
Where to Click: Exploring
Reinforcement Learning for 3D
Interactive Object Segmentation

Bachelor Thesis

C. Tschechtelin

August, 2023

Advisors: Prof. Dr. K. Schindler, Dr. T. Kontogianni

Department of Computer Science, ETH Zürich

Abstract

In this paper, we propose a way to automatically generate seeds to solve
the interactive segmentation problem of a 3D point cloud. The main
issue of the interactive segmentation problem is the high human effort
when extracting consistent objects in a 3D scene. The model presented
in this paper tries to reduce the needed human effort and only relies on
few user seed suggestions. After the first click is made by the user, the
presented model predicts automatically a sequence of additional user
clicks to optimally segment the desired object. Since we cannot define
globally optimal user points, we have to define this task as a Markov
Decision Process (MDP). By using Reinforcement Learning in a deep Q
network we are trying to approximate the optimal solution.

i

Contents

Contents iii

1 Introduction 1

2 Related Works 3
2.1 Minkowski Engine . 3
2.2 Interactive Segmentation in 3D Point Clouds 3

2.2.1 Structure of Segmentation System 4
2.2.2 Automatic Click Generation 5

2.3 SeedNet Automatic Seed Generation System 5
2.4 Markov Decision Process (MDP) 6
2.5 Reinforcement Learning . 7
2.6 Q Learning . 8

2.6.1 Temporal Difference Learning 8
2.7 Deep Q Network . 9
2.8 Optimizations . 10

2.8.1 Double Deep Q Networks 10
2.8.2 Dueling Deep Q Network 12

3 Method 15
3.1 Markov Decision Process . 15

3.1.1 State . 15
3.1.2 Action . 15
3.1.3 Reward . 16

3.2 Training of the Reinforcement Learning Agent 19
3.2.1 Deep Q Network (DQN) 19

3.3 Model Architecture . 19

4 Experiments 23
4.1 Network learning . 23

iii

Contents

4.2 Evaluation metrics . 23
4.3 Training Results . 24
4.4 Reward Evaluation . 24
4.5 Grid Evaluation . 27
4.6 Issues and Future Work . 28

4.6.1 Performance Issues . 28
4.6.2 Learning Stability . 28
4.6.3 Predicting the same Action 29
4.6.4 Experiences Limit in Accuracy 30

5 Conclusion 33

Bibliography 35

iv

Chapter 1

Introduction

Segmenting the object of interest in a 3D point cloud is an important problem
in computer vision. The segmentation of 3D scenes is needed for creating
labeled data sets used for training deep learning networks. Without user
input, automatic object segmentation has limitations in segmenting objects,
therefore it’s important to know the user’s intention to segment the correct
object. In interactive object segmentation a user gives the information nec-
essary in the form of some clicks or a bounding box to extract the desired
object from a 3D scene.
For many objects in complex environments, the user has to spend much time
to correct the segmentation algorithm such that the resulting segmentation
is satisfying. Thus, it is of great importance to reduce the human effort
while maintaining the performance. In this work, we propose a technique
to simulate the user interactions with the segmentation system to obtain
the desired object. It is important to decide which points require labeling.
Currently heuristics are used in interactive object segmentation to simulate
the user’s intention.
In Interactive Object Segmentation in 3D Point Clouds[8] the user clicks are
simulated by determining where the biggest error of the currently predicted
mask is. Then the simulation chooses the point in the center of the error
region. Although reaching 90% IoU (Intersection over Union) between the
predicted and the ground-truth mask in about 20 clicks is quite powerful, we
try to optimize this heuristics by reducing the number of clicks necessary.
In this work, the following alternative approach is explored. We use rein-
forcement learning to determine points which would benefit the most from
user feedback. Reinforcement learning in combination with deep neural
networks have received a lot of attention in the past few years from solving
Atari games on human-level and for some games even above human-level. In
reinforcement learning, an agent is trained to take actions on certain states.
We are introducing a RL network for our optimized click simulation.

1

Chapter 2

Related Works

2.1 Minkowski Engine

3D videos in Robotics and VR/AR applications are often created by a se-
quence of Depth Images or LIDAR scans. The Minkowski Engine is a
4-dimensional convolutional neural network that can directly process such
3D videos using high-dimensional convolutions instead of using 2D convolu-
tions for each frame. The Minkowski Engine hereby adopts sparse tensors
and implements generalized sparse convolutions.

The focus of the Minkwoski Engine is the 3D-video perception. It solves the
following technical challenges in using 3D-videos for high-level perception
tasks:

• 3D data requires different representations and processing this data is
confusing for the user and hard to implement for larger systems.

• 3D convolutional neural networks are less efficient in terms of perfor-
mance compared to 2D convolutional networks.

• There are only a limited number of fast large-scale 3D data libraries.

Since this paper is mostly based on interactive 3D segmentation[8] and the
Minkowski Engine is a memory efficient framework for 3D convolutions for
large point clouds, this work is built on top of the Minkowski Engine.[2]

2.2 Interactive Segmentation in 3D Point Clouds

In interactive segmentation tasks, a user chooses an object which is to be
segmented into foreground, while the other points of the scene are supposed
to be in the background. The user selects certain seeds of the scene and labels
them with either 1 or 0 (1 for foreground and 0 for background), such that

3

2. Related Works

Figure 2.1: Example 3D segmentation network based on the Minkowski Engine. [2]

the underlying model can use this information from the user to predict the
segmentation mask of the scene.[15]

In this paper we use a recent interactive segmentation model of 3D point
clouds from this paper [8] which is based on the Minkowski Engine for
our segmentation tasks. This segmentation model is compared to other 3D
instance segmentation based on weakly-supervised information and not on
fully-supervised information. This method does also not require training
data from any target domain and adapts to new environments which do not
have any training sets available.

In this chapter, we describe the most important features, which we also use
in later chapters for our reinforcement learning project.

