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Abstract  

The goal of this bachelor thesis is to train a deep neural network to detect lake ice on satellite radar 

images. The images used are Synthetic Aperture Radar (SAR) data of the Sentinel-1 satellite 

constellation of the Copernicus program of ESA which have been downloaded (pre-processed) from 

Google Earth Engine. The area of interest is the region of Sils in the canton Graubünden in Switzerland 

where the three alpine lakes, Lake Sils, Lake Silvaplana and Lake St. Moritz are located. Similar studies 

with optical satellite images and webcams have been done in the past. The ground truth was generated 

before by manual interpretation of webcam images. A Deeplab v3+ model was established and trained 

to detect lake ice/snow coverage and to distinguish it from water.  

In summary, this thesis shows that it is possible to train the neural network for the detection of lake 

ice on the investigated lakes. The predicted precision is not yet at the desired level. It has been shown 

that there is a dependency of the results on the orbit (incidence angle) and possibly also on the 

different surface structures (smooth water, water with waves, snow-free ice, ice covered with snow, 

ice covered with wet snow). Due to the orbit dependence and the revisit time of the satellite the data 

sets are very small and a further in-depth analysis with additional data (from several winter periods) 

and more lakes is recommended.  
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1 Introduction 

The Global Climate Observing System (GCOS) was founded in 1992 by the World Meteorological 

Organization with the goal of providing accurate, sustained and freely accessible climate observation 

data for research and education. The GCOS defined Essential Climate Variables (ECVs) for the 

observation of the climate change. One of them is lake ice and it is accepted that analyzing this climate 

variable is significant for climate change research and global warming studies (“GCOS,” 2019).  

The goal of this bachelor thesis is to train a deep neural network to detect the lake ice using satellite 

radar imagery. The necessary images are freely available Synthetic Aperture Radar (SAR) data of the 

Sentinel-1 satellite constellation of the Copernicus program from the European Space Agency (ESA). 

The data have been downloaded (pre-processed) from the Google Earth Engine platform. Using 

Deeplab v3+ (Chen, Zhu, Papandreou, Schroff, & Adam, 2018),  a model was trained to detect ice/snow 

coverage on lakes and to distinguish it from water. The used radar images were chosen from the period 

between 1st September 2016 to 31st May 2017. The used Sentinel-1 data are images of product level 1 

in GRD full resolution mode. The area of interest was defined as the region of Sils in the canton 

Graubünden in Switzerland. In this region, there are the lakes, Sils, Silvaplana and St. Moritz, as shown 

in Fig. 1.  

 

Figure 1. Map of Switzerland and detail sector map of the three lakes of interest, Lake Sils, Lake 

Silvaplana, and Lake St. Moritz (source: Google earth). 

Tab. 1 summarizes some geographical parameters  of the three lakes (“Alle Seen der Schweiz,” 2019). 

The lakes are comparably small and are located in an Alpine environment. They are also known to 

freeze completely during the winter months every year. 

Table 1. Key parameters of the lakes. 

Name Area (km2) Depth (m) Altitude (m) 

Lake Sils 4.1 71 1797 

Lake Silvaplana 3.1 78  1791 

Lake St. Moritz 0.78 44 1768 

 

This thesis is motivated by a project titled ‘Integrated lake ice monitoring and generation of 

sustainable, reliable, long time series to identify suitable sensors and processing methods for 

automatic ice monitoring on Swiss lakes’, initiated by the Swiss Federal Office of Meteorology and 

Climatology (Meteo Swiss). One of the outcomes of the first phase of the project was a machine 
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learning-based methodology using low resolution optical satellite images. The main problem with 

optical satellite images is the data loss due to cloud coverage. However, they could show that the 

algorithm produces consistent results when tested on data from multiple winters (Tom, Kälin, 

Sütterlin, Baltsavias, & Schindler, 2018). Second major outcome was a neural network-based 

methodology utilizing data from webcams. The overall per-pixel accuracies for the tested data set 

exceeded 95%. Though the approach generated excellent results, one practical problem with webcams 

is that it is very expensive to make this technology operational on a country- or world-scale. In addition, 

multiple webcams are needed to get full coverage of a lake, especially in the case of big lakes (Muyan 

et al., 2018).  

This thesis targets to use radar data. Radar has the big advantage, that there is no interference by bad 

weather or clouds. With radar it is possible to look through the clouds and also to observe the lakes 

during the night (Albertz, 2009).  

This thesis is structured as follows. Chapter 2 gives a short overview about related work, followed y 

chapter 3 which describes the most important theoretical principles. In chapter 4 the applied 

methodology is described. Chapter 5 summarizes the results of the different experiments, which are 

then discussed in chapter 6. The conclusion and suggestions for future work are described in chapter 

7.   
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2 Related Work 

Detecting lake ice with a neural network is not a new idea. There are already studies done which 

combine lake ice detection with machine learning and they proof that it is possible to precisely predict 

lake ice with a neural network. One recent publication used low-resolution optical satellite images 

(Tom et al., 2018). The authors worked with optical satellite images from MODIS and VIIRS and trained 

a neural network to detect lake ice coverage on lakes in Switzerland. The input images had a low 

resolution of 250m – 1000m. The authors established a simple classification approach which worked 

with high accuracy for the tested lakes. They also state that the methodology is generic and should be 

applicable to lakes in other regions as well. However, one big disadvantage of this technique is the 

dependency on good weather conditions without clouds.  

A second recent publication used webcams to detect lake ice with a neural network (Muyan et al., 

2018). Semantic segmentation maps could be obtained based on the application of a neural network 

on conventional RGB webcam images. A classification system with four labels (water, ice, snow, clutter) 

was introduced and segmentation accuracies of >95% have been reported. The authors found that ice 

was the most difficult to predict. Based on the simplicity of the system (webcams can be found 

meanwhile in a lot of places) this approach is believed to have a big potential for lake ice detection. 

However, cost considerations and the need to cover the entire lake area with webcams might be 

substantial challenges to apply this methodology in larger areas.    

An interesting approach to detect lake ice by using SAR data was published in 2018 by Wang et.al. (J. 

Wang, Duguay, Clausi, Pinard, & Howell, 2018). They used dual polarization RADARSAT-2 imagery and 

introduced a region-based classification algorithm for detecting lake ice. With this approach they could 

predict frozen/non-frozen days with an overall accuracy of 90.4%.  

A recent important development in regards of advancing deep learning was recently published by Chen 

et al who applied an encoder-decoder structure with Atrous separable convolution for semantic image 

segmentation (Chen et al., 2018). They achieved with an encoder-decoder structure and a spatial 

pyramid pooling module in combination with Atrous convolution a remarkable prediction performance 

of 89.0% on the PASCAL VOC 2012 data set and 82.1% on the Cityscape dataset without any 

postprocessing.  
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3 Theoretical Principles 

The following chapter summarizes the relevant background information and theoretical principles 

which are the basis for the better understanding of this bachelor thesis. The chapter will cover the 

essential information about the ESA Sentinel-1 satellite program, some theoretical background about 

the applied SAR radar system, information about satellite data formats provided by ESA, information 

about the applied data pre-processing steps by Google Earth Engine, some basic theory about radar 

interaction with different surfaces, and finally a short introduction to deep learning principles.  

3.1 ESA Sentinel-1 Satellite Program 

3.1.1 Sentinel-1  

This chapter is based on Sentinel-1 - Mission Summary (2019), Sentinel-1 - ESA EO Missions (2019), 

Sentinel-1 - Overview (2019) and Overview Copernicus (2019). 

Sentinel-1 is the first satellite constellation of the Copernicus program of ESA started in 2014 

(“Sentinel-1 - ESA EO Missions,” 2019). The program plans to have at the end six satellite families in 

the orbit whereof three of them have been launched already. The goals of the program are to monitor 

and to map the surface of the world. The produced data can be used in for example for emergency 

mapping, iceberg monitoring, ice condition forecasting at sea, ship detection, climate change 

monitoring and many other applications. All data from the Copernicus program are free of charge and 

can be downloaded after a free registration at the ESA download portal (ESA Open Access Hub, 2019). 

Today, there are two Sentinel-1 satellites (Sentinel-1A and Sentinel-1B) operational in space. Sentinel-

1A was launched in April 2014, Sentinel-1B two years later in April 2016. They are both on the same 

sun-synchronous near polar orbit. They are displaced by 180° degrees. The lifetime of these two 

satellites is planned to be between 7 and 12 years. After this time, they shall be replaced by two new 

Sentinel-1 satellites (Sentinel-1C and Sentinel-1D). The satellites have a C-SAR system on board which 

is mounted at the right side of the satellite (referenced to flight direction). In contrast to the optical 

detection systems, a radar allows the monitoring through clouds and to scan the earth during night 

and bad weather. The Sentinel-1 satellite has a repeat cycle of 12 days at the equator, giving a cycle 

time of 6 days with two Sentinel-1 satellites. During these 12 days the satellite is orbiting the earth 

within 98.6 min on an altitude of 693 km. The inclination is 98.18°. The same point on earth is mapped 

within one repeat cycle several times and the geographical scanning pattern is shown in Fig. 2 (status: 

October 2016). The region of Sils (Graubünden, Switzerland) is visible on 4 different orbits (numbered 

15, 66, 117, 168) during one repeat cycle. Sentinel-1A takes images of the region of Sils in a 4/3/4/1 

cycle  

• Day 4 from Orbit 15 (at about 5pm) 

• Day 7 from Orbit 66 (at about 5 am) 

• Day 11 from Orbit 117 (at about 5 pm) 

• Day 12 from Orbit 168 (at about 5 am)  

Fig. 2 shows the spatial revisit frequency of the two satellites and indicates also the pass direction 

(ascending, descending). As it is an ESA mission, the focus area is Europe. The red and green lines in 

Fig. 2 describe the orbits over the surface. During the period of interest (1.9.2016 – 31.5.2017), the 

second Sentinel-1 satellite (1B) was launched and doubled the number of available images of the 

region towards the end of the period (March 2017) giving images of the region on every 1-3 days.  
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Figure. 2. Constellation Observation Scenario : Revisit & Coverage Frequency for 10/2016 (source: 
(“Sentinel-1- Observation Scenario,” 2019). 

