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Abstract

The goal of this thesis is to develop an algorithm to detect human activity with the use of an

Intel RealSense camera and determine if the activity intrudes into a specified safety zone.

The Intel RealSense is a depth camera, which means that we know the distance from the

camera to the objects in the scene for every pixel. Imagine a tabletop robot which interacts

with people surrounding the table and a certain safety zone around the robot which is to

ensure that it can shut down its movements when someone reaches too near. Since it is a

tabletop setup, the main interest is on the hands. The Intel RealSense camera can deliver

tracked coordinates of hand joints which can be used as a signal of human activity. In

order to be able to keep the safety zone small and at the same time reduce false positives,

we use a Kalman Filter with which we are able to solve two problems at once: With the

prediction model of the filter we can calculate forecast coordinates and therefore detect the

hand movements which are likely to enter the safety zone before they are too near to the

robot. On the other hand the outputs of the filter (filtered and smoothed coordinates) can

be used to make a nice visualization.

We implemented an application which takes the coordinates of the 22 tracked hand joints

and filters them individually with a Kalman Filter. The prediction works smoothly and we

are now able to foresee quick hand movements and signal those in direction of the camera

as potentially hazardous. The time of how much the prediction goes into the future can

be adjusted freely. The filter smooths the raw coordinates as desired and gives a nice

visualization of the hand. To ensure an overall security also other objects besides the hand

can be recognized. We added another module which uses the 3D coordinates of the depth

information to also check them against the security zone. This part does not work with

prediction, it is more like a safety net to make the application more reliable. The main

result, the software, can be a ground source for further research purposes and a potential

starting base to implement a profound safety zone for a real tabletop robot.
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1 INTRODUCTION

1 Introduction

Nowadays there is a huge change in the use and importance of vision based applications

especially with automation in many big markets. Many autonomous processes need to have

the ability to ’see’, to conceive and understand the surroundings in order to react properly.

However, there are still unsolved problems and questions in this area. Especially when we

look at the research in robotics and suchlike topics, which depend on reliable vision based

methods for the automation process to get along with the environment, a question arises:

How can we ensure the safety of such human-robot interactions? As long as the person

reacts as imagined by the programmer everything is fine, but a human is not a robot and

can act unexpectedly. In this thesis we drill down on this safety problem and develop a

security algorithm which protects interacting people of being hurt from a movement of the

robot and at the same time the robot of getting broken.

The initial setup for our thesis is the following: There is a robot on top of a table which

is supposed to be able to interact with humans. This interaction could be for example

playing board games. The robot has an Intel RealSense camera mounted on its top which

is a so called depth camera that can deliver 3D coordinates for each pixel of the image.

The goal of this thesis is now the following:

Design an algorithm which uses the functionalities of the Intel RealSense and

filtering methods to establish a safety zone around the robot and issues a warn-

ing when something enters that zone.

Figure 1: The two possible solutions to solve the safety problem
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1 INTRODUCTION

Since it is a tabletop interaction, the main focus is on the hands. The Intel RealSense has

a hand tracking option included, so it is possible to get the raw coordinates of 22 joints at

any time a hand is in the field of view. An option would be to use this coordinates and

check, if they are behind the safety zone. But then safety zone would have to start far away

from the robot in order to be safe, because if a hand is coming with high velocity, there

should be enough time to shut down. But this produces many false negatives, since many

hand movements will not reach the robot. In this thesis we want to go a step further. The

algorithm should distinguish if the hand is just near the robot but does not move much,

or if it is likely to enter the zone. This calls for a prediction of the movement. This is

achieved by using the Kalman Filter (KF), with which we are able to solve two problems

at once: The prediction can be made using the prediction model integrated into the KF

and at the same time we are able to filter the raw coordinates and use them to generate a

nice smooth visualization.

This thesis therefore combines topics from Computer Vision like tracking and recognition

of humans with filtering problems used in many areas as for example navigation.

2



2 THEORETICAL PRINCIPLES

2 Theoretical Principles

2.1 Computer Vision

2.1.1 Introduction

As described in Szeliski (2010, pp. 3 – 10), with the automation, Computer Vision became

an important research area in recent years. For new technologies, for example autonomous

systems and robotics, the information of the environment is essential for the robot in order

to be able to interact with it. Computer Vision works with mathematical techniques to

generate three dimensional objects from the information of two dimensional image data.

Stereo matching makes this possible. With several pictures from the same object but from

different perspective it is possible to reconstruct the 3D object.

The big dream of computer vision is to achieve algorithms which operate at the same level

as a small child observes his environment and processes information from images. This may

be achieved in the distant future. Nowadays, the research is still far away from reaching

this goal, so that it remains a dream.

What a human brain handles effortlessly, like human intuition, is the catchiest for com-

puter algorithms. For that reason, the complexity of computer vision is underestimated

by laymen. It is tricky though because it must deal with inverse problematics like recon-

structing the reality from images with less information (from 2D to 3D).

Statistical approaches with applicable probability distribution are common for modeling

and detecting noise afflicted pictures. It is important to provide algorithms which are

resilient towards noise and variations from the models and efficient in memory space and

run-time. For this, Bayesian techniques can be used, for example a Bayes Filter (see section

2.4.2).

2.1.2 History of Computer Vision

A short insight into the history of computer vision with information from Szeliski (ibid.,

pp. 10 – 19) is provided in this section. Its beginning is in the early 70’s. What at that

time separated computer vision clearly from the already existing image processing was to

regain the real 3D structure of an object from images and as a result to open new research

areas with 3D objects, like the edge detection which was one of the first. Later, in the

80’s the focus was more on complex mathematical techniques for quantitative analyses of

images. It was possible to reconstruct a 3D object from light, texture and orientation.

3



2 THEORETICAL PRINCIPLES

Merging from different image data and reconstruction of surfaces were important topics

and also improved edge and shape recognition.

Projective invariants for recognition were used for eliminating motion from structure. The

development of factorization techniques for improved efficiency could be used for ortho-

graphic mapping and later for perspective cases. The notion of full global optimization1

was introduced in the community but later it was ascertained that it is the same as the bun-

dle adjustment already known in photometrically applications. The optical flow method2

and dense stereo correspondence algorithms (important for photogrammetry especially)

were improved. At that time, also tracking and intensity based algorithms (for human face

and body) progressed. A stronger interaction between computer graphics and computer

vision was possible in those days with revolutionary image morphing algorithms (flowing

of multi-images into each other) which could be used for 3D animations with images from

the real world.

Post-millennially, the research grew with a fast speed. There were four important trends:

• Strong connection between computer vision and computer graphics.

• New knowledge for digital photography like illumination transition with morphing.

• Development of feature-based techniques and more efficient global optimization al-

gorithms.

• Complex machine learning technique connected with computer vision, which opened

new branch of research until today.

2.1.3 Projective Geometry

In Computer Vision, one of the main tools is the camera. It provides the knowledge about

the enviroment. The camera makes a perspective of the scene. To work with such kind

of data, Cartesian coordinates are not ideal. This is why projective coordinates are often

used instead to simplify the calculations. The whole knowledge of projective geometry is

from the lecture documents of K.Schindler (2016).

1Full Global Optimization: A subdomain of applied mathematics and numerical analysis which has the
goal to find optimal elements x from a set of X elements according to a set of criteria F = {f1,f2,..,fn}.
These criteria (mathematical functions) are called objective functions. An objective function f : X 7→ Y
with Y ⊆ R is a mathematical function which is subject to optimization.(Weise 2009, pp. 21)

2Optical Flow Method: It detects velocity of real world objects (e.g. cars on the highway) from the
image through comparing changes of pixel values in specific time interval. Usually, objects near the camera
have longer motion vector than further afar objects with same absolute speed. It can be also used for
situation where the camera is moving and the objects are stationary. This method is especially used in
computer vision to detect movements in video streams oder tracking systems.(MathWorks 2017)

2.1 Computer Vision 4



2 THEORETICAL PRINCIPLES

Its origin comes from Pappus von Alexandria which mentioned the first projective coher-

ences 340 A.D. It is an alternative algebraic representation of geometric objects (e.g. point,

lane, plane, ...) beside the usually known euclidean representation. The main use is for

optics because of the essential simplification of equations. It should be mentioned that

the choice of the algebraic representation does not influence the geometric relations. All

calculations can be done similarly with euclidean representations. It serves only for the

sake of convenience.

Homogeneous coordinates Def: The representation q of a geometric object is ho-

mogen if q and λq represent the same object. Homogeneous coordinates are used in

projective geometry similar as Cartesian coordinates are used in euclidean geometry.

A 2D point x = (x, y) in homogeneous coordinates is represented as followed:

x =


u

v

w

 =


wx

wy

w

 (1)

The definition of a homogeneous line l 2D looks like this:

l =


a

b

c

 with ax+ by + c = 0 (2)

Geometric Operations For some specific computations the homogeneous coordinates

have big advantage over the Cartesian coordinates.

To determine if a point is on a line we only need to calculate the dot product and check if

it is 0:

xT l = lTx = x · l = 0 (3)

or

au+ bv + cw = w(ax+ by + c) = 0 (4)

The intersection of two lines is their cross product.

x = l×m (5)

It is also an easy way to determine the line between two points. It is their cross product

as well:

l = x× y (6)

2.1 Computer Vision 5



2 THEORETICAL PRINCIPLES

Something inconvenient in Cartesian coordinates is representing infinite points which are

commonly used in homogeneous coordinates. An infinite point x∞ and infinite line l∞

have this form:

x∞ =


u

v

0

 l∞ =


0

0

1

 (7)

With 7 we can see that all far points lie on a far line

xT∞l∞ = 0 (8)

and the intersection of parallel lines
a

b

c

×

a

b

d

 =


bd− bc
ac− ad
ab− ab

 =


u

v

0

 (9)

is a far point.

For a point in 3D space all vectors are extended with a z-value.

Transformation Projective transformation (projection, homography) is a reversible lin-

ear mapping

x′n = Mn×nxn . (10)

Law of projective geometry: Every unambiguous line-preserving representation of a

projective space Pn on itself is a homography, for 2 ≤ n <∞.

All unique line-preserving transformations are linear in homogeneous coordinates.

2.2 Tracking

Since the beginning of Computer Vision big progress has been made for tracking algorithms.

One easy possibility for tracking human body parts is extracting the shape with the use

of edge detection and doing that in every frame. But this is already an outdated method.

Another technique is using interest point extraction to get some actual coordinates of

some landmarks of the tracked object. This is further explained in section 2.2.1. To make

this kind of algorithm more reliable, we need scale invariant transforms like SIFT (Scale

Invariant Feature Transform) or SURF (Speeded-Up Robust Features) (Herbert Bay et al.

2006; Li Deng 2014).

