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Abstract

The duration and extent of lake ice are vital indicators of climate change. It

has been recognized as part of the Essential Climate Variables (ECV) by the

Global Climate Observing System (GCOS). One way to monitor the dynamics

of lake ice is through semantic segmentation of lake images. In this project, we

aim to detect the frozen parts of lake Sils (Graubuenden, Switzerland) using

RGB images captured with UAVs. By adopting DeepLabV3+, we achieve an

Intersection-over-Union (IoU) value of 88% for the segmentation task, proven

to be accurate enough to monitor lake ice changing for three days. Besides,

we attempt to adopt up-to-date domain adaptation approaches to help transfer

learning between different lake ice datasets (Photi-Lakeice webcam dataset and

the UAV dataset). Our experiments show the potential application of domain

adaptation methods to reduce required manual annotation work and improve

the target dataset’s prediction results. Based on the experiment results of vari-

ous approaches, possible limitations of current unsupervised domain adaptation

methods are explored and discussed.

Keywords: Domain Adaptation, Semantic Segmentation, Climate Monitoring,

Lake Ice, Webcams, UAV



1. Introduction

Lake ice is an essential variable in understanding local and global climate change,

and it has recently been recognized as an ECV. The use of machine learning

technology to monitor and analyze lake ice provides valuable information for

climate research. This work is part of the project ”Integrated lake ice monitoring5

and generation of sustainable, reliable, long time series” initiated and financed

by the Federal Office of Meteorology and Climatology (Meteo Swiss) in the

framework of GCOS (Global Climate Observing System), Switzerland. Our

task is to classify each pixel of images of lake Sils captured by UAVs as water,

ice, snow, or clutter (objects on the lake surface and background other than the10

lake). Example annotated images and the corresponding color code (consistent

throughout the report) are shown in Fig. 1. Based on effective segmentation

results, we could achieve lake ice monitoring by comparing the percentage of

lake ice during a specific period.

We base our approach on the previous work of [1], which shows the effectiveness15

of deep neural network (DNN) in the lake images’ semantic segmentation task.

We adopt the DeepLabV3+ model pretrained in this work with another lake ice

dataset of webcam images, the Photi-Lakeice dataset, and transfer this model to

predict on the new UAV dataset by finetuning with several labeled target images.

As those two datasets share the same purpose and categories, considering further20

reducing the tedious annotation work, we try to incorporate domain adaptation

methods. In this project:

1. We adopt DNN for lake ice segmentation task using state-of-art semantic

segmentation algorithm DeepLabV3+ [2];

2. We transfer knowledge from the Photi-Lakeice dataset by finetuning its25

pretrained model with several labeled UAV images;

3. We experiment with three domain adaptation methods: AdaptSegNet [3],

Fourier Domain Adaptation (FDA) [4], and Central Moment Discrepancy

(CMD) [5] to test their ability in closing a considerably large domain gap

in this specific task;30

2



4. As part of this project, to quantitatively evaluate our experiment results,

we annotate part of the UAV dataset (77/186 images).

(a) Image (b) Annotation

(c) Image (d) Annotation

(e) Color Code

Figure 1: Examples of UAV Dataset

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation aims to assign each pixel a semantic label in an im-35

age. Recently, methods based on convolutional neural network (CNN) have

achieved significant progress in semantic segmentation. In 2017, a full convo-

lutional network (FCN) [6] was proposed, enabling CNN to make dense pixel

prediction without a fully connected layer. This method promotes the rapid

development of CNN in the field of semantic segmentation, and an FCN-based40

semantic segmentation model trend has emerged. Another problem using CNN
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for semantic segmentation is the information loss due to the pooling layers. As

pooling layers expand the receptive field and aggregate the context, it results

in the loss of location information. In 2015, Google released the first version of

the DeepLab model [7], aggregating atrous algorithm, and conditional random45

(CRF) field in semantic segmentation. Later the authors have incorporated

Atrous Special Pyramid Pooling (ASPP) in DeepLabV2 [8]. DeepLabV3 [9]

has gone further, using a cascaded deep ASPP module to incorporate multiple

contexts [10]. DeepLabV3+ [2] refines segmentation results (especially at the

boundary of the target) by incorporating a decoder into the network. Besides,50

it applies Xception and depthwise separable convolution into ASPP and the

decoder.

2.2. Transfer Learning

One main advantage of DNN is their ability to transfer across domains. For

one to train a simple task from scratch, millions of labeled data and massive55

graphics card resources would be needed due to the demand for training such

deep networks. Besides, it is not always possible to have clean and ample data

resource for training. Transfer learning deals with these problems by utilizing a

trained model for a new task at hand. It provides a shortcut to save time and

improve performance.60

To transfer the knowledge of source data, one could take advantage of the net-

work structure which is proven to be effective in this task, and train on the

target dataset using the same structure. Another approach is to directly use

the pre-trained model, where the weight of each node in the deeper layers of the

well-trained network is migrated to the network to be utilized for the new task.65

The crucial point of transfer learning is its transferability. Transfer learning

only works in deep learning if the model features learned from the first task are

general enough to be transferred, or the second task is well-related to the source

task. In most cases, the adopted network is fine-tuned on the new dataset to

improve its performance on the target task. This still requires supervision in70

the target domain. To further reduce the manual annotation work, different
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approaches have been proposed to diminish the domain shift between source

and target domain, helping the network learn more domain-invariant features.