3.1.2 Synthetic Aperture Radar (SAR) 

This chapter is based on Moreira et al. (2013) if nothing else is stated. The Sentinel-1 satellites use SAR 

systems.  Like a normal radar, this system sends out electromagnetic waves in the GHz range and 

detects the backscattered echoes of the surface. The big difference to a normal side looking radar is 

the higher azimuth resolution. A SAR-system can use different frequency bands. The decision which 

frequency band is used is determined by the observation goals. Each band interacts differently with 

the surface. Tab. 2 gives an overview about the different available frequency bands. Sentinel-1 

operates in the C-frequency band. SAR sensors are using frequency modulated pulse waveforms. That 

means that the amplitude stays constant, but the frequency is varied. From the reflected signal the 

SAR sensor measures the amplitude and the phase. A SAR system changes in predefined cycles 

between transmitting and receiving mode. If the received signals are combined in the right way, it is 

possible to generate a virtual aperture which is much bigger (based on a given antenna size) and allows 

to build satellites with smaller antennae.  Smaller antennae have also  a bigger opening angle which 

allows to observe the ground on the surface for a longer time than with a normal side looking radar 

system (Albertz, 2009).  

Table 2. Different frequency bands with frequency and wavelength (Moreira et al, 2013). 

Frequency Band Frequency [GHz] Wavelength [cm] 

Ka 40-25 0.75-1.2 

Ku 17.6-12 1.7-2.5 

X 12-7.5 2.5-4 

C 7.5-3.75 4-8 

S 3.75-2 8-15 

L 2-1 15-30 

P 0.5-0.25 60-120 
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As already mentioned, the big advantage of SAR compared to a normal radar system is the higher 

azimuth resolution. For a normal side looking radar system the azimuth resolution is calculated with 

the Eq. ( 1 ). 

 𝛿𝑎 =
𝜆

𝑑𝑎
∗ 𝑟 ( 1 ) 

 

δa = azimuth resolution  

λ = wavelength  

da = antenna length 

r = range distance (distance between satellite and surface point) 

 

The range distance is a measure of the distance between the satellite and the ground and is for a 

satellite system like Sentinel-1 as stated before in the range of 690 kilometers. For a good resolution 

(small value), the antenna length must therefore be big (at a given wavelength), which is technically 

and economically not feasible.  

Moreira et. al. show (p. 10) that in contrast to a normal radar system, the azimuth resolution of a SAR 

system can be calculated as in Eq. ( 2 ). The derivation of the equation can be found in (Moreira et al, 

2013) 

 𝛿𝑎 =
𝑑𝑎
2

 

 
( 2 ) 

δa: azimuth resolution  

da: antenna length 

Eq. ( 2 ) shows that the azimuth resolution in a SAR system depends only on the antenna length. The 

smaller the antenna, the better is the azimuth resolution. 

 

3.1.3 Generation of an image out of raw SAR-Data 

The following paragraph is based on Moreira et al. (2013, p.10-11). In contrast to visual sensor data, 

the raw SAR data are not interpretable directly. Fig. 3 summarizes the necessary transformation 

process schematically. There are two different, consecutive filter operations used, one in the range 

and the second one in the azimuth direction. This filter operations are done in the frequency domain 

and deliver an image which is compressed in the range and the azimuth direction and contains the 

information about the distance between the satellite and the ground points in the form of reflection 

intensity data. Five additional correction steps have to be added afterwards in the Google Earth Engine 

to get suitable, interpretable data (described in chapter 3.2). 
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Figure 3. Schematic overview about radar signal processing (source: (Moreira et al, 2013), p. 11)). 

3.1.4 Observation Scenario 

This paragraph is based on Sentinel-1- Observation Scenario (2019) and Sentinel-1 - Instrument 

Payload (2019) if nothing else is quoted. There are four different observation modes used by the 

Sentinel-1 satellites. These modes differentiate specifically in their area coverage and the spatial 

resolution and are visualized in Fig. 4. 

 

Figure. 4. Different observation modes of the Sentinel-1 satellites 
(source: ((Moreira et al, 2013), p.10)) . 
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These modes are: 

• Interferometric Wide Swath Mode (IW) 

o This is the Sentinel-1 satellite default mode over landmass. In this mode the geometric 

resolution is 5 x 20 m. The swath of this mode contains 3 sub swaths. This mode is 

running with TOPSAR technique.  

• Extra-Wide Swath Mode (EW) 

o This mode is used over maritime, ice and polar zones. The spatial resolution is 20 x 40 

m. The swath of this mode contains 5 sub swaths. It is running with a TOPSAR 

technique.  

• Strip Map Mode (SM) 

o One strip consists of six sub swaths. All six sub swaths together have a length of 375 

km. The spatial resolution of this mode is 5 x 5 m. This mode is used for continuing the 

ERS and Envisat mission.  

• Wave Mode (WV) 

o In this mode it is possible to determine sea wave height and wave length and it is used 

only over open seaside. In contrast to the three other modes, WV mode is a 

discontinuous observation which uses distinct, well separated spots of the size of 20 x 

20 km, measured with different beam angle, to generate the desired information.  

In addition to these four different observation modes the Sentinel-1 satellites can switch between four 

polarization modes which are defined by a two-letter code. The first letter represents the polarization 

of the outgoing signal, the second letter the polarization filter for the incoming signal. V represents 

vertical polarization, H the horizontal polarization. The four possible combinations are: VV, VH, HH and 

HV. 

The penetration depth of the radar wave varies with the polarization chosen. Therefore, polarization 

may provide information on the topology and orientation of small elements that compose the 

observed surface (Albertz, 2009). Fig. 5 gives an overview on the different standard observation 

scenarios (combinations of observation mode and polarization mode) used over the different areas of 

the globe. Over the region of Sils the polarizations VV and VH are used in combination with the 

standard IW observation mode.  
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Figure 5. Constellation Observation Scenario : Mode – Polarisation – Observation for 10/2016 
(source : (“Sentinel-1- Observation Scenario,” 2019). 

3.1.5 ESA SENTINEL-1 data products 

This chapter is based on Sentinel-1 - Data Products (2019) if nothing else is quoted.  

ESA offers the data form Sentinel-1 on www.scihub.copernicus.eu. This web portal offers different 

customized data product levels from which one can choose.  

• Level 0 

o Raw SAR data. If you want to use these data, they have to be preprocessed.   

• Level 1  

o This level is the most popular level. There are two product types available:  

▪ Single Look Complex (SLC): Each pixel is represented by a complex number 

which contains the whole phase and amplitude information. These images are 

georeferenced using the orbit information and the altitude of the satellite 

(“Sentinel-1 - Single Look Complex,” 2019, p. 1).  

▪ Ground Range Detected (GRD): This product contains data projected to the 

ground using an earth ellipsoid. This product has no phase information 

anymore and has a nearly square spatial resolution. There are different 

resolutions available: Full Resolution (FR), High Resolution (HR) and Medium 

Resolution (MR).  

• Level 2 

o This product contains the information about the Ocean Swell Spectra (OSW). Also 

included in this level is the Surface Radial Velocity (RVL). 

A detailed overview on the different offerings can be found in Fig. 6.  

http://www.scihub.copernicus.eu/
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Figure 6. Overview about the different product levels of the different modes (source: (“Sentinel-1 - 
Data Products,” 2019). 

3.2 Google Earth Engine  

Google Earth Engine is a planetary-scale platform for Earth science data & analysis. It stores and 

provides datasets of satellite missions, preprocesses them and makes them freely accessible for 

education and research. One of the slogans in the advertising video of Google Earth Engine summarizes 

it very well:  

Letting scientist focus on data instead of downloading & managing data (Google Earth, 2017)   

There is a web application with which some first, basic screening and analysis work can be directly 

done. For further in-depth analysis, it is possible to download the data via Google Drive which supports 

and provides GeoTiff and TFRecord formats.  

For Sentinel-1 the image set is called ‘COPERNICUS/S1_GRD’. This dataset contains Level-1 Ground 

Range Detected (GRD) images which are preprocessed from Google and provide backscatter 

coefficients in decibels. Google Earth Engine provides for Sentinel-1 data the following five 

preprocessing steps with the Sentinel-1 Toolbox from ESA (Google Earth Engine, 2019):  

• Apply orbit file 

o Changes the orbit file with a corrected orbit file 

• GRD border noise removal 

o Corrects the noise at the border of the images 

• Thermal noise removal 

o Corrects the thermal noise between the sub-swaths 

• Radiometric calibration 

o Calculates the backscatter intensity using the GRD metadata 

• Terrain correction 

o Corrects the side looking effects using the SRTM 30 meters digital elevation model  

The thermal noise removal, radiometric calibration and terrain correction are explained in more detail 

in the following sections.  
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3.2.1 Thermal noise reduction 

This chapter is based on Albright (2002).  

Thermal noise in satellite radar data originates mostly from the heat generated by the satellite itself. 

It can become a problem if the backscattered radar signal is of low intensity (‘dark image’) and this 

noise has to be removed to give reliable information.  There are two different thermal noise corrections 

applicable.  

• Empirical thermal noise removal 

• Theoretical thermal noise removal 

An empirical thermal noise correction is based on the assumption that highly reflective target areas, 

for example water surfaces without any disturbances, are not sending back any radar signals. Noise 

signals in these areas are then considered thermal noise and are deducted from the whole image. The 

advantage of this procedure is that it is very easy and produces comparable results. On the other hand, 

in most cases there are only a few suitable target areas available and in the end it remains empirically 

with a lot of uncertainties. 

