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Abstract

The goal of this project is to analyze if sentinel-1 C-SAR images are a good source to

detect deforestation with the use of deep learning in wooded regions. We developed a deep

learning network which takes two sentinel-1 SAR images from the same region but different

dates as input data. With the ground truth of the same region, we were able to train the

network pixel wise to detect deforestation between those two dates with around one year

time difference (March 2016 & June 2017). We treat the two images as two channels for

training the network.

Although being limited in labeled training data we were able to show that sentinel-1 SAR

images are an optimal source to detect deforestation because of its advantage being all

weather resistant and not affected from clouds or other environmental conditions.
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1 INTRODUCTION

1 Introduction

Nowadays there is a huge change for remote sensing applications with the rise of deep learn-

ing in the last few years and with the freely available satellite imagery. Since the beginning

of the sentinel-1 mission in 2014, we are able to collect high precision SAR images around

the entire globe with a revisiting time of just a few days. The advantage of SAR images

being weather independent and providing continuous usable data (not affected from cloud

or other environmental effects) makes it an ideal source for monitoring applications. New

earth observation satellite missions starting in near future will generate even more data

which will be ready to use for research and development.

A big issue that we have everywhere around the globe is the permanent deforestation

especially for illegal activities. Since some government lack of resource to discover illegal

deforestation, earth observation data can be used.

To solve this issue we define the aim of our project:

Analyze if sentinel-1 SAR images are an appropriate source for detecting de-

forestation with deep learning in wooded regions.

We will use a deep learning network to train with sentinel-1 SAR images for detecting

deforestation in a period of time. This gives us the advantage not only to expose defor-

estation but making it possible to find out when this particular event took place.
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2 THEORETICAL PRINCIPLES

2 Theoretical Principles

2.1 Synthetic Aperture Radar (SAR)

All information given in this section is based on Alberto Moreira et al. (2013).

SAR imagery for earth observation is already used for more than 30 years. In the 80s, it

became the follower of SLAR (side-looking airborne radar) which was already used in the

50s for imaging radars. SLAR operates with other methods, which leads to a moderate

azimuth resolution (azimuth is defined as the flight direction). It was used mainly by

military research for reconnaissance purpose and man-made target detection.

The big advantage of radar is its continuous data collection under all weather conditions.

It is independent from daylight and cloud coverage.

2.1.1 Basic SAR principles

SAR systems have in general a side-looking imagining geometry. It is based on a pulsed

radar with a forward movement mounted on a moving platform. The system sends elec-

tromagnetic pulses and receives the echoes of the backscattered signal in a sequential way.

Pulse repetition rate, as well as the swath width can vary a lot for different systems. The

measured data is actually the amplitude and phase of the backscattered signal. This is

affected from the physical and electrical circumstances. Different frequency bands can be

used depending on the purpose of the measurement. The penetration depth varies for each

band. Longer wavelengths (see Table 1) can penetrate more in the media of the surface.

The most used frequency bands for SAR are L-, C-, and X- band.

Frequency Band Ka Ku X C S L P

Frequency [GHz] 40-25 17.6-12 12-7.5 7.5-3.75 3.75-2 2-1 0.5-0.25

Wavelength [cm] 0.75-1.2 1.7-2.5 2.5-4 4-8 8-15 15-30 60-120

Table 1: Comparison of frequency bands for SAR systems

The collection of backscattered echoes happens during the movement of the platform and

therefore consecutive time of reception translates into different positions. This effect allows

to construct a virtual aperture that is much longer than the physical antenna length.

During the pulse time τ is the amplitude of the transmitted waveform constant whereas

the frequency varies with the time according to fi = kr · t where kr is known as the chirp

rate (chirp signal is a frequency modulated waveform for the transmission). The bandwidth

2



2 THEORETICAL PRINCIPLES

Br = krτ can also be derived with this information.

The distance between the moving radar (with constant velocity v) and a point on the

ground can be described at anytime t during the illumination with the following equation:

r(t) = 2

√
r20 + (vt)2 ≈ r0 +

(vt)2

2r0
for vt/r0 � 1 (1)

r(t0) = r0 = 2

√
(H −∆h)2 + x20, (2)

where H is the platform height as shown in Fig 1. We can simplify equation 1 with the

fact that in general the distance r0 is much larger than vt with a Taylor series. For highly

accurate SAR data processing the complete equation should be considered.

Figure 1: SAR imaging geometry.

Image resolution

Imaging radar has the following two resolutions:

• Slant-range resolution δr: Given the bandwidth Br and speed of light c0 we can define

it with the equation δr = c0/2Br.

2.1 Synthetic Aperture Radar (SAR) 3



2 THEORETICAL PRINCIPLES

• Azimuth resolution δa: The construction of the synthetic aperture (path length during

which the radar receives echo signals) defines δa = r0Ωsa where Ωsa is a narrow

virtual beamwidth. It can also be written like δa = da
2 with da is the length of the

antenna. The last equation shows how high the azimuth resolution can be achieved

with synthetic aperture.

