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Abstract

DNNs have set a new state-of-the-art across a various research areas.
However, DNN are black box models, not giving insight on their predic-
tive confidence, limitations and reliability. Especially in safety-critical
applications, to know what your model does not know can be of utmost
importance. One example is flood detection where the predictions pro-
vided by a model have to be trustworthy to efficiently plan and perform
rescue operations. In this work, we evaluate a Bayesian approach on
a flooded area image dataset using a combination of a deterministic
Bayesian method and an ensemble method to model the aleatoric and
epistemic uncertainty on the semantic segmentation of flooded area
images. Furthermore, we compare the achieved model performance
and calibration of the Bayesian approach with a deterministic model
and show that both better performance and calibration can be achieved
when taking aleatoric and epistemic uncertainty into consideration.
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Chapter 1

Introduction

Floods are one of the most common natural disasters with an unpredictable
nature and destructive force carrying devastating consequences to infrastruc-
ture, economy and societies. At the whim of nature, floods can affect massive
areas leaving no possibility to prevent or undo the destruction following the
disaster. Thus, early warning systems and a quick and effective response
from rescue services make up the most essential counter-measures to floods.

Monitoring and measuring water levels and water coverage are already in
use and play an integral part in early warning systems and for estimating the
scale of the flood. In practice, this is currently achieved with data obtained
through SRAs and UAV imagery data in combination with thresholding and
statistical machine learning techniques.

This work focuses on using machine learning techniques to support decision
making during rescue operations which could reduce casualties for both
rescuers and rescuees by providing crucial information for rescue planning
and large scale surveillance of affected areas. As an example, quick detection
of flooded buildings, roads and vehicles helps in deciding which affected
areas to prioritise and in developing a suitable strategy for transportation
and rescue.

The application of machine learning techniques to the problem of flood
detection is, however, nothing novel. Prior work has been done on the classi-
fication and segmentation of satellite and UAV images. Work on applications
based on classical machine learning techniques for flood image classification
has already been done and the semantic segmentation using DNN on aerial
imagery data of floods is nothing novel as well. Such models, however, are
often critiqued as nothing more than a black box, unable to express their
confidence over their predictions. Knowing where the model is uncertain
and not reliable could be particularly detrimental in the case of rescues.
Rescue teams could prioritize affected areas where the predictions are more
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1. Introduction

trustworthy.

Fortunately, the area of explainability and uncertainty quantification for
DNNs is an active research area. The need to get an insight on confidence of
DNN gave rise to a new area deep learning, namely Bayesian deep learning.
In this work we make use of BNNs to tackle the problem of the predic-
tion reliability. This work thus provides a first study of using BNNs for
semantic segmentation on flood image data and how the additional informa-
tion obtained from uncertainty estimates can improve predictions and help
understand DNN black box models.
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Chapter 2

Flood Detection

Flooding is and has been a massive concern over past decades, causing wide-
spread damage to infrastructure and economy. Greatest damages can arise
especially in the case of flash-floods where the reaction time and planning
time is limited. Preventing large scale flash-floods is virtually impossible and
leaving only the possibility for rescue operations during and after the flooding
to reduce damages and casualties as much as possible. Thus early-warning
systems and flood detection techniques are the few counter-measures one can
practice in the case of flooding. In this chapter an overview over techniques
for flood detection is given.

A standard conventional method incorporated in several approaches [9, 11] is
thresholding which is a rudimentary image segmentation technique. The key
idea is that given an image one can segment the relevant classes by colouring
or grey-scale of a pixel to distinguish between classes. The method is as
simple as it sounds, however, the difficulty is not in the evaluation but in
constructing images which allow for thresholding to work.
An effective way to construct images in the case of flooded areas, is to use a
SAR which is mounted to a satellite and actively collects data by producing a
distinct signal which is yields a different response for land and water surface.
The key difference between SAR and optical sensors, is that optical sensors
produce data in the visible spectrum, while SAR utilizes longer wavelengths
which allows data collection without disturbances by day conditions such as
clouds.
In [11] the authors combine the data obtained by SAR with hydrological
simulation data to improve the predictive accuracy over the conventional
thresholding method while maintaining high computational speed.