In contrast, a theoretical noise correction is using the whole set of metadata from the radar images. 

The advantage of this procedure is, that any image can be used. The results of this correction are also 

comparable with other images, which are corrected with this method. The theoretical correction is 

based on Eq. ( 3 ): 

 
𝑁𝜎 = 𝑛𝑟 ∗ 30 ∗ log (

𝑟𝑠
𝑟
) − 2 ∗ 𝐺𝑟 + 10 ∗ log(sin(𝐼)) 

 
( 3 ) 

• nr = noise reference level 

• rs = slant range 

• r = reference range 

• Gr = Antenna pattern correction 

• I = incidence angle 

A theoretical thermal noise reduction has been applied by Google Earth Engine to all data used in this 

thesis. It is stated that the preprocessing tools of the Sentinel-1 Toolbox from ESA have been used. 
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3.2.2 Radiometric calibration 

This chapter is based on the ESA Document Radiometric Calibration of S-1 Level-1 Products Generated 
by the S-1 IPF (Miranda, 2015).  
The radiometric calibration transforms the radar reflectivity to physical units (for example decibel). 
The radar reflectivity contains a real and an imaginary part. The Level 1 products of Sentinel 1 contain 
Calibration Annotation Data Sets (CADS). Four Look Up Tables (LUT) can be found in these datasets. 
With one of them it is possible to transform the radar reflectivity Aσ into the radar cross-section σ0. 
After this correction the area is normalized and is aligned with the ground range plane. In the CADS an 
average height is used on an ellipsoid earth model. With this ellipsoid at hand, the area normalization 
factor can be simplified to sin(α) for the radar cross-section. Eq. ( 4 ) is needed for the calculation of 
the radar cross-section σ0: 

 
𝜎0 =

𝐷𝑁2

𝐴𝑑𝑛
2 ∗ 𝐾

∗
1

𝐺𝑒𝑎𝑝
2 ∗ (

𝑅

𝑅𝑟𝑒𝑓
)

3

∗ sin⁡(𝛼) 

 

( 4 ) 

• 
1

𝐺𝑒𝑎𝑝
2  elevation atenna pattern (EPA) correction 

• (
𝑅

𝑅𝑟𝑒𝑓
)
3

range spreding loss (RSL) correction 

• 𝐴𝑑𝑛 is the product final scaling from internal SLC to final SLC ord GRD  

• α local incidence angle of the used earth model 

• K  calibration constant  

• DN is the pixel amplitude directly taken from the measurement file  

In Sentinel-1 data the EPA and the RSL corrections are by default already applied.  With this Eq. 4 it 

simplifies to the Eq.( 5 ): 

 𝜎0 =
𝐷𝑁2

𝐴𝑑𝑛
2 ∗ 𝐾

∗ sin⁡(𝛼) ( 5 ) 

 

If the Look up Tables (LUT) are used Eq. ( 5 ) can be simplifeyd to the Eq. ( 6 ):  

 
𝜎0 =

𝐷𝑁2

𝐴𝜎
2

 

 

( 6 ) 

A radiometric calibration has been applied by Google Earth Engine to all data used in this thesis. It is 

stated that the preprocessing tools of the Sentinel-1 Toolbox from ESA have been used. 
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3.2.3 Terrain correction 

The following section is based on Canada Natural Resources (2008).  

The terrain correction removes distortion effects originating from the side looking geometry of the 

radar system. This is necessary because otherwise the radar images could not be used in combination 

with other georeferenced products as for example a shapefile. A short summary about three important 

distortion effects due to the side looking geometry of a SAR are listed below: 

• Slant-range scale distortion: 

o This effect is visualized in Fig. 7 at the left. The distances on the ground between a-b 

and c-d have the same length. However, in the radar image the distance c-d will be 

longer than the distance a-b. The reason is that radar measures distances over time 

differences. The red lines in Fig. 7 are symbolizing the front of a radar wave, Δt1 is 

smaller than Δt2. That means that the distance for the radar wave traveling to a-b will 

be shorter and the wave will be reflected earlier at the surface leading to a shorter 

total time between transmitting and receiving the radar wave package, resulting in a 

shorter ab distance.   

• Relief displacement 

o Foreshortening: 

This effect is caused by the surface of the earth. In Fig. 7 in the middle the effect is 

visualized.  The distance a-b on the slope of the mountain will be measured as zero. 

The radar wave will be reflected at a and b at exactly the same time. If the slope of the 

mountain is not parallel to the radar wave front (as visualized between c and d, the 

distance will be measured as too short because of the slant-range distortion (see point 

above).   

o Layover: 

In a layover the radar wave front hits the top of the mountain first. The radar reflection 

at the top of the mountain will be reflected before the signal reaches the ground of 

the mountain. This means as shown in Fig. 7 at the right, that for point b, the horizontal 

distance to the satellite is shorter than the horizontal distance of point a. In the radar 

image the slope of the mountain lays above the bottom (point a) of the mountain. 

 

Figure 7. Left: Slant range scale distortion, middle: Foreshortening, right: Layover 

All data used in this thesis have been terrain corrected by the algorithms of Google Earth Engine. It is 

stated that the preprocessing steps of the Sentinel-1 Toolbox from ESA have been used.  
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3.3 Radar Backscattering at different surfaces 

This chapter is based on Albertz (2009) and SAR Instrument - Sentinel-1 SAR Technical Guide - Sentinel 

Online (2019) if nothing else is quoted.  

The backscattering depends on a variety of factors which can be grouped into two main categories:  

• Parameters of the emitting and detecting Sentinel-1 sensor 

o Wave length 

▪ The Sentinel-1 sensor works with a frequency of 5.405 GHz. This corresponds 

to a wavelength of 5.54 cm.  

o Incident angle 

▪ The incident angle varies between 20° and 46° degrees. 

o Polarization 

▪ For the region of Sils, Sentinel-1 polarizes the emitted and detected signals 

either in the VV or in the VH mode.  

 

• Parameters of the surface 

o Geometrical factors of the surface 

▪ The roughness of the surface has a big influence on the backscatter of the 

radar signal. 

▪ The influence of the landscape topology has to be considered as well and has 

already been described in the chapter about terrain correction. 

  

o Physical factors of the surface 

▪ The permittivity of the material on the surface has a big influence on the 

backscattered signal and will be described in more detail in chapter 3.3.3  

Three factors, which could have some importance for the results of this thesis, are discussed in more 

detail in the following three short sub chapters.  

3.3.1 Incidence angle of the radar beam 

As described before, Sentinel-1 orbits the earth within 12 days on a multitude of different orbits. 4 

specific orbits (orbit numbers 15, 66, 117 and 168) are imaging the region of Sils (red circle on all four 

images in Fig. 8) on a regular basis.  It is obvious that depending on the orbit and the flight direction 

(bold red arrow) of the satellite, the position of the Region of Sils in the measured area (between the 

two red lines) is always different relative to the sensor position of the satellite with orbit 66 and 117 

being very close or at the edge of the observed region.    
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Figure 8. Different orbits and their surface covers, red arrow: flight direction of the satellite, red 
lines: view field of the satellite, red circle: region of Sils (source: Google Earth). 

Fig. 9 shows a close up of orbit 117 in the region of Sils.  The satellite moves from bottom to top and 

measures to the right. On the figure on the left there is an optical image of the region from Google 

Earth Pro. On the right side is the corresponding radar image of the same region which was 

downloaded from Google Earth Engine. It has to be checked if this measurement in orbit 117, which is 

clearly different to the orbits 15 and 168, has an influence on the recorded radar data and later on the 

Deep Learning experiments. A small incidence angle of the radar wave leads to more backscatter at a 

smooth surface (lake water) and could lead to a brighter tonality of the radar water image compared 

to an image taken from the same lake under a much bigger incidence angle. 

 

Figure 9. left orbit in Google earth, right: radar image of orbit 117 (source left: Google Earth, source 
right: Google Earth Engine). 

3.3.2 Roughness of the surface  

Fig. 10 shows two satellites on two different orbits imaging the same spot on a surface.  The incident 

angle α of orbit 1 (red) is bigger than the incident angle β of orbit 2 (green). If the surface at the spot 

is now rough (right hand side) the two radar beams are backscattered in a completely different way 

leading to different images of the same spot.   



 

16 
 

 

Figure 10. Orbits with different incident angle. 

Roughness is a relative measure depending on wavelength and incidence angle. The ratio between the 

emitted wavelength of the satellite radar and the surface structure is important. If this ratio is small 

and the incidence angle is big, the radar signal obeys the law of reflection and nearly no signal is 

backscattered (the image appears dark like in the case of a smooth water surface of a lake). If the 

surface structure has dimensions comparable to the incidence wavelength. There is a lot of diffuse 

reflection in all directions and with this a higher amount of backscatter.  Wind-stress and current are 

able to roughen the surface of a lake leading to much higher backscatter at the same spot on the 

surface (the tonality of the image is much brighter) (Albertz, 2009). In a region like the Engadin where 

down valley winds are frequently seen this influence has to be at least checked.    

3.3.3 Permittivity of the surface material   

This chapter is based on Schwaizer (2017). 

Radar waves are electromagnetic waves. Electrical properties of surface materials determine therefore 

their interaction with electromagnetic waves. In this thesis, the interaction of the different water forms 

(ice, dry snow, wet snow, water) with radar microwaves might play an important role and have to be 

taken into account in the interpretation of the results. The backscatter signal will be influenced by the 

different water forms and with this, the input data for the neural networks. 

The permittivity depends on several parameters: 

• Physical state of the material  

o In this thesis the investigated material is water in its physical states snow, ice, and 

liquid water. Depending on the physical state the molecular interaction patterns 

between the single water molecules differ considerably. This leads to differences in 

the dipole characteristics of the molecules and therefore influences the interaction 

with electromagnetic waves.    