2.3. Domain Adaptation

Over the past few years, machine learning has achieved great success and has75

benefited real-world applications. However, collecting and annotating datasets

for every new task and domain is costly and time-consuming. Sufficient training

data may not always be available. Fortunately, the big data era makes a large

amount of data available for other domains and tasks [11].

Domain adaptation is a specific instance of transfer learning, which learns and80

transfers knowledge across domains. It aims to solve the problem of degraded

performance due to the domain shift between the source and target domain. It

utilizes labeled data in the source domain to perform new tasks on the target

domain.

Different approaches have been raised to address this problem. One popular85

approach that is widely researched is adversarial-based method. It adds a dis-

criminator, which aims to classify whether its input is from the source or the

target domain. By doing this, it encourages confusion between the source and

target domain [3] [12] [13]. Another approach is discrepancy-based method.

It aims to fine-tune the network with unlabeled target data to diminish the90

domain gap between source and target domains. Various criteria are used to

compute the discrepancy across domains. Among those criteria, the statistic

criterion aligns the statistical distribution shift between the source and target

domains using some mechanisms. Different mechanisms have been proposed,

such as maximum mean discrepancy (MMD) [14], Kullback-Leibler (KL) di-95

vergence [15], and CMD [5]. Some other methods preprocess the dataset to

diminish the difference between the source and target images before training

the network [4].
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3. Data

3.1. Webcam Data100

In this project, we use webcam images from the Photi-Lakeice dataset as our

source dataset. This dataset is publicly available to the research community. All

the webcam images are manually annotated with the LabelMe tool (Wada, 2016)

to generate pixel-wise ground truth concerning the work of [1]. Additionally,

the dataset is cleaned by discarding excessively noisy images due to bad weather105

(thick fog, heavy rain, and extreme illumination conditions). The images vary

in spatial resolution, magnification, and tilt, depending on camera type (fixed

or rotating) and parameters [1]. The annotated Photi-Lakeice dataset could be

downloaded on https://github.com/czarmanu/photi-lakeice-dataset.

The dataset comprises images from two lakes (St. Moritz, Sihl) and two winters110

(winter 2016-17 and winter 2017-18) with pixel-wise ground truth for foreground-

background segmentation as well as for lake ice segmentation. We only use the

data of lake St. Moritz in consideration of image quality. There are two different

fixed webcams (Cam0 and Cam1), observing lake St. Moritz at different zoom

levels [1]. Details of this dataset are listed in Table 1.115

As shown in Fig. 6(a), this dataset has a considerable class imbalance, which

needs to be taken care of during the training process. Another problem with

this source dataset is its comparably low image quality. This influences the

appearance of each class, especially water. As shown in Fig. 3, the water sur-

face contains many shadows cast from the environment, and watercolor changes120

largely in each image, making it hard to adapt.

Table 1: Key Figures of the Photi-Lakeice Dataset

Winter Cam Image Number Resolution

Winter 2016-17
Cam0 820 1209× 324

Cam1 1180 1209× 324

Winter 2017-18
Cam0 474 1209× 324

Cam1 443 1209× 324
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(a) Cam0 (b) Cam1

Figure 2: Example Images of Photi-Lakeice Dataset

(a)

StMoritz Cam0 2016 1204 07 24

(b)

StMoritz Cam0 2016 1205 12 25

(c)

StMoritz Cam0 2016 1210 07 49

Figure 3: Comparison of Images of Water Surface of Photi-Lakeice Dataset

3.2. UAV Data

Our target dataset, the UAV dataset, contains images of lake Sils captured using

two UAVs (DJI Phantom 4 Pro, PixHawk). Those images were taken by drone

for two days in 2018 (from 18 Apr to 19 Apr) and three days in 2019 (from 09125

May to 11 May). Details of this dataset are listed in Table 2. There are in total

of 186 images, and 77 of them are manually annotated with the LabelMe tool.

From the example images, we could tell that the domain gap between source

and target domain is large. The appearance of each class is different. As shown

in Fig. 6, the source images do not contain enough information about clutter130

to adapt. Finally, those images are taken from totally different viewpoints. The

target images are taken from the top view and contain abundant background

information. While the source images are taken from the side view and only

focus on the lake surface.