Due to wide-spread adoption of machine learning, applications of statistical
machine learning techniques and DL were tested on the problem of flood
detection as well. [4] evaluates the performance of the classification algo-
rithms Naive Bayes, the two decision tree bases algorithms Random Forest
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2. Flood Detection

and J48, and a CNN, showing good performance of all algorithms on the
task of water level classification. The authors concluded that Random Forest
does achieve the best accuracy on the task at hand, while the CNN approach
showed better overall results on the precision and recall metric [4].

With DNN and CNNs setting a new state-of-the-art in many research areas,
image datasets for classification and semantic segmentation suited for train-
ing DNNs are published such as the recent FloodNet [12] which shows great
performance of state-of-the-art DNN segmentation models.

While statistical machine learning methods and use of DNN have found
applications in the context of flood detection, the area of Bayesian methods
for flood detection is still unexplored. An interesting case study on the
application of a Bayesian Network is conducted in [1].
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Chapter 3

Semantic Segmentation

The goal in semantic segmentation for images is to assign a categorical label
to each pixel of a given image. The output of a semantic segmentation model
is typically called a segmentation mask with each pixel annotated with the
predicted class. In the following sections the reader is familiarized with a few
state-of-the-art architectures and basic concepts for semantic segmentation.

3.1 Models

Nowadays semantic segmentation and deep learning go hand in hand, how-
ever, finding a segmentation map does not require deep neural networks.
Several methods ranging from simple computational methods such as thresh-
olding and classical machine learning techniques such as K-Means clustering
have been around for a long time. With deep learning a new state-of-the-art
has been set for semantic segmentation. The characteristic components of a
modern semantic segmentation model is the decoder which maps the input
to a lower dimensional feature space followed by a decoder responsible for
transforming the features provided by the encoder into a segmentation mask.
For both components are briefly explained along with a few state-of-the-art
DNN for encoding and decoding features.

Starting with encoders, they are at the heart of any computer vision task.
The problem with working with image data is that we find ourselves in
a very high-dimensional feature space. Each pixel in the image can be
treated as separate features and with coloured images the number of features
is threefold the amount compared to grey-scale images. The idea of an
encoder is to find a suitable feature space of lower dimension given a high-
dimensional feature space. In many application, the architecture of choice
are the CNNs ResNet [5] and VGG [14].

One revolution in computer vision was due to the UNet [13] which showcases

5



3. Semantic Segmentation

the basic structure of modern DNN for semantic segmentation. It consists of
a chosen encoder, followed by the characteristic components of a semantic
segmentation model the decoder. The UNet passes outputs from previous
encoder layers as additional features in the decoder. The resulting architecture
gives the UNet its name due to its U-shape.

Another modern segmentation model is the PSPNet [16] which is also the
architecture used in the experiments as part of this work. The model is
illustrated in figure 6.1. A forward pass in the model starts by passing the
input image through a CNN encoder to get a feature map after the last
convolutional layer. Then the characteristic PSP-module which consists of
several PSP-blocks that to extract different subregion representations. They
are then upsampled and all concatenated together with the feature map
produced by the encoder. The final feature representation now carries both
local and global context information. Finally, the final feature representation
is passed through a convolutional layer to get the final per-pixel prediction
[16]. By incorporating local and global context information the predictions
on smaller objects can be further improved by also taking pixels on different
levels of proximity into account. A good example from the PSPNet paper [16]
is the confusion of the class boat and car. Having a similar shape, colour and
possibly size, it is not surprising that a segmentation model might confuse
them. However, if we zoom out and consider the environment we can clearly
differentiate the two classes since one appears on land while the other is
usually surrounded by water.

Figure 3.1: Visualization of the PSPNet architecture.