Signal processing

For getting visually useful data, signal processing steps needs to be done. Two main steps

are important as shown in Fig 2. For computational reason a multiplication in the fre-

quency space can be done which represents a convolution in the time domain along both

dimensions (range and azimuth). The range compressed data results after the convolution

with the range reference function (depends on the transmitted chirp waveform). To get

the image data another convolution with the azimuth reference function (depends on the

geometry and changes from near to far range) needs to be done as a last step. Analog to

the Doppler effect the azimuth frequency is also called Doppler frequency.

Figure 2: SAR processing steps for getting visually useful output of the raw data

The image data after processing represents the reflectivity with the intensity values trans-

mitted from the measured ground points. Two following steps needs to be applied to the

image data:

• Calibration: It calibrates the image data to radar backscatter coefficient σ0. This

step requires a DEM (Digital Elevation Model) image to accurately calculate the

incidence angle over the image. The radar backscatter coefficient values are given in

decibels (dB) [Harris (2018)].

2.1 Synthetic Aperture Radar (SAR) 4



2 THEORETICAL PRINCIPLES

• Geocoding : SAR images are geometrically distorted. This distortion depends on dif-

ferent parameters like the particular side-looking geometry and on the magnitude of

the undulation of the terrain’s surface. Radar measures the projection of a three-

dimensional scene on the radar coordinates (slant-range and azimuth). To make it

useful for comparing with other types of data it is important to correct it geometri-

cally in order to integrate it with other types of data (satellite images, maps, etc.).

A DEM is used to create a grid map for projecting the SAR image to the grid and

locate correctly the positions of the pixels [ESA (2018b)].

Speckle

Elemental scatterers with a random distribution can occur within a resolution cell. This

causes the speckle. From one cell to other due to the strong fluctuation of the backscatter-

ing (sum of their amplitudes and phase results). This leads to the fact, that intensity and

the phase in the final image are no longer deterministic. It follows instead an exponential

and uniform distribution. Generally speaking, we can say that speckle is a physical mea-

surement at sub-resolution level. Although it is often seen as noise, it can not be reduced

by increasing the transmit signal power because its variance increases with the intensity.

An approach to reduce it is called multi-look. It is a non coherent averaging of the in-

tensity image. Even though it reduces the resolution of the image it increases the visual

interpretability strongly (see Fig 3) until some point. With higher multi-look the entire

image gets smoothed a lot and this can result to bad quality.

Figure 3: (a) without multi look, (b) - (d) multi-look variations of 2x2, 4x4 and 8x8. Higher
multi-look reduces the speckle but at the same time worsens the resolution of the image
(more smoothed)

2.1 Synthetic Aperture Radar (SAR) 5



2 THEORETICAL PRINCIPLES

Operation modes

A useful feature in SAR imagery is that by controlling the antenna radiation pattern it

can process with different operating modes. This can be achieved by dividing the antenna

into sub-apertures and controlling the phase and amplitude of each sub-aperture through

transmit/receive modules. Working methods of different operation modes are explained in

section 2.1.2 in detail.

2.1.2 Sentinel-1 mission

All information given in this chapter is taken from ESA (2018c) if nothing else is quoted.

Sentinel-1 mission is the first mission that ESA (European Space Agency) started for the

Copernicus program [ESA (2018a)]. Two of the planned four satellites are already in space

(Sentinel-1A launched 2014 & Sentinel-1B launched 2016) and are collecting open source

data.

Overview

Four different imaging modes are operated with C-band (see Table 1) with different reso-

lutions (down to 5m) and coverage (up to 400km). The most important facts are that it

has a really short revisiting time (only a few days) and it has dual-polarization capabilities

and rapid product delivery. Due to the fact that, SAR imagery is not affected of cloud cov-

erage or lack of illumination and can provide data during day and night under all weather

conditions it can offer reliable, repeated wide area monitoring.

The mission is especially designed to work in a pre-programmed, conflict-free operation

mode. Its imaging the entire globe to ensure a consistent long term data archive built on

applications based on long time series.

Some of the services which will benefit from this mission are:

• monitoring of arctic sea-ice extent

• routine sea-ice mapping

• surveillance of the marine environment, including oil-spill monitoring

• ship detection for maritime security

• monitoring land-surface for motion risks

• mapping for forest, water and soil management

• mapping to support humanitarian aid and crisis situations.

2.1 Synthetic Aperture Radar (SAR) 6



2 THEORETICAL PRINCIPLES

Data acquisition

As already mentioned before, sentinel-1 satellites are carrying a single C-band synthetic

aperture radar instrument operating at a center frequency of 5.405 GHz. The C-SAR (SAR

operating with C-band) instrument supports dual polarization (HH+HV or VV+VH) im-

plemented through one transmit chain (switchable to H or V) and two parallel receive

chains for H and V polarization.

Figure 4: Sentinel-1 provides four different acquisition modes: Interferometric wide swath
(IW), wave (WV), strip map (SM) and extra wide swath (EW). They all have different
functionalities and usage.

The SAR instrument operates in one of four modes as shown in Fig 4:

• Strip Map (SM): It provides coverage of a narrow swath width of 80 km with a

resolution of 5 m by 5 m. The range coverage is 375 km for six overlapping swaths.

These can be selected individually by changing the beam incidence angle and the

elevation beamwidth. This mode will only be operated on request for extraordinary

situations.