• Temperature 

o With increasing temperature, the ability of the water molecules to move and absorb 

vibrational and rotational energy becomes higher. That leads to a different electrical 

behavior of the material and therefore changes the behavior with electromagnetic 

waves as well.  

• Frequency of the used radar waves 

o Depending on the frequency of the radar waves the interaction with the molecules of 

the material is different.  



 

17 
 

Based on the listed dependencies above, it is obvious that the permittivity in combination with radar 

waves is a very complex topic. For simplicity, the following interaction schemes between the different 

physical states of water and the electromagnetic waves of a microwave radar beam are assumed:  

• Water (smooth surface, no wind)  

o The used radar waves are reflected on the water surface and it behaves like a mirror. 

The backscattered signal is minimal and the image appears black. 

• Dry snow / white ice 

o The used radar waves are reflected in a diffuse way and the backscatter signal is much 

bigger compared to a smooth water surface. The image is much brighter. 

• Wet snow 

o The used radar waves interact with wet snow like they do with water and reduce the 

backscattered signal heavily. The image appears dark. 

• Ice 

o Uncovered blank ice does not interact much with the used radar waves. They are going 

through the ice and interact with the water surface below the ice layer. 

3.4 Deep Learning 

The following part is based on the book Deep Learning with Python Chollet (2018).  

Deep learning is as subclass of machine learning methods and based on artificial neural networks with 

the goal to predict/extract specific data features from raw data in an iterative process. The basic 

principle of deep learning is shown in Fig. 11 represented by a successive layer representation.  There 

is an input X which is pushed through a consecutive number of different layers, generating on each 

layer weighting factors and probabilities and ending in each cycle with a prediction Y’. The computer 

compares this prediction Y’ with the true target value Y and calculates the deviation in a so-called loss 

function. These loss scores enter into an optimizer which adapts the set of weight factors in order to 

improve the next optimization step of the prediction. The goal of the network is to minimize the 

differences between the input true targets Y and their prediction Y’.   

 

Figure 11. Model of a deep learning network (source: (Chollet, 2018), p. 11).  
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3.4.1 Convolutional Neural Networks (CNN) 

This chapter is based on Zulkifli (2018). 

A convolutional neural network is a sub class of deep neural networks and is most often used to analyze 

images. In Fig. 12 a normal network architecture of a regular convolutional network is shown 

schematically.  It starts with the input image on the left side of the figure. This can be for example an 

RGB image (a bitmap image holding RGB color values in 3 image channels) or a gray scale image with 

a one-color information layer. If we start with a gray scale radar image from the area of Sils and pick a 

32 x 32-pixel image and apply 32 filters in this first convolutional layer we are getting a feature map of 

that set of filters with the size of 32 x 32 x 32-pixels. Each filter is convolved across the width and height 

of the input image generating a 3-dimensional feature map represented by the first box in Fig. 12. 

Convolutional networks may then include pooling layers as well. A pooling layer reduces the image size 

by combining the outputs of neuron clusters at one layer into a single neuron in the next layer, 

increasing the depth of the network visualized by the second box in the figure below. This process is 

iteratively repeated until a fully connected layer is generated. In the fully connected layers all neurons 

are connected to each other and the process starts now to allocate the neurons with the highest values 

to the predefined labels, in our example ice and water.  

 

Figure 12. Normal convolutional network. 

In networks which work like the network described above the result is a vector with probabilities for 

each label. The label with the biggest probability will determine the output, in our example either 

water or ice. However, there is no information anymore where this label is located in the input image 

and the generated information does only allow an image classification. After such a network analysis 

the computer can say what is on the image, but it has no idea where the things are.  

If we not only want to know what is on the image but also where it is, we have to use semantic 

segmentation of neural networks. Such networks allocate to each pixel in the image an annotation to 

which label that pixel belongs to. With that change the computer knows what is and where it is on the 

image.  
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A segmentation network has normally three main parts (Fig. 13):  

• Convolutional Layers 

• Pooling Layers 

• Transpose Convolutional Layers 

 

Figure 13. Flow scheme of a semantic segmentation model (top) and result (bottom) of the Lake 
Silvaplana indicating water in the lake area. 

3.4.2 Architecture of Deeplab v3+ 

This chapter is based on Encoder-Decoder with Atrous Separable Convolution for Semantic 

Segmentation Chen et al. (2018) and Liang-Chieh et al. (2016/2019).  

Deeplab v3+ is a state-of-the-art code for segmentation tasks with deep learning. In this thesis the 

newest version of Deeplab, Deeplab v3+, was used. Deeplab v3+ combines two techniques. On one 

side there is spatial pyramid pooling module, on the other side there is an encoder-decoder structure. 

Spatial pyramid pooling is able to work with multi scale contextual information and with images of 

different size. The encoder-decoder structure enables to catch the object boundaries. A modified 

Xception network (Xception 65) is used as backbone of Deeplab v3+ replacing all max pooling layers by 

depthwise separable convolutions with striding. Fig. 14 shows the architectural structure of the used 

network Xception 65: 



 

20 
 

 

Figure 14. Architecture of Xception (source: (Chen et al., 2018), p. 7). 

The following sub chapters will explain some of the relevant techniques, tools, and principles of 

Deeplab v3+ in more detail. 

3.4.2.1 Encoder-decoder structure 
This chapter is based on Chen et al. (2018). 

The encoder-decoder structure enables to catch object boundaries in an image better and is based on 

a down-sampling / up-sampling process in a segmentation network as visualized in Fig. 15.  It starts 

with the input image on the lower left side of the figure. In a consecutive down-sampling process 

(encoding), the size of the image is reduced with convolutional and pooling layers followed by an up-

sampling process (decoding) based on stride transpose convolutions to get back an image with full 

input resolution.  

 

 

Figure 15 Encoder-Decoder structure (source : (Chen et al., 2018), p. 2). 
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3.4.2.2 Spatial Pyramid Pooling 
This chapter is based on He, Zhang, Ren, & Sun (2015). 

The problem in normal convolutional neuron networks is that they need images with fixed input size 

for the classifier and the fully connected layers. With spatial pyramid pooling it is possible for the 

network to deal with different input image sizes. The spatial pyramid pooling layer is added in most 

cases after the last convolutional layer. This layer has different bins with different spatial resolution 

(see Fig. 16, step 1), however their size is proportional to the input image size. In this way, the number 

of bins is fixed. Inside of these bins the information is pooled to a fixed size (Fig. 16, step 2). This fixed 

array can be used afterwards as input into fully-connected layers or a classifier (Fig. 16, step 3).   

 

Figure 16. Spatial Pyramid Pooling (source: (He et al., 2015), p. 3). 

 

3.4.2.3 Convolution Layer 
A convolution layer works as shown in Fig. 17. With these layers it is possible to detect structures in 

the image. For example, it is possible to detect edges which such a structure. On the left side is the 

input image. The numbers in the red framed grid represent the gray values. In a first step, a filter 

(marked green) will be overlaid over this input image. In the example shown below it is a 3 x 3 pixel 

filter with a binary 0/1 filtering. The filter value is multiplied with the corresponding pixel value and a 

mean value for the 3x3 matrix is evaluated.  

 

Figure 17. Convolutional layer. 

The filter is moving over the input image as shown in Fig. 18. In this example the kernel moves from 

one pixel to the next and always calculates the new value for the new pixel. The step size is equal to 

one. If it is done accordingly for the whole image the output layer will be smaller than the input layer 

along the following equation:  
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Size of the input layer minus the size of the filter plus one gives the size of the output image (in Fig. 17 

it would be 9-3+1 = 7)  

Because there is the same number of pixels in the x direction as in the y direction and the kernel is also 

rectangular the result applies for both axis. If that is not the case the calculation must be done for each 

axis separately.   

 

Figure 18. Sliding window. 

 

3.4.2.4 Atrous Convolution 
This chapter is based on (Chen et al., 2018). 

An Atrous convolution filter is nearly the same as a convolutional filter. The calculations are the same. 

The only difference is the introduction of a specific factor which increases the field of view of an Atrous 

filter. Fig. 19 shows the differences if you apply filter factors 1, 2, or 3. For filter size 1, the Atrous filter 

is a normal convolutional filter. Applying a factor 2 or 3 increases the field of view as visualized in Fig. 

19.  The main advantage of such a filter is the possibility to incorporate the number of pixels of a 

greater area without the disadvantage of a big filter size.  

 

Figure 19. Schematic principal of an Atrous convolution with different filter sizes (left =1, middle =2, 
right = 3). 

3.4.2.5 Pooling Layers 
The pooling layers are mostly used to reduce the image size. In the example below (Fig. 20) there is a 

so called max-pooling layer described. Like a convolutional layer the pooling layer has a kernel size. In 

the example below the kernel size is 2 x 2 pixels with a strip size of two as well. The kernel determines 

the biggest value, which is inside of the kernel, and writes it into the resulting feature map.  
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Figure 20 Pooling layer. 

3.4.2.6 Depthwise separable convolutions  
This chapter is based on C.-F. Wang (2018). 

Because of the huge amount of multiplications in a convolutional filter step the needed calculation 

time can be very fast extremely high.  A way to circumvent this problem is to apply depthwise separable 

convolutions which is explained with an example. 

We start with an RGB image of the size 12 x 12 pixels and want to convolute with 256 filters of the size 

5 x 5 pixels. There is no padding and the strip size is equals one. The output would have a size of 

8x8x256 pixels (height, width, number of layers) 

Let’s have first a look at a normal convolution process. The process would result in 256 kernels of size 

5x5x3 pixels. For one pixel in the output the kernel has to do 25 calculations per layer. Because there 

are 3 layers, this number must be multiplied with 3 resulting in 75 calculations for one output pixel. 