3.2 Metrics

To evaluate the quality of a semantic segmentation model we usually consider
the pixel accuracy, Intersection-over-Union (IoU) and the dice coefficient.
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3.3. Losses

In general, accuracy is defined as

accuracy =
Correctly classified pixels

Total number of pixels
∈ [0, 1]

The IoU of two sets, also called Jaccard distance, is defined as

IoU(X, Y) =
|X ∪Y|
|X ∩Y| ∈ [0, 1]

The dice coefficient of two sets, also called f1 score, is closely related to the
IoU as it can be directly computed from the IoU and vice-versa. We define
the dice coefficient as

D(X, Y) =
2|X ∩Y|
|X|+ |Y| ∈ [0, 1]

While the pixel accuracy is the most intuitive metric, it fails to be informative
in the case of highly imbalanced classes. This is the main reason for choosing
IoU or Dice as the metric since both metric take the imbalance into account.
In the case of semantic segmentation with C number of classes, the IoU or
dice is computed for each class and finally the average of class score is taken.
For IoU the formula is given by

mIoU(X, Y) =
1
C

C

∑
c=1

IoUc(X, Y)

3.3 Losses

In order to find optimal weights with respect to segmentation, we need to
define a suitable loss function. The following definitions of the loss are taken
from the work [10].

A common loss for any classification task is the cross entropy loss

LCE = −
C

∑
c=1

N

∑
i=1

yi,c log ŷi,c

where yi,c denotes the ground truth for sample i and class c and ŷi,c denotes
the model prediction for sample i, class c and N the total number of samples
or the number of samples in a batch.

Another loss used in classification is the focal loss [8]. The advantage of the
focal loss compared to the cross entropy loss is that it tackles the problem of
class imbalance. In essence, the loss for samples that are easily classified is
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3. Semantic Segmentation

reduced and for difficult samples penalized so that the model prioritizes the
difficult samples. The loss is defined by

LFocal = −
C

∑
c=1

N

∑
i=1

(1− ŷi,c)
γyi,c log ŷi,c

where γ is the parameter that controls the loss reduction for well-classified
samples. For the special case γ = 0 we have that the focal loss and cross
entropy loss match.

Lastly, we consider the dice loss which is based on the dice metric. This loss
function is almost exclusively used in detection and segmentation tasks as it
directly optimizes the metric which is actually relevant.

LDice = 1− 2

C
∑

c=1

N
∑

i=1
yi,cŷi,c + ε

C
∑

c=1

N
∑

i=1
(yi,c + ŷi,c) + ε

where ε denotes a small constant which is added for numerical stability.
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Chapter 4

Uncertainty Estimation

In this chapter an overview is given on the current state of BDL, calibration
of modern neural nets and uncertainty modelling. The discussed examples
are primarily from the area of classification due to semantic segment being
the focus of this work.

4.1 Calibration

Even before using Bayesian approaches, it was possible to reason about the
predictive confidence of the model. In a multi-class classification setting with
C labels, a model predicts a score for each class. Usually, the scores are then
normalized to obtain a categorical distribution over the C labels which is
obtained by applying the softmax function defined as

σ(z)i =
ezi

∑C
j=1 ezj

for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RC

on the scores. The obtained probability distribution is often interpreted as
the model confidence.

With modern neural nets which can have from thousands to millions of
parameters and numerous layers, the softmax scores are in general not
reliable for indicating confidence as recent research has shown. DNN tend to
be overconfident [3] in the label it predicts meaning that there is a mismatch
between model performance and its self-estimation. To study the calibration
of a classification model, we make use of reliability diagrams and a metric
called Expected Calibration Error. In the setting of classification the softmax
scores are partitioned in M confidence levels. We denote the set of predictions
whose softmax score falls into the interval Im = (m−1

M , m
M ] by Bm. Given the

samples in a bin Bm, the average performance of the binned prediction is
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4. Uncertainty Estimation

calculated. In classification we compute the accuracy

acc(Bm) =
1
|Bm| ∑

i∈Bm

1(ŷi = yi)

where ŷi and yi denote the model prediction and the true label respectively.
The average confidence of Bm is computed analogously

con f (Bm) =
1
|Bm| ∑

i∈Bm

p̂i

where p̂i is the softmax score for prediction i. We call a model which achieves
con f (Bm) = acc(Bm) ∀m ∈ {1, ..., M} perfectly calibrated. The ECE is then
given by

ECE = ∑
m∈{1,...,M}

|Bm|
n
|acc(Bm)− con f (Bm)|

where n denotes the total number of predictions.

