’t confused for buildings.

Figure 4.9: Sentinel 2 image (left)((ESA (2023b)) and model prediction (right) of
example in Ghana

Figure 4.10 shows the actual ground truth building labels.

Figure 4.10: SpaceNet7 labels of example in Ghana
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4.2.4 Imagery Ablations

Results

Predicting buildings using the radar imagery of Sentinel 1 instead of Sentinel 2 yields
the worst results. When the optical Sentinel 2 imagery is used, the F1-Score is much
higher. Using both Sentinel 1 and Sentinel 2 combined doesn’t improve the results
any further.

Figure 4.11: F1-Scores Imagery

Discussion

Other research suggests that the more accurate prediction with Sentinel 2 compared
to Sentinel 1 is to be expected. However, a fusion of Sentinel 1 and Sentinel 2 should
bring a slight improvement over only using Sentinel 2 (Sandhini Putri et al. (2022)).
The key take away is that Sentinel 2 works much better than Sentinel 1 as input
data. It can’t be explained yet why using Sentinel 1 and Sentinel 2 at the same time
made the test metrics worse. Different machine learning approaches might justify
using both.
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Conclusion

5.1 Main Findings

Using Microsoft Building Footprints over Google Open Buildings as training data
is generally recommended. It’s helpful that this data set is widely spread. Building
Footprints of North America, South America, Europe, Asia and Africa are available
and would allow for more diverse training tiles (Figure 2.4).

However, footprints are also missing or unavailable in some regions. In that
case, other building labels such as Google Open Buildings can be used.
Another approach might be to combine the two data sets for building labels. The
intersection or union area of both could be used. Coordinates that contain buildings
in both data sets would have a higher certainty. In a union of the two data sets, less
buildings would be completely missed, since they would often appear in at least one
data set.

5.2 Recommendations

Adding more training data would help to create a more versatile deep learning model.
Training, validation and testing is mostly done for African locations so far and ur-
ban and suburban regions are used. If the produced models were tested on different
continents and regions, the evaluation metrics would probably be worse. Depend-
ing on a region, building architectures and material colors are different. Different
challenges are faced when detecting those buildings. In order to predict worldwide
building counts accurately, training needs to be done in more diverse locations.
In the direct comparison of Microsoft Building Footprints and Google Open Build-
ings, some different metrics could be computed. Instead of focusing on the areas,

29
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the amount of buildings that overlap between the tested data set and the SpaceNet7
ground truth could be determined. Less focus would be on the area sizes and shapes,
with more focus on the existence of the correct buildings.
It would make sense to ensure that the images and the training labels from the same
dates. Building areas changing over time might also be an issue as of now.
For evaluation of the building predictions, some different metrics could be com-
puted. So far, the focus was on the amount of building area that overlaps. It would
be interesting to compute building counts and building sizes from the building pre-
dictions and comparing those to the ground truth building counts. With regard to
the goal of the overall project, predicting population densities, those values need to
be accurate. It could be compared if Microsoft Building Footprints or Google Open
Buildings produce the better building counts and sizes.
Generally, is it recommended to keep using both Microsoft Building Footprints and
Google Open Buildings as building labels when creating new models or calculat-
ing new metrics. The difference in performance was quite small so far. With new
approaches, Google’s data set performing better than Microsoft’s is still possible.
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