Nowadays there is a whole new area of methods which contains Machine Learning and

2.2 Tracking 6



2 THEORETICAL PRINCIPLES

Deep Learning as explained in Li Deng (2014, p.230-234). The problems of the previous

mentioned methods are that they only get the low level information of the pictures. More

interesting is to know mid- or even high-level edge information like edge intersection or

object parts. This can be achieved using Deep Learning techniques by letting the algorithm

learns hierarchies of visual features by itself. Using Pose Estimation, the tracking can be

improved significantly and make it to the state of art solution (Ali Erol et al. 2007).

In the next sections we introduce the interest point detection as a basis algorithm and

focus then on the tracking and detection of body parts like hands and face.

2.2.1 Interest point detection

The knowledge of interest point detection and all information given in this section is based

on J.Wegner (2016). Interest point detection is used in image processing for finding distinc-

tive points in an image and giving its parameter. Distinctive points in general are unique in

its narrow environment. Additional requirements are for example to be invariant towards

image variations like radiometric and geometric contortions (e.g. rotation, scaling). Two

of the most known operators for interest point detection are Harris and Förstner. We will

give a short introduction and show the process of each operator. Both only work with gray

value images.

Autocorrelation The autocorrelation matrix is the basis for the following operators.

We consider g(x, y) as the gray value of the image at position x and y. When we take the

square sum of the gray level differences by shifting of the window W about (∆x,∆y) we

get

c(x, y,∆x,∆y) =
∑
x,y∈W

p(x, y)[g(x+ ∆x, y + ∆y)− g(x, y)]2 (11)

with p(x, y) as weight function (e.g. for smoothing). An approximation with Taylor ex-

pansion gives us the following form:

c(x, y,∆x,∆y) ≈ (∆x,∆y) ·M ·

[
∆x

∆y

]
(12)

with

M =

[
g2
x gxgy

gygx g2
y

]
. (13)

The diagonal elements of M are smoothed quadratic first derivation and its non-diagonal

elements are mixed product of the first derivation. M is also known as 2nd moment matrix

or autocorrelation matrix.

2.2 Tracking 7



2 THEORETICAL PRINCIPLES

Harris-Operator The Harris operator compares a cornerness r with a threshold value

to decide if it is an interest point or not.

r = det(M)− κ · trace(M)2 = λ1 · λ2 − κ · (λ1 + λ2)2 (14)

In (14) we can see that the eigenvalues λ1 and λ2 of M must be high to increase r respec-

tively the cornerness.

Förstner-Operator This algorithm uses a slightly different autocorrelation matrix. The

only difference is that the gradients are smoothed with an additional derivation scale σ∆:

gx =
∂G(x, y, σ∆)

∂x
· g (15)

gy =
∂G(x, y, σ∆)

∂y
· g (16)

The elements of M are smoothed with a Gauss-Filter G(x, y, σI) with integration-scale σI :

M =

[
G(x, y, σI) · g2

x G(x, y, σI) · gx · gy
G(x, y, σI) · gy · gx G(x, y, σI) · g2

y

]
= M(x, y, σ∆, σI) (17)

We exploit the fact that M−1 is the covariance respectively it says how precisely the point

can be determined. The axis of the ellipse of uncertainty corresponds with the eigenvalues

λ1 and λ2 of the matrix M−1.

To find out if it is a point of interest its ellipse of uncertainty has to be as small as possible

and as round as possible. The size of the ellipse of uncertainty can be judged with the

weight

ω =
1

λ1 + λ2
=

1

trace(M−1)
=

det(M)

trace(M)
(18)

and roundness

q = 1− (
λ1 − λ2

λ1 + λ2
)2 = 4 · det(M)

[trace(M)]2
(19)

2.2.2 Feature Tracking

This section is especially undertaken from Szeliski (2010, pp. 235 – 237).

Tracking is mostly used in video applications. The usual workflow is to initialize the object

at first and afterwards track it by searching the same object in the following frame. To

avoid big computational time, the searching algorithm will not be over the whole picture

but rather in the same area as the object was in the last frame. This is possible because

2.2 Tracking 8



2 THEORETICAL PRINCIPLES

the time step between the frames are normally a few milliseconds. The hierarchical search

strategy searches first in a low resolution picture and after finding the right area there is

a further search in high resolution in the same area. For that reason, it is more difficult

to track objects with high speed. The methods vary depending on the purpose. To solve

the problem of different illuminations, normalized cross-correlation can be used. Tie points

should be in positions with high gradients for reliable detecting. In homogeneous (e.g. clear

sky, house wall) and totally heterogeneous (e.g. meadow) areas it is almost impossible to

get reliable tie points.

To find the new position on the current picture, we compare it to a certain reference image

which shows the static situation. We need this static background to detect the motion by

overlapping the images and finding the differences. For the reference image we have two

possibilities:

• Always use the same (first) image and track the whole movement from beginning to

the current state.

• Just use two consecutive pictures and determine the relative movement. The prob-

lem here is that it is not robust against outliers since we do not have the whole

information.

The affine motion model combines these two methods: We use the translation between two

following frames and lead it back to the first reference image. This way we get the absolute

approximative translation vector. In the end we make an affine transformation to get the

right shape and orientation of the current state.

Machine learning for computer vision advanced tracking in the last few years rapidly.

Algorithms can be trained and become more stable and robust. Important features can be

learned and used.

2.2.3 Face Tracking

Face tracking is an important but challenging task for computer vision, since the faces

change constantly dependent on the orientation, lightning and shadows. Additionally,

every person has a different face, so the tracking algorithm cannot just look for a fixed

reference object like in feature tracking. But before a face can be tracked it has to be

recognized:

Eigenfaces Matthew Turk (1991) developed an efficient way for recognition of human

faces, so called eigenface approach. Relevant information from the image will be extracted

2.2 Tracking 9



2 THEORETICAL PRINCIPLES

and compared one face encoding with all other from the database to detect any charac-

teristics for the specific face. For that reason, enough data from one face is needed in the

beginning for finding all relevant information to encode it.

Figure 2: Initialization approach to face recognition with eigenfaces

This means mathematically, that the eigenvectors of the covariance matrix of the set of face

images is needed. Each eigenvector shows the difference of the face images in an ordered

way. They can be seen as a set of features which characterize the variation between face

images because each position of the image is connected to each eigenvector. All eigenvectors

can be displayed and are called eigenfaces. Each image can be reconstructed with a linear

combination of the eigenfaces. The eigenfaces with the largest eigenvalues are the ”best”

because they provide the biggest variance in the face images. Therefore, the best M

eigenfaces span a M-dimensional subspace.

Figure 3: Recognition of new face images after initialization

For recognition of new face images we have optional features like updating the eigenfaces

and weight patterns or if the same unknown face is seen many times, its characteristic

weight patterns can be calculated and included into the known faces. For the process we

need in the beginning Γ1,Γ2, · · ·ΓM images of the face. We create an average face Ψ from

the training set:

Ψ =
1

M

M∑
i=1

Γi (20)

With this average face we can create faces of difference Φi:

Φi = Γi −Ψ (21)

2.2 Tracking 10



2 THEORETICAL PRINCIPLES

With all faces of difference Φi the covariance matrix C can be created:

C =
1

M

M∑
i=1

ΦiΦ
T
i = AAT where A = [Φ1Φ2 · · ·ΦM ] (22)

For the reason that the eigenvectors of C looks similar to faces, Turk and Pentland gave

them the name eigenfaces. For efficiency reason a new matrix L will be calculated as

followed:

L = ATA (23)

Because of the smaller dimension of L its eigenvectors vl can be calculated easier. It is

only an interim step to get the eigenvectors ul of C.

ul =
M∑
k=1

vlkΦk with l = {1, ...,M} (24)

or

ul = Avl (25)

From the eigenvectors ul of C are only M ′ (with M ′ < M) u′l with the highest eigenvalues

of importance. For the last step we have to normalize the eigenvectors u′l.

This introduction to face tracking was undertaken from the publications by Fei Yang et al.

(2012) about face tracking with a consumer depth camera.

The existing face tracking algorithms with a normal camera without depth information,

can be divided into two classes:

• Appearance based methods: Use of 3D Models and deform them according to the

detected face. This means that the whole face gets tracked, not only some points.

This technique needs a training phase with a data bank of faces. The modeling

includes geometry and texture. This technique is often performed with the use of

eigenfaces (see section 2.2.3)

→ Because of different lightning and deformation it is not easy to generalize this

method, good training data is needed.

• Feature based methods: Tracking distinctive points of the face, so called landmarks

which should be local, unique and robust against change. They are found with interest

point extraction like explained in section 2.2.1. To avoid errors, this landmarks have

to be held in constraints, which are realized by a global shape model. This technique

uses only geometric data and there is no training needed. → This method is better

generalizable for other faces but is not that stable.
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This techniques can now be improved by integrating depth data. We will mention two

possibilities here:

In addition to the landmarks (feature based method), the orientation of the head can

be calculated (pose estimation) with depth data. Orientation is often very inaccurate in

classical methods because there is only frontal 2D data available. With the depth data,

the head pose can now be estimated as an regression problem. One possibility to do this

are Regression Forests3.

A second improvement can be done in the finding of the landmarks. This is normally done

by template matching. The idea of template matching is to always check, if there is a point

which matches better. This can be done by minimizing the Mahalonobis distance d:

d2 = (g − g)T · S−1 · (g − g) (26)

g is the gradient of the current position and g and S are mean and covariance matrix from

the training phase. This method can sometimes deliver a bad performance in differencing

between landmarks due to poor lightning or complex background. This can be optimized

by using edge detection in the depth map. So the new distance to be minimized reads as

following:

d2 = (g − g)T · S−1 · (g − g) + ||∇l||2 (27)

||∇l||2 is the additional term which describes the edge detection in the depth image.

This is done especially for the landmarks on the edge of the face because there the spatial

gradient is the highest.

These techniques can be also used for interactive deformation of a 3D graphics model based

on tracking a user’s motion as described in Szeliski (2010, pp. 237 – 238). In the initial

phase, landmarks will be set to specific points. From this data a morphing with an avatar

will connect the real human face with a virtual 3D avatar. The landmarks can be tracked

in real-time with fast feature tracking and the animation can be fitted to the real human

face, so that the orientation and facial features looks similar.

This was only an example of using tracking data from a human face. There are many other

possibilities to work with tracking data which will not be mentioned in this work.

3Regression Forests is a regression method based on Random Forests. Random Forests is a segmentation
algorithm using several search trees in order to split the dataset according to the homogeneity. This can
also be used for regression problems since the model which is fitted in a regression analysis is also a kind of
a border between two regions, which can be determined. This is then called Regression Forests. (Ho 1995)
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Figure 4: Animation example of a real human face tracking joint to an avatar (Szeliski

2010, pp.238).

2.2.4 Hand Tracking

There are lots of approaches in research and industry how hand tracking from image data

can be executed. A human hand is not one of the easiest parts of the human body to

recognize and track. One main reason is the high degree of freedom, which is for a realistic

model at least 26 (Matthieu Bray et al. 2004). In figure 5 we can see one of the possibilities

how a human hand can be represented with 22 joints. Although free hand movement is

still a big challenge, the research goes deeper and focus on hands holding and manipulating

objects because in many applications this will be the case (Henning Hamer et al. 2009).