The output contains 8*8=64 pixels which gives a total of 8*8*75 = 4800 multiplications for one kernel 

totaling for 256 filter in 256*4800 = 1’228’800 calculations for this simple example.  

If we use depthwise separable convolutions the number of calculations will be much smaller. In a first 

step, there will be three 5x5x1 kernels. Each of these filters will move over one layer in the input image. 

That makes a total of 3*5*5*8*8 = 4’800 multiplications. In a next step the pointwise convolution will 

be 256 times 1x1x3 kernels. Each of these kernels is moving 8x8 time, in total 256*1*1*3*8*8 = 49’152 

calculations steps. Adding the two numbers results in a total of only 53’952 calculation steps if 

depthwise separable convolution is applied.  

3.4.2.7 Transposed convolution 
This chapter is based on Chen et al. (2018). 

Deeplab v3+ up-samples bilinearly.  Fig. 21 shows an up-sampling by the factor 2. In this case the raster 

size is doubled and the values from the original image are written into the raster as shown in Fig. 21. 
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Figure 21 Up-sampling by factor 2. 

The empty raster cells are filled up with a bilinear interpolation. For that the four nearest initial 

neighbor pixels are taken. In Fig. 22 this process is graphically shown illustrating the process for the 

black circle pixel (x,y). The pixel which has the shortest distance to the black point (yellow point) gets 

the highest weighting factor, the pixel which has the longest distance (red point) has the lowest 

weighting factor. 

 

Figure 22. Schematic process description of a bilinear interpolation (source: (“Bilinear interpolation - 
Wikipedia,” 2019)). 

3.4.2.8 Learning rate  
This chapter is based on Zulkifli (2018). 

The goal of a neural network is to minimize the difference between a prediction of a value and the true 

value itself via an iterative process along a pathway to a global minimum (Fig. 23). To achieve this, the 

network adapts the single step weights in the layers accordingly. Each step is symbolized in the figure 

with a graphic symbol, representing different learning rates. The squares are representing a high 

learning rate with the advantage of the possibility to converge fast in the minimum, however, with the 

disadvantage of having the possibility to overshoot. The network changes the parameters too fast and 

the global minimum cannot be found. On the other hand, symbolized with circles, there is a 

visualization of a process with a small learning rate with the disadvantage, that it can take very long to 

get to the global minimum and that there is the fair chance that the system finds only a local minimum. 

An optimization process has to be applied to find the appropriate learning rate for each system.   
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Figure 23. Schematic view of different learning rates in a neural network: squares: high learning rate, 
circles: low learning rate, triangle: optimal learning rate. 
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4 Methodology  

In the following chapter the workflow of the thesis is described.  

4.1 Data access  

The goal of this bachelor thesis is to train a deep neural network to detect lake ice on satellite radar 

images. The necessary images are freely available SAR data of the Sentinel-1 satellite constellation of 

the Copernicus program of the European Space Agency (ESA). There are two possible ways to access 

the relevant data. The first one is to download the data directly from the ESA open access hub (ESA 

Open Access Hub, 2019). If this way is chosen, the whole pre-processing has still to be done. That 

includes for example the radiometric calibration and the terrain correction. The second possibility is 

to download the data from Google Earth Engine (Earth Engine Code Editor, 2019) where the pre-

processing is already done.  This saves time and gives the possibility to store all images in the Google 

Cloud and avoids the time-consuming work of pre-processing the data. The following pre-processing 

steps are already done by Google Earth Engine (Google Earth Engine, 2019):  

• Apply orbit file 

o Corrects metadata of the orbit file  

• GRD border noise removal 

o Corrects invalid data at the border  

• Thermal noise removal 

o Corrects the thermal noise 

• Radiometric calibration 

o Computes the backscatter intensity with the metadata 

• Terrain correction 

o Corrects side looking effects by using the SRTM 30-meter digital elevation model 

For the thesis, the data were downloaded as GeoTiff files from Google Earth Engine with the following 

data specifications: 

• Polarization: VV and VH 

• Ascending and descending orbits 

• Level 1 Product 

o GRD 

o Geometric resolution at the equator is 10 x 10 meters per pixel, in the region of Sils 

the resolution is ca. 7 x 10 meters per pixel 

The download is possible with a few lines of JavaScript in the code editor of the Google Earth Engine 

webpage. The only requirement is to have a Google account. One big disadvantage of this procedure 

is that every image must be manually downloaded to Google Drive (Google Drive, 2019). There is no 

possibility for a direct download to the own computer. As explained in chapter 3.1.4, there are 

different observation modes used by Sentinel-1 over different areas of the globe. In the area of interest 

(Lakes of St. Moritz, Silvaplana and Sils) there are mainly radar images in the Interferometric Wide 

Swath Mode (IW) available and they have been chosen as base data for this thesis. There are 238 

images (from 119 days) available in the period of 1st September 2016 to 31st May 2017. 119 of them 

are with VV polarization. The other 119 images are with VH polarization. The images in the different 

polarization modes are captured at the same time. In Fig. 24 the two images taken on 1st September 

2016 are shown for comparison. Based on the larger contrast in the VV images, most of the 

experiments of this thesis were run with the VV images.  
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Figure 24. SAR Sentinel-1 images of the region of Sils (1.9.2016), left with VV, right with VH 
polarization. 

 

4.2 Data pre-processing  

Google Earth Engine is pre-processing the image data as described in chapter 3.2. However, the input 

files have to be processed further before they can be used in a neural network. Two additional 

processing steps have to be done with all data files:  

• Data reduction: detection and identification of all lake areas in all images to reduce the total 

data size 

• Log scaling: conversion of the negative to positive values which can be transferred into gray 

scale values  

In a first step, the areas around the Lake Silvaplana, Lake Sils, and Lake St. Moritz have been cut out 

from the original SAR Sentinel-1 image from Google Earth Engine with the help of a self-written Python 

code (using freely available Python libraries) (Fig. 25).  

 

Figure 25. SAR Sentinel-1 image of the region of Sils. Data reduction step with the help of shapefiles 
of different lake areas. 

Then, the code uses the respective shapefiles of the Lake St. Moritz, Lake Silvaplana, and Lake Sils to 

check if a single pixel lies within the lake boundaries or not. The used shapefiles are the same as the 

ones used in the publication ‘Lake ice detection in low-resolution optical satellite images’ (Tom et al., 

2018). 
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The second processing step is needed because Google Earth Engine uses the following log scaling Eq. ( 

7 ) on all backscattering values: 

 10 ∗ log⁡(𝑥) ( 7 ) 

According to Google, this log-scaling is done because the backscatter coefficients can vary by several 

orders of magnitude (Google Earth Engine, 2019). However, with this log-scaling factor, all values are 

negative (Fig. 26) and cannot be used in the neural network. The reason for this is that the input for 

Deeplab v3+ is a portable network graphic file (PNG). This format has values between 0 and 255 which 

correspond to 256 different gray shades between black and white. Negative input values are set per 

default to zero (Rander-Pehrson et al., 1999) resulting in the complete loss of the whole image 

information and the image would appear completely black.  

 

Figure 26. Distribution of SAR data from Google Earth Engine. 

The log-scaling by Google is undone with the Eq. ( 8 ). 

 10
𝑥
10 ( 8 ) 

 

 

Inspired by the recent deep learning study about deforestation using Sentinel-1 SAR data (Gümgümcü, 

2018) the additional log scaling factor of Eq. ( 8 ) was applied on the backscatter values:  
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 𝑥
8
27 ( 9 ) 

With this log scaling Eq. ( 9 ) the distribution becomes more Gaussian compared to the unprocessed 

data and the values are getting positive between 0 and 1 (Fig. 27 left side). In a next step, the values 

are multiplied by 255 to adapt them to the .png format. The resulting distribution is shown in Fig. 27 

on the right side.  

 

Figure 27. left: distribution after applying Eq. ( 9 ), right: distribution after multiplying the left 
distribution with 255. 

At the end of this process, the Python code writes all pixels which are belonging to the lake areas with 

the image coordinates and the pixel value (backscatter amplitude) into a text file. All the pixels which 

are outside of the lakes are labeled by setting the pixel value to 255 (white). This process generated 

three sets of 238 input data text files (one set for each lake including 119 images in VV polarization 

and 119 images in VH polarization) with the log scaled backscatter information on a scale of 0-255.   

If this text file information is back converted into an image, typical images as the one shown in Fig. 28 

are generated. 

 

Figure 28. Result of the pre-processing steps for Lake Sils (with log-scaling).  
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4.3 Ground truth 

The ground truth data set for this thesis from the region of Sils was established by the Photogrammetry 

and Remote Sensing Institute of the ETH Zurich. Webcam images were used to judge if the surface of 

the lake is frozen or not. Fig. 29 shows some examples of one webcam view (St. Moritz) at different 

dates.  

 

Figure 29. Different webcam images with different lake surface coverage; left: 6.12.2016, water, 
middle: 4.1.2017, ice, right: 5.1.2017, snow (Muyan, 2018)  

The (daily) ground truth data of all three lakes are labeled as follows: 

• s/i: snow or ice (90%-100%) 

• ms/mi: more snow or more ice (at least more than 60%-90%) 

• mw: more water (more than 60%-90%) 

• w: water (90%-100%) 

This information was used to generate ground truth for this thesis. Fig. 30 shows two examples of 

generated ground-truth images of Lake Sils. On the left side from September 2016 representing a water 

surface visualized in green. On the right side an image from February 2017 representing the completely 

frozen sea visualized in red. The background is set white. There is no precise ground truth available for 

the transition dates, when the lake is partly frozen. 

 

Figure 30. left: label example for water, right: label example for snow/ice (Lake Sils). 