All images in the target dataset contain geographic location information, and135

absolute locations could be generated using Pix4D with ground control points

(GCPs) recorded in each project. We pick one project for each day with most

GCPs as representations. The generated DSM and Mosaic images are shown in

Fig. 4 and Fig. 5
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Table 2: Key Figures of the UAV Dataset

Date Project Image Number Resolution

18/4/2018

filter ND16 project23 17 5472× 3648

filter ND04 project24 18 5472× 3648

Nofilter project25 11 5472× 3648

19/4/2018 ND16 new GCPs project28 17 5472× 3648

09/5/2019 Project05 22 5472× 3648

10/5/2019
Project06 24 5472× 3648

Project07 20 5472× 3648

11/5/2019
Project08 19 5472× 3648

Project09 38 5472× 3648

(a) 18/4/2018 (b) 19/4/2018

(c) 09/5/2018 (d) 10/5/2018 (e) 11/5/2018

Figure 4: DSM Images of UAV Dataset
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(a) 18/4/2018 (b) 19/4/2018

(c) 09/5/2019 (d) 10/5/2019 (e) 11/5/2019

Figure 5: Mosaic Images of UAV Dataset

(a) Photi-Lakeice Dataset (b) UAV Dataset

Figure 6: Percentage of Each Class of Source and Target Dataset

4. Methodology140

4.1. DeepLabV3+

DeepLabV3+ [2] is a state-of-art deep learning model for semantic segmentation.

It adopts classical Encoder-Decoder structure, combined with ASPP. Encoder-

Decoder Architecture has been proven in literature, such as FPN and U-Net, to

be useful in learning location/spatial information, which helps recover bound-145

ary information and get shaper segmentation edges. With ASPP, the network
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is able to encode multi-scale contextual information. The network structure

of DeepLabV3+ is shown in Fig. 7. As shown in the figure, the feature map

is extracted by the backbone network in the encoding process, and the atrous

convolution is applied correspondingly. DeepLabV3+ augments the ASPP mod-150

ule, which probes convolutional features at multiple scales by applying atrous

convolution with four different rates and one average pooling. In the encoder

stage, the features after ASPP are up-sampled by a factor of 4 and then con-

catenated with the corresponding low-level features. After the concatenation,

a 3 × 3 convolution and an up-sampling are applied to get the segmentation155

result. Modified Xception is adopted as the backbone network in DeepLabV3+

to improve its performance further in semantic segmentation tasks.

Figure 7: DeepLabV3+ Architecture

4.2. AdaptSegNet

AdaptSegNet [3] is an adversarial-based domain adaptation method for semantic

segmentation tasks. This method takes advantage of spatial similarity shared160

between source and target domains. Even if images from two domains have

different appearances, they share a significant amount of local context and spa-

tial information. Based on this intuition, this method deals with the pixel-wise

semantic segmentation task in the output space, directly making the predicted
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label distribution of source and target domains close to each other. As shown165

in Fig. 8, the AdapSegNet model consists of two parts: a segmentation network

(DeepLab) and a discriminator (based on generative adversarial model (GAN)).

First, both source and target images are passed to the segmentation network

to obtain predictions. Then in the domain adaptation module, the semantic

segmentation loss is computed in the source domain with the annotated ground170

truth of source images. Besides, a discriminator is incorporated here to distin-

guish whether the prediction is from the source or the target domain. Then the

adversarial loss is computed on the target prediction and backpropagated to the

segmentation network. This encourages the segmentation network to generate

similar predictions in source and target domains.175

To further enhance performance, the adversarial model is reconstructed to be

multi-level to perform domain adaptation at different feature levels effectively.

However, it is only extended to two levels (output space and the previous layer)

in experiments due to computational limitations.

Figure 8: AdaptSegNet Architecture

4.3. FDA180

FDA [4] does a straightforward Fast Fourier Transformation (FFT) to adapt

the style between source and target domains. As shown in Fig. 9, before
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training on the source dataset, the FFT of each input image (source and target)

is computed. Then the low-level frequencies of the source image, which play

a less important role in high-level image semantics, are replaced by those of185

the target image. Then the source image is reconstituted via the inverse FFT

(iFFT). This method helps the network to generalize across different spectrum

characteristics to predict the unchanged categories. Transformed source images

together with original annotations are used for training. FDA requires selecting

one free parameter, the size of the spectral neighborhood to be swapped (green190

square in Fig. 9). Increasing β will swap the source image more to the target

side, thus decrease the domain gap. Nevertheless, this could also introduce

artifacts, which impairs information in the images.

Figure 9: Illustration of FDA Transformation

4.4. CMD

CMD [5] tries to learn domain-invariant representations by mapping the differ-195

ence of latent feature representations between source and target domains. The

basic idea is shown in Fig. 10. AH (XS , θ) represents the source hidden activa-

tions, and AH (XT , θ) represents the target hidden activations. In addition to

common empirical expectations (denoted by E (l (θ,XS , YS))), a regularizer (de-

noted by d (AH (θ,XS) , AH (θ,XT ))) which maps the difference of activations200
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on each hidden layer is added to the loss function. λ is a weighting parameter

representing the ratio between those two parts of the loss function. The goal is

to minimize the total loss. By adding this regularizer, the similarity between

the latent network representations of source and target domains is enforced.