Figure 5: All detectable joints with the Intel RealSense camera (Intel 2017)
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As Zhou Ren et al. (2013) described, these low cost 3D cameras have satisfying algorithms

implemented for bigger objects like human body or human face. With the hand, the big

problem is its relative small size. In general, 3D low cost cameras have a resolution of

640×480 Pixel (Nowadays even higher). This is one of the main points why hand tracking

comes to its limits. Due to the low resolution, the noise is relatively big. An additional

problem is the computational cost which hinders to increase the resolution.

From our own experience with the Intel RealSense we learned that the camera operates

satisfyingly after it recognizes and initializes a hand but for Human-Computer-Interaction

(HCI) is only the hand tracking not enough but gesture recognition is essential.

Gesture In the future, applications with gesture recognition will become more and more

important. Especially research and development in virtual reality (VR) promotes this.

When VR becomes more common in the industry there will be a huge need in reliable and

robust gesture recognition algorithms. 3D cameras like Intel RealSense (see section 2.3.2)

and Kinect (see section 2.3.3) have already such functions implemented which however

reach the limit of usage. On one hand the number of recognizable gestures is limited, on

the other hand the recognition is in some cases not reliable. It also differs between the

gestures: Gestures without overlapping objects (v-sign, hand wave, etc.) are more reliable

than overlapping gestures (e.g. fist, grab, thumbs up etc.).

According to Zhou Ren et al. (ibid.) there are two main methods for gesture recognition

from depth data:

• For the pose of the palm and the angles of the joints colored markers are used to

extract high-level features, such as the fingertip, joint locations or some anchor points

on the palm.

• Representation of the hand region by edges or an ellipse using skin color mode.

However, both cases still perform inefficiently in cluttered environments.
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2.3 Low Cost Depth Cameras

Not long ago, the first industrial usable low cost depth cameras were introduced and sold

in the market. The procedure is for the most low cost depth cameras roughly the same.

There are three main components: A low resolution RGB color camera, a low resolution

IR camera and an IR laser projector to collect the data provided from the IR camera. The

difference to common 2D color cameras are the additional integrated IR components which

makes it possible to get the 3rd dimension, the depth data. The process with structured

light will be explained in the following section.

These cameras are easy to handle and can connect with different devices. Despite the

fact that they only cost a few hundred dollars and are affordable for almost everyone they

provide more than enough functionalities and satisfying accuracy for a private person to

use them in a useful way.

2.3.1 Structured Light Method

There are several possibilities to gain depth by a camera,

• Stereo triangulation: Use more than one camera, find corresponding points and per-

form a triangulation. This is an application of stereo-photogrammetry.

• Structured light: Illuminate the scene with a pattern of light and analyze the defor-

mation of the pattern.

• Time-of-Flight: Radar-like method (e.g. LiDAR).

• Interferometry: Measure the phase shift of the reflected to the source light and deduce

the depth.

(Wikipedia 2017)

The Intel RealSense camera uses the method of structured light. There, in addition to the

normal camera, we need a light projector and a second camera. The light projector beams

some kind of structure, barcode or pattern onto the scene. The second camera records the

reflected pattern. Often the projected light is infrared (IR) which implies that the second

camera has to be a IR camera. With the distortion of the incoming pattern, the distance

to every pixel in the field of view can be calculated.

To make such kind of calculations easier, homogeneous coordinates as explained in section

2.1.3 can be used since they are specifically designed for projective computations.
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The pattern has to be unique, and this can be achieved by different colors, gray values

or shapes of the pattern. Another method is to vary the projected light over time, so it

can have both spatial and temporal component. This is called multiplexing which can be

divided into four categories:

• Wavelength multiplexing: Use different wavelengths, which means different colors.

• Range multiplexing: Use just one wavelength, but multiple gray values (intensity).

• Temporal multiplexing: Change the projected pattern over time.

• Spatial multiplexing: Project a distinctive pattern with different shapes and sizes.

(P. Zanuttigh et al. 2016, p.54)

A big advantage of the structured light method for example to scanning systems is, that it

is much faster, because the whole scene can be acquired at once and not pixel by pixel. A

disadvantage to stereo triangulation is, that it relies on reflectance of the IR light. When

dark objects are in the scene, they absorb most of the light and for that reason the object

is not visible in the depth map. But an advantage is, that no corresponding points have

to be searched, which makes it much more stable and faster.

2.3.2 Intel RealSense SR300

Intel provides three different cameras with RealSense technology (F200, SR300 and R200).

SR300 is the next generation of F200 which adds new features and has some improvements

over the F200 model. The focus of both cameras are the users. Both cameras use coded light

depth technology to create a 3D depth video stream at close range. The SR300 provides a

faster depth mode which allows a reduction in exposure time and allows motions up to 2

m/s.(Nhuy L. (Intel) 2016) The newest camera is the R200. Its focus is on the world, not

the user, it is a rear facing camera. (Colleen C. (Intel) 2015)

The choice of the camera depends on the purpose. In this thesis only user activity is

important. For that reason the Intel RealSense front-facing camera SR300 is appropriate.

The color camera works with 720p with 60fps or when using the higher resolution of 1080p

there are 30fps (Nhuy L. (Intel) 2016).

The information of the following section is from Intel SR300 Datasheet (2016).

The device can be used for many different applications:

• Face Analytics and Tracking
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• Scanning and Mapping

• Scene Segmentation

• Hand and Finger Tracking

• Augmented Reality

There are also other integrated functionalities like voice recognition and more but these

are not of big importance for this thesis. Its user friendly SDK provides a huge toolbox

for development and the possibility to use it for many different applications. Also the first

laptops already came to the market with an integrated Intel RealSense camera. In future

3D cameras like Intel RealSense will be more common than today for the simple reason

that there will be much more applications in the market available for their usage and the

development in HCI is getting better from day to day.

Figure 6: SR300 camera model (Nhuy L. (Intel) 2016)

Components

• Infrared Camera: 640 x 480 pixel. It has a sensor aspect ratio of 4:3 with a wide field

of view (vertical: 55◦ ± 2◦; horizontal: 71.5◦ ± 2◦; diagonal: 88◦ ± 3◦).

• Color Camera: 2MP (1920 x 1080 pixel) color camera with integrated ISP4 and a

sensor aspect ratio of 16:9. The field of view (vertical: 41.5◦ ± 2◦; horizontal: 68◦ ±
2◦; diagonal: 75.2◦ ± 4◦) is more limited than the infrared camera.

4Image Signal Processor
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• Infrared Laser Projector: Coded light with a nominal laser wavelength of 860 nm

and a field of projection of 60◦ ± 4◦ vertical and 5◦ ± 2◦ horizontal.

Figure 7: Embedded 3D imaging system of the Intel RealSense SR300 camera (Intel SR300

Datasheet 2016)

Functionality As mentioned before, the SR300 has two different systems embedded. A

depth and/or infrared video frame can be generated with the implemented IR camera and

IR projector which are processed by the imaging ASIC 5. The IR projector illuminates the

scene with a set of vertical bar patterns. The depth information can be computed with

the data from the IR camera. It captures the reflected patterns which are warped by the

scene.

The color camera on the other side, is made up of a chromatic sensor (for the color infor-

mation of each pixel) and an image signal processor (to process these information). Color

video frames for the client can be provided also with the transmission to the imaging ASIC.

It is possible to use both imaging systems together or independently which are connected

via USB3.

5Application Specific Integrated Circuit
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2.3.3 Kinect

Kinect is one of the most used low price 3D camera in the market. It was launched a few

years ago first for the Xbox for gaming purpose. Nowadays it is widely used in research

and has a integration for Windows as well.

Figure 8: Kinect camera model (Network 2017)

The setup and components of the Kinect camera are similar to Intel RealSense (see figure

8. The newest Kinect has a resolution of 1280 x 960 for the color camera. There are

differences in the field of view of Kinect in comparison to the Intel RealSense. The vertical

viewing angle is with 43◦ bigger but the horizontal is with 57◦ distinctly more constrained

than the Intel RealSense. A nice feature, which is integrated into the Intel RealSense as

well (and which is not important for this thesis but should be mentioned anyway) is the

integrated multi-array microphone which contains four microphones for capturing sound.

This makes it moreover possible to find the location of the sound source and the direction

of the audio wave which can be an interesting feature for many research areas. Another

special function is a 3-axis accelerometer to determine the current orientation of the device.

The resolution an the depth stream depends on the frame rate.
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2.4 Filtering Problems

2.4.1 Introduction

Filtering problems are always of the same nature: There are noisy measurements and the

task is to find the estimate for the variables, which satisfies a given functional model best.

Simultaneously the uncertainty of these variables, the variance, has to be propagated from

the noise of the measurements. Or in other words the task is to find the a posteriori prob-

ability density function (pdf) of the desired variables using all of the given information.

When we have the pdf, we can calculate the state variables and their variances. This is

called a Bayesian estimation. This filters can also be time-variant, which means that this

estimation has to be done while the system changes over time. Often this algorithms are

recursive, which means they only use the last state to determine the new adjustment. Such

filters are called Bayes Filters.

Proposed by R.E. Kalman 1960, the Kalman Filter is now widely used as a powerful tool

to solve such linear filtering problems. The Kalman Filter is a implementation of a Bayes

Filter, which is based on a deterministic estimation technique like the Gauss-Markov Es-

timation. One of its advantages is that it can estimate the current and even a predicted

state of a system without having knowledge of the processes inside the system. We chose

to use this filter for this thesis. In this section we are going to outline related models and

methods for filtering and thus also explain how the Kalman Filter works.

As already mentioned, the Kalman Filter can be derived from the Gauss-Markov Model

for parameter estimation (see figure 9). The maximum likelihood estimation is achieved

by minimizing the squares of the residuals, also called Least Squares Method. The recur-

sive version of it is called Sequential Gauss-Markov or Static Kalman Filter. This model

enables to add new data into an existing adjustment without computing the whole param-

eter estimation new. The Kalman Filter is a dynamic, real time version of this Sequential

Gauss-Markov Model. In comparison to the Static Kalman Filter, the new estimate is a

weighted mean of the impact of the new data and a prediction of the state of the system. So

the Kalman Filter is actually a dynamic fitting of a function to new data which is obtained

at every time step. Because of the adjustment of the data it is at the same time a process

of noise filtering.

The Kalman Filter works only for linear models. When a system has non-linear processes,

the Extended Kalman Filter (EKF) should be used. The matrices of the functional models

are replaced by the Jacobi-Matrices. It is like an extension for the Kalman Filter, which

means that the most formulas also apply in the EKF (G. B. Greg Welch 2006).
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Figure 9: Overview of the different filters and the connection to the Gauss Markov Model

When it comes to filtering problems, there is a whole different section of techniques, the

numeric methods, which could be used. The methods prior explained are analytic tech-

niques where one expects always the same output for one input into the functional model.