2.2.1 Structure of Segmentation System

The segmentation is generated in an iterative approach. The user clicks in
each iteration on a point in the point cloud. After each click, the underlying
model produces its best guess of a segmentation based on all the collected
clicks in this run. After receiving the mask, the user provides a feedback via
corrections, followed by a new update of the mask.

Input representation The input to the segmentation network consists of
the colors of the scene C ∈ RNx3 and two channels Tp, Tn ∈ N × 1 which
represent the negative and the positive click mask. It is important to note
that the negative clicks correspond to the background clicks and the positive
clicks to the foreground. After each seed added by the user, the system adds
all points in a small radius around the seed coordinate to the input channels.
In further sections of this paper we refer to this area as to the clickmask of the
seed. Therefore Tp and Tn is defined as follows:

4

2.3. SeedNet Automatic Seed Generation System

Tp(p) =

1, if

∣∣xp − xq
∣∣ ≤ ε and∣∣yp − yq

∣∣ ≤ ε and∣∣zp − zq
∣∣ ≤ ε

0, otherwise

xq, yq and zq are the coordinates of any point in Sp which is the set of positive
clicks chosen by the user. ε is the volume length. Tn is similarly defined with
any point in Sn (set of negative clicks chosen by the user). After generating
Tp and Tn, those channels are concatenated with the scene colors and result
in an input of dimension N × 5.

2.2.2 Automatic Click Generation

The project from [8] also includes a user click simulation for its segmentation
tasks. During testing phase of the segmentation model, clicks are added
based on the errors of the currently predicted mask. The click will be located
on the coordinate with the largest error. By calculating pair-wise distances
between all falsely labeled 3D points they get demanded error region. There
are problems with this heuristics. Choosing the point which has the largest
error region sometimes is not precise enough for objects with small emerged
parts. Thus for particular objects, like a cup with a small handle, the heuris-
tics is not the optimal choice to simulate user clicks since it would need a lot
of predictions of the segmentation to be accurate.

The main goal of our paper is to replace this click simulation by using
reinforcement learning methods. At the moment the model only needs on
average 14.7 clicks per object in the ScanNet data set[3] to achieve an accurate
segmentation of 90%.[8]. We try to reduce the number of clicks such that
simulation of user clicks can happen more efficiently.

2.3 SeedNet Automatic Seed Generation System

SeedNet[10] is a paper that proposes a seed generation system for the inter-
active segmentation task of 2D images. A user enters an image and sparse
seed information to the system and SeedNet creates additional seed points to
obtain accurate segmentation results. The seed points intend to predict the
user’s intention and reduce the user’s effort. SeedNet uses Random Walk
(RW)[9] as an off-the-shelf interactive segmentation algorithm and is trained
on multiple 2D data sets. The first click is generated randomly for each image,
SeedNet then generates the other clicks with the trained agent. The agent
predicts each click on a 20x20 grid of the whole scene. On average SeedNet
can increase the segmentation results from 39.72 IoU (Which correspond the

5

2. Related Works

Figure 2.2: Graphical representation of the MDP model.[5]

precision of RW segmentation on the first random click) to a value of 60.97.
In this work, we try to build our own click generator which is mostly based
on the ideas of this Seed Generation System.

2.4 Markov Decision Process (MDP)

A Markov decision process (MDP) is defined as a stochastic decision-making
process that uses a mathematical framework to model the decision-making
of a system. It is used for scenarios where the results are either random or
controlled by a decision maker. MDP chooses the next best action in a system
by considering the current state and the environment of the system.

How does it work? The MDP model requires key elements such as an agent,
states, actions, rewards and a policy. The agent is responsible for making
decisions and performing actions. It operates in the environment, which has
information about the states and also the transitions from one state to another.
Additionally the agent receives rewards based on the actions that the agent
made. The policy determines how the agent selects the action depending on
its current state.
The MDP framework has the following key components:

• S : states(s ∈ S)

• A : actions(a ∈ A)

• Pa(s, s′) = P[s(t+1) = s′|st = s, at = a] is the probability that action a in
state s will lead to state s’ in the next time step.

• Ra(s, s′): reward after transitioning from s to s’ by executing action a.

The goal of MDP is to find an optimal policy function π : S→ A. The policy
function defines the next action that an agent will choose when in state s. To
be more precise: The object is to choose a policy π that will maximize the
expected cumulative collected rewards.

E

[
∞

∑
t=0

γtRat (st, st+1)

]

6

2.5. Reinforcement Learning

where we choose at = π(st) which is equal to actions given by the policy. γ
is the discount factor 0 ≤ γ ≤ 1 which is usually close to 1.[16]

2.5 Reinforcement Learning

Reinforcement learning is concerned how an agent takes actions in an en-
vironment to maximize its cumulative reward. It differs from supervised
learning, because it does not need labelled input/output pairs. It instead
tries to find an optimal policy by exploration of unknown knowledge and
exploitation of current knowledge. Reinforcement Learning is a form of a
Markov Decision Process (MDP) and has therefore similar definitions of state,
action, probabilities and reward functions. There are several ingredients for
Reinforcement Learning which are presented in this chapter.[17]

Exploration vs Exploitation The exploration vs exploitation trade-off is
mostly based on a ε-greedy method. 0 < ε < 1 is a parameter controlling
this trade-off. With probability 1− ε exploitation is performed. The agent
chooses the action which it believes to have the best long-term effect. Else
with a probability of ε it chooses the exploration strategy, where the action
is selected uniformly at random. ε is a fixed parameter but can be adjusted
while training.[17]

Value Function The goal of Reinforcement Learning is to find an optimal
policy, such that an agent can find the best action in a given state. The
Value function represents the value of the given state and it maintains a set
of estimates of expected returns for some policy. Usually we speak of the
current (on-policy) or the optimal (off-policy) one.