In the CMD method, the domain regularizer is defined as CMD regularizer.205

First, the CMD metric is computed as:

CMD(p, q) =
1

|b− a|
‖E(X)− E(Y )‖2 +

∞∑
k=2

1

|b− a|k
‖ck(X)− ck(Y )‖2 (1)

Where X and Y are bounded random vectors independent and identically dis-

tributed from two probability distributions p and q on the compact interval

[a, b]N . E(X) is the expectation of X, and:

ck(X) =

(
E

(
N∏
i=1

(Xi − E (Xi))
ri

))
r1+...+rN=k, r1,...,rn≥0

(2)

is the central moment vector of order k. The final central moment discrepancy

regularizer is defined as an empirical estimate of the CMD metric. Only the

central moments that correspond to the marginal distributions are computed.

The number of central moments is limited by a new parameter K, and the210

expectation is sampled by the empirical expectation [5].

In our experiment, we implement this loss function under the DeepLabV3+

model. The backbone network is chosen to be ResNet101. According to the

architecture of ResNet, we set K = 3, which means we compute the CMD

loss after the last convolutional layer of each block (except for the last layer of215

prediction). The activation function of each computed hidden layer is Sigmoid.

The total loss is a weighted sum of cross-entropy loss (for semantic segmentation

task) and CMD loss. CMD loss ratio, which determines the weight between

those two losses, is tuned together with DeepLabV3+ parameters.
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Figure 10: Architecture Sketch of a Basic Network with Backpropagation of an Additional

Loss Function Mapping the Distance between Source and Target Hidden Activation Layers

5. Result220

5.1. Pre-training on Photi-Lakeice Dataset

To pre-train the DeepLabV3+ model on the source dataset, we refer to the

parameter settings in the work of [1] and tune around a bit to find the best

pre-trained model with both decent accuracy and transferability.

The network is implemented in TensorFlow, adopting the open-source code on225

https://github.com/tensorflow/models/tree/master/research/deeplab/.

All models are trained on 75% of sourceimages and evaluated on the remaining

25% after training. The training starts from the initial model pre-trained on the

PASCAL dataset (provided in the code repository). According to the previous

work in [1], the crop size of training is fixed to 321 × 321. Per-class losses are230

balanced by re-weighting the cross-entropy loss with the inverse (relative) fre-

quencies in the training set. Bath size is set to 8, and atrous rates are set to [6,

12, 18] in all experiments. The learning strategy is simply stochastic gradient

descent, and the learning rate is reduced according to the poly schedule. During

14
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the training process, weights are unfrozen on each layer. The evaluation of the235

networks after training is always run at full image resolution without any crop-

ping. To further test out the best transferable parameter setting in our case, we

experiment on different combinations of values of learning rate (lr) and training

steps. Results are evaluated by IoU. Evaluation is shown in Table 3. As they

generate decent mean Intersection-over-Union (mIoU), all those combinations240

listed in the table are compared by direct prediction in section 5.2.

Table 3: Evaluated IoU Values of DeepLabV3+ Model Trained on Photi-Lakeice Webcam

Dataset

Parameters IoU

lr training steps snow water clutter ice mIoU

0.00001 50,000 0.91 0.98 0.62 0.93 0.86

0.00001 100,000 0.92 0.99 0.67 0.92 0.88

0.00001 200,000 0.94 0.99 0.70 0.93 0.89

0.00005 100,000 0.94 0.99 0.72 0.94 0.90

0.00005 150,000 0.94 0.99 0.74 0.95 0.91

0.0001 100,000 0.95 0.99 0.75 0.95 0.91

5.2. Direct Prediction

As all the pre-trained results are quite good, we first try to directly using these

models to predict on the UAV dataset and check the visualization prediction

results. Comparisons of prediction results using different learning rates are245

shown in Fig. 11. As shown in the figure, with a larger learning rate of 0.0001

and 0.00005, the transferability of the model is comparably weak, although the

mIoU tested on the source domain is comparably higher in Table 3. Those two

pre-trained models tend to predict pixels as the water category, although the

weight has already been adjusted. The prediction result with a learning rate250

of 0.00001 does not give reasonable predictions as well, but visually looks a

bit nicer, at least giving reasonable patterns although without the correct pixel

labels. So we decide to use this pre-trained model for our later experiments.
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The final full parameter settings are listed in Table 4.