But since there are many random factors involved when tracking a hand, looking at the

random sampling methods makes sense.

There the filtering problem is normally solved by generating a big number of random real-

izations of the model and calculating the most probable solution. These practices are also

called Monte - Carlo Simulations. Like in the analytic part, there also exists an implemen-

tation of a Bayes filter which is called Particle Filter. It is the stochastic counterpart to

the Kalman Filter.
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When the system is highly non-linear, the linearization in the EKF can be a bad approx-

imation and can lead to bad performance. That’s why another non-linear version of the

Kalman Filter, the Unscented Kalman Filter (UKF), was introduced by Simon J. Julier

(1997). This filter works with the underlying distribution instead of linearizing the model.

This is similar to the general idea of the Monte-Carlo method. This is why, in figure 9, the

UKF is placed between the analytic and stochastic part.

2.4.2 Bayes Filters

The following section is based on the publication by David Salmond (2005).

A Bayes Filter, or also called Recursive Bayesian Estimation is a general approach to

filtering problems. Considering a state x and observations z. As described in section 2.4.1

the goal is to find the a posteriori pdf p(xn|Zn) of the state x using all information of z.

The core idea is now to divide the filtering process into two substeps:

• Predict (Time Update): Calculation of the a priori state p(xn|Zn−1)

• Correct (Measurement Update): Calculation of the a posteriori state p(xn|Zn)

This means that first, the a priori solution p(xn|Zn−1) is calculated which is a prediction

of xn based on the previous data Zn−1. In the second step the prediction gets corrected

with the new measurements zn. This is then called the a posteriori state p(xn|Zn).

Note: Zn denotes the set of all observations up to n: Zn = {z1, z2, ..., zn}.
The first step, the prediction, can be described by the Chapman-Kolmogorov equation:

p(xn|Zn−1)︸ ︷︷ ︸
A priori state

=

∫
p(xn|xn−1)︸ ︷︷ ︸

Prediction model

· p(xn−1|Zn−1)︸ ︷︷ ︸
Last a posteriori state

dxn−1 (28)

So the prediction is calculated from the last a posteriori state with a model for the dynamics

of the system, the prediction model. As we will see in section 2.4.5, this is later called

prediction matrix A.

For the second step, the correction, we need the Bayes Rule, which allow us to calculate

the inverse conditional probalility for two events A and B.

p(A|B) =
p(B|A) · p(A)

p(B)
(29)
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This equation allows us to calculate the inverse conditional probability. The correction is

now an application of this rule:

p(xn|Zn)︸ ︷︷ ︸
A posteriori state

= p(zn|xn)︸ ︷︷ ︸
Conversion model

· p(xn|Zn−1)︸ ︷︷ ︸
A priori state

/ p(zn|Zn−1)︸ ︷︷ ︸
Normalizing denominator

(30)

The conversion model describes the connection between the state and the measurements.

It contains the likelihood of the measurements and serves as kind of a weighting of the

particles according to the new inputs.

The Kalman Filter and the Particle Filter are both different implementation of this general

idea of a Bayes Filter. But first lets look at a popular parameter estimation algorithm in

the following section in order to get the bigger picture.

2.4.3 Gauss-Markov Estimation

The following paragraphs are based on the course material by Guillaume (2016).

The Gauss-Markov Model is a mathematical procedure to estimate parameters to given

measurements which are afflicted with errors. The underlying principle is the calculation

of the maximum likelihood solution for the unknown parameters. This happens by using

Least Squares Adjustment.

For this we first need a functional and stochastic model. The functional model describes

the relationship between the parameters x and the measurements z and is in the form of

z = h(x). (31)

We consider z a vector with length n and x a vector with length u.

Note that this means that every equation can only have one measurement in it, which

however can be dependent on several parameters. Also note that in Kalman-Filter-Terms

this model is called conversion model. The equation can be linearized and written in matrix

notation:

δz + v = H · δx (32)

with δz = z− h(̊x) and v being the residuals.

The stochastic model on the other hand serves to describe the errors and correlations

between the parameters, so it models their probabilistic behavior. They are represented

by the matrix P:
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P =


σ2
x σxy . . . σxvz

σyx σ2
y . . . σyvz

...
...

. . .
...

σvxz σvzy . . . σ2
vz

 (33)

With the use of the functional model, the Least Squares Adjustment (LSQ) now tries to

fit the parameter as close to the observations as possible. An indicator for how good the

fit is, are the residuals. They describe the deviation from the estimated parameters from

the actual measurements. They have to be as small as possible. One method to achieve

that is to minimize the square sum of the residuals:

vT ·K−1 · v→ min (34)

Estimation problems can be divided into three categories:

• n = u: When there are exactly as many observations as parameters, the problem

is solvable with one unique solution. But the problem is that we do not have any

control over the reliability because of lacking redundancy.

• n > u: In this case there is more information available then necessary and the system

is overdetermined. This means that we have a more reliable solution but it also means

that there is no unique solution which fulfills the functional model. That is why we

calculate the most likely model with the maximum likelihood method.

• n < u: This system is not determined, there is not sufficient information present.

Therefore there have to be added some constraints or other conditions which means

that there is a infinite number of solutions, dependent on which constraints are added.

2.4.4 Sequential Gauss-Markov resp. Static Kalman Filter

The first step from the Gauss-Markov Model to the Extended Kalman Filter is to make

the estimation a recursive procedure. The reason for that is that, when we want to have

a real time application with high frequencies, the computation of the whole adjustment is

inconvenient and takes too long. So we need to find a possibility to add some new obser-

vations to an existing estimation and find out how this new data changes the previous result.

This is achieved by the Sequential Gauss-Markov Model or also called Static Kalman Filter.

The following explanation is taken from the course material by A. Geiger (2015) and from
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T. B. Greg Welch C. R. (2001).

The idea is to use the results from the last estimation and calculate how much difference

the new observations bring. The last result is represented by the state vector xold and the

variance matrix Pold. The new observations are xnew with their errors stored in Rnew. The

accuracy of the state with only the new measurements would be (by the law of variance

propagation):

Pnew = HT ·Rnew ·H (35)

The new solution is now a weighed mean between the old and the new data. Generally

said, the weights are formed from the accuracy of the new state Pnew in respect to the

accuracy of the existing adjustment P :

K =
Pnew

Pold + Pnew
(36)

The matrix K is called Gain Matrix and is very similar to the Kalman Gain Matrix in the

KF (see next section and section 3.4 on page 38).

2.4.5 Kalman Filter and EKF

For this section the publication from Brown and Hwang (1997) and G. B. Greg Welch

(2006) were used.

The next step from the static to the normal Kalman Filter is to add dynamic. Up until now

the state did not change over time, it was fix. Of course, when we put new measurements

into the model, the state variables change but they are always fit to the same desired state.

In other words the system was up until now time-invariant:

xn = xn−1 (37)

with n being the current number of timesteps.

As mentioned before, the Kalman Filter is an implementation of a Bayesian filter, so we

want to add a functionality which describes how the state will change over time. This is a

function of recursive nature which is called prediction model and delivers an a priori guess

of the future state (prediction):

xn,apriori = f(xn−1) (38)
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This function can then be represented by a matrix which is called Prediction Matrix A:

xn,apriori = A · (xn−1) (39)

with xn,apriori being the predicted state.

The model can also be extended with input parameters. If we have some kind of influence

over the system, some ability to change the system with controls, we can add this to our

equation. The input variables are represented by the control vector u:

xn,apriori = f(xn−1,un−1) (40)

or in matrix notation:

xn,apriori = A · xn−1 +B · un−1 (41)

The model for the influence of the controls is represented by the control matrix B.

If there was no prediction model f (which means if we would use the Static Kalman Filter)

the filter would assume a fixated, non-varying state and always try to fit the measurements,

which of course do not match the model anymore. This would result in a big delay of the

estimate to the actual observations and quite bad performance.

However, if we only take the prediction model and omit the functional (or here called

conversion model) h, which integrates the observations to the system, the filter would also

not work because the filter would just go in one direction and would not be able to adapt

to changes.

This leads us the core idea of the Kalman Filter and to the second step of a Bayes Filter:

The new state is calculated as a weighted mean between the prediction and the measure-

ments. The weights depend on the accuracy of the state, the measurements and the whole

process. They are stored in the three covariance matrices P , R and Q. The matrices R

and Q are normally determined before executing the filter, so we can choose if we want the

filter to stay close to the observations by having a small variance in R or, if they have much

noise, perform more filtering and stay closer to the prediction by decreasing the value of

the variance in the Q matrix. With this three matrices, the weight matrix K is calculated,

which is also called Kalman Gain Matrix. The weighted mean, the a posteriori estimated

guess of the state is calculated like that:

xn,apost = xn,apriori +K · (zn −H · xn,apriori) (42)
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Now this only works if all models are linear, because only then a direct transformation

from the equation to the matrix can take place. If there are non-linear functions, the EKF

comes into play. The main difference between the normal Kalman Filter and the EKF is,

that the functions f and h are approximated with a first degree Taylor polynomial, which

means that the matrices A,B and H are the Jacobi-Matrices :

Ai,j =
∂fi
∂xj

, Bi,j =
∂fi
∂uj

, Hi,j =
∂hi
∂xj

(43)

The premises of the normal Kalman Filter is, that the system is linear and that the pdf of

x is Gaussian. Otherwise the propagation of variance does not work. As pointed out by

G. B. Greg Welch (2006) and Simon J. Julier (1997), when we use the EKF for non-linear

models, the distribution of x cannot be assumed Gaussian anymore. This is because the

Jacobi-Matrices are only approximations since it is assumed that the second and higher

order terms of the Taylor Series can be neglected. This is a big flaw of the EKF and means

that it is also only an approximation to the Bayes Filter.

This was a quick overview over the Kalman Filter and EKF, because we used this filter

there is a more detailed and more mathematical explanation in section 3.4 on page 38.

2.4.6 Monte-Carlo Simulations

As described in the book by Kalos and Whitlock (2009) and the course material by Guil-

laume (2016), the Monte-Carlo Methods try a quite different approach to finding the best

estimate of a states variables and propagating the variances than the Gauss-Markov Model.

First we need a functional model as always. What we also need to know is the distribu-

tions of the input variables. Then a big number of random input variables with the given

distribution are generated. Every set of input variables is evaluated with the functional

model. Like this, many solutions are simulated which we can analyze using empirical de-

termination of the underlying distribution. Since there are random processes involved, the

results are subject to the law of chance. This means we never get an exact, unique solution.

And with every conduction of the calculation we get different results. This does not sound

ideal, but the good thing is that we can calculate how accurate the result is going to be

and always get a more precise result with adding more repetitions.