To define an optimal policy, we define the Value function as follows:

Vπ(s) = E[R|s, π]

R stands for the return associated with the current state s and the policy π.
By defining V ∗ (s) as the maximum possible value of Vπ(s), depending on
the policy π, we can formally say in Reinforcement Learning, we want to
find:

V∗(s) = max
π

Vπ(s)

We equally define R as the reward in the Markov Decision Process section
and then combine this with the Bellman Ford equation and we receive our
state-value function, which we will need in future chapters.

Vπ(s) = E

[
∞

∑
t=0

γtRat (st, st+1) |s, π

]
= R(s, π(s)) + γ ∑

s′
P(s′|s, π(s))Vπ(s′)

7

2. Related Works

In MDP we are looking for the optimal policy and therefore we can use the
Bellman optimality equation:

Vπ∗(s) = max
a

(
R(s, a) + γ ∑

s′
P(s′|s, π(s))V

(
s′
))

[17]

2.6 Q Learning

Until now, we only evaluated the value of going to a particular state, where
we took the stochasticity of the environment in consideration:

V(s) = max
a

(
R(s, a) + γ ∑

s′
P
(
s′|s, π(s))V

(
s′
)))

Q learning assesses the quality of an action, rather than determining the
possible value of the state being moved to. Additionally the Q function
produces the value for just one possible action. Therefore we should replace
the value function with the action-value function or Q function.[13][17]

The optimal Q function also follows the Bellman optimality equation:

Q(s, a) = E[R|s, a, π]

= E[
∞

∑
t=0

γtRat (st, st+1) |s, a, π]

= R(s, a) + γmax
a′

Q(s′, a′)

Here we calculate the maximum return of state s and action a as the sum of
the immediate reward R and the return of the optimal policy until the end
of the episode, which is equal to the maximum reward from the next state s’
discounted by γ.[1]

2.6.1 Temporal Difference Learning

Temporal difference Error is the value that helps the agent to get the optimal
Q values over time. We know that the environment is stochastic and that
the reward at time t is composed of discounted rewards in the future. This
implies that future rewards have less value.

8

2.7. Deep Q Network

The TD Error is the difference between the optimal action-value function (Q*)
and our current prediction (Q).[13]

TDerr(a, s) = Q∗(s, a)−Q(s, a)
= (R(s, a) + γ max

a′
Q(s′, a′))−Q(s, a)

We update the Q(s,a) value as follows in Q learning:

Qt(s, a) = Qt−1(s, a) + αTDerrt(a, s)

2.7 Deep Q Network

The Deep Q Network was developed by DeepMind in 2015. By combining
reinforcement learning and deep neural networks it could solve a wide range
of Atari games. The algorithm was developed by combining Q learning with
deep neural networks and a technique called experience replay.

In this section whenever we talk about policy, the optimal network parameters
are meant.

Most of the times, it is not practical to calculate an table containing Q values
for each combination of state s and action a. Instead we train a function
approximator, like a neural network, with parameters θ to estimate the Q
values.[1]

General Policy Iteration In a Deep Q Network we alternate between policy
evaluation and policy iteration. At first we should start with some arbitrarily
initialized policy, evaluate the policy (E) and then derive a new policy from
the evaluation process (I). We repeat this process until we reach an optimal
policy. So we can say in a GPI sense that we derive our policy from our Q
function and carry out policy evaluation via TD methods to obtain the next
Q function.

π0 →E Qπ0 →I π1 →E Qπ1 →I · · · →I π∗ →E Qπ∗

Now let’s add the parameter θ to our Q function, which denote the pa-
rameters of the neural network. Following GPI, we want to minimize the
difference between our current Q and our target Q at each time step i. We
take the mean squared error between both of them:[20]

L(θi) = Es,a,r,s′∼p(.)[(yi −Qθi(s, a))2]

=
1
N ∑

j∈N
(Q∗θi

(sj, aj)−Qθi(sj, aj))
2

9

2. Related Works

where

yi = Q∗θi
(s, a)

Q∗θi
(sj, aj) = R(sj, aj) + γ max

a′i
Qθi−1(s

′
j, a′j)

yi is also called TD target and yi − Q the TD error as before. p is equal to
the distribution over transitions {s, a, r, s’} collected from the environment.
The parameters from the previous iteration θi−1 are fixed and not updated.
θi−1 represent the parameters of the target network. In practice, the target
network is a snapshot from a few iterations ago.[1]

With gradient ascent, we minimize the TD error.

θ ← θ − α
ϑL
ϑθ

Experience Replay With experience replay, the network updates are more
stable. We implement a circular buffer, also called replay buffer, and at every
time step of data collection, we collect { s,a,r,s’} tuples and add them to the
replay buffer. During training we are not only using the latest transition to
compute the loss and its gradient, we are using a mini-batch of transitions
sampled from the buffer. We improve the stability, because the transitions
are uncorrelated to each other.[1]

2.8 Optimizations

2.8.1 Double Deep Q Networks

In the chapter of Deep Q Networks, we already mentioned the parameters of
the target network and the idea to not update the parameters of this network.
In this chapter, we explain further why this is helpful. Consider the target Q
value:

Q∗(s, a) = R(s, a) + γ max
a′

Q(s′, a′)

Specifically:

max
a′

Q(s′, a′)

Here we are taking the maximal estimated value and therefore implicitly esti-
mating the maximum Q value in this function. This overestimation introduces
a maximization bias in learning and the Moving Q Targets Problem.

10

2.8. Optimizations

Figure 2.3: Example of Maximization Bias in Q Learning[4]

Maximization Bias in Q Learning We say that a Q learning algorithm is
overestimating the value function (V) and the action-state function (Q). This
problem will be explained with this example:

Let’s say the agent chooses in state A the action to go right, because in earlier
experiences agent A discovered that going to state B will result in a negative
reward of -0.1. By only considering the expected rewards, the agent will
profit more from going right than going left. But if we also include the
variance in our analysis, agent A quite often receives a bigger reward by
going to state B.[4]

Moving Q Targets By revisiting the TD Error from earlier:

TDerr(a, s) = Q∗(s, a)−Q(s, a)
= (R(s, a) + γ max

a′
Q(s′, a′))−Q(s, a)

The first component of the TD Error is calculated with the immediate reward
plus the discounted max Q value for the next state. While training our agent,
we update the weights of the network by using the TD error. But the same
weights apply to both the target Q value (Q*) as well as the predicted Q value.
So we end up approaching the target value, but also moving the target. This
leads to high oscillation issues during the training process.