In Tab. 3, an overview about the number of water, snow/ice and transition days is given (period 
1.9.2016 - 31.5.2017).  All lakes are in the same geographic region and therefore the ‘completely 
frozen days’ do not vary too much.  

 

Table 3. Water, snow/ice and transition days of Lake St. Moritz, Lake Silvaplana and Lake Sils. 

Name Water Snow/ice Transition  

Lake St. Moritz 148 days 106 days 19 days 

Lake Silvaplana 123 days 102 days 48 days 

Lake Sils 136 days 100 days 37 days 
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4.4 Training and Validation Data 

The text files described in chapter 4.2 are used to generate the training and validation datasets. A split 

of 80% training to 20% validation is applied. The allocation to the training set / validation set is done 

per month and visualized in an indicative way in Fig. 31.  

If we assume that there are 10 images of the region Sils per month and we have 3 lakes, then there 

are 30 text files. These text files are sorted per date in a list. That means that there are 24 text files for 

the training dataset and 6 text files for the validation dataset. Every sixth text file is therefore a 

validation data set (green dots). This general approach ensures that there are files in the training 

dataset and in the validation dataset from the beginning (1.9.2016) to the end (31.5.2017) of the 

investigated time period.  

 

                              

 

 

Training 80% 

 

Validation 20% 

Figure 31. Visualization of the training/validation split. 

Square patches are extracted from the image data and fed as input to the neural network. Patches 

with 50% overlap were used in training. However, validation was done with non-overlapping patches. 

4.5 Setting up Deeplab v3+ 

The following Deeplab v3+ parameters have been set:    

• Atrous convolution = 1,2,3 

o With this setting of Atrous convolution it is also possible to run the experiments with 

the smallest patch size of 16 x 16 pixels 

• Outputstride = 2 

o The input images are already small  

• Batch size = max 4 

o Limited by the available memory on the local computer 

More information about the settings applied in Deeplab v3+ can be found in the Appendix. 

4.6 Evaluation Metrics 

A confusion matrix is used to evaluate the output of the network (Fig. 32). The ground truth and the 

prediction are differentiated along the three labels water, snow/ice, and background. A similar 

confusion matrix with the same indicators has been used in the master thesis ‘Lake ice detection with 

webcams’ (Muyan, 2018). 
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Figure 32. Confusion matrix. 

With these basic output values of an experiment, the recall and the precision can be calculated for 

each label. The following Eq. ( 10 ) and Eq. ( 11 ) are an examples for the recall and the precision of the 

label ‘water’. For the other two labels (snow/ice and background the calculation have to be done 

accordingly). The recall describes the ratio of correctly assigned pixels to the sum of ground truth pixels 

with the corresponding label. The precision describes the ratio of the correctly assigned pixels to the 

sum of the predicted pixels with a corresponding label. It shows the quality of the prediction of a 

specific label.  

 
𝑟𝑒𝑐𝑎𝑙𝑙 = ⁡

𝑇𝑊

𝑇𝑊 + 𝐹𝑆1 + 𝐹𝐵1
 

 
( 10 ) 

 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑊

𝑇𝑊 + 𝐹𝑊1 + 𝐹𝑊2
 ( 11 ) 

 

A combination of the recall and precision is the Intersection over Union (short IoU) for a specific 

label. 

 𝐼𝑜𝑈 =
𝑇𝑊

𝑇𝑊 + 𝐹𝑊1 + 𝐹𝑊2 + 𝐹𝑆1 + 𝐹𝐵1
 ( 12 ) 

 

To get an overall measure of the quality of the prediction of the whole dataset the ‘mean IoU’ and 

the ‘overall accuracy’ are calculated as follows: 

 𝑚𝑒𝑎𝑛⁡𝐼𝑜𝑈 = ⁡
∑ 𝐼𝑜𝑈𝑖
𝑁
𝑖=1

𝑁
 ( 13 ) 

 

N = number of classes 

 𝑜𝑣𝑒𝑟𝑎𝑙𝑙⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑊 + 𝑇𝑆 + 𝑇𝐵

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑎𝑙𝑙⁡𝑝𝑖𝑥𝑒𝑙𝑠
 ( 14 ) 
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5 Results  

In this chapters the results of the different experiments are shown. Mean IoU and overall accuracy are 

reported in two different ways: including the background and without background. A pretrained 

Xception network (with cityscape dataset) was used for all experiments. (Based on the experience with 

an experiment without pretraining where the results were not satisfying still after 40 epochs)  

The following list summarizes the varied parameters:   

• Different orbit constellations 

o All orbits together 

o Orbits 15, 66 and 168 together 

o Only orbit 168 

o Only orbit 15 

• Different combinations of polarization modes 

• Different patch sizes 

o 64x64 pixels, 32x32 pixels, 16x16 pixels 

• Different numbers of epochs 

o 10, 20, 30, 40 

• Different learning rates  

o 0.01, 0.001, 0.0001, 0.00001 

 

5.1 Orbit Experiments 

5.1.1 All orbits together / variation of number of epochs 

• Polarization: VV 

• Learning rate: 0.0001 

• Number of epochs: variable 

• Patch size: 64 x 64 pixel 

• Orbit: all together  

Table 4. Result of experiment: all orbits together / variation of epochs. 

 

Result: The complete data set with all images from all orbits can be obviously not trained successfully. 

The results are not good. The increase in the number of epochs does not show a significant increase in 

‘mean IoU without background’ and ‘overall accuracy without background’.  

Conclusion: Based on these results it was decided to split in a first step the orbits and investigate data 

sets of orbits 66/168 and 15/117 separately.  This split allows to check if there is an influence of flight 

direction or day time (morning vs evening).  

 

10 20 30 40

water 99.5% / 65.5% / 65.3% 99.7% / 66.1% / 65.9% 97.9% / 67.9% / 66.9% 99.5% / 68.1% / 67.9%

snow/ice 3.3% / 99.7% / 3.3% 5.4% / 99.8% / 5.4 11.4% / 99.7% / 11.4% 13.0% / 99.9% / 13.0%

background 99.6% / 99.6% / 99.2% 99.9% / 99.9% / 99.8% 99.9% / 99.6% / 99.6% 99.9% / 99.9% / 99.9%

34.3% 35.6% 39.2% 40.5%

overall accuracy  without background 66.2% 67.0% 69.2% 69.7%

55.9% 57.0% 59.3% 60.3%

84.1% 95.1% 95.3% 95.5%

number of epochs

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background
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5.1.2 Ascending and descending orbits together 

• Polarization: VV 

• Learning rate: 0.0001 

• Number of epochs: 30 

• Patch size: 64 x 64 pixel 

• Orbit: descending: 66/168 (5 am) together. ascending: 15/117 (5 pm) together 

Table 5. Result of experiment: orbit combinations 66,168 and 15,117. 

 

 

Result: Compared with experiment 5.1.1, the results are improving but are still not up to the mark.  

Conclusion: Splitting the dataset based on orbits improves the results, even though the dataset size 

will decrease which could eventually result in overfitting. 

5.1.3 All orbits separated 

• Polarization: VV 

• Learning rate: 0.0001 

• Number of epochs: 30 

• Patch size: 64 x 64 pixel 

• Orbit: all orbits separated 

Table 6. Result of experiment: all orbits separated. 

 

Result: The results are much better than the two experiments before. It seems that the different orbits 

have quite an influence and that Deeplab v3+ learns more from the data if the images of the different 

orbits are separated. Doing this, the system gets a set of data where the incidence angle is always the 

same within the dataset and this influences the results of the experiments positively. The best results 

are achieved with orbit 66 with a ‘mean IoU without background’ of 84.9% and an ‘overall accuracy 

without background’ of 92.7%.  

Conclusion: There is an influence of the incidence angle of the radar beam and the data set has to be 

split along the different orbits for all the following experiments.  

 

66, 168 15, 117

water 33.6% / 82.0% / 31.3% 98.4% /  68.0% / 67.2% 

snow/ice 89.4% / 45.0% / 42.4% 39.6% / 96.5% / 39.1

background 99.8% / 99.9% / 99.8% 99.4% / 99.9% / 99.8%

37.0% 53.1%

overall accuracy  without background 54.8% 68.7%

58.0% 73.3%

93.0% 95.8%

orbit combinations

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background

15 66 117 168

water 93.9% / 77.8% / 74.0% 93.2% / 91.4% / 85.7% 77.7% / 83.1% / 67.1% 75.1% / 83.4% / 65.3% 

snow/ice 68.4% / 92.4% / 64.8% 89.7% / 93.2% / 84.2% 82.7% / 78.9% / 67.8% 82.3% / 74.5% / 64.3%

background 99.9% / 99.8% / 99.8% 99.5% / 98.8% /98.2% 99.9% / 99.8% / 99.8% 99.9% / 99.8 % / 99.8%

69.4% 84.9% 67.4% 64.8%

overall accuracy  without background 83.0% 92.7% 81.1% 79.1%

79.5% 89.3% 78.2% 76.4%

97.2% 95.6% 96.9% 96.7%

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background

orbit
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5.2 Polarization Experiments 

5.2.1 VH 

• Polarization: VH 

• Learning rate: 0.0001 

• Number of epochs: 30 

• Patch size: 64 x 64 pixel 

• Orbit: all orbits separated  

Table 7. Result of experiment: all orbits separated, VH polarization. 

 

Result: These results have to be compared with the results of experiment 5.1.3. Interestingly the 

results for orbits 15 and 66 are significantly worse, whereas orbits 117 and 168 are comparable with 

the results obtained with VV polarization. This might be another hint that the interaction of a 

microwave radar beam with different surface structures and under different incidence angles is 

complex and will need a further thorough investigation. 

Conclusion: VV polarization gives higher ‘mean IoU without background’ and ‘overall accuracy without 

background’ scores than VH polarization.  