2.1 Synthetic Aperture Radar (SAR) 7



2 THEORETICAL PRINCIPLES

• Interferometric Wide Swath (IW): It is the default acquisition mode over land. A

swath width of 250 km is measured with a geometric resolution of 5 m by 20 m.

For generating the three swaths, it uses the TOPSAR (Terrain Observation with

Progressive Scans SAR) technique. The beam is electronically steered from backward

to forward in the azimuth direction for each burst to get higher quality image. It

ensures homogeneous image quality throughout the swath. Due to the overlap in the

azimuth and elevation domain by Doppler and wave number spectrum, interferometry

is ensured. An important requirement is high accuracy for image co-registration.

Because a small co-registration error in the azimuth can introduce an azimuth phase

ramp.

• Extra Wide Swath (EW): It is mainly important for applications where wide coverage

is important. The workflow is similar to the IW where, instead of three swaths, five

swaths (400 km) are used which results in a lower resolution of 20 m by 40 m. It could

also be used with interferometry similar to IW. This method is intended for maritime,

ice and polar zone operational services where wide coverage is of big importance.

• Wave (WV): As the name already reveals, this model can help to analyze waves,

especially for its direction, wavelength and height on the open ocean. It is the only

mode which does not support dual polarization.

Center frequency 5.405 GHz

Incidence Angle Range 20◦ - 46◦

Look direction right

Antenna size 12.3 m x 0.821 m

Azimuth beam width 0.23◦

PRF (Pulse Repetition Frequency) 1 000 - 3 000 Hz (programmable)

Data quantization 10 bit

Table 2: Important parameters of the Sentinel-1 instrument

Data products

All products of the Sentinel-1 missions are free of charge and can be used for different

purposes. The output product for the user can vary and should be chosen depending on

the usage (see Fig 5). Data delivery time depends on the area. This can be within an hour

(for near real time emergency response), three hours for priority areas and 24 hours for

systematically stored data.

2.1 Synthetic Aperture Radar (SAR) 8



2 THEORETICAL PRINCIPLES

The product range is divided in the following groups which is also illustrated in Fig 5:

• Level 0: It is the basis product (unfocused and compressed raw SAR data) where all

other product levels are based on.

• Level 1: The product level is distinguished between Level 1-SLC (single look complex)

and Level 1-GRD (ground range detected) where both are already focused. It is

intended for the most data users. The main difference between them is that SLC

product preserves the phase information, is geo-referenced using orbit and attitude

data from the satellite and is provided in zero-Doppler slant-range geometry. On the

other side GRD is multi-looked and projected to ground range using an Earth ellipsoid

model. GRD product has also reduced speckle of cost of the spatial resolution. GRD

products can either be full, high or medium resolution. This depends only upon the

amount of multi-look performed.

• Level 2: It is generated only from strip map (SM) and wave mode (WV). It includes

components for ocean swell spectra (OSW), ocean wind fields (OWI) and surface

radial velocities (RVL).

Figure 5: Sentinel-1 products are divided in three levels. Level 0 are the unprocessed raw
data. Level 1 contains single look complex (SLC) and ground range detected (GRD) data.
Level 2 are Ocean (OCN) products.

2.1 Synthetic Aperture Radar (SAR) 9



2 THEORETICAL PRINCIPLES

2.2 Convolutional Neural Network (CNN)

All information given in this section are based on Karpathy (2018) if nothing else is quoted.

The beginning of neural networks was not inspired by engineering a good machine learning

task rather by the goal of modeling biological neural systems. All the tasks that human can

master are due to biological neurons in the brain. The idea of modeling the functionality

of a biological brain is not far-fetched.

2.2.1 General idea

Figure 6: Biological neuron which can send information through the axon to the next
neuron

In Fig 6 we can see how artificial neural network has been inspired in its beginning. The

same principle is applied for artificial neurals where in a layer each cell can send its infor-

mation stored to the next layer and so on. With this principle a network can be constructed

called artificial neural network.

Deep learning is commonly used for terminology. The term deep is based on the layer wise

structure of the network as shown in Fig 8. Learning refers to the function of the network

which has the aim to learn given tasks from the input data sending to the network. For this

reason, it is a subpart of machine learning which in turn is a field of artificial intelligence

(AI). The goal is to build a network which works similar to a human brain. Fig 7 describes

the mathematical representation of a biological neuron.

2.2 Convolutional Neural Network (CNN) 10



2 THEORETICAL PRINCIPLES

Figure 7: Mathematical representation of a biological neuron. Input data from a previous
neuron is sent by the axon. In the cell body are all incoming data put together and through
an activation function send to the next cell trough the output axon.

Many cells putting together build a layer. Each of them gets all the information from

the previous layer and does some computations and sends it to all cells in the next layer.

All neurons in a single layer function completely independently and do not share any

connections. In Fig 8 we can see how a neural network can look like.

Figure 8: Example of a neural network build of one input layer (input data), two hidden
layers (where learning takes place) and an output layer (output data what the network
predicts).

Convolutional neural networks indeed are neural networks which use a convolution. This

network allows to take an image as input and learn features from this particular input and

optimize the weights of all cells by a predefined function. After training the network with

sufficient training data, it is able to do identify features on the image. The workflow is as

followed:

2.2 Convolutional Neural Network (CNN) 11
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• We define a network architecture.