4.2 Uncertainty

By evaluating the calibration of a model, it can be seen that standard de-
terministic neural nets are already able to capture uncertainty in a sense.
The model confidence then reflects a combined uncertainty of all uncertainty
sources such as variability in the data and possibly a non-optimal choice of
model architecture, however, it cannot distinguish between different types of
uncertainty. There are several uncertainty sources which can be categorized
in two different types of uncertainty, the aleatoric and epistemic uncertainty.
Aleatoric uncertainty incorporates the error and noise in measurement sys-
tems that capture the data. In the setting of a computer vision task the
measurement system is usually a camera which cannot give a perfect rep-
resentation of the real world but an approximation. When talking about
epistemic uncertainty, we consider the uncertainty introduced by the choice
of model, errors in the training procedure such as using unsuitable data
augmentation techniques.
The work [6] has already shown that while epistemic uncertainty can be elimi-
nated with a sufficient amount of data, the data intrinsic aleatoric uncertainty
cannot be reduced.

4.3 Methods for Uncertainty Estimation

While it is not possible to directly measure uncertainty, it can be effectively
modelled with uncertainty quantification methods. We differentiate between
four different types of methods to model uncertainty in our model and data
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4.3. Methods for Uncertainty Estimation

[2], namely deterministic methods, BNNs, ensemble methods and the drasti-
cally different approach the test time data augmentation. Not all methods are
suited to model both aleatoric and epistemic uncertainty, however, we can
combine techniques from each type to achieve both. For each type a quick
overview is given.

Roughly, deterministic methods make use of a separate model or the exten-
sion of a model to explicitly model and quantify uncertainty. There exist
countless methods which can be applied during training and after the train-
ing of the network. In this paragraph we focus on the particular approach of
Kendall and Gal [6], which is used during the experiment of this work. The
idea is to force a model to predict the parameters of the distribution which in
case of a Gaussian distribution is the expected value µ and the variance σ2.

x̂i ∼ N (µi, σ2
i )

This is archived by simply doubling the output from the model. In the case
of a Gaussian distribution we aim to maximize

log EN (x̂i ;µi ,σ2
i )
[ p̂i,c]

with p̂i,c denoting the softmax score for sample i and class c. Since no
analytical solution is known to the specified log likelihood, it is approximated
by Monte Carlo Integration. In practice, this means that we take T samples
from the Gaussian distribution

x̂i,c = µi + σiεt, εt ∼ N (0, I)

and minimize the numerically-stable loss for the prediction i

Li =
1
T

T

∑
t=1

exp(x̂i,t,c − log(
C

∑
c′=1

exp(xi,t,c′)))

. During inference we sample T outputs in the same fashion and average
over the logit vectors xi,t. To obtain a measure for the aleatoric uncertainty,
we finally compute the entropy over the softmax scores for each class c

H( p̂i) = −
C

∑
c=1

p̂i,c log2( p̂i,c)

as proposed in [6].

With Bayesian methods we take a more probabilistic approach to find the
best parameters of our model. The goal of Bayesian methods is to model the
posterior distribution over the parameters of a model p(θ|x, y). During infer-
ence the model parameters are then sampled from the posterior distribution,
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4. Uncertainty Estimation

where the sampled model is again a single deterministic model. The au-
thors of [2] further subdivide Bayesian methods into three methods, namely
Variational inference, sampling approaches and Laplace approximation. The
differentiation between the three approaches is based on how the posterior
distribution is inferred to approximate Bayesian inference.

In ensemble methods we derive a prediction based on several models which
are called ensemble members. The ensemble can be a set of deterministic
models which are optimally diverse and not converge to the same optimum.
The key challenge when training ensemble is thus to introduce variety be-
tween the ensemble members. This can be achieved by using a different
initialization for each network, data shuffling, bagging, boosting or even
using different model architectures [2]. Ensemble methods are also the
approach used in this work. During the experiment, the methods used intro-
duce variety during are limited to data shuffle, random initialization and the
randomness of data augmentation on the training data.
In the same fashion as Kendall and Gal [6], we obtain a measure for the
epistemic uncertainty, the logit variance of the predictions from each model
x̂i is computed to measure the disagreement of the ensemble members.