(a) Image (b) lr=0.00001 (c) lr=0.00005 (d) lr=0.0001

(e) Image (f) lr=0.00001 (g) lr=0.00005 (h) lr=0.0001

Figure 11: Comparison of Direct Predictions on UAV Dataset Using Models Pre-trained on

Photi-Lakeice Dataset with Different Learning Rates (training steps = 100, 000)

Table 4: Final Parameter Settings of Pre-training DeepLabV3+ on Photi-Lakeice Webcam

Dataset

Parameter Value

model variant ”xception 65”

label weights [1.0, 1.1, 8.7, 4.2]

atrous rates [6, 12 18]

output stride 16

decoder output stride 4

num classes 4

train crop size [321, 321]

train batch size 8

training number of steps 100,000

fine tune batch norm false

base learning rat 0.00001

learning policy ”poly”

5.3. Supervised Method255

As shown in section 5.2, the direct prediction does not work, which is ex-

pected due to the large domain gap discussed in the data section. In this
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section, we fine-tune the DeeplabV3+ model based on the pre-trained model

of Photi-Lakeice webcam dataset, as discussed in section 5.2. 77 images are

annotated manually as pixel-wise ground truth. In this experiment, we use 10260

of them for training and the rest 67 for evaluation. After several rounds of

experiments, the best training parameters for fine-tuning are set as following:

training number of steps = 10, 000, base learning rate = 0.00001. Instead of

stochastic gradient descent, the learning strategy is set as Adam [16] to help

with faster convergence. All the other parameters are set the same as discussed265

in section 5.2. Fig. 12 shows the visualized prediction results. Table 5 and

Table 6 shows the quantitative analysis result. As shown in the results, the

fine-tuned model performs well with 0.88 mIoU and 0.95 pixel-accuracy.

Table 5: IoU Values Evaluated on 67 UAV Images after Fine-tuning DeepLabV3+ on 10

Labeled UAV Training Images

Snow Water Clutter Ice mIoU

0.90 0.81 0.91 0.90 0.88

Table 6: Confusion Matrix Evaluated on 67 UAV Images after Fine-tuning DeepLabV3+ on

10 Labeled UAV Training Images

Class Snow Water Clutter Ice

Snow 444929601 801341 12849142 4341937

Water 4203197 104806177 1432355 4233559

Clutter 16046070 9355192 460408907 3765463

Ice 9966746 4764092 287251 255253322
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(a) Image (b) Prediction (c) Image (d) Prediction

(e) Image (f) Prediction (g) Image (h) Prediction

(i) Image (j) Prediction (k) Image (l) Prediction

Figure 12: Prediction Results of Supervised Method after Fine-tuning DeepLabV3+ on 10

Labelled UAV Training Images

5.4. Unsupervised Method

DeepLabv3+ still needs manual work to label a certain number of UAV images270

and fine-tuning on the new domain to generate meaningful prediction results.

Although only 10 high-resolution UAV images with annotations are adequate

for fine-tuning, the labeling work is tedious and time-consuming. Therefore, we

would like to try to incorporate domain adaption in order to generate better

direct prediction results without supervision in the target dataset.275

5.4.1. AdaptSegNet

The method is implemented in PyTorch, adopting the open-source code on

https://github.com/wasidennis/AdaptSegNet. As the semantic segmenta-

tion network of AdaptSegNet is also DeepLab, we refer to the best parameter

settings in section 5.1 & 5.2 and tune around these parameters together with280

parameters for the discriminator (refer to the recommended setting in the orig-

inal paper [3]). Unfortunately, after several rounds of experiments, we do not

see any meaningful prediction results that could show some possible directions

for improvement. One set of experiment results is shown in Fig. 13. After the

18
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failure, we tried another strategy, which first excludes the discriminator from285

the whole structure, and only trains the semantic segmentation network until it

becomes stable. At this point, we add the discriminator to start learning from

the unlabeled target images. However, this does not bring much difference to

the experiment result.

(a) Image (b) Prediction (c) Image (d) Prediction

(e) Image (f) Prediction (g) Image (h) Prediction

Figure 13: Prediction Results of AdaptSegNet Trained on Full Labeled Source Dataset and

Unlabeled Target Dataset

5.4.2. CMD290

In the CMD experiment, we tune around two crucial parameters: the learning

rate and the CMD loss ratio. Fig. 14 shows the comparison of the training

loss curves of different parameter settings. Comparing those images, we could

tell that the CMD training loss does not converge with too small CMD loss

ratio, which decides how much the target dataset contributes to the training295

process. A larger learning rate also increases the weight of CMD loss in each

epoch. However, as the learning rate is set for the whole network, including

backpropagation of cross-entropy loss, a too large learning rate also leads to

divergence, as shown in Fig. 14(a). Fig. 15 shows the training process of one

set of experiment with comparably promising parameter settings.300

Fig. 16 shows the corresponding prediction result. In some patterns, CMD does

help the network to learn, compared to direct prediction without incorporating

CMD Loss. But still, it fails to close the large gap between the source and

19



target domain. As shown in Fig. 15, although the CMD loss ratio has been

set to 1,000, the cross-entropy loss still converges to a very small value. This305

indicates that the network still learns most of its knowledge from the labeled

source dataset, as it is much easier comparing to mapping such a large domain

gap.