• The goal or task that the network should solve is set (e.g. classification, detection,

matching, etc.).

• Training algorithm with training set and its label.

• Validation of the algorithm by giving data to the predefined algorithm and see if it

achieves a proper prediction.

Fig 9 illustrates a simplified graphic of a CNN network. For the input dataset (in this case

mode of transport) the labels needs to be predefined in advance, so that the algorithm

knows to which label the input corresponds to. Extracted information gets with each

following hidden layer more abstract. The last hidden layer is a true probability for each

class in the dataset. The prediction is the class with the highest probability. This is

just one example how deep learning can process. Nevertheless, nowadays more improved

methods are developed.

Figure 9: An easy illustration how a CNN works. It gets different mode of transport as
input image and tries to classify them by learning features of different levels to gives a
corresponding probability for each class.

2.2 Convolutional Neural Network (CNN) 12



2 THEORETICAL PRINCIPLES

2.2.2 Architecture

Figure 10: The input image gets convoluted first to get the feature maps. For subsampling
the map size, pooling operation is used. After doing this process a second time we can
generate a fully connected layer which will result in the output layer (fully connected)
[MathWorks (2018)].

Fig 10 shows some of the main layer types used in a CNN architecture.

We will discuss in this section the functionalities and process of each layer type. We focus

on the following types:

• Convolutional layer

• Pooling layer

• Fully-connected layer

Convolutional Layer

The main difference between a neural network and a convolutional neural network are the

convolutional operations. The heavy computation of the algorithm is done in this layer. It

consists a set of learnable features (size of the feature is a parameter to be set beforehand).

Every filter is small spatially and slides through the previous layer cell by cell and saves

the new values in the convolutional layer. Because each filter will produce a 2-D map

usually convolutional layers have besides the two axis (height and width) also a third axis

the depth which depends to the number of filters.

With high-dimensional inputs like images it is not efficient to connect all neurons to all

neurons. This will lead to computational issues and is also unnecessary. Local information

are in images of big importance to extract features. The receptive field of a neutron is

2.2 Convolutional Neural Network (CNN) 13
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defined by its spatial extension. Its local connectivity is restricted on the 2-D map (width

and height) but includes in the depth the entire range.

Figure 11: Each neuron in the convolutional layer is connected only to a local region in
the input volume

To get the output after the convolution we can look at Fig 12. In this example a (3 × 3)

Sobel filter is used. The convolution filter can be defined in values and size individually.

Additional parameters can be set like zero-padding or stride. Zero-padding is used when

the source image should be padded with zeros. Since not otherwise defined the filter will

slide pixel by pixel and compute the filtering. If not every pixel (with its surrounding)

should be filtered stride can be defined where we can set a value to skip a specific amount

of pixels. In our example the output size of the map will be (n−2)× (n−2) where n is the

size of the source map (we assume a quadratic source map). The convolution makes the

most computational cost of a network. This results that, with each additional convolutional

layer or increasing filter size the amount of parameters will be increased highly.

Figure 12: Example of a convolution with a 3x3 filter sliding through the map

2.2 Convolutional Neural Network (CNN) 14
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Pooling layer

It is common to use a pooling layer to reduce the size of the layer (height and width). This

is useful for efficiency and decreasing parameters. Another reason is to control overfitting.

It is usually used between following convolutional layers. In theory pooling layer can be

anything which reduces the size but practically most used is the max-pooling operation.

This is in general a 2×2 filter which works for every part of the image independently. The

depth size remains same as before. For the width and height it looks at a window size of

2 × 2 (for a 2 × 2 max-pooling filter) and takes the highest value of all four parameters.

This process is done for the entire layer. A basic example how the output looks like after

max-pooling operation is shown in Fig 13.

Figure 13: Input layer with size 4×4 is downsampled to 2×2 after max-pooling with filter
size 2× 2.

Fully-connected layer

A fully-connected layer is characterized that all neurons have fully connection to all acti-

vations in the previous layer as it is known from a regular neural network described in the

previous sections. Nevertheless, the function form of a fully connected layer is identical

with a convolutional layer. A fully-connected layer is used usually in the end of the network

for downsampling it to the size of the input classes (especially for classification tasks).

2.2 Convolutional Neural Network (CNN) 15
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Rectified linear unit (ReLu)

Rectified linear unit (ReLu) is an activation function used mostly after a convolutional

layer and before a pooling layer. There are many other activation functions but in the

last few years ReLu gained big popularity. The activation is simply thresholded at zero.

This means only positive values are considered for the activation. The basic mathematical

function for that is the following:

f(x) = max(0, x) (3)

Fig 14 shows the ReLu in a graphical way.

Figure 14: Rectified linear unit (ReLu) is a widely used activation function for CNN. Its
threshold is at the value zero.

There exist different pros and cons for using ReLu. It speeds up the convergence of the

optimizer (compared to sigmoid/tanh activation function) and instead of expensive oper-

ations (exponentials, etc) it uses only a threshold. A negative point is that it is sensitive

to the learning rate of the network. If the learning rate is set too high some neurons can

be ”dead”. This means that they are never active across the entire training dataset. One

attempt to fix this issue is to use leaky ReLu. Instead of the function being zero for x < 0

it will have a small negative slope.