In figure 10 you can see an overview. The diagrams on the left stand for the distributions

of the random input variables, here called x. In this case we have 3 input variables. When

the model is evaluated with the random realizations, we get the output y. This is repeated

many times and so we get a time series represented by the diagrams in the middle, here

we have 2 outputs. This time series get analyzed by histograms, correlation functions etc.
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Figure 10: Overview of the concept of the Monte-Carlo Method

One of the main strengths of the Monte Carlo Methods is that the input variables do not

have to be Gaussian distributed. They can be arbitrary distributed, the distribution just

has to be known.

Another advantage is that any functional model can be used. It does not matter how many

in and outputs there are or if it is linear or not. The calculations are also very trivial and

yield yet to powerful results. This leads us to a big disadvantage of this kind of methods:

In order to get a accurate result, we have to perform many calculations for each estimation,

which takes up a lot of computing resources.

2.4.7 Particle Filter

The name Particle Filter was first used by Moral (1996) and is another implementation of

a Bayesian filter, based on the stochastic principles used for the Monte-Carlo Simulations.

This is why it sometimes is also called Sequential Monte-Carlo Method.

The following explanation was taken from the publication by David Salmond (2005) and

the course material by D’Andrea (2016). The first step to a Particle Filter is to generate

the particles. The particles are random samples drawn from the distribution of the last a

posteriori state. When there are enough samples generated, the locations of these particles

should represent the underlying distribution. Where many particles are, the pdf takes large

values and vice versa.

For the first step, the prediction, the particles get simple propagated through the prediction

model, which gives us another set of particles, which represent the a priori, the predicted
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state. In the second step, the particles get weighted according to the likelihood of the

measurements in respect to the given a priori sample. As a last step we do the inverse of

what we did in the beginning, we calculate an empirical distribution from the given samples.

Note that the Particle Filter, like all the Monte-Carlo Simulation, is just an approximation

of the ideal solution. But due to the large number of samples, the approximation is good

enough and we are able to specify how accurate the approximation is.

The main strengths of the Particle Filter are the same as the ones of the Monte-Carlo

Method. When the models are linear or mildly non-linear, the Kalman Filter is a good

choice to tackle the problem. But if it gets highly non-linear and/or if errors cannot

anymore be modeled as Gaussian, the Particle Filter is the better or even the only option

to solve it.

2.4.8 Unscented Kalman Filter UKF

As already pointed out in section 2.4.5, when dealing with a non-linear model, the EKF

is only an approximation to the Bayes Filter, because the second and higher order terms

of the Taylor-Series are neglected when performing the linearization. This can lead to

significant errors in the a posteriori variance and respectively in the new distribution. One

problem which is often a issue is for example the transformation from polar to Cartesian

coordinates.

This is why a new version of the EKF was introduced by Simon J. Julier (1997). The

main idea is, instead of approximating a non-linear function, to approximate an unknown

Gaussian distribution. First, a number of points is chosen, which are chosen so that they

represent the underlying distribution best. They are called sigma points. They are then

propagated through the model which gives us a new set of points from which the new

distribution is empirically calculated. This method for variance propagation for non-linear

functions is called the Unscented Transform. The core idea, namely to propagate samples

through the model and calculate the distribution empirically, is the same as in the Particle

Filter. But note that there is a fundamental difference, which is that the points are not

chosen randomly but are carefully chosen by a deterministic algorithm. This allows us to

reduce the number of samples significantly thus reduce the computation expenses.

Although the Unscented Kalman Filter calculates the solutions to a higher order than

the Extended Kalman Filter, it is not less computationally efficient. This makes it to an

interesting alternative to the EKF, especially since there are no significant downsides as

there are for example in the Particle Filter.
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3 Methodology

3.1 General Idea

As explained in the introduction, the goal of the thesis was to use the Intel RealSense

camera to implement a safety zone for a robot. The purpose of the safety zone is to protect

both the user and the robot by detecting if a person comes to near to the robot. When

this happens, the robot should know that and be able to shut down or just stop moving so

that no one gets harmed.

Figure 11: Overview of the main process
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This can be realized by using the predicted hand coordinates of the Kalman Filter (KF) and

check them against the safety zone. But in order to make it a safe and usable application,

the software should also detect anything else apart from hands which comes too near to

the robot. This is achieved by using the whole depth map delivered by the Intel RealSense

which delivers 3D coordinates for each pixel of the picture.

As shown in figure 11, the proposed work flow is as follows: First the camera delivers the

raw hand coordinates and depth data. The hand coordinates are fed to the KF, which

returns filtered and predicted coordinates. The filtered coordinates are directly passed on

to the visualization. Together with the 3D coordinates of the depth map, the predicted

coordinates are used to determine if something has invaded the safety zone. This results

in a safety status for each joint and for each pixel, which is handed to the visualization as

well, so that the intruded joints can be marked and an invasion can be announced.

Note that the visualization will not be needed in the end application of our implementation

since the user will not have to know how and how good his hands are tracked by the robot.

The visualization is just to show what our algorithm does and will be important for the

development and research phase of the robot, since you get a real time feedback of what is

happening behind the scene.
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3.2 SARI

We labeled all of our own implementation with SARI, which stands for Safety for Robot

Interaction. These implementations include mainly the build and execution of the KF, the

prediction, the setup of the safety plane and the calculation if an object is inside the safety

zone. Because the KF and the prediction are such an important part, they are explained

in a separate section (3.4).

3.2.1 Safety Realization

The main idea is to define a region where no other objects than the robot should be. When

anything else enters that zone, a warning should be issued which could tell the robot to

stop moving. So if we have any coordinates given, we can check them against the safety

region and determine if they are outside or inside, we call that safety status. We do that

with the predicted hand coordinates. This makes sense, because since we are dealing with a

tabletop robot, the main body parts for interaction are the hands. But as one can imagine,

there are many other things which could enter the safety zone like a head, an elbow or also

non-human objects. In addition to that the tracking algorithm does not always recognize

the hand, particularly when the hand is a fist or is oriented perpendicular to the camera.

This is why we added an additional module. The Intel RealSense camera delivers also

a depth map, which we use to calculate 3D coordinates for each pixel. We can feed the

function, which we already use for the hand, with the depth coordinates and determine

the safety status per pixel. This part of the safety implementations does not work with

prediction it just makes the application more safe and usable. It is some kind of safety net

to make the whole application more reliable.

3.2.2 Safety Zone Setup

The safety zone could be represented by many different geometrical primitives. We thought

about a cube or sphere around the camera. But since the field of view of one camera is

limited to one direction, we decided that a simple plane is sufficient. The side where the

camera is, is the inside, the other side we call outside.

One possibility to describe a plane in a 3D space is to define it by three points p1,p2,p3.

Then the normal vector of the plane can be calculated with the cross product of two

difference vectors between points:

n = (p3 − p1)× (p2 − p1) (44)
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With this vector and one of the plane points, the plane is defined in a more convenient

way which we will see in the next paragraph.

Safety Zone Calculation To determine whether a point p is inside or outside of the

safety zone, we have to compare the given coordinates with the safety plane. This can be

done using the dot product between the normal vector and the vector from one plane point

(for example p1) to the given point:

Safety Status =

0, for (p− p1) · n > 0

1, for (p− p1) · n < 0
(45)

With 0 meaning outside and 1 meaning inside of the safety zone.

But now we encounter a problem of direction. The normal vector, which the inside and

outside, should always look in the same direction, for example to the outside. But depen-

dent on the order and arrangements of the plane points, this vector points to a different

side.

We solved this problem by taking a point p∞ which is far away of the origin on the z axis:

p∞ =


0

0

M

 (46)

where M is a finite big value. Then we calculate the dot product of the position vector of

p∞ and n. When the dot product is positive, they look into the same direction and we

can leave n, and if it is negative we have to invert the vector n.
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3.3 Visualization

As it is mostly the case in Computer Vision projects the calculation and the visualization

should be separated. The importance of the visualization part is in Computer Vision even

higher than in most Computer Science areas.

As described in section 3.1 and shown in figure 11 our algorithm is divided into three main

parts: Getting the data from the Intel RealSense, making the calculation and lastly visu-

alizing it. In section 3.2 the calculation process was explained roughly and in this section

we focus on the visualization part in detail.

Figure 12: Visualization of the hands, from left to right: Predicted, Filtered, Raw

Hands In figure 12 we can see three hands visualized in Unity and except of the color

they look similar in appearance. They are made up of spheric representations of the joints

and cylindric representations of the bones connecting two joints.

To illustrate a human hand we get information of 22 joints xj from the human hand (see

figure 5). We define sphere objects with a constant radius to display each joint and set

their position to the current positions. Because it is a sphere, the orientation is not a

problem.

It is a different for the bones. There we need some small calculations to set it to the right
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position. First of all, we represent all bones with a cylinder. The radius is constant as well

but to determine the length li with i = {1, 2, ..., 21} of each bone we use the length of the

vector between two adjacent joints:

li = |xi+1 − xi| (47)

After we determine the size of each bone we set the bone center bi to the right position.

This is exactly the middle of the difference vector between two adjacent joints:

bi = xi +
1

2
· (xi+1 − xi) (48)

The last step is to find the right rotation of the bone to connect the both ends with the two

joints. For the sake of convenience we set all orientations from the beginning to a reference

orientation vector

rREF =


0

1

0

 (49)

and from this reference orientation we transform each bone to the final orientation vector

rBi which can be determined as followed:

rBi =
xi+1 − xi
|xi+1 − xi|

=
xi+1 − xi

li
(50)

For the angle transformation we use for each bone a quaternion

qi =


q1

q2

q3

q4

 =


s

vx

vy

vz

 =


cos αi

2

nxi sin αi
2

nyi sin αi
2

nzi sin αi
2

 (51)

where αi is the rotation angle from the scalar product of oREF and rBi:

αi = arccos(rREF · rBi) (52)

and ni the rotation axis respectively the cross product of them:

ni = rREF × rBi . (53)
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Before a transformation can be done with any point p of the cylinder we must bring it in

a quaternion compatible shape pq:

p =


x

y

z

→ pq =


0

x

y

z

 (54)

with this form and the fact that the inversion of the quaternion can be written like this:

q−1 =


s

−vx
−vy
−vz

 (55)

We can transform the points of the cylinder

p̃q = qpqq
−1 =


k

p̃x

p̃y

p̃z

 (56)

and bring it to the format of a 3D point by taking the three last elements.

In our case Unity (the visualization program provided a function called quaternion() which

takes the two unit vectors rREF and rBi as input and the new orientation of a cylinder

object is done internally.
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Figure 13: Visualization of the safety status

Safety Zone The safety zone is represented as a blue transparent plane, so the hand can

also be seen when outside of the safety zone. When the predicted hand enters the zone,

the respective joints and bone change the color as shown in figure 13. Thus can be verified

if the algorithm is working and if the safety is ensured.

Depth Map The safety status of the depth map is displayed in the upper left corner

as a small image stream as you also can see in figure 13. It appears white when nothing

enters the zone and the respective pixels change to red when an intrusion is happening.