(a) Learning Rate=0.01,

CMD Loss Ratio=100.0

(b) Learning Rate=0.0001,

CMD Loss Ratio=100.0

(c) Learning Rate=0.00001,

CMD Loss Ratio=100.0

(d) Learning Rate=0.0001,

CMD Loss Ratio=10.0

(e) Learning Rate=0.0001,

CMD Loss Ratio=100.0

(f) Learning Rate=0.0001,

CMD Loss Ratio=1000.0

Figure 14: Training Curves of CMD with Different Parameter Settings
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(a) CMD Loss (b) CMD Training Loss

(c) Cross-Entropy Loss (d) mIoU of Source Dataset

Figure 15: Training Process of CMD, Parameter Setting: Learning Rate= 0.0001,

CMD Loss Ratio = 1000.0

(a) Image (b) Direct Prediction (c) CMD Prediction

(d) Image (e) Direct Prediction (f) CMD Prediction

(g) Image (h) Direct Prediction (i) CMD Prediction

Figure 16: Prediction Results of CMD Compared with Direct Prediction Results (discussed

in section 5.2), Parameter Setting: Learning Rate= 0.0001, CMD Loss Ratio = 1000.0
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5.4.3. FDA

For FDA, the crucial parameter is β, which determines how much the source310

image will be swapped to the target side. A large β value could cause artifacts

in transformed images while a small value does not transfer enough information

from the target side. As shown in Fig. 17, we could see artifacts in transformed

images, even with small β values. This might be due to the large variance in the

richness of content between the source and target dataset, as the former only315

focuses on the lake surface. We transform source images with a wide range of β

values and train DeepLabV3+ on those transformed source images. After that,

we use these pre-trained models to predict on the target dataset directly and

compare the results with the prediction in section 5.2. One set of experiment

results with β = 0.008 is shown in Fig. 18. As shown in this figure, FDA does320

not help generate meaningful prediction results.

(a) Image (b) Image

(c) β = 0.005 (d) β = 0.005

(e) β = 0.015 (f) β = 0.015

Figure 17: Source Images Transformed to the Target Side by FDA with Different β values
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(a) Image (b) Direct Prediction (c) FDA Prediction

(d) Image (e) Direct Prediction (f) FDA Prediction

Figure 18: Comparison of Prediction Results of FDA (β = 0.008) with Direct Prediction

(discussed in 5.2)

5.5. Semi-supervised Method

As all those domain adaptation methods do not generate satisfying results fully

unsupervised, we decide to try those methods again in a semi-supervised way

by incorporating fewer training images than the supervised method. Although325

we achieve decent segmentation results with only ten labeled target images, we

would like to see if those domain adaptation methods could help reduce the

training images that we need.

5.5.1. AdaptSegNet

Our first try in this experiment is to add 4 labeled UAV images into the source330

dataset. All the experiments show no clear difference from the unsupervised

method. Therefore, we also try the second strategy. This time, we not only

pre-train the semantic segmentation network part on the labeled source images

but also fine-tune it on 4 labeled target images before adding the discriminator.

By doing this, we would like to see whether the discriminator helps improve335

the trained network by checking prediction results during the training process.

One set of experiment results is shown in Fig. 19. As shown in the figure,

after training for considerably sufficient steps, the backpropagated loss from the
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discriminator impairs the prediction on the target dataset and does not help

improving when we continue training.340

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: Comparison of Prediction Results of AdaptSegNet Incorporating 4 Labeled Target

Images, with Prediction Results of Fine-tuning DeepLabV3+ with 4 Labeled Target Images

(a)(e): Original Images; (b)(f): AdaptSegNet Prediction Incorporating 4 Labeled Target

Images (training for 15,000 steps); (c)(g): AdaptSegNet Prediction Incorporating 4 Labeled

Target Images (training for 30,000 steps); (d)(h): Prediction of Fine-tuning DeepLabV3+

with 4 Labeled UAV Images

5.5.2. CMD

In this experiment, we add 4 labeled UAV images into the source dataset. Train-

ing parameters are the same as the experiment shown in section 5.4.2. The

prediction results are shown in Fig. 20. Although the prediction results are

improved compared to unsupervised CMD, it does not overcome the result of345

fine-tuning DeepLabV3+ with the same labeled target images. Checking the

training process in Fig. 21, we could tell that trying to learn more information

of target images impairs the prediction on the source dataset a lot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 20: Comparison of Prediction Results of CMD Incorporating 4 Labeled Target Images

and Unsupervised CMD, with Prediction Results of Fine-tuning DeepLabV3+ with 4 Labeled

Target Images

(a)(e)(i): Original Images; (b)(f)(j): CMD Semi-supervised Prediction (with 4 labeled UAV

images); (c)(g)(k): CMD Unsupervised Prediction; (d)(h)(l): Prediction of Fine-tuning