Loss function

One of the most important functions which can tell something about the result quality of

the training the network as well as for the validation is the loss function. It is generally

speaking calculated with penalizing the prediction after comparing it with the true label

and giving each penalty a weight. The sum of that for each training step can be outputted

as a loss. If the network is set appropriate to the dataset the training loss should decrease

2.2 Convolutional Neural Network (CNN) 16
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with each epoch (repeating training with the same training set multiple times). This in-

dicates that the network learns from the training data. Fig 15 shows the influence of the

learning rate (a hyperparameter that can be set and tells the network how fast it should

adapt to new learned features) to the loss function. Since the goal is to let the loss function

converge to zero, a high learning rate will converge in a higher value (local optimum) and a

low learning rate will decrease slowly. It is important to find an appropriate learning rate

by looking at the loss function.

Figure 15: Curve of the loss function depending on the learning rate. With an optimal
learning rate the loss function should decrease in the beginning faster and converge to zero

Although the most important concepts and parameters are explained in this chapter there

are still other important concepts like hyperparameter tuning, regularization, dropout or

optimizer which are not explained in detail in this project.

2.2 Convolutional Neural Network (CNN) 17



3 METHODOLOGY

3 Methodology

In this section we will show our main product by going through the following topics:

The dataset we chose, the pre-processing steps we took, the network we built and the

post-processing steps we applied.

As mentioned in the introduction, the main product is a deep learning network, built with

tensorflow in python, for detecting deforestation in a specific time period. To realize this,

we chose a specific region where deforestation takes place. With the sentinel-1 mission we

get two different C-SAR images (see section 2.1.2) from the same area but different dates.

To detect deforestation in between those two dates we need to get the ground truth, where

deforestation actually took place. For doing that, we use the time slider function from

Google Earth Pro to switch around both dates and generate manually the ground truth.

After collecting the ground truth over the entire map we feed the training data with the

label to the algorithm and validating it afterwards. The result is a binary map where each

pixel is labeled either as deforested (value 1) or background (value 0).

3.1 Dataset

For the dataset we need to define some conditions:

• Needs to be in a forested area where deforestation took place recently (in the last

few years and is still continuing).

• Since we will generate the ground truth by manually labeling in Google Earth Pro,

the area on the satellite image in Google Earth Pro needs to be cloud free, so that

we can label properly.

• Date difference must be enough big, to collect appropriate data of deforested areas.

Considering the conditions listed above, northwestern Oregon, (USA) near Portland, turns

out to be well fitted. According to local newspaper (Oregonlife) (2018), in western Oregon

has over 2000 km2 forest cover disappeared since 2000. In Fig 16 is the exact location of

the dataset shown. The dataset extends to a region around 900 km2. The two different

dates are March 2016 and June 2017. Those are based on the dates which the time slider

in Google Earth Pro is able to show.

Both SAR images are level 1 - GRD products with dual polarization (VV + VH). For this

project we use in both cases only the VH polarization and ignore the VV polarization. The

acquisition mode for the images are Interferometric Wide Swath (IW), which is the over

land default mode (see 2.1.2). Each level 1 - GRD image has a size between 1.5 - 2.0 GB.

18



3 METHODOLOGY

Figure 16: Dataset is northwestern Oregon, (USA) near Portland.

Ground truth

As mentioned before we generate the ground truth manually by labeling polygons where

deforestation took places between the chosen two dates (March 2016 and June 2017). This

is done by switching between the time slider feature in Google Earth Pro. When an area

is discovered where deforestation took place from March 2016 to June 2017 it should be

labeled as deforested. The feature ”Add a polygon” in Google Earth Pro can be used for

this to define polygons. How this process looks like is shown in Fig 17 where three polygons

are labeled as deforested.

Figure 17: An example of how the ground truth is generated. (a) Satellite image of a small
region in March 2016 and (c) the same region in June 2017. (b) and (d) polygons labeled
as deforested (in red) overlay to the satellite image.

By continuing with this process over the entire dataset which is 5250 × 1680 pixel big, we

get a binary map with labels deforested (value 1) or background (value 0). One problem
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that occurs after labeling is that only 2.8% of the pixels in the ground truth map have

actually the label deforested. The remaining 97.2% are background (see Fig 18).

Figure 18: (a) SAR image of March 2016; (b) SAR image of June 2017; (c) Ground truth
label (white: deforested; black: background)

3.2 Pre-Processing

As mentioned in section 2.1.1 the raw sentinel-1 data are in SAR geometry. We need

two main pre-processing steps before we can use it. This is important because we are

generating ground truth based on Google Earth projection system. For that reason, it is

important to have the same geometry for the SAR images because we need to overlay the

ground truth with the SAR images for feeding it to the network in a later stage. For all

the pre-processing steps we use SNAP (Sentinel Application Platform) [ESA (2018d)]. It

is a toolbox for processing sentinel-1 images with in-build functions.

Radiometric calibration

The process described in this section is based on Nuno Miranda (2015).