Finally, test time data augmentation is to generate several samples from each
test sample during inference by applying data augmentation techniques on
the test sample. From the prediction on the augmented test samples we can
then compute a predictive distribution to measure uncertainty. [2].
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Chapter 5

Dataset

During the experiment in this work we use the recently published FloodNet
dataset [12] which is a collection of high resolution aerial images of post
flooded areas after the hurricane Harvey in Texas and Louisiana in August
2017. FloodNet includes data for three computer vision tasks, namely clas-
sification, semantic segmentation and visual question answering. Only the
semantic segmentation of the FloodNet is discussed in this chapter, due to
being the focus of this work.

Although image datasets for flooded areas already exist, FloodNet aims to
eliminate caveats of other flood and post catastrophe datasets by providing
high resolution and consistently sized UAV images of 4000x3000. By using
UAVs to capture both the problem of high revisiting period and low spatial
resolution of satellite imagery can be eliminated. Especially when the data is
urgently required one cannot rely on satellite imagery, whereas UAVs can be
quickly and accurately deployed.

The dataset consists of 2343 image-segmentation-mask-pairs with each pixel
of the mask labeled with one of ten classes which include building-flooded,
building-non-flooded, road-flooded, road-non-flooded, water, tree, vehicle,
pool, grass and background. The background class is essentially everything
that is not one of the first nine classes.

The authors of FloodNet do not only contribute by providing a new flooded
area image dataset but also provide first benchmark of state-of-the-art DNN
on the data with one being the PSPNet [16] which is the also architecture
used during the experiments of this work.
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Chapter 6

Experiments

In this section we discuss the setup such as architecture, loss and optimizers
used during training of our model, followed by the results of the BNN
compared to a deterministic DNN basline.

6.1 Setup

First, we explore the FloodNet dataset which contains a total of 2343 pixel-
wise labeled images for semantic segmentation and the data is already split
into train, validation and test set. The data split was performed with strat-
ification over the labels meaning that the label frequency of each label is
approximately the same over the training, validation and test set. Addi-
tionally, the data is split based on scenery since the dataset includes many
consecutive snapshots. Having similar sceneries in both the train and valida-
tion set gives biased results since the model has already seen the data.

Just as in many datasets for semantic segmentation the classes are fairly
imbalanced as seen in figure 6.1. With the grass class making up to 60% of
all pixels and the vehicle and pool class being the most underrepresented
classes in the dataset, it is sensible to apply measures to battle the imbalance.
However, achieving best performance on each class is not the focus of this
work and thus the implementation of balancing techniques is omitted.

Before even passing input through our model, we apply rudimentary image
augmentations to the input images. Since the unprocessed images have
dimensions of 4000x3000 we will quickly run into memory issues as an image
of such as size does not fit into most memory. Thus we resize the images to
712x712 which allows us to do batch training by considering several images
during an optimization step. To obtain even more data from the given dataset,
we apply random horizontal and vertical flips, shifts, scaling and rotations.
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Figure 6.1: Distribution of the labels in the training set of FloodNet. The column represent the
frequency pixels with the respective label. The columns are coloured with the colour used in the
predicted segmentation masks as a visual aid.

Finally, we standardize the augmented images using the channel mean and
standard deviation of the training data.

To understand the differences between the Non-Bayesian PSPNet, BNN and
the Ensemble-BNN we carry out the experiments for the three models with
the same setting.