 VV and VH combined  

To get a complete image about the influence of the polarization, there was also an experiment done 

combining all VV and VH images in one data set like an RGB image. The first layer (R) contained all VV 

images, the second layer (G) all VH images, and the third layer (B) was set zero. 

• Polarization: VV and VH 

• Learning rate: 0.001   

• Number of epochs: 30 

• Patch size: 64 x 64 pixel 

• Orbit: 66 

Table 8. Result of experiment: VV and VH combined.  

 

Result: The combination of VV and VH polarized images does not improve the training results.  

Conclusion: All further experiments have been done therefore using the data set of images with VV 

polarization.   

15 66 117 168

water 99.0% / 69.4% / 68.9% 98.6% / 77.7% / 76.9% 83.4% / 81.1% / 69.9 73.9% / 81.3% / 63.1%

snow/ice 49.7% / 99.7% / 49.7 68.8% / 98.6% / 68.1% 79.1% / 83.0% / 68.1% 82.9% / 77.1% / 66.5%

background 99.9% / 99.8% / 99.8% 99.9% / 99.9% / 99.8% 99.9% / 99.8% / 99.9% 99.9% / 99.8% / 99.8%

59.3% 72.5% 69.0% 64.8%

overall accuracy  without background 76.7% 85.0% 82.2% 79.2%

72.8% 81.6% 79.2% 76.5%

96.2% 97.5% 97.1% 96.6%

orbit

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background

30

water 99.1% / 80.0% / 79.5%

snow/ice 72.7% / 99.0% / 72.2%

background 99.9% / 99.9% / 99.9%

75.8%

overall accuracy  without background 86.8%

83.9%

97.9%

number of epochs

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background
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5.3 Patch Size Experiments 

For further optimization, orbit 66 has been chosen. 

• Polarization: VV 

• Learning rate: 0.0001 

• Number of epochs: 30 

• Patch size: variable 

• Orbit: 66 

Table 9. Result of experiment: different patch size. 

 

Result: Bigger patch sizes seem to give better results. There is a trend for better ‘mean IoU without 

background’ and ‘overall accuracy without background’ scores going from 16 x 16 to 64 x 64 pixel 

patches. The experiment with a patch size of 128 x 128 pixels failed because one tensor became too 

big. There was no time left to mitigate this by searching another parameter setting within Deeplab v3+.  

Conclusion: It seems that the network is able to learn better if the information is not reduced too much 

to small patches and that it can profit from bigger structures within bigger areas. For the further 

optimization, 64 x 64 patches have been chosen.   

5.4 Epochs Experiments 

• Polarization: VV 

• Learning rate: 0.0001 

• Number of epochs: variable 

• Patch size: 64 x 64 pixel 

• Orbit: 66 

Table 10. Result of experiment: different number of epochs. 

 

Results: The initial experiment described in 5.1.1 was now repeated with orbit 66. There is no clear 

trend in the results, 30 epochs giving the best results, however the differences between the different 

numbers of epochs being not too big.   

Conclusion: Further optimization would be needed to find out the optimum number of epochs. For 

this thesis, 30 epochs have been chosen. 

128 x 128 pixel 64 x 64 pixel 32 x 32 pixel 16 x 16 pixel

water failed 93.2% / 91.4% / 85.7% 98.6% / 71.1% / 70.5% 99.7% / 57.9% / 57.8%

snow/ice failed 89.7% / 93.2% / 84.2% 55.7% / 98.6% /55.2% 20.9% / 99.4% / 20.9%

background failed 99.5% / 98.8% /98.2% 99.9% / 99.8% / 99.8% 99.9% / 99.9% / 99.8%

failed 84.9% 62.9% 39.3%

overall accuracy  without background failed 92.7% 78.7% 62.2%

failed 89.3% 75.2% 59.5%

failed 95.6% 96.4% 93.6%

patch size

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background

10 20 30 40

water 97.1% / 77.9% / 76.1% 98.5% / 72.4% / 71.6% 93.2% / 91.4% / 85.7% 81.4% / 96.1% / 78.8%

snow/ice 69.3% / 97.1% / 68.0% 58.0% / 99.6% / 57.8% 89.7% / 93.2% / 84.2% 96.1% / 82.7% / 80.0%

background 99.3% / 98.6% / 97.9% 99.5% / 98.5% / 98.1% 99.5% / 98.8% /98.2% 99.3% / 99.1% / 98.4%

72.1% 64.7% 84.9% 79.4%

overall accuracy  without background 85.2% 80.4% 92.7% 89.3%

80.1% 75.8% 89.3% 85.8%

91.8% 89.7% 95.6% 94.1%overall accuracy with background

number of epochs

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background
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5.5 Learning Rate Experiments 

5.5.1 Different learning rates over 30 epochs 

• Polarization: VV 

• Learning rate: variable 

• Number of epochs: 30 

• Patch size: 64 x 64 pixel 

• Orbit: 66  

Table 11. Result of experiment: different learning rates (30 epochs). 

 

Results: For 30 epochs of training there is no big difference between learning rate 0.001 and 0.0001.  

Conclusion: Run another experiment with 40 epochs to check influence of learning rate variation.  

5.5.2 Different learning rates over 40 epochs 

• Polarization: VV 

• Learning rate: variable 

• Number of epochs: 40 

• Patch size: 64 x 64 pixel 

• Orbit: 66  

 

Table 12. Result of experiment: different learning rates (40 epochs). 

 

Results: Compared to 5.5.1 there is no improvement and the tendency to favor 0.001 as learning rate 

is shown in this experiment as well.   

Conclusion: Continue to use 30 epochs with a learning rate of 0.001.  

 

 

 

0.01 0.001 0.0001 0.00001

water failed 93.2% / 91.7% / 86.0% 93.2% / 91.4% / 85.7% 82.1% / 55.8% / 49.7% 

snow/ice failed 90.3% / 92.9% / 84.5% 89.7% / 93.2% / 84.2% 26.2% / 58.8% / 22.1%

background failed 99.9% / 99.9% / 99.9% 99.5% / 98.8% /98.2% 99.9% / 99.5% / 99.4%

failed 85.2% 84.9% 35.9%

overall accuracy  without background failed 92.4% 92.7% 56.9%

failed 90.1% 89.3% 57.1%

failed 98.7% 95.6% 93.0%

learning rate

Recall/ Precision/ IoU

mean IoU without background

mean IoU  with background

overall accuracy with background

0.01 0.001 0.0001 0.00001

water failed 96.7% / 88.6% / 86.1% 81.4% / 96.1% / 78.8% 87.6% / 56.8% / 52.5%

snow/ice failed 86.1% / 96.5% / 83.5% 96.1% / 82.7% / 80.0% 25.8% / 61.7% / 22.2%

background failed 99.9% / 99.6% / 99.5% 99.3% / 99.1% / 98.4% 98.3% / 98.9% / 97.3%

failed 84.8% 79.4% 37.4%

overall accuracy  without background failed 92.1% 89.3% 58.9%

failed 89.7% 85.8% 57.3%

failed 95.9% 94.1% 78.9%

Recall/ Precision/ IoU

mean IoU without background

learning rate

mean IoU  with background

overall accuracy with background



 

38 
 

5.6 Time line experiments on orbit 15, 66, 117, 168  

Based on the results of the preliminary optimization described in 5.1 - 5.5 a series of experiments was 

started with each lake/orbit combination resulting in a time line prediction. The following parameters 

have been applied:  

• Polarization: VV 

• Learning rate: 0.001 

• Number of epochs: 30 

• Patch size 64 x 64 pixel 

• Orbit: all orbits separated 

The evaluation of these experiments is different compared to the evaluation used in chapters 5.1-5.5. 

For this evaluation only the pixels which are allocated completely inside the lake area are considered. 

Each pixel can only be predicted either as snow/ice or as water. The number of all pixels assigned to 

the label water are summed up and compared to the total number of pixels within the lake boundaries. 

If this value is above 90%, the lake is labeled to be non-frozen (water, w). If this value is between 50-

90%, the lake is assigned to the label ‘more water’ (mw). For the case that this value is between 10 and 

50%, the label is set to ‘more ice/snow’ (mi) and for values below 10% to ‘snow/ice’ (s/i). Fig. 33 to 

Fig.36 show the results of the different orbits. 
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Figure 33. Timeline orbit 66. 
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Figure 34. Timeline orbit 15 
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Figure 35. Timeline orbit 117. 
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Figure 36. Timeline orbit 168. 

 

The failure rate for all orbits can be calculated by comparing prediction with ground truth (prediction 

≠ ground truth) and is shown in Tab. 13: 
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Table 13. Failure rate of the different orbit timeline experiments (single lakes and overall) 

 

The best prediction is achieved with orbit 66 and orbit 168. However, only 63% of the predicted values 

are correct. 

 

  

Name Orbit 15 Orbit 66 Orbit 117 Orbit 168

St. Moritzsee 45.2% 44.8% 38.7% 35.7%

Silvaplanersee 35.5% 34.5% 83.9% 39.3%

Silsersee 48.4% 31.0% 41.9% 32.1%

overall 43.0% 36.8% 54.8% 35.7%



 

44 
 

6 Discussion 

The results shown in chapter 5 indicate that it is possible to train a deep learning network with SAR 

data to detect lake ice, but the results are not perfect. Different factors which influence the radar 

images have an impact on the prediction of the network. The following factors are discussed: 

• Incident angle 

• Wind 

• Blank ice 

• Wet snow 

• Deeplab v3+ parameters 

6.1 Incident angle 

The experiments in chapters 5.1 to 5.6 show that the different orbits have a significant influence on 

the results. The orbits differ in the incident angle and the day time when the images are taken. 

However, experiment 5.1.2 shows that the later has no influence on the result. The prediction quality 

is about the same, independent if the image was taken at about 5 am or 5 pm. Therefore, it is fair to 

assume that the observed dependency of the results is due to the incident angle and that this factor 

influences the result of the prediction.  