The first pre-processing step is called radiometric calibration to convert the radar reflec-

tivity into physical units. The radar reflectivity contains a real and an imaginary part. L1

products of sentinel-1 provides so called Calibration Annotation Data Set (CADS) which

contains a Look Up Table (LUT) Aσ to transform the radar reflectivity into radar cross-

section σ0 where the area normalization is aligned with ground range plane. The Earth

model used is the ellipsoid inflated with an average height such that the normalization
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factor can be simplified to sin(α) where α is the local incidence angle of the Earth model

used. To calculate the radar cross-section σ0 we use the following equation:

σ0 =
DN2

A2
dn ·K

· 1

G2
eap

·
(

R

Rref

)3

· sin(α) (4)

where

• 1
G2

eap
is the elevation antenna pattern (EAP) correction (2-way)

•
(

R
Rref

)3

is the range spreading loss (RSL) correction

• Adn is the product final scaling from internal GRD to final GRD

• α is the local incidence angle

• K is an absolute calibration constant.

• DN is the pixel amplitude directly taken from the measurement file

In the case of sentinel-1, the EAP and RSL corrections are by default applied such that

the above formula simplifies to:

σ0 =
DN2

A2
dn ·K

· sin(α) (5)

As defined in the product specification we can also simply use the LUT with the following

relation:

σ0 =
DN2

Aσ
(6)

Geometric terrain correction

For the geometric terrain correction, as the second pre-processing step, we use Range-

Doppler-Terrain correction. It is a necessary step to remove effects of side looking geometry

of SAR images to allow geometric overlays with data from different sensors and geometries

[Gens (2006)].

To generate the terrain corrected image we use in SNAP the previously generated radar

cross-section σ0 in the calibration. The digital elevation model (DEM) used is the SRTM

(Shuttle Radar Topography Mission) with a spatial horizontal resolution of 3” [Survey

(2018)]. Resampling method used is bilinear interpolation with a pixel spacing of 10m ×
10m. The map projection is WGS84.
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Figure 19: Process of terrain correction (backward geocoding) [T.Bayer (1991)]

Transformation of distribution function

Before we feed the dataset to the algorithm we do a last pre-processing step of transforming

the distribution of the SAR images from Chi-squared to Gaussian. Instead of doing some

heavy computations for transformation we use a simple approach:

f(X) = X
8
27 (7)

where X is the SAR image with chi-square distribution. By applying equation (7) to

the SAR images we get the transformation shown in Fig 20 from the blue to the green

distribution. The value range (which is the intensity channel) changes approximately from

[0; 8.7] to [0; 1.9].

Figure 20: blue: Distribution of the dataset (Chi-squared distribution).; green: Trans-
formed distribution of the dataset to Gaussian approximation.
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3.3 Network Architecture

Input data

To feed the network we use a pixelwise approach. We take a 31 × 31 patch as an input.

The label of each patch is the ground truth of the center patch pixel. In other words, to

learn from a pixel we take its local area or surrounding context(extend of 15 pixel in each

direction). The patch size is set based on the approximate size of deforested pixel clusters.

For the following patch we move to the following pixel (sliding window approach). Fig

21 illustrates an example how those patches are generated. We can also see that, on the

image boarders we need a padding of the same size as the extend (15 pixel). This padding

is done by mirroring on the edges. Since both SAR images (March 2016 and June 2017)

have the exact same pixel size and are co-registered, we can take the same patch in each

image. As the first input layer for the network we treat both patches as two channels.

Instead of training each patch one by one we define a batch size (amount of patches for

each training step) of 200. In this case our 4-D input layer has the size 200× 31× 31× 2.

For the training set we feed also the labels for each patch. This is a 2-D layer of the size

200× 2 where for each batch either the first element is set to 1 (if label equals deforested)

or the second element is set to 1 (if label equals background).

Figure 21: Subpart of the input SAR dataset. Yellow rectangle shows a 31 × 31 pixel batch
where the label of the batch is defined by the ground truth of the middle pixel (yellow dot).
The green rectangle shows the sliding window approach defining the next batch by sliding
one pixel to the right. Red arrow is the moving direction.

As already mentioned our dataset is highly unbalanced. Only 2.8% of the data is labeled

as deforested. For the fact that we have anyway a small training set, the total amount

of data for this class is limited. To counteract this unbalance we feed the deforestation

labeled batches multiple times to reach at least 20 % of the class deforested for training.
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Hidden layers

Figure 22: The network is build with five hidden layers. Two convolutional layers (both
followed with max-pooling layer) and in the end one fully connected layer. The second
fully connected layer is the output.

In Fig 22 we can see the network architecture. After each convolution we apply ReLu to

the data before proceeding with max-pooling operator. In both cases a 2 × 2 max-pooling

is used. The kernel size for the convolutional layer is 5 × 5. 16 filters are used in Conv1.

The layer size in MaxPool1 is 200 × 16 × 16 × 16. For Conv2 are 32 filters used. The

layer size in MaxPool2 is therefore 200 × 36 × 8 × 8. After flatten it to a size of 200 ×
2304 we get the size of 200 × 128 × 1 in FC1, respectively 200 × 2 × 1 in FC2.

With the last layer we compute a probability for each of the two classes (deforestation or

background). The predicted class for each batch is the class with the higher probability.

The weights and biases for the network are initialized randomly with a mean value of

0 and a standard deviation of 0.05.