We can see the shape an approximate position of any objects inside the zone.
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3.4 Applied Kalman Filter

3.4.1 Motivation

One part of this thesis is to filter and predict tracked hand coordinates. A Bayes Filter very

suitable for such tasks, because the first step, the prediction, can be used to propagate the

movement further into the future. The question that now arises is, which implementation

of the Bayes Filter should be used, because there are several different versions available.

Four of them were described in section 2.4:

• Normal Kalman Filter (KF)

• Extended Kalman Filter (EKF)

• Unscented Kalman Filter (UKF)

• Particle Filter (PF)

As we will see in the next sections, our filtering problem is linear and has quite a high

frequency (30-50 Hz). Since it is linear, it is not necessary to use the Particle Filter,

because its advantage is dealing with highly non-linear systems and it has a downside of

not being very computationally efficient, which is especially an issue when having a high

frequency rate like in our case. It make no sense to use the Extended Kalman Filter

since this is just the extension to the normal Kalman Filter for non-linear models. The

Unscented Kalman Filter would have been a possibility to use, since it is superior or equal

to the EKF in the most areas. However, for the same reasons as with the EKF, there is

no direct need for the UKF. This is why we decided to use the normal Kalman Filter.

3.4.2 General Principle

The following subsections are mainly based on the publications by Babb (2016), Czerniak

(2017) and Brown and Hwang (1997).

Since the Kalman Filter is a recursive process, the new state of the system (xn) is calculated

only from the very last state of the system (xn−1). The Kalman Filter is an implementa-

tion of a general Bayes Filter, so process is divided into the two substeps prediction and

correction.

The first step to build a Kalman Filter, is to determine the variables by which the state of

the system should be described. These are the variables which one wants to know, filter

or predict. In our case of hand tracking these variables are position and velocity, so we
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consider the following state - vector:

x =



x

y

z

vx

vy

vz


(57)

These variables are assumed to be random and Gaussian distributed. Therefore, in addition

to the mean value x, we consider an uncertainty σ2
x which is also called the variance. The

variables might also be correlated, so there could be a dependency for example between

the position and the velocity. All this information is stored in a matrix P containing the

variances on the diagonal and correlations on the other positions:

P =


σ2
x σxy . . . σxvz

σyx σ2
y . . . σyvz

...
...

. . .
...

σvxz σvzy . . . σ2
vz

 (58)

So the whole information we need to know to describe the current state consists of x and

P . This is also what makes the Kalman Filter very useful for dynamic filtering, it does not

take up much memory space because the only data to be stored from x and P .

3.4.3 Prediction Step

The first step is the prediction. There the Kalman Filter makes a kind of educated guess of

how the state of the system is going to be in the near future. For that we need the actual

state and the prediction model. The prediction model is an equation which describes the

nature of how the state of the system changes over time. It is a recursive function which

is of the form:

xn = f(xn−1) (59)

For hand tracking, the prediction model is a normal equation of motion by Newton:

xn = xn−1 + v ·∆t+
1

2
· a ·∆t2 (60)

vn = vn−1 + a ·∆t (61)
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As proposed by (Kohler 1997), when tracking hands the movement between two time steps

is often assumed as linear and the acceleration is omitted and modeled as noise. Because

the frequency of the camera is so high, is the time interval between two frames so small

which means that the acceleration is very small as well. So the final equations in vector

form are 
x

y

z


n,apriori

=


x

y

z


n−1

+


vx

vy

vz


n−1

·∆t (62)

and 
vx

vy

vz


n,apriori

=


vx

vy

vz


n−1

(63)

.

Linear models like this can be directly transformed into matrix notation:

xn,apriori = A · xn−1 (64)

For the predicted P matrix we perform a propagation of variance. Since the matrix A is

already calculated, this is an easy task:

Pn,apriori = A · Pn−1 ·AT (65)

To make the system more general, it is also possible to add a control vector un−1 to the

equation. This vector describes the external influences on the system, like for example a

motor or just any kind of input which adds into the system and changes its state too. Since

this functions can also be non-linear we use the same procedure as before and calculate the

Jacobi-Matrix which is then called control matrix B.

In every process there are unknown occurences which we do not know about. This uncer-

tainties are called process errors and are stored in the Q matrix. They also describe how

good we expect our prediction to be. This information can easily be integrated into the

equations, so we finally end up with

xn,apriori = A · xn−1 +B · un−1

Pn,apriori = A · Pn−1 ·AT +Q

(66)

(67)

.
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3.4.4 Correction Step

In the second step, this prediction gets refined with new measurements. These measure-

ments can be basically anything which tells us something about the state of the system.

For example when the Kalman Filter is used for navigation, which is a common application,

the measurements are GNSS coordinates. In our case the measurements are the tracked

coordinates of the hand joints and their speed. The measurements are stored in the vector

zn. Similar to the process errors, the measured data can also be afflicted with errors and

noise. We model these parameters with the matrix R.

Since these measurements are not necessarily in the same units or scale as the state of

the system, we have to transform the predicted (a priori) state from state units to mea-

surement units in order to compare them. For this we use a conversion matrix H. So the

equation for the expected measurements zn,apriori and their covariance matrix Σn,apriori is

the following:

zn,apriori = H · xn
Σn,apriori = H · Pn ·HT

(68)

(69)

while the actual measurements are:

zmeas = zn

Σmeas = R

(70)

(71)

The last important step is the weighted mean of the predicted and the measured state.

This makes the filter more smooth and robust. We first calculate the mean in measurement

units, knowing that we can always transform to the units of the state with the Matrix H.

A possibility to calculate a weighted mean a between two vectors a1 and a2 is to compute

the difference vector c = a2 − a1 and then add c to a1 with a factor between 0 and 1 in

front of it:

a = a1 +W · (a2 − a1) = a1 +W · c (72)

with W being the weight matrix.

Here we do the same. The two vectors are zn,apriori and zmeas. So the weighted mean (in

measured units) is:

zn,apost = zn,apriori +K ′ · (zmeas − zn,apriori) (73)
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We substitute zn,apriori with H · xn,apriori and zmeas with zn :

H · xn,apriori = H · xn,apriori +K ′ · (zn −H · xn,apriori) (74)

The weight matrix K ′ is the Kalman Gain Matrix. It is actually a kind of inverse of the

ratio between the two covariance matrices Σn,apriori and Σmeasured and is calculated as

follows:

K ′ =
Σn,apriori

Σn,apriori + Σmeasured

=
H · Pn ·HT

H · Pn ·HT +R

(75)

(76)

Now we can convert back to the scale and unit of the system state by multiplying H−1

from the left to both sides of the equation which gives us the final result:

xn,apost = xn,apriori +K · (zn −H · xn,apriori)

Pn,apost = Pn,apriori −K ·H · Pn,apriori

(77)

(78)

Because of the conversion back to state units the Kalman Gain Matrix changes from K ′

to K:

K =
Pn ·HT

H · Pn ·HT +R
(79)

The derivation of this formula for Pn,apost is omitted in this report but can be looked up

in the publication by Babb (2016).

3.4.5 Iterative Calculation

The calculations explained in the last two sections are repeated as long as the filtering

should continue. In practice all matrices could change along the process but most of them

are assumed constant as proposed in G. B. Greg Welch (2006). The only variables which

change are the inputs un and zn and the outputs which are xn and Pn. So the matrices

A,B,H,Q and R can all be determined before the filter is used. In addition to that,

approximate values x0 and P0 for the outputs need to be defined. This all takes part in

the initialization of the filter:

3.4.6 Building of the Matrices

For the initialization the matrices are defined and for that the values for the estimated

errors need to be determined.
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A Matrix Since the prediction model for hand tracking is linear as you can see in equa-

tion (62) and (63), the functions can be easily transformed into matrix form like this:

A =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(80)

B Matrix When the Kalman Filter is used for just hand tracking, the user has no control

over the system so there are no inputs. Therefore it does not matter what the B Matrix

looks like. We just set it to the 6x6 identity:

B =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(81)

H Matrix In the case of hand tracking the measured data is already in the same unit

and scale since we directly get position and speed from the camera. So the matrix H is

the identity.

H =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(82)

Q Matrix As proposed by Kohler (1997) and discussed in section 3.4.3, the Q matrix

should contain the white noise model for the acceleration. They proposed the following

form of the matrix:

Q =
a2∆t

6

[
2I(∆t)2, 3I∆t

3I∆t, 6I

]
(83)

a is the acceleration , ∆t = 1
60s the time step and I is the 3x3 identity matrix.

We set the acceleration a = 11m
s2

as suggested by Kohler (ibid.).
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R Matrix The R Matrix describes the measurement errors and noise. For this we need

to know how accurate the camera measures the hand joints. We determine that empirically

as a calibration act:

For that one needs to hold the hand 180 time steps ∆t, which is approximately 3 seconds,

still in front of the camera and during that time the detected coordinates are recorded.

Since we know that the hand did not move for that time we can just calculate the standard

deviation from the recorded points and get directly a dimension for how good the camera is.

The result for one of the 22 joints j and one observed variable, for example x, is calculated

as a normal empirical standard deviation:

σxj =

√√√√√ 180∑
i=1

(xj − xj,i)2

180− 1
(84)

This is done for each joint and for each of the 6 observed variables, meaning position and

velocity. Then the resulting standard deviation for x σx is the mean over all joints:

σx =

2∑
j=1

2σxj

22
(85)

R itself is a quadratic matrix with these variances on the diagonal. The other matrix items

are covariances. We assumed the measurements as uncorrelated as done by Kohler (1997):

R =



σ2
x 0 0 0 0 0

0 σ2
y 0 0 0 0

0 0 σ2
z 0 0 0

0 0 0 σ2
vx 0 0

0 0 0 0 σ2
vy 0

0 0 0 0 0 σ2
vz


(86)

The resulting deviation values are normally around 0.1 cm for the position and 0.7 cm
s2

for

the velocity.
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Approximate values Since the Kalman Filter is a recursive algorithm we need a first

value for x and P . These values can be chosen more or less randomly. But it can be that,

if they are chosen badly, the algorithm diverges. Especially if x and P are both 0, then

the state variables will always stay 0, as explained by G. B. Greg Welch (2006, p.12).

Our approximate values are

x0 =



0

0

0

0

0

0


(87)

and

P0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(88)

3.4.7 Prediction

The normal prediction step propagates the state variable x only one time step ∆t into the

future. ∆t is normally quite small since it should correspond to the rate of the observations,

but in order to be able to detected a critical quick hand early enough we need to have a

prediction which goes further into the future. This is achieved by iteratively performing

the first step, the prediction step n times:

for i = 1 to n :

xi,predicted = A · xi−1,predicted +B · u

end

(89)

(90)

(91)

(pseudo code)

Note: x0,predicted = xn,apost.

3.4 Applied Kalman Filter 45



3 METHODOLOGY

3.5 Implementation

The realization of our algorithm was made using three software components: In order to

use the functionalities of the Intel RealSense camera we used the SDK provided by Intel.

For the visualization we had the choice between the two game engines Unity and Unreal.