Fig. 37 shows the histograms of gray values (x-axis) of all pixels measured during all four orbit passages 

(VV polarization) in the discussed time range. The pixels have been allocated using ground truth values 

to water (blue) or snow/ice (orange). All four histograms of the four different orbits have a different 

distribution. There is no clear distinction between water and snow/ice. That means for Deeplab v3+ 

that it has to learn the differences between water and snow/ice using the information from bigger 

pixel structures within patches. Fig. 37 shows that the histograms of the orbits with a steeper incident 

angle on the region Sils are wider (orbit 66 and orbit 117). For the other two orbits (15 and 168) the 

histogram is slimmer but adding up a higher number of pixels per backscatter intensity. The presented 

results in chapter 5.1 imply the following prediction ranking.  

Orbit 66 >> 15 = 117 > 168  

In the timeline experiments the order of the ranking is slightly different. Orbit 66 and orbit 168 show 

good timeline experiment results summarized in Tab. 13. The reason for this different behavior of orbit 

168 remains unclear. Further work has to be done on the influence of the incidence angle and it has to 

be analyzed in more detail.  
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Figure. 37. Gray value distribution of the pixel backscatter values from the different orbits; blue: 
water, orange: snow/ice. 
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6.2 Wind  

The time line experiments in chapter 5.6 show that it is difficult for Deeplab v3+ to predict water 

correctly. The reason for this issue could be wind. Fig. 38 shows the Lake Sils at two different days. At 

both days the surface of the Lake Sils is labeled ‘water’. On 24.4.2017, there is a lot of wind, on 

7.10.2016 there is nearly no wind. The wind generates waves. The waves make the surface of the lake 

rougher. As described in chapter 3.3.2 there is a possible interaction of small waves (some centimeters) 

with the radar waves of the C band. The gray scale tonality in the image is significantly different. With 

a higher roughness more of the radar signal is backscattered to the satellite and the image appears 

brighter. It remains to be shown if a neural network is influenced by this difference. 

 

Figure 38. left: surface of Lake Sils on a windy day, right: surface of Lake Sils with nearly no wind. 

To check this hypothesis, the wind data of the region of Sils have been studied. There is a weather 

check point in Segl-Maria, between the Lake Sils and the Lake Silvaplana. Meteo Swiss offers hourly 

mean values of the wind speed for research purposes. Fig. 39 shows the results of the timeline 

experiment of orbit 66 (blue: ground truth, orange: prediction) and compares it with the wind speed 

(gray: top peaks in the range of 25 km/h). However, no clear correlation can be found between wrong 

predictions during the non-frozen time and high wind speed. A deeper analysis of this factor should be 

done in the future.   
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Figure 39. Timeline of the result of orbit 66 data with wind speed (hourly mean wind at timepoint 
when image was taken). 
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6.3 Snow-free ice  

The timeline experiments in chapter 5.6 show that the network predicts snow/ice in nearly all cases 

with a delay of some days. A reason for this effect could be the missing precipitation in December 2016 

and January 2017. Fig. 40 shows the precipitation for the whole investigation period between 

1.10.2016 to 30.4.2017 based on data from Meteo Swiss. The winter was very dry and there was nearly 

no precipitation in December and the first half of January. On the other side the temperatures have 

been low and the surface of the lakes froze during this period completely, resulting in a snow-free ice 

layer with no/minimal snow coverage. As described in chapter 3.3.3 radar waves pass the blank ice 

layers and are reflect back from the water surface giving probably raise to the wrong prediction of 

Deeplab v3+. It would be interesting to follow up on this hypothesis and investigate other winter data 

sets when the freezing period is accompanied by strong precipitation. However, it has to be also 

considered that the incident angle plays a major role in the radar response and probably superimposes 

on this effect. 

 

 

Figure 40. Precipitation in Segl Maria 1.10.2016 – 30.4.2017 (based on data from Meteo Swiss). 

6.4 Wet snow 

The timeline experiments in chapter 5.6 are also showing that the network has additional prediction 

problems during the frozen and the thawing period. This could be probably explained by wet snow on 

the ice and would be more pronounced in the orbit data measured in the afternoon (15 and 117) which 

is indeed the case. However, based on the small number of data points available it is difficult to check 

this statement and it would have to be investigated with a bigger data set in more detail.  
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6.5 Deeplab v3+ 

The whole set of experiments done in this thesis was run with the same Deeplab v3+ configuration 

varying only the parameters ‘number of epochs’ and ‘learning rate’. For the future it would be 

interesting to vary the Deeplab v3+ configuration parameters and to possibly achieve better results 

with a different setup.  

Deeplab v3+ is developed for RGB images (3 layers). However, all experiments in this thesis (expect the 

experiment in chapter 0) are run with gray value images (1 layer). Deeplab v3+ was able to make 

predictions out of this one-layer images however there was no investigation if this data setup 

influenced the outcome of the results. For the future it would be helpful to understand this influence 

and to explore if the adaptation of the Deeplab v3+ parameter setting could result in better 

predictions. 

It would be also interesting to set up a smaller deep learning network than Deeplab v3+ and to check 

if such a smaller network would be able to detect lake ice in SAR data as well or even better.   
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7 Conclusion and future work 

The goal of this thesis was to check if it is possible to detect lake ice based on radar data with deep 

learning algorithms. Lake ice has been defined by the World Meteorological Organization in the 

framework of the Global Climate Observing System (GCOS) as an important climate variable for the 

observation of climate change. 

In summary, this thesis has shown that it is possible to detect lake ice on three alpine lakes in 

Switzerland based on the available radar data set from the Sentinel-1 satellite constellation of the 

Copernicus program of ESA. The precision of the prediction is still not at the desired level and the 

results achieved with optical images and webcams are better. Therefore, it is recommended to do 

further in-depth investigations to clarify the potential of radar data for the prediction of lake ice. One 

important reason for this lack of the precision of the prediction is the complex interaction mechanism 

of radar microwaves with the different surface states of water. 

It has been shown in this thesis that there is a dependency of the results on the orbit and with this on 

the position of the satellite relative to the lakes. The incidence angle of the radar beam determines the 

intensity of the backscattered signal and with this the quality and homogeneity of the input data. 

Therefore, all attempts to use the whole dataset (4 orbits) were failing and good results could only be 

achieved by using the limited number of images of orbit 66 and partly orbit 168. With this, the repeat 

cycle of images is reduced up to 12 days (mainly in 2016) which is not what is needed to determine like 

ice and freezing/thawing days precisely, as asked for by GCOS. As there are now two Sentinel-1 

satellites operable (also seen in data of early 2017), it would be worthwhile to investigate this 

dependency on the incidence angle with more recent data.  

Another important factor is the interaction of the radar waves with the different surface structures 

and the different surface states (smooth water, water with waves, blank ice, ice covered with snow, 

ice covered with wet snow). This thesis has shown that there might be some effects, however, the 

limited time has not allowed to dig deeper and investigate these parameters and how they influence 

the results in detail. 

To further evaluate the potential of radar data to detect lake ice precisely the following topics should 

be considered: 

• More experiments with the existing data 

o Study the orbit dependency in more detail 

o Study the surface interaction in more detail 

o Vary Deeplab v3+ parameters 

o Apply smaller networks 

• Get more data and apply the model as well to other lakes to check the applicability  

• Multitemporal analysis 

 

Doing all of this will reveal if radar data will become a valuable tool to detect lake ice in the future. 
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8 Appendix 

Deeplab v3+ is freely available on GitHub. The software was installed on a local computer with a 

GeForce GTX 1080 Ti GPU and on a server (Leonhard) with 16 Nvidia GTX 1080 GPU’s. For each training 

only one GPU is used. The training time is for most of the experiments between 6 and 8 hours.  

There is no specific instruction from the developers of Deeplab v3+ on how to adapt the code to a new 

dataset. Therefore two blogs (Sahu, 2018) (“DeepLabv3+ on your own dataset”, 2019) have been used 

to adapt Deeplab v3+ to our dataset.  

Lake ice detection was modeled as a 3 class (water, snow/ice, background) problem. The folder 

structure is very critical for the implementation of Deeplab v3+ and has to be followed. 

For the ‘sar ice’ dataset the following folder structure is used: 

• Dataset 

o JEPGImages 

o SegmentationClass 

o SegmentationClassRaw 

o ImageSets 

o Tfrecord 

JEPGImages:    contains the original patches from the training and validation dataset 

SegmentationClass:  contains the ground truth in RGB 

SegmentationClassRaw: contains the ground truth in as a color indexed format 

ImageSets:  contains three text files,  

o train.txt contains the name of the patches which are needed 

for the training,  

o val.txt contains the name of the patches which are needed for 

validation,  

o trainval.txt contains all the patch names which are needed for 

training and validation  

TFrecord:  contains the howl data from the folder dataset in a tfrecord format, 

this format is better for giving the data to the network.  

It is necessary that all patches are named with the same name in the different subfolders of the folder 

dataset. For the training Deeplab v3+ needs the images out of the folder JEPGImages and 

SegementationClassRaw. The images in the folder SegmentationClassRaw are generated from the 

images from the folder SegementationClass. Normally that happens with the file 

remove_gt_colormap.py. However, it does not work for the ‘sar ice’ dataset. Therefore the program 

of (Sahu, 2018) is used. This program converts the ground truth from a color image to a grayscale 

image. For each color in the ground truth a grayscale value is set. Deeplab v3+ needs the labels in an 

increasing order starting from zero for the background. It is not allowed that there is a gap between 

two grayscale values. 

Additionally, the colormap for the dataset ‘sar ice’ must be added in the file get_dataset_colormap.py. 

In addition, in vis.py on line 83 the name of the colormap must be added. If these changes are not 

made there is the possibility that a colormap of Cityscape or Pascal is used (it belongs to the default 

parameters).  
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