Loss function and Optimization

Once we get the output of the network we need to calculate a loss to adjust the weights in

the network. This is done by a function which actually calculates the loss of each training

step by comparing the distance between the prediction and the label:

loss =
1

N

N∑
i=0

‖ygt − ypred‖ (8)

where N is the batch size of 200, ygt is the ground truth label and ypred predicted label.

To train the algorithm we use an optimizer called gradient descent optimizer with a learn-

ing rate of 0.01.
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Cross Validation

We use 75% of the dataset for training and the other 25% for validation. In this case we

get a prediction map of the data used for validation. To estimate the performance of the

network we use a 4-fold cross validation which means we actually split the entire data in

four different parts (see Fig 23), where for each step three of them are used for training

and one for validation. In this case we run the process four different times and for each

time we get performance measures of the validation as well as a predicted map. To cal-

culate the overall performance we take the mean over all four results. With this method

we can generate a predicted map over the entire dataset by putting the prediction maps

of each validation dataset together. This can be also used to qualitatively estimate the

performance of the network.

Figure 23: Dataset divided in four different subsets. Each subset has the full length of the
input image and equal width.

Since the dataset has a total width of 1680 pixel, we decide to divide the parts in the width

direction. Each part has a total width of 420 pixel. This means that the training set has

the shape of 1260 × 5250 pixel whereas the validation set has the shape of 420 × 5250

pixel.
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3.4 Post-Processing

As the last step in the process we use morphological operators to improve the result per-

formance. The reason is to smooth the edges of the deforested clusters and fill some small

holes in the cluster (since prediction is per pixel and the dataset is limited, it can have

some scattered pixels misclassified. To do so, we use two different morphological operators:

First, opening operation (which is an erosion followed by a dilatation). A disk shaped struc-

turing element of 5 × 5 pixel is used. On the resulting map closing operation is applied

(which is a dilatation followed by an erosion). For this operation a disk shaped structuring

element of 29 × 29 pixel is used. In Fig 24 we can see both structuring elements.

Figure 24: (a) disk shaped structuring element (a) for opening operator (5 × 5 pixel) and
(b) for closing operator (29 × 29 pixel)
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4 Result

4.1 Cross Validation

As discussed in the previous chapter (how we split the 4-folds cross validation and put

the prediction results together) we want to look deeper in the resulting map. We use two

different constellation of the input data for this process. The first approach is to train

the network with the highly unbalanced dataset. For the second approach we balance

the training data with around 20 % deforested training samples. For the training process

we stop after 50 epochs which turn out to be a good compromise between training time

and performance. As we can see in Fig 25 the training loss for the balanced dataset

converges much faster at around 10-15 epochs whereas in the highly unbalanced approach

the convergence starts somewhere around epoch 40.

(a) (b)

Figure 25: Mean training loss after cross validation for (a) highly unbalanced training set
and (b) balanced training set with 20 % deforested batches.

To show that the more balanced approach is much better we can look at Table 3 where

the values can be compared for both approaches.

Training dataset Accuracy Recall Precision F1-Score

Highly unbalanced (2.8 % deforested) 0.9816 0.7583 0.4980 0.5933

Balanced (20 % deforested) 0.9848 0.6949 0.7458 0.7148

Table 3: Comparison of performance between unbalanced and balanced approach

In the table above we can see that despited a small reduction in recall an improvement

in accuracy, precision and f1-score can be achieved. The precision increased significantly
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from 0.498 to 0.746 which is an increase of around 50 %. For the f1-score we are able to

increase it by 20 %. For this reason we chose the balanced dataset to proceed.

Fig 26 shows the ground truth of the entire dataset. Each pixel colored in white is labeled

as deforested where everything else in black is labeled as background.

Figure 26: Ground truth labels of the dataset.

To see how well the performance values are qualitatively we can give a look to the pre-

diction map. This is generated by training with balanced dataset (using same pixels with

class deforested multiple times in the same epoch with different constellations). For the

prediction map we put all 4-folds cross validation together and Fig 27 shows the prediction

map after cross validation.

Figure 27: Prediction map after 4-fold cross validation where white pixels are predicted as
deforested and black as background.
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By comparing the ground truth with the prediction we can easily see that in the first look

the prediction of the deforested clusters are performed well. Almost all deforested clusters

can be found with its shape. A lot of smaller clusters of false positive are in the prediction

included as well as bigger false negative clusters which we will give a look into it in a later

step.

4.2 Post-Processing

Instead of stopping at this point we try to improve our result by using post-processing

steps. We decide to use morphological operators like opening and closing to get rid of

those small false positive clusters which usually have the size of a few pixels. Another

point to target with those processing steps is that in some of the true positive clusters

(actually deforested areas) are smaller pixels which are predicted as background. This can

also be eliminated. The resulting post-processed map is shown in Fig 28.

Figure 28: Post processed map after morphological operators

If we compare the post processed map to the predicted map we can see visually an im-

provement based on the ground truth. A lot of the smaller false positive clusters are

removed, bigger deforested clusters do not have holes anymore and the boarders of those

clusters are sharpened. The improvement can be also seen quantitatively by comparing

the performance of the predicted map and the post-processed map in Table 4.