The architecture used for the semantic segmentation model was the PSPNet
with a ResNet101 without pretraining [5] as the encoder and the PSP-decoder
as the decoder as outlined in section 3.1. The models were not implemented
from scratch but were taken from the Segmentation Models Pytorch Python
library [15] and augmented such that an untrained encoder could be used
during training. The PSPNet used consists of four PSP-blocks where each
block consists of an average pooling layer followed by a convolutional layer
with batch normalization. Finally, we pass the output of the convolutional
layer through the ReLU activation function defined a

ReLu(x) = max(0, x)

where x denotes the output after the convolutional layer. The convolutional
layer after the PSP-module is followed by batch normalization and a dropout
layer with dropout probability of 0.2 which is a measure against overfitting.
The rough architecture of the PSPNet decoder is outlined in section 3.1
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6. Experiments

For the BNN and ensemble of BNNs, we closely follow the approach intro-
duced in the work of Kendall and Gal [6] and summarized in the section
4.3. The single change for the BNN compared to the Non-Bayesian model is
that the output channels are doubled for predicting an output distribution.
For the BNN sample the modelled aleatoric uncertainty ten times for each
prediction and for the ensemble add five BNNs as our ensemble members.

Concerning the loss, in experiments with the cross-entropy, focal and dice
loss, we achieved the best performance using the standard cross-entropy
which does not take any imbalance into account. However, the cross-entropy
loss can be attached with a weight per class to incentivise learning to correctly
classify rare classes. Finally, we used the Adam optimizer [7] to minimize the
cross-entropy loss with learning rate 0.0001 and weight decay 0.0001 which
works as a regularizer by placing a Gaussian prior over the network weights.

We train each single model for 100 epochs each and pick the best parameters
by monitoring the mIoU on the validation set.

During training we use NVIDIA GeForce GTX 1080 Ti GPU.

6.2 Results

6.2.1 Semantic Segmentation Performance

First, we evaluate the performance of the three models on the test set of the
FloodNet dataset. All three models achieve a considerable improvement over
the baseline in the initial experiments presented in the FloodNet paper [12].
The BNN does not surpass the performance of the Non-Bayesian baseline
as seen in table 6.1, however, the mIoU of the BNN is comparable to the
mIoU of the baseline while also providing modelled aleatoric uncertainty.
The slight difference can be due to the randomness of the training procedure
of the models. Especially interesting in the comparison of the two models, is
the difference in the per-class IoU. We see an increased score on the BNN
for the background class which implies the ability of BNNs to differentiate
between the nine standard classes and the anomaly background class which
is everything that does not belong into any of the nine other classes.

Looking at the performance of the ensemble of BNNs, the model achieves the
best mIoU score and best per-class scores on most classes and comparable
performance with the best achieving score of the other models. The consid-
erable increase of more than a percentage point in mIoU in the ensemble
confirms that ensemble methods do outperform and generalize better than
standard Non-Bayesian models.
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6.2. Results

Table 6.1: Comparison of the baseline with the Bayesian models.

Model Background Building
Flooded

Building Non
Flooded

Road
Flooded

Road Non
Flooded Water Tree Vehicle Pool Grass mIoU

Baseline 85.16 94.48 79.69 94.29 74.16 81.11 69.87 69.80 85.58 79.02 81.32

BNN 89.84 94.89 81.98 94.93 75.06 75.08 69.80 66.96 84.36 79.40 81.23

Ensemble 90.73 95.32 82.27 95.03 75.02 80.09 72.33 70.21 84.85 80.75 82.66

6.2.2 Quality of Uncertainty Metric

Looking at the obtained uncertainties in figure 6.2, we can see that high
aleatoric uncertainty is especially present at the boundaries between classes
and for objects farther away from the UAV which was also observed by the
authors in [6]. This is expected as boundaries and objects farther away are
impacted the most when capturing, scaling and applying augmentations to
the image. Also remarkable is that high aleatoric uncertainty has similarities
to the actual prediction error which hints at a correlation between high
aleatoric uncertainty and prediction error.

As for the epistemic uncertainty, we do not see the same correlation with the
prediction error, however, it can be seen that it models an entirely different
uncertainty than aleatoric uncertainty. Highest epistemic uncertainty is
especially high inside areas of a single class and rarely found at edges. To be
precise the epistemic uncertainty high, where we have high variability in the
area of a single class such as colour changes and depth.

If we compare the spread of aleatoric and epistemic uncertainty, we see that
per-pixel aleatoric uncertainty has a larger relative difference between most
of the values compared to the per-pixel epistemic uncertainty. Noteworthy
is that the epistemic uncertainty contains extreme outliers as seen in the
maximal and minimal value, while most values are approximately in the same
order of magnitude. This means that in most predictions less uncertainty can
be attributed to epistemic uncertainty and more to the aleatoric uncertainty.