To handle both problems, we use two Deep Q Networks:

• The online network is responsible for the selection of the next action
(depending on the next state) as always.

• The target network is responsible for the evaluation of the next action.

This approach is called using a Double Deep Q Network. The target Q
values of the next state, i.e. Q(s′, a′), is based on the prediction on the target
network. The target network remains fixed for a certain number of steps. But
the selection of the action on the next state, i.e. maxa′ relies on a prediction
of the online network. Basically, we decouple action selection from the target

11

2. Related Works

Q value generation and can therefore substantially reduce the overestimation.
Additionally since the target network remains fixed for some iterations, we
also solve the moving target problem.[6]

2.8.2 Dueling Deep Q Network

In Q Learning, Q values are ways to see how well an action fits to a particular
state, that’s why it is also called action-value function. This metric is the
same as the expected return of executing an action while being on a state.

Q(s, a) = E[R|s, a, π]

= E[
∞

∑
t=0

γtRat (st, st+1) |s, a, π]

= R(s, a) + γmax
a′

Q(s′, a′)

Q values can be decomposed into two parts: the state value function (V(s) as
in 2.6) and the advantage value (A(s,a)). We introduce a new variable, the
advantage value:

A(s, a) = Q(s, a)−V(s)

Recall that the Q value represents the value of choosing an action at a certain
state s. the state value function is assessing the value of being in a certain
state. Then intuitively the advantage function describes how good an action
is compared to other possible actions while being at the given state. In a
Dueling Q Network, we change the representation of the Q function to a sum
of the value function aggregated with the advantage function:

Q(s, a) = V(s) + (A(s, a)− 1
|A|∑a

A(s, a))

Note that we cannot simply add the advantage function, because the naive
sum of the two is ”unidentifiable”, which means that we cannot recover V
and A uniquely. It is empirically shown in Wang et al. that this would lead
to poor practical performance.
By doing this transformation, we split the features of the Q network into two
separate estimators. The value estimator describes which states are valuable
and which are not, without having to learn the effect of each action for each
state. This architecture is especially relevant in tasks where actions might not
affect the environment in significant ways.[6] [19]

12

2.8. Optimizations

Figure 2.4: Abstract model of Dueling Network Architecture[19]

13

Chapter 3

Method

3.1 Markov Decision Process

We first define in this work our MDP model. We tried to adapt the paper
from SeedNet[10] to a MDP model in 3D space: As N we define the number
of points in the 3D point cloud, which represents the scene.

3.1.1 State

We are given a 3D scene P ∈ RN×3 consisting of xyz coordinates and the cor-
responding RGB scene colors C ∈ RN×3. We are using the whole information
of the picture, therefore it is necessary to include the scene colors in the state.
At every step of the segmentation process, there are two things generated.
One is the seed map and one is the resulting binary mask B ∈ RN×1 from
the segmentation model. The segmentation network also needs the seed map
as input, that’s why we try in some experiments to include the seed map. In
most experiments the seed map is excluded.

All in all, as a state S we have the dimension S ∈ RN′×4, where N′ is equal to
the number of points after the sparse voxelization of the Minkowski Engine.

3.1.2 Action

The agent predicts an action given a state. The action within an action space
is to position a new seed point in the 3D scene. The position of the seed point
is based in our experiments either on a regular 3D grid or on the voxelization
of a part of the scene. The coordinate of the next seed is the center of the
grid or the center of the voxel. The label is taken from the ground truth mask
of the ScanNet[3] data set in our experiments.

15

3. Method

Since it is hard to define a termination state, we are terminating one episode
after 10 steps. Steps correspond in this case to an agent predicting a seed
location.

Instead of taking the whole scene, we restrict the action area according
to the object we try to segment. There are two variants evaluated in our
experiments, but both are based on a bounding box around the object:

Bounding box : We first determine the center of all positive points as
midpoint in our ground truth mask. After selecting the maximal and minimal
xyz coordinates of the positive foreground points, we have the dimension of
a bounding box including all foreground points. Since we often also need to
click on the background for a good segmentation, we increase the diagonal of
the bounding box by a stretch factor sf to include more negative background
points. After having the min and max coordinates of the bounding box, we
ignore all points which are outside of the bounding box for our action space.

Sparse Voxelization : We are using the built-in voxelization method of the
MinkowskiEngine to rasterize the area where the clicks are located. One
voxel is equal to one 3D grid in the action space. This method is a good
replacement for the already implemented heuristics which also determines
actions on a 0.05 voxelization of the image, but since its number of voxels per
area is different for each object, we can’t use this method to train our network
on multiple scenes. The number of grids determine the action space and the
network the corresponding dimensions. And to our knowledge, there is no
voxelization method, where the number of voxels are fixed.

Regular 3D grid : We rasterize our bounding box into regularly distributed
grids. This method is simple to implement and does create a fixed amount of
grids, compared to the voxelization method. But we can not easily determine
the label of each grid. In the sparse voxelization method we can reduce
the scaling of the ground truth with the same voxelization as the scene
coordinates and therefore easily determine the label of each grid. In the 3D
grid method we are doubling the action space and let the agent guess the
label of the seed.

3.1.3 Reward

The reward evaluates the action of the agent. In our work we try out different
kind of reward systems.
The first version of our reward function is to take the general IoU value.

RIoU(s, a) = IoU(M, G)

16

3.1. Markov Decision Process

Figure 3.1: Example of the built-in voxelization method applied to a chair. The number of voxels
per cm increase from left to right.