DeepLabV3+ with 4 Labeled UAV Images

(a) CMD Loss (b) CMD Training Loss

(c) Cross-Entropy Loss (d) mIoU of Source Dataset

Figure 21: Training Process of Semi-supervised CMD, Parameter Setting: Learning Rate=

0.0001, CMD Loss Ratio = 1000.0
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5.5.3. FDA

In all the experiments in this section, with the FDA method, we first pre-train350

the DeepLabV3+ model on source images transformed by FDA. Then we fine-

tune the pre-trained model with some labeled target images. In comparison, we

also run corresponding experiments without FDA, which means that we pre-

train the model on the original source images and then train on the same target

images.355

First, we manually picked two sets of 4 different labeled terget images and

experiment on those two sets with different β values for FDA. According to the

experiment results, we fix the β value to be 0.008, which generates the best

prediction results on the target dataset on average.

During the experiment, we notice that whether FDA helps improve the pre-360

diction results not only relates to the β value but also links with the choice of

training target images, as prediction results vary between these two sets. So,

we run some experiments, randomly picking four labeled target images for fine-

tuning, and compare those results. The result is shown in Fig. 22(a). As shown

in the figure, FDA only helps in 4 cases out of 10. Visualized prediction results365

of set1 and set6 are shown in Fig. 23 and Fig. 24. As shown in these two sets

of predictions, FDA shows its potential to improve prediction results. However,

it is hard to determine it due to the limitation of our target dataset. As shown

in Fig. 22(b), only 4 labeled images help generate satisfying mIoU evaluated

on target images. As the target dataset lacks variety, a proper choice of im-370

ages plays a much more significant role. A larger dataset with more variance in

images is needed for further experiments.
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(a) Comparison of mIoU Evaluated

on 67 Labeled Target Images (model

trained on source images (origi-

nal/FDA transformed) and different

sets of randomly picked 4 labeled target

images)

(b) Comparison of mIoU Evaluated

on 67 Labeled Target Images (model

trained on source images (origi-

nal/FDA transformed) and a random

number of labeled target images)

Figure 22: mIoU of FDA Method Evaluated on 67 Labeled Target Images, β = 0.08

(a) Image (b) without FDA (c) with FDA

(d) Image (e) without FDA (f) with FDA

Figure 23: Comparison of Prediction Results without/with FDA transformation (model

trained on source images (original/FDA transformed) and 4 labeled target images (set 1 in

Fig. 22 (a)), β = 0.08
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(a) Image (b) without FDA (c) with FDA

(d) Image (e) without FDA (f) with FDA

Figure 24: Comparison of Prediction Results without/with FDA transformation (model

trained on source images (original/FDA transformed) and 4 labeled target images (set 6 in

Fig. 22 (a)), β = 0.08

5.6. Geo-referenced Result

To effectively monitor lake ice of Sils, we do our analysis based on the segmen-

tation results of the supervised method, which fine-tunes DeepLabV3+ model375

with 10 labeled UAV images (as discussed in section 5.3). The segmentation

results of geo-referenced mosaic images of the whole monitored area is shown

in Fig. 25 and Fig. 26. Each year’s images are clipped according to their

overlapped region, so they are good forcomparing the percentage of each class.

Changes in the class percentage in 2019 are shown in Fig. 27. We could see380

from the figure a decrease in the percentage of ice from 0.38 to 0.36 and then

to 0.33, indicating ice melting of the lake. We could also see the percentage

of snow decreasing while the percentage of water and clutter increasing. This

corresponds with the change of ice and proves that our segmentation results are

valid.385
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(a) Image (b) Prediction

(c) 18/4/2018

(d) Image (e) Prediction

(f) 19/4/2018

Figure 25: Predicted Segmentation Results of Geo-referenced Images of 2018

(a) Image

(b) Prediction

(c) 09/5/2019

(d) Image

(e) Prediction

(f) 10/5/2019

(g) Image

(h) Prediction

(i) 11/5/2019

Figure 26: Predicted Segmentation Results of Geo-referenced Images of 2019
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Figure 27: Changing Trend of Percentage of Each Class Analyzed with Segmentation Results

of 2019 Mosaic Images

6. Conclusion

In this project, we succeed in the monitoring task through fine-tuning DeepLabV3+

using 10 labeled UAV images. The result is accurate enough to demonstrate a

reasonable change in the percentage of each class to help with monitoring lake

ice.390

According to the experiment results discussed in the report, we are unable

to close the domain gap with those up-to-date domain adaptation methods

in an unsupervised way. Therefore, this might indicate some limitations of

current domain adaptation methods. Although these methods help to improve

semantic segmentation prediction results in their own experiments, they might395

not work in large domain gap scenarios, especially viewpoint changes. Most

domain adaptation papers test their method with GTA5 [17] or SYNTHIA

[18] as the source domain and Cityscapes [19] as the target domain. Those

datasets share very similar viewpoint and content, as illustrated in Fig. 28.