We chose Unity, mainly because of better liaison with the Intel RealSense SDK. The coding

we did with Visual Studios using C#.

For the implementation our goal was to separate the code parts which interacts with the

software components by putting them in different classes. The main three modules are:

• The Intel RealSense camera and the inherent SDK

• Unity, the program for the visualization

• SARI (Safety for Robot Interaction), the functions for our own algorithm.

Figure 14: Overview of the code and the different classes
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We made different classes for each module. For example everything that has to do with the

Intel RealSense, is in the classes HandData and DepthData. The same is for the Unity part,

which is all in the class Visualization. All of the SARI code, which is our own contribution,

is in its own class and independent from the camera or the visualization. The reason for

that is, that it makes it easier for later users of the software to change parts of it. For

example if someone wants to use a different program for the visualization, he only has to

replace the class Visualization and GUI and can still use the rest.

There are 7 classes:

Main This class is the one which holds all instances of the other classes and is the one

which is run by Unity. For this it has to be assigned to a Game Object in Unity. In order

that it works, the two functions Start() and Update() are mandatory. So for every class an

instance is generated in the code except for the Main and the GUI class. The instances of

these two classes are made when running the Unity project.

HandData and Depth Data Here are all the functionalities stored to get the hand

joints coordinates and the depth map out of the Intel RealSense camera. With the function

GetHandData() the coordinates can be fetched by the Main class.

SARI This is the class which contains all the features which are associated with the

Safety Zone and the filtering of the data, except the KF. Also the functions for checking if

any points are inside the safety zone are in this class.

KF For the KF there was a separate class made, which is held totally general, so that it

could be used for any other application.

Visualization Here the variables for Unity are stored, as well as the functionalities to

show the hands and the safety plane/status.

GUI The functions which are called by GUI elements in the interface of Unity, are stored

in a different class. GUI elements are objects like buttons, sliders or checkboxes which allow

the user to interact with the programm. These functions call the Unity-instance of the Main

class and change some variables.

The classes interact with each other and exchange data. As it is with objective program-

ming, to use the functionalities inside of a class, an instance of this class has to be made.

3.5 Implementation 47



3 METHODOLOGY

Then the functions and class variables can be accessed over this instance. The instances of

the classes SARI, Visualization, HandData, DepthData are generated in the Main class,

the one of KF is made in the class SARI. This means that data transfer can only happen

between two classes where one has an instance of the other. This is why most the data has

to go through the main class in order to pass for example from SARI to Visualization.

This leads to the following implementation of the work flow proposed in figure 11:

Figure 15: Detailed overview of the code and the different classes and the work flow

1. First the Main class fetches the joint coordinates and the depth data from the classes

HandsData and DepthData.
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2. This data is then passed on to the SARI class. There the coordinates get filtered

with the KF joint by joint (observation z), so there are actually 22 Kalman Filter

working simultaneously.

3. The Kalman Filter uses the observation to update the state variables xFiltered and

generate the predicted state XPredicted. The prediction is done 20 time steps ahead.

This data is gathered together in SARI for all joints as filtered and predicted joint

data which are given back to the main class. The next step is to calculate if any of

the coordinates is behind the safety plane or not. This results in a boolean array of

length 22. The same is done for each pixel of the depth map.

4. With this information the visualization can be started. All ”three hands” (raw,

filtered and predicted) can be displayed, so their coordinates get passed on to the

Visualization class as well as the safety statuses (as boolean vectors). This data can

then be used to change the position of the Game Objects in Unity, the spheres and

cylinders which represent the hand, and change their color according to if they are

inside or outside of the safety zone.

5. This step is not really the last one, the GUI class always intervenes whenever the

user changes the GUI controls of the interface. This could be for example the Mode,

which is a variable which determines whether the program should run the part with

the safety zone or if a new safety zone should be constructed.
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4 Results and Discussion

The main result of our thesis is actually the roughly 1000 lines of code that we wrote to

get that application working. This code can be the ground source for further research in

that area or it could even be a starting base to implement a profound safety zone for a

real robot. We tried to keep the code clean and easy to read. The modularity of the code,

which means the dividing into several classes should also help for the code to be for much

further use.

Nevertheless we wanted to get some quantitative results on how our algorithm works but

also on how well the camera can track hands and recognize gestures. This is what the next

sections are about.

4.1 Initialization of the Filter

In the section 3.4.6 the theoretical form and content of the matrices is described. In this

section we will explain what values we actually used.

Timestep ∆t In the A matrix there is the value ∆t which denotes how far the prediction

should go, what the difference between two time steps is. Since the prediction should be

around where the next measurement should take place, we chose

∆t =
1

60
s (92)

because the frequency rate of the update step is around is around 30-60 Hz. The update

interval

R values We estimated the values of R as already described with the empirical standard

deviation of a still hand. We do that and take the mean over all joints, which usually

results in a standard deviation of 0.1 cm for the position and 0.7 cm
s for the velocity.

Q Values The values of Q should represent the modeling of the acceleration as white

noise. This can be achieved as explained by Kohler (1997) in such a form:

Q =
a2∆t

6

[
2I(∆t)2, 3I∆t

3I∆t, 6I

]
(93)

and a around 11 cm
s . We experienced a much worse behavior of the filter with this setup,

the filtered coordinates were very jittery and inexact. For that reason we switched to an
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easier model, which is just a diagonal model with a standard deviation of around 0.045 cm

bzw. cm
s . We just found this value to be the best after trying out several others.

4.2 Filtering by the Kalman Filter

To assess how good the filtering of the coordinates takes place, we chose a qualitative

approach of recording some seconds and plotting the distance from the camera to one joint

against the time. This way we can easily see how much noise the raw coordinates contain

and what the Kalman Filter makes of this data. Such a plot can be seen in figure 16. The

blue line is from the tracked coordinates without any filtering. The red line is the Kalman

Filter and we can observe that the noise gets filtered nicely and the Kalman Filter makes

the movement much smoother.

Figure 16: Distance from the camera to the index fingertip over time, raw and filtered

coordinates

The amount and type of filtering depends on the values of the error matrices. One example

is the R matrix, which contains the estimated accuracy of the observations, the tracked

coordinates. In figure 17 we can see how variation of these values affects the filtering

process. If the values in the R matrix are small, the filter stays close to the observations,

so there is virtually no filtering happening. The reason for that lies in the correction step
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of the KF as described in section 3.4. The Kalman Filter makes a weighted mean between

the observation and the prediction and chooses the weights according to their estimated

accuracy, expressed in standard deviations. When the observed data has a small standard

deviation, it gets more weight. As bigger as the values in R get, the more the filter smooths

the data and sticks to the predictions.

Figure 17: Influence of the R value on the filtering process (Given values are the mean over

the matrix)

The same can be done with the Q matrix, which describes the system errors. When we

increase the values in the Q matrix, exactly the opposite happens. The Filter assumes

a big error of the process and therefore gives the prediction a smaller weight than the

observation and the filter moves nearer to the measurements as it can be seen in figure 18.

We had to find a compromise between the values of R and Q. We chose them so that the

values are smoothed but not to much, as it can be seen in figure 16.
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Figure 18: Influence of the Q value on the filtering process (Given values are the mean

over the matrix)

4.3 Gesture Recognition

Since we also use gesture recognition for our thesis, we want to analyze how well the gesture

recognition of the Intel RealSense works. We focus on 5 gestures of 14 which we thought

could be useful. The experiment setup is the following: We perform the specific gesture 20

times in a row and simply count how many times the gesture is recognized correctly. The

condition was that the hand has to be already initialized and recognized by the camera. we

start with the spreadfinger as initialization of the hand and change to all other gestures in

our experiment to count the success rate. For testing the success rate of the spreadfinger

gesture we use another gesture as starting point.

We also have to mention that the camera initializes the hand best when we appear from

outside in the view of the camera by doing the spreadfinger gesture. Otherwise the camera

has difficulties to recognize a hand.
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Illustration Gesture Recognition[%] Description

Spreadfinger 100

Hand open, facing the cam-

era.

V-Sign 85

Hand closed with index finger

and middle finger pointing up.

Thumb-down 75

Hand closed with thumb

pointing down.

Thumb-up 60

Hand closed with thumb

pointing up.

Fist 30

All fingers folded into a fist.

The fist can be in different ori-

entations as long as the palm

is in the general direction of

the camera.

Table 1: Recognizability of some gestures (Intel 2017)

We can see that the easiest gesture, the spreadfinger, is always detected by the camera. As

more complicated the gesture gets (e.g. overlapping of fingers), the worse is the recognition.

For example the v-sign is also nearly reliable as well as the thumb-down gesture. Both

gestures can be recognized 3 times of 4 or even more. For that reason we use only this

three gestures in our implementation. The fist, which is the hardest gesture to identify is

just recognized in 30 % of the cases.
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4.4 Hand Tracking

It is important for our application to know how reliable the camera can recognize a human

hand when there is really one. To find this out we focused us for two interactions:

Firstly, grabbing which is a common gesture when playing with a robot (the gesture is

similar to spreadinger as in table 1 trying to grab with open hand). Secondly, closing the

hand to a fist for usual interactions like pointing with one finger or even trying to punch

in which the hand forms a closed posture.

We also differentiated by the speed of the hand movement in 3 parts:

• Hand is holding still

• Hand moves with low speed

• Hand movement with high speed

To simulate the environment as real as possible the hand movements are straight to the

camera.

Our simulation shows that for an interaction with an open hand, like grabbing, is even

at higher speed possible to detect the hand. Almost all attempts were successful at high

speed hand movement.

For closed hand it looks differently. The camera can detect the closed hand without any

difficulties when the hand stays still. But when the hand moves with constant but low

speed in direction to the camera there is a detection of the hand of almost 70 % and

for faster movements the reliability shrinks to 30 % which is not satisfying. This shows

again the importance of the depth data extracting from the camera as described in section

3.1 and 3.2.1 when interacting hand could not recognized but with the depth map still a

security check is available but without prediction.

4.4 Hand Tracking 55



4 RESULTS AND DISCUSSION

4.5 Discussion

Even though the depth map provides an overall improvement of the reliability of the whole

system, it does not include prediction. Actually the safety zone is now too small for other

objects than hands. When they enter the safety zone, it is already too late. This could

be solved by using prediction for the pixels of the depth map. Problematic could be the

computational time, since it was already an issue to calculate the safety status for the

depth map.

This could lead to a redundancy of the tracked hands. But there are still arguments against

it. The depth information in general is not that reliable. Dark object are prone to produce

more mistakes because the infrared light can get absorbed by the dark surface. Also shiny

objects tend to be estimated neared than they actually are. This a important criterion

which shows that we cannot rely solely on the depth map since a single false negative can

cause big damage.

Therefore, for a strongly reliable software, either a better depth map has to be provided

or other laminar approaches have to be added.