Figure 3.2: With a sparse voxelization of 0.02 (1 point/2 cm) and a stretch factor of 1.2, we
have the following foreground points (green) and background points (pastel) as action space.

which is a common metric in image segmentation. It describes the precision
of the segmentation M compared to the ground truth G in training.

The second version takes the relative change between the current IoU value
and the IoU value before into consideration. With this reward function, small
changes in IoU will be punished harder and it should be an incentive for
the agent to focus more on different seed points, instead of taking the same
actions.

Rdi f f = IoU(M, G)− IoU(Mprev, G)

To even further motivate the agent to not take the same coordinates for the
seeds. We introduce an error action: Assume the agent selects a seed point
twice in an episode, then the first click will be rewarded with one of the
standard reward function mentioned above. The other one (and all further
clicks on the same location) is counted as a bad click, because in our state

17

3. Method

we already inserted this click. Repeating an action is in this case not helpful
and does not provide the agent a lot of additional information compared to
deciding for another action in the action space.

RnoDouble(st, at) =

{
R if at ̸= ai, ∀i < t
−1 otherwise

where t refers to the time step during an episode.
In addition to the changes made so far, we divide the state into 4 regions
as in the SeedNet paper[10]. The regions are called strong foreground (SF),
weak foreground (WF), weak background (WB) and strong background
(SB). We divided the state by introducing 2 boundaries, they correspond to
boundaries within the background and within the foreground points. We
get the boundary between strong foreground and weak foreground by first
calculating the pairwise distances between center of foreground points to all
other foreground points. Then we take the median of those distances as our
boundary. We can be sure that there are an equal number of points in the SF,
as in the WF section. Analogously we do it between the weak background
and the strong background section.

By introducing different reward functions based on the location of the seed
point, the prediction ought to be more precise.
By using an exponential IoU reward instead of an linear IoU reward, we give
more attention to changes in high IoU values.

Rexp =
expk·IoU(M,G) − 1

expk − 1

where k is a constant value.

We can formally recap the reward function used as follows:

Rregions =

{
Rexp if Pseed ∈ SF or SB
Rexp − 1 if Pseed ∈WF or WB

Where Pseed means the the current seed selected for evaluation. In the
SeedNet paper they are differentiating between the different labels of the
selected seed. In this work we use the same labels as in the ground truth
mask. Therefore we only differentiate between the location of the selected
seed. In our experiments we combine different variants of reward functions
for evaluation.

18

3.2. Training of the Reinforcement Learning Agent

3.2 Training of the Reinforcement Learning Agent

3.2.1 Deep Q Network (DQN)

With the proposed MDP formulation, we can train the agent by using rein-
forcement learning. To train the agent on one scene we iterate through a
number of episodes. In each episode the agent chooses an action and the
Deep Q Network evaluates the action with a reward. After 10-15 actions
the episode ends and we reset the state and the input of the segmentation
network.
We define the Q learning target with the given s, a, s′:

Q(s, a) = R(s, a) + γ max
a′

Q(s′, a′)

where γ is the discount factor and s′ and a′ represent the state and the action
of the next step.
With DQN we approximate the Q values with a deep Q neural network. The
loss function for training can be expressed:

Loss(θ) = E[(R(s, a) + γ max
a′

Q(s′, a′; θ)−Q(s, a; θ)2]

which is the same as the TD Error from the theory part. We use a mean
squared error and gradient ascent to update the neural network.

To perform the exploitation vs exploration trade off, we use ε-greedy policy
as a behaviour policy. The ε-greedy policy uses a random action with a
probability of ε (exploration) and an action that is based on the max Q Value
with a probability of 1− ε (exploitation). At first ε = 1.0 which means the
action is chosen randomly. Then during the first E steps, ε decreases linearly
to a fixed final value for the rest of the training.
We create an experience replay buffer for training our agent. After each
action during training, we collect the reward and the next state and store
the replay memory (s, a, r, s′) in our experience replay buffer. For updating
our network we collect a batch of experiences from our buffer to perform Q
learning on this batch.

3.3 Model Architecture

The DQN used in this study is similar to the one in [10], instead of using
the TensorFlow Keras framework as in [12], we use the Minkowski Engine
framework for Sparse Tensors. We expect a better synergy with the already
existing interactive 3D object segmentation from [8]. We also use the double

19

3. Method

Figure 3.3: Our system is similar to the SeedNet[10] system: The scene and the segmentation
mask are inputs to the DQN. For the reward function we compare ground truth and the resulting
segmentation mask. This process is repeated 10 times per episode. The gray arrows represent
state-related behavior, red arrows action-related behavior and green arrows indicate reward-related
behavior.

DQN structure of [18] and the dueling DQN structure of [19]. As input to
the network we try out several different sparse voxelization (1 point / 5 cm,
8 cm, 10 cm) of the Minkwoski Engine to reach a similar efficiency as in
the SeedNet paper. We perform 3 convolutions each followed by a ReLU
activation in the Network. The first layer has 32 output channels with a
kernel of size 8 and a stride of 4, the second has the same properties but
with 64 output channels and the last layer has 64 output channels with a
kernel size of 3 and a stride of 1. After the convolutions, a flattening layer
is used into 2 fully connected linear layers, the first 512-D layer is split into
state-value and advantage function which is the last layer. The state-value
function V(s) is a scalar value and the advantage function comes out with
the same dimensions as the action space.
The action is determined according to the Q Value with the maximum value.
Then the action label (which is an integer between 0 and A, where A ∈ N

is the size of the action space) is converted to grid coordinates. After the
conversion we know where the new seed will be located.

20

3.3. Model Architecture

Figure 3.4: The architecture of our DQN is similar to the one used in [10]. The red layers are
for the state value function and the green layers are for the advantage function.