A quantitative analysis of the behaviour of the aleatoric and epistemic uncer-
tainty can be seen in figure 6.3. We sort the pixels based on the respective
uncertainty metric and remove pixels with highest uncertainty in each step.
The figure shows that high aleatoric uncertainty correlates with accuracy as
we see a steep increase in performance after the first 20 percentiles removed
implying that high aleatoric uncertainty is a reliable indicator for misclassifi-
cation. We also observe that starting from 75% of the pixels removed, we do
not gain any additional increase in performance meaning that pixels with
lowest aleatoric uncertainty are highly likely to be correctly classified.
For epistemic uncertainty we do not see a behaviour as in the case of aleatoric
uncertainty. The epistemic uncertainty a measure of uncertainty still per-
forms better than a random removal of the pixels.
This supports the hypothesis that aleatoric uncertainty dominates the total
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Figure 6.2: Comparison of the model prediction with the ground truth, the prediction error and
illustration of the uncertainty estimates obtained through the BNN. The colouring is relative for
each single image and not coloured based on the absolute value over the uncertainties in the
predictions.

Table 6.2: Spread of aleatoric and epistemic uncertainty values.

Uncertainty min P25% P50% P75% P90% P95% max

Aleatoric 0.0 0.015 0.102 0.465 0.853 1.114 2.151

Epistemic 0.00018 0.410 0.838 1.457 2.307 2.950 15.47

uncertainty during inference.

6.2.3 Calibration

Finally, we evaluate the calibration of the Non-Bayesian model, a single BNN
only considering aleatoric uncertainty, an ensemble of BNN only taking
epistemic uncertainty into account and the ensemble of BNN taking both
uncertainty types into account. We compute the calibration and the ECE as
introduced in section 4.1 with 20 bins.

We see that all the models are well-calibrated starting from a predictive
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6.2. Results
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Figure 6.3: Comparison of uncertainty estimates in how removal of highly uncertain pixels
improves accuracy.
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Figure 6.4: Calibration of the different models with 20 bins. A perfectly calibrated model follows
the black line.
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6. Experiments

Table 6.3: Comparison of ECE of the different models with 20 bins.

Model ECE

Non-Bayesian 0.0136

BNN 0.0114

Ensemble 0.0096

BNN Ensemble 0.0095

confidence of 0.25. For the lowest confidence bin of [0.15, 0.2) the models
underperform, however, the confidence is close to random guessing for a
classification problem with ten classes. For all other confidence levels the
curves closely match perfect calibration.

It is impossible to tell by eye which model is calibrated best and thus we look
at the ECE in table 6.3 which hints at an improvement of calibration of the
Bayesian models over the Non-Bayesian model. This implies that including
aleatoric uncertainty can improve model calibration and that calibration can
be further by utilizing an ensemble of BNN.
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Chapter 7

Conclusion

In this work we have shown that using an ensemble of BNNs can considerably
improve predictive performance and give insights on where the model fails
to correctly classify samples. The knowledge of the model’s limitations is
especially detrimental in safety critical applications and thus gives Bayesian
models an edge over Non-Bayesian models in that setting.

Another benefit of Bayesian models over Non-Bayesian models is an increase
in model calibration as seen in the experiments. A higher calibration score in
a model makes it more reasonable to trust the black-box predictions of the
model.

Still concerning, is that the model struggles to identify classes with very few
data samples such as vehicles. A remedy can be using a weighted loss with
which it would be possible to prioritize learning rare or important classes.
Especially in the context of flood detection and rescues, one might want to
prioritise the identification of vehicles over a pool or tree class.

Furthermore, a Bayesian patched neural network architecture could be used
to segment images. The benefit being that the full image is used without
introducing any additional noise into the data by rescaling the image to a
smaller size.

Finally, a suitable model fit for flood detection and rescue operations should
be trained and tested on more flooded imagery datasets for further general-
ization.
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