As mentioned before, we used 22 individual Kalman Filters for each joint, which are working

simultaneously. When testing our application we realized that this has an affect on our

predicted hand. When there is a fast hand movement, the predicted hand gets distorted,

the bones get stretched and it does not look like a normal human hand anymore. The reason

is that the Kalman Filters are not connected. To solve this we could use two approaches:

1. Add some constraints for the length of each bone. This constraints could be derived

from the actual lengths of the filtered hand.

2. Instead of using several independent filters, we could use one big filter for all joints.

This means that the sate vector would have length 22 × 6 = 132 elements and all

matrices would also increase by this factor.

The reason that we did not implement that is for one that a small filter is much more

convenient and at first we thought that this distortion is even desired for our application.

But at the end we realized that the constraint approach would have provided a more

truthful prediction.
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5 Conclusion

To sum it all up, we managed to implement a application which not only fulfills the

expected goal, but also could be used as a ground base for further development in this

area of research. The software can detect two human hands and show them in real-time

in form of an animation. These raw coordinates get filtered by the Kalman Filter which

enables us to give a smoother visualization of the hands. In the same time we can achieve

a prediction of the hand as well while using the prediction model of the Kalman Filter.

With these predicted coordinates we can leave the size of the safety zone small while still

detecting the dangerous movements in direction of the robot. We filter out the dangerous

actions and reduce the false positives (a hand coming near the robot but not is directed

to it). To make the system more general and reliably, we added another module which

uses the depth data to check the 3D coordinates of every pixel against the safety zone if

there is an interruption from an object other than a hand. This part does not work with

prediction.

We assessed the filtering process of the Kalman Filter and found out that the smoothing

works satisfyingly. The gesture recognition which we also use is satisfactory for easy hand

poses but worsens with the complexity like overlapping fingers. For the hand tracking it

is more or less the same, open hand poses are excellent even at high speed, but when you

make a closed pose similar to a fist, the success rate drops to a marginal performance when

doing swift motions.
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6 Outlook

During the process of making this application, our focus was especially on the possible

further uses for adapting it to other environments. Several possibilities to extend our

software are thinkable:

As mentioned in the Discussion, one extension could be made to the depth map. The idea

is to apply the prediction to the whole depth information and thus ensure an overall safety

for any kind of object. Another possibility would be to include face tracking and use the

Kalman Filter as well, since the Intel RealSense camera can also track faces.

Although we focused on a tabletop robot with a frontal interaction, our implementation

could be adapted for different robots as well when there is a security problem to be solved.

To get the most of the camera and its functionalities we could focus us more to the gesture

recognition for some direct interactions with the robot for entertaining purpose like playing

rock-paper-scissors. An integrated functionality of the RealSense is to detect the current

mood of the person (which is deduced from some landmarks on the face). Interactions like

reacting to the mood of the person by saying something could be possible.

Another more complex possibility is not only stopping the current movement of the robot

arm, but also dodge the movements by moving away the robot arm, since the coordinates of

the robot arm and the absolute position of the tracked human hand are known. This would

ensure a more lively and real interaction. Finally the problem of a hand manipulation an

object could be seized. The RealSense itself has big problems detecting the hand which

is partially occluded. However, for a tabletop interaction it is interesting to still get the

hand coordinated and also know what object the hand is holding. The placement of such

an object on the table could be tracked as well together with the pose, so that the robot

can pick it up.
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Contents

Calculate the means

Extract the index finger tip

Plot the raw and the filtered data in 3D

Plot the raw and the filtered data in 2D space

Calculate and plot absolute position

Calculate deviation

Compare Prediction against Filtered

addpath('Normal')

%%Read the data into a 3D array
Raw = dlmread(['Raw0.txt'],';');
Raw = reshape(Raw',22,6,size(Raw,1)/6);
Raw = permute(Raw,[2,1,3]);
%Raw(1,:,:) = Raw(1,:,:) - 40;

Filtered = dlmread(['Filtered0.txt'],';');
Filtered = reshape(Filtered',22,6,size(Filtered,1)/6);
Filtered = permute(Filtered,[2,1,3]);

Predicted = dlmread(['Predicted0.txt'],';');
Predicted = reshape(Predicted',22,6,size(Predicted,1)/6);
Predicted = permute(Predicted,[2,1,3]);

Calculate the means

MeanRaw = squeeze(mean(Raw,2));
MeanFiltered = squeeze(mean(Filtered,2));
MeanPredicted = squeeze(mean(Predicted,2));

Extract the index finger tip

IndexTipRaw = squeeze(Raw(:,10,:));
IndexTipFiltered = squeeze(Filtered(:,10,:));
IndexTipPredicted = squeeze(Predicted(:,10,:));

Plot the raw and the filtered data in 3D

figure() plot3(IndexTipRaw(1,:),IndexTipRaw(2,:),IndexTipRaw(3,:)) hold on
plot3(IndexTipFiltered(1,:),IndexTipFiltered(2,:),IndexTipFiltered(3,:)) hold off

Plot the raw and the filtered data in 2D space

figure()

axis on
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subplot(2,2,1);
plot(IndexTipRaw(1,:),IndexTipRaw(2,:))

plot(IndexTipFiltered(1,:),IndexTipFiltered(2,:));
title('xy plane')

subplot(2,2,2);
plot(IndexTipRaw(1,:),IndexTipRaw(3,:))
hold on
plot(IndexTipFiltered(1,:),IndexTipFiltered(3,:));
title('xz plane')

subplot(2,2,3);
plot(IndexTipRaw(2,:),IndexTipRaw(3,:))
hold on
plot(IndexTipFiltered(2,:),IndexTipFiltered(3,:));
title('yz plane')
leg = legend('Raw Measurements','Filtered Measurements')

sub = subplot(2,2,4);
axis off
set(leg, 'position',get(sub,'position'))
hold off

leg = 

  Legend (Raw Measurements, Filtered Measurements) with properties:

         String: {'Raw Measurements'  'Filtered Measurements'}
       Location: 'northeast'
    Orientation: 'vertical'
       FontSize: 9
       Position: [0.2080 0.3643 0.2384 0.0631]
          Units: 'normalized'

  Use GET to show all properties
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Calculate and plot absolute position

NormRaw = (sum(IndexTipRaw(1:3,:).^2)).^0.5;
NormFiltered = (sum(IndexTipFiltered(1:3,:).^2)).^0.5;
NormPredicted = (sum(IndexTipPredicted(1:3,:).^2)).^0.5;

figure()
set(gca,'fontsize',18)
hold on

plot((1:length(NormRaw))/50,NormRaw,'linewidth',1.5)
% title('Tracking and filtering of the index finger (tip)')
xlabel('Time [s]')
ylabel('Distance to camera [cm]')

plot((1:length(NormFiltered))/50,NormFiltered,'linewidth',1.5)
legend('Raw Coordinates', 'Filtered Coordinates')
% plot(1:length(NormPredicted),NormPredicted)
hold off
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Calculate deviation

Mean = squeeze(mean(Raw,3));
std1 = zeros(6,22);
for i = 1:size(Raw,3)
    std1 = std1 + (Mean - squeeze(Raw(:,:,i))).^2;
end
std1 = std1./(size(Raw,3)-1);
std1 = std1.^0.5;
std1 = mean(std1,2)

std2 = mean(std(Filtered,0,3),2)

std1 =

    2.2401
    2.2232
    3.8711
    7.0559
    7.8777
    9.8851

std2 =

    2.2456
    2.2270
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    3.8333
    3.7160
    2.7209
    5.6115

Compare Prediction against Filtered

figure() %plot(1:length(NormRaw),NormRaw) hold on plot(1:length(NormRaw),NormFiltered)
plot(1:length(NormRaw),NormPredicted) hold off

Published with MATLAB® R2017a
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Calculate the means

Extract the index finger tip
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Calculate and plot absolute position

Calculate deviation

addpath('VariantR')

figure()

set(gca,'fontsize',18)

hold on

title('Tracking and filtering of the index finger (tip)')

for count = 1:4

%%Read the data into a 3D array

Raw = dlmread(['Raw',num2str(count), '.txt'],';');

Raw = reshape(Raw',22,6,size(Raw,1)/6);

Raw = permute(Raw,[2,1,3]);

%Raw(1,:,:) = Raw(1,:,:) - 40;

Filtered = dlmread(['Filtered', num2str(count),'.txt'],';');

Filtered = reshape(Filtered',22,6,size(Filtered,1)/6);

Filtered = permute(Filtered,[2,1,3]);

Predicted = dlmread(['Predicted',num2str(count),'.txt'],';');

Predicted = reshape(Predicted',22,6,size(Predicted,1)/6);

Predicted = permute(Predicted,[2,1,3]);

Calculate the means

MeanRaw = squeeze(mean(Raw,2));

MeanFiltered = squeeze(mean(Filtered,2));

MeanPredicted = squeeze(mean(Predicted,2));

Extract the index finger tip

IndexTipRaw = squeeze(Raw(:,10,:));

IndexTipFiltered = squeeze(Filtered(:,10,:));

IndexTipPredicted = squeeze(Predicted(:,10,:));

Plot the raw and the filtered data in 3D

figure() plot3(IndexTipRaw(1,:),IndexTipRaw(2,:),IndexTipRaw(3,:)) hold on
plot3(IndexTipFiltered(1,:),IndexTipFiltered(2,:),IndexTipFiltered(3,:)) hold off
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Plot the raw and the filtered data in 2D space

figure() axis on

subplot(2,2,1); plot(IndexTipRaw(1,:),IndexTipRaw(2,:)) hold on plot(IndexTipFiltered(1,:),IndexTipFiltered(2,:)); title('xy
plane')

subplot(2,2,2); plot(IndexTipRaw(1,:),IndexTipRaw(3,:)) hold on plot(IndexTipFiltered(1,:),IndexTipFiltered(3,:)); title('xz
plane')

subplot(2,2,3); plot(IndexTipRaw(2,:),IndexTipRaw(3,:)) hold on plot(IndexTipFiltered(2,:),IndexTipFiltered(3,:)); title('yz
plane') leg = legend('Raw Measurements','Filtered Measurements')

sub = subplot(2,2,4); axis off set(leg, 'position',get(sub,'position')) hold off

Calculate and plot absolute position

NormRaw = (sum(IndexTipRaw(1:3,:).^2)).^0.5;

NormFiltered = (sum(IndexTipFiltered(1:3,:).^2)).^0.5;

NormPredicted = (sum(IndexTipPredicted(1:3,:).^2)).^0.5;

subplot(4,1,count)

plot((1:length(NormRaw))/50,NormRaw,'linewidth',1.5)

hold on

%title(['Q = ',num2str(0.0002*5^count),' cm'])

title(['R = ',num2str(0.05*3^count),' cm'])

xlabel('Time [s]')

ylabel('Distance to camera [cm]')

plot((1:length(NormFiltered))/50,NormFiltered,'linewidth',1.5)

legend('Raw Coordinates', 'Filtered Coordinates')

% plot(1:length(NormPredicted),NormPredicted)
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