21

Chapter 4

Experiments

4.1 Network learning

In our experiments, we tried to reach an acceptable IoU value for one particu-
lar scene of the ScanNet data set. In most of our experiments, 600 episodes for
training are enough for the network to minimize the loss function. We first
iterate through 2000 pre-training steps to only collect and store experiences
in the buffer, the training does not proceed in this phase. ε is reduced within
the first E = 1000 training steps from 1.0 to a final value of ε = 0.2. The
parameters of the network are described in section 3.3. The discount factor
is set to γ = 0.9. An episode ends after every 10 seed generation processes.
For training we use an Adam optimizer[7] and utilize a learning rate of 1e-4.
We set the stretch factor for our action space to s f = 1.2 and the sparse
quantization for our action space is 0.05 (1 point/5 cm) which results in an
action space of 597 possible seed locations.
We reduce the original point cloud from 24769 points through sparse vox-
elization of 0.05 to a density of 15880 points. Additionally for each click
location generated by the agent, all points within a distance of 5 cm from the
center is added to the input channels for the segmentation system.

We update the online network every 4 steps to be more efficient and the target
network with an update rate of 1e-7. In [10] the target update frequency, the
number of pre-training steps and the training steps are higher scaled but due
to performance reasons and technical issues in this work we try a lower scale
version as a proof of concept.

4.2 Evaluation metrics

All the evaluation in this section are based on the following metrics:

23

4. Experiments

• Episode Reward: The sum of rewards collected during an episode.

• Training Loss: The sum TD Errors between target Q value and Q value
of the online network during an episode.

• Minimal/Maximal and Average IoU: Metrics to evaluate our method
with the heuristics already implemented in the segmentation system[8]

The first seed is generated using the heuristics of the segmentation network.
After the first seed, the segmentation mask has a value of IoU = 22.8%.

4.3 Training Results

Figure 4.1: In this experiment, we used all the parameters mentioned in 4.1 and Rdi f f as our
reward function.

As we observe in 4.1 the average IoU increases from a starting value of 22.8%
to an average IoU of 55.5% at the end of the training period of 600 steps.
During pre-training the average IoU was at around 40.0%, therefore we see
an increase in precision during training. The maximal IoU during an episode
is at 65%, which is compared to the results of the SeedNet system in 2.3 a
solid result. We also observe the large variation of the minimal IoU and an
increase in the episode reward.

4.4 Reward Evaluation

We observe that the RIoU and the Rdi f f curve are similar. One can say the
RIoU curve is more accurate in terms of IoU compared to Rdi f f . Nonetheless

24

4.4. Reward Evaluation

Figure 4.2: We increase the number of training iterations for our setup to a number of 1200 and
1600. By testing this setup on more training iterations as in 4.2, we realize that the average IoU
curve and the loss curve do not increase by a lot.

Figure 4.3: We evaluate the training curves of all the reward functions mentioned in 3.1.3. The
blue curve is the reward RIoU , green is Rdi f f and red represents Rregions.

do we prefer Rdi f f for our agent. Rdi f f shows better results in preventing the
same action of the agent as shown in 4.4.

The curve of Rregions does not satisfy our expectations. In SeedNet Rregions is
used for the agent to locate its seed predictions more precisely. But in our
experiments, this setup did not increase the resulting IoU. The IoU curves are
below the other reward functions and hence less accurate. To find a reasoning

25

4. Experiments

Figure 4.4: We compare the predicted seeds of the last episode from Rdi f f (left) and RIoU
(right). The fourth column is the random bit and the fifth column is the label of the click.

Figure 4.5: We evaluate the training curves of Rdi f f in green and RnoDouble combined with Rdi f f

for this behaviour, our agent is already locating it’s seed predictions in the
correct region because of the limited region of our grid. Thus grouping the
potential seed locations into several regions is not helpful. In a setup without
limiting grid, the Rregions might have more impact on the precision of the
agent.

Evaluation Penalty In 3.1.3 we introduce RnoDouble and in our experiments
we observed the results in 4.5. As expected, we notice that the loss curve
is relatively high and the reward curve is relatively low compared to the
curves of the Rdi f f . The episode reward curve of RnoDouble is showing a
convergence towards 0 during training. We can therefore derive that the
number of replicated actions during an episode must decrease. Arguably by
comparing the IoU curves between both functions, we cannot observe any
significant improvement on either side.

26

4.5. Grid Evaluation

Figure 4.6: On both pictures, we see our grid example. The dots presented in pink are representing
the coordinates belonging to our regular grid. The green dots represent the actual foreground
voxels of the object. By comparing the pink with the green dots, we observe high inaccuracies
between foreground points and grid points.

4.5 Grid Evaluation

Beside our original grid based on the voxelization method of the Minkowski
Engine, we tested a more regularly distributed grid in the 3D space. To
evaluate which grid works best as action space for our deep Q network.

Figure 4.7: The results when evaluating both grid versions in 3.1.2. The grey curve represents
the regular grid from figure 4.6 and the green one represents the voxelized action space.

We observe that the all the IoU curves of the regular grid are below the
IoU curves of our voxelized version. This seems to confirm our initial
thoughts. When looking at the episode reward function, we see a higher

27

4. Experiments

Table 4.1: Performance evaluation for one scene of ScanNet data set:

100 150 600 1000
update every step 18min 36min 115min 165min

update every 4 steps 5min 10min 40min 65min

Table 4.2: By updating our network only every 4 steps, we observe an improvement in performance.

growth between pre-training and actual training. This could indicate that
there is again a problem with repeatedly choosing the same actions during
training.

4.6 Issues and Future Work

In this section we discuss issues that arose during our experiments and
present attempts to solve the problems.

4.6.1 Performance Issues

When training our network on the ScanNetV2[3] data set, we are observing
issues with performance. The ScanNetV2 data set contains roughly 1200
scenes. It is currently the largest data set of 3D scenes. However compared
to data sets for 2D segmentation tasks, it is still relatively small. Testing on
a large part of the data set is important for improving the stability of our
network on unseen data sets. The results in 4.1 show that training only on
one scene requires quite some computational effort and therefore also a lot
of time. In reinforcement learning projects like [10] one scene is trained with
5000 episodes. By making a projection on our time requirements it would
require 5.5h to train one scene for 5000 episodes with the voxelization of 0.05
and update rate of 4 steps.