Accuracy Recall Precision F1-Score

Prediction result 0.985 0.695 0.746 0.715

Post processed result 0.987 0.793 0.745 0.768

Table 4: Comparison of performance between prediction and post processed result
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Even though the improvement is not significantly high visually it leads to a much better

result in the end where the post processed map contains clearly those deforested clusters

with a better shape regards to the ground truth.

We can look in Fig 29 how the post processing improves the result in a small area of the

dataset. While the predicted map contains some holes in the deforested clusters those can

be filled with the morphological operators and the edges of those clusters are sharpened.

Figure 29: An example from a subpart how post-processing steps improves the result

4.3 Discussion

The overall result is satisfying. But although most of the labeled deforested clusters can be

found, the quantitative results can still be improved a lot by using more training dataset.

With our limited dataset, the algorithm is restricted to only limited pixels with deforesta-

tion. This is also the reason why pixel wise approach is used for training (where training

for each pixel with its surrounding takes place), instead of using semantic segmentation

with patches. Since we have a highly unbalanced dataset we would need a lot more patches

with at least 20% of the pixels labeled as deforested. Because of that limitation it makes

less sense.

Another point to mention is that when we check the post processed prediction result we see

big clusters where deforestation is predicted with an unique shape which can be identified in

Google Earth where deforestation took place but not in the time period of our images. If we

look at the Fig 30 we can see that the labeled polygon in Google Earth (red) is predicted in

the post-processed result correctly. The result of this subpart contains another big cluster

which is predicted as deforested but has in fact the label background. If we now look at

the Google Earth image we can see that in this specific area deforestation already took

place. By zooming in Google Earth as near as possible to this area we can see that some

of the trees are still somewhere at the ground and not collected yet. That same problem is

detected in different areas of the training region. With this observation and the fact that

we do not know the observation date accuracy of the date given in Google Earths time
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slider, we can set up an assumption: For most of the big true negative clusters with similar

shape to recently deforested parts (before March 2016) the misclassification is due to the

fact that the dates of the sentinel images and Google Earth can have a small shift which

leads to errors in labeling for the ground truth.

(a) (b)

Figure 30: (a) Post processed prediction result for a subpart; (b) Google Earth image from
the same subpart shown for March 2016.

Another point important to mention is the quality of the ground truth labeling. Since this

is done manually and in some cases where we can not clearly define if it is deforested or not

(e.g. deforestation just started somewhere around the particular date and is still continu-

ing) the decision of labeling can be affected with subjective view. To get a more objective

ground truth label it is possible to let the labeling be checked from another person before

using it for training.

Due to the time consuming manual labeling process and limited time for this project, we

are not able to generate more training data. Although this can be one of the most impor-

tant points to improve the overall result and probably do not even need any morphological

operators.

The actual shape of the predicted deforested areas does not exactly match with the ground

truth which lowers the performance. The reason for that is also the manual labeling process

in Google Earth where the exact border of the deforested area is in most case not clear to

determine. Thus, wrong predictions on the borders should not be seen as misclassification

of the network rather as vagueness of the labeling.
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5 Conclusion

To sum it up, we were able to show that with sentinel-1 SAR images deforestation can be

detected. We achieved a f1-score of 0.77 after cross validation. Even though the value does

not seem to be stunning, by looking at the post processed prediction result we can clearly

see on the prediction map for the entire dataset, that almost all deforested areas in the

training region could be detected. To increase the performance we need to generate more

training data, match the date for the ground truth exactly with the sentinel-1 images and

generate the ground truth with higher precision and objectivity. We are convinced that by

solving this points the performance can be improved a lot.

By extending the training dataset to multiple locations we can use this application to

detect deforestation anywhere on the globe. Since we build our network for detecting de-

forestation in a time period, our implementation can be used for monitoring purpose in

different areas around the world. With a revisiting time for sentinel-1 satellites of just

a few days and the fact that SAR imagery are not affected from cloud or any weather

conditions, we can use continuous, up to date images to discover deforestation in an early

stage and counteract, if needed.

Especially for governmental organizations or companies which are strongly interested in

solving illegal deforestation, but where field monitoring is not possible, this can be of great

importance.
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6 Outlook

There are several ways to improve this project. Following examples are some hints about

what can be adapted to this project.

One interesting point would be generating more training data from different geographi-

cal regions and generating ground truth data with other sources than only Google Earth,

to make it more reliable and see how the network improves.

If the interest is about deforestation in general and not in a specific period, we can modify

the network to detect generally deforestation for a specific region. Such would expect just

one input image and the network would predict any areas where deforestation took place.

We can also go further and try to generate subclasses depending of the deforestation stage

or how much biomass has been destroyed in each image pixel.

Since we normally also have multi spectral data from the sentinel-2 satellites of the same

region, we could combine those with the SAR images to train the network. In this case

we need to handle the cloud problematic in multi spectral images and some adjustments

of the network for the input layer needs to be done.

We could also think a bit out of the topic and use this network for any other environ-

mental change detection besides forest. Since our input expects only images from the same

region with different dates and ground truth labeling, this can be adapted without big

effort. Some possibilities would be other big global problematics like snowmelt in polar

regions, increasing urbanization in settlement areas or decreasing agricultural use.
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