Potential Fix To improve the performance of our network, we can reduce
the number of points in the 3D scene such that the state does not have a too
large state as input. In the current voxelization of 0.05, the input state has a
dimension of S ∈ R15′880×4. When we compare this to the dimension of the
SeedNet system[10] S ∈ R7′056×4 we observe a large difference.

4.6.2 Learning Stability

In several experiments we observed a highly irregular learning stability,
which slowed down, or even impeded, the training progress. In reinforcement
learning the update rate of the target network does have a high impact on
the learning stability. In [12] and in [10] the proposed solution is to update
the target network by replacing the target network parameters completely by

28

4.6. Issues and Future Work

Figure 4.8: We evaluate the stability of our experiments, the first loss curve (top left) shows
a complete update in the target network every 1000 steps, the one top right and bottom right
show a update rate of 1e-4 and 1e-7 respectively. The loss curve on top is by some factors higher
than the other curves.

the parameters of the online network. When using this method our training
results show a lot of irregularities and therefore loses stability. Our approach
is to use a Deep Deterministic Policy Gradient (DDPG)[11]. DDPG maximizes
the expected cumulative long-term reward by introducing a smoothing factor
0 ≤ τ ≤ 1 to update the target parameters. The target parameters are
updated at every time step.

θ′ ← τθ + (1− τ)θ′

θ′ and θ represent the weights of the target network and the current network.
This update is called a soft update and it has been used in the paper for DDPG.
Assuming τ = 0.0001, the new weights of the target network will consist to
0.01% of the online network and to 99.99% of the previous target network. In
4.8 we observe a substantial change of the loss curve when running different
versions of the update pattern.

4.6.3 Predicting the same Action

The following experiment states a problem that occurred quite frequently in
our experiments. We trained the agent with a reward function stated in [10]
and by looking at the seeds generated by the agent in the last episode, we
realized that the action the agent has chosen was quite often the same action
as earlier during an episode.

29

4. Experiments

Figure 4.9: The first 3 columns are the xyz coordinates and the last column is the random bit of
the action. Before experiment 43 (left) there are a lot of identical actions chosen for the last
episode of one training. After initializing the weights in a random manner (right), the actions are
varying more often.

To solve this issue we tried out multiple different approaches:

• Adapt the reward function such that we penalize actions which are
chosen multiple times during an episode as discussed in 4.4.

• Insert chosen seed points into the state such that we have information
on where the seed points were placed.

• Additionally to adapting the reward function increasing the learning
rate or increasing the number of iterations. The agent should adapt
faster to the penalized actions.

• As in [12] initialize the weights of the network randomly with a normal
distribution.

As soon as the weights of the network were initialized on a normal distribu-
tion, the seed coordinates during an episode became more diverse. Although
we have a lot more diversity from the agent, there are still recurrences of
the same actions in the later phase of a training episode of 10 clicks. In 4.2
we increased the number of iterations, which did not completely erased this
issue but we see a potential correlation between the number of iterations and
the number of repeated actions.

4.6.4 Experiences Limit in Accuracy

All the experiences are randomly chosen actions such that we can use them
later for training our agent. Training of the agent is based in all steps on
a batch of 32 experiences in the experience buffer. It purely relies on the
experiences in the buffer. Since during exploitation the agent determines the
next action by forwarding the state to our deep Q network, the effect of the
next action also depends on the experiences made so far. A cap in accuracy
during pre-training can limit the effectiveness of the agent’s predicted actions.

30

4.6. Issues and Future Work

Figure 4.10: The big cubes in green and red show the predicted points of the our deep Q network.
They were always placed inside the first half of all the voxels of the object.

In multiple runs we observed a cap in accuracy for this kind of pre-training.
In our experiment we observed a cap in IoU accuracy of ∼ 30% as shown in
4.11 on the left side. As explained in the passage before, we have to increase
this cap such that the agent’s prediction is improved.

We try to solve this issue with the following methods:

• We use Rregions instead of Rdiff to provide an incentive for the agent to
predict points more centrally. This variant only increases the accuracy
during training and not during pre-training. This approach does not
turn out to our satisfaction.

• Instead of choosing experiences in the pre-training buffer randomly, we
determine the next action with a probability of δ = 0.5 = 50% randomly
and with a chance of (1− δ) = 0.5 = 50% with the heuristics in 2.2.2.
With this method the decisions of our agent are approximating closer
to the decisions of the heuristics.

• The final solution to this problem was to remove two errors in the code
concerning the agent’s function to convert the action space index to a
xyz coordinate. The resulting xyz coordinate was always within the first
half of all the action space as shown in 4.10. Additionally, at each step
we added by mistake the click mask of the first seed to the segmentation
mask. This caused a cap of IoU accuracy during pre-training and also
during training.

After fixing the errors in the code, we also ran experiments with the modified
pre-training phase, to increase the overall IoU of the experiments. The
results of the training phase showed small improvements compared to the
experiment without modified pre-training phase. This method also needs
further investigation.

31

4. Experiments

Figure 4.11: On the left side wee observe the cap in accuracy during the whole training process.
By fixing a bug in the code, the IoU curve began to show expected behaviour.

Figure 4.12: In green we see the training curves without modified pre-training phase in orange
we see training curves with modified pre-training phase from 4.6.4

Future Changes Besides using our adapted pre-training phase which did
show small improvements in accuracy, we can increase the effect of the
collected experiences during pre-training with Prioritized Experience Replay
(PER) from [14]. PER prioritizes experiences which are more significant
instead of sampling them randomly. This might improve the accuracy of the
agent.

32

Chapter 5

Conclusion

In our work we presented a technique to propose seed locations for in-
teractive object segmentation in a 3D space. By using a deep Q network,
which combines reinforcement learning and neural networks, we are able
to generate different seed propositions. The network shows an efficient and
stable learning pattern. Since it is built by using the Minkowski Engine[2], it
synergizes well with the used segmentation model[8].
We evaluated different action spaces for our network to reach a higher accu-
racy. To make the predictions of the network non-repetitive, we adapted the
reward function and randomized the initial network weights. By modifying
the pre-training phase and testing a reward function, which differs between
the regions of the action space, we attempted to improve the seed generations.
By training our agent on a subset of the ScanNet data set, we observed that
the average IoU increased from 22.8% to a value of 65% within 10 click
simulations.
Simulating seed propositions for labeling is a significant task, they are needed
to generate training data for computer vision tasks. It is therefore important
to optimize this seed generation process. Using reinforcement learning for
predicting the user’s intention is a novel technique with a lot of potential in
the future.

33

Bibliography

[1] Introduction to rl and deep q networks. https://www.tensorflow.org/
agents/tutorials/0_intro_rl, 2023. [Online; accessed 27-July-2023].

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-
temporal convnets: Minkowski convolutional neural networks, 2019.

[3] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d recon-
structions of indoor scenes, 2017.

[4] Ameet Deshpande. Deep double q-learning — why
you should use it. https://medium.com/@ameetsd97/

deep-double-q-learning-why-you-should-use-it-bedf660d5295,
2018. [Online; accessed 27-July-2023].

[5] Vijay Kanade. What is the markov decision pro-
cess? definition, working, and examples. https://www.

spiceworks.com/tech/artificial-intelligence/articles/

what-is-markov-decision-process/, 2022. [Online; accessed
27-July-2023].

[6] Sergios Karagiannakos. Q-targets, double dqn and dueling
dqn. https://theaisummer.com/Taking_Deep_Q_Networks_a_step_

further/, 2018. [Online; accessed 27-July-2023].

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[8] Theodora Kontogianni, Ekin Celikkan, Siyu Tang, and Konrad Schindler.
Interactive Object Segmentation in 3D Point Clouds. 2023.

[9] Grady L. Random walks for image segmentation, Nov 2006.

35

https://www.tensorflow.org/agents/tutorials/0_intro_rl
https://www.tensorflow.org/agents/tutorials/0_intro_rl
https://medium.com/@ameetsd97/deep-double-q-learning-why-you-should-use-it-bedf660d5295
https://medium.com/@ameetsd97/deep-double-q-learning-why-you-should-use-it-bedf660d5295
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/
https://theaisummer.com/Taking_Deep_Q_Networks_a_step_further/
https://theaisummer.com/Taking_Deep_Q_Networks_a_step_further/

Bibliography

[10] Kyoung Mu Lee, Heesoo Myeong, and Gwangmo Song. Seednet: Au-
tomatic seed generation with deep reinforcement learning for robust
interactive segmentation. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1760–1768, 2018.

[11] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning, 2019.

[12] Kavukcuoglu KṠilver Dėt alṀnih, V˙Human-level control through deep
reinforcement learning. Nature 518, 2015.

[13] Sayak Paul. An introduction to q-learning: Re-
inforcement learning. https://blog.floydhub.com/

an-introduction-to-q-learning-reinforcement-learning/, 2019.
[Online; accessed 27-July-2023].

[14] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay, 2016.

[15] Jinsheng Sun, Xiaojuan Ban, Bing Han, Xueyuan Yang, and Chao Yao.
Interactive image segmentation based on feature-aware attention. Sym-
metry, 14(11), 2022.

[16] Wikipedia contributors. Markov decision process — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Markov_decision_process&oldid=1156832827, 2023. [Online; accessed
21-August-2023].

[17] Wikipedia contributors. Reinforcement learning — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Reinforcement_learning&oldid=1170805603, 2023. [Online; accessed
21-August-2023].

[18] Chris Yoon. Double deep q networks. https://towardsdatascience.

com/double-deep-q-networks-905dd8325412, 2019. [Online; accessed
21-August-2023].

[19] Chris Yoon. Dueling deep q networks. https://towardsdatascience.
com/dueling-deep-q-networks-81ffab672751, 2019. [Online; ac-
cessed 27-July-2023].

[20] Chris Yoon. Vanilla deep q networks. https://towardsdatascience.

com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb, 2019.
[Online; accessed 27-July-2023].

36

https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/
https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/
https://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=1156832827
https://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=1156832827
https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=1170805603
https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=1170805603
https://towardsdatascience.com/double-deep-q-networks-905dd8325412
https://towardsdatascience.com/double-deep-q-networks-905dd8325412
https://towardsdatascience.com/dueling-deep-q-networks-81ffab672751
https://towardsdatascience.com/dueling-deep-q-networks-81ffab672751
https://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb
https://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb

	Where_to_Click__Exploring_Reinforcement_Learning_for_3D_Interactive_Object_Segmentation.pdf (p.1-42)
	Contents
	Introduction
	Related Works
	Minkowski Engine
	Interactive Segmentation in 3D Point Clouds
	Structure of Segmentation System
	Automatic Click Generation

	SeedNet Automatic Seed Generation System
	Markov Decision Process (MDP)
	Reinforcement Learning
	Q Learning
	Temporal Difference Learning

	Deep Q Network
	Optimizations
	Double Deep Q Networks
	Dueling Deep Q Network

	Method
	Markov Decision Process
	State
	Action
	Reward

	Training of the Reinforcement Learning Agent
	Deep Q Network (DQN)

	Model Architecture

	Experiments
	Network learning
	Evaluation metrics
	Training Results
	Reward Evaluation
	Grid Evaluation
	Issues and Future Work
	Performance Issues
	Learning Stability
	Predicting the same Action
	Experiences Limit in Accuracy

	Conclusion
	Bibliography

	signature_BA.pdf (p.43)