Additionaly, they need a comparably larger amount of data for training. GTA5400

contains 24,966 annotated images, and SYTHIA contains 9,400. 2,975 images

are available in Cityscapes for adaptation. Notably, the semi-supervised method
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with FDA looks promising, as it helps improve the prediction result in certain

cases. However, no concret conclusion regarding those unsupervised and semi-

supervised methods could be drawn due to the limitation of our own dataset.405

The UAV dataset only contains 186 images over 5 days, and those drone images

have an overlap of approximately 70%. A collection of part of the UAV images

is dipicted in Fig. 29. We do not have much variety in the UAV dataset,

which largely limits the adaptation. This also makes the choice of appropriate

images a dominant element as opposed to which method we choose. Further410

experimentation with a more representative UAV dataset is required to validate

all those hypotheses.

Besides strengthening the target dataset, possible future work could aim at

exploring a better domain adaptation methodology incorporating viewpoint

changes, which is shown to be the primary challenge from our experiments.415

The domain gap between our source and target dataset is too large to contain

enough local structure similarities. Specifically, considering viewpoint changes

separately might help identify a better solution.

Figure 28: Sample Images of Dataset Experimented in AdaptSegNet[3]
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Figure 29: Part of UAV Dataset
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Platz, Central moment discrepancy (cmd) for domain-invariant represen-435

tation learning (2019). arXiv:1702.08811.

[6] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for seman-

tic segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 39 (4) (2017) 640–651. doi:10.1109/TPAMI.2016.2572683.

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, Semantic440

image segmentation with deep convolutional nets and fully connected crfs

(2016). arXiv:1412.7062.

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convo-

lution, and fully connected crfs (2017). arXiv:1606.00915.445

33

http://dx.doi.org/10.5194/isprs-annals-V-2-2020-549-2020
http://arxiv.org/abs/1702.08811
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1606.00915


[9] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous con-

volution for semantic image segmentation (2017). arXiv:1706.05587.

[10] F. Sultana, A. Sufian, P. Dutta, Evolution of image segmentation using

deep convolutional neural network: A survey, Knowledge-Based Systems

201-202 (2020) 106062. doi:https://doi.org/10.1016/j.knosys.2020.450

106062.

URL http://www.sciencedirect.com/science/article/pii/

S0950705120303464

[11] M. Wang, W. Deng, Deep visual domain adaptation: A survey (2018).

arXiv:1802.03601.455

[12] H. Wang, T. Shen, W. Zhang, L. Duan, T. Mei, Classes matter: A fine-

grained adversarial approach to cross-domain semantic segmentation, in:

The European Conference on Computer Vision (ECCV), 2020.

[13] S. Lee, D. Kim, N. Kim, S.-G. Jeong, Drop to adapt: Learning discrimina-

tive features for unsupervised domain adaptation, in: The IEEE Interna-460

tional Conference on Computer Vision (ICCV), 2019.

[14] M. Long, H. Zhu, J. Wang, M. I. Jordan, Deep transfer learning with joint

adaptation networks, in: D. Precup, Y. W. Teh (Eds.), Proceedings of the

34th International Conference on Machine Learning, Vol. 70 of Proceedings

of Machine Learning Research, PMLR, International Convention Centre,465

Sydney, Australia, 2017, pp. 2208–2217.

URL http://proceedings.mlr.press/v70/long17a.html

[15] Y. Zhu, X. Hu, Y. Zhang, P. Li, Semi-supervised representation learning:

Transfer learning with manifold regularized auto-encoders, in: 2018 IEEE

International Conference on Big Knowledge (ICBK), 2018, pp. 83–90. doi:470

10.1109/ICBK.2018.00019.

[16] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017).

arXiv:1412.6980.

34

http://arxiv.org/abs/1706.05587
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106062
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://www.sciencedirect.com/science/article/pii/S0950705120303464
http://arxiv.org/abs/1802.03601
http://proceedings.mlr.press/v70/long17a.html
http://proceedings.mlr.press/v70/long17a.html
http://proceedings.mlr.press/v70/long17a.html
http://proceedings.mlr.press/v70/long17a.html
http://dx.doi.org/10.1109/ICBK.2018.00019
http://dx.doi.org/10.1109/ICBK.2018.00019
http://dx.doi.org/10.1109/ICBK.2018.00019
http://arxiv.org/abs/1412.6980


[17] S. R. Richter, V. Vineet, S. Roth, V. Koltun, Playing for data: Ground

truth from computer games, in: B. Leibe, J. Matas, N. Sebe, M. Welling475

(Eds.), European Conference on Computer Vision (ECCV), Vol. 9906 of

LNCS, Springer International Publishing, 2016, pp. 102–118.

[18] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, A. M. Lopez, The synthia

dataset: A large collection of synthetic images for semantic segmentation of

urban scenes, in: 2016 IEEE Conference on Computer Vision and Pattern480

Recognition (CVPR), 2016, pp. 3234–3243. doi:10.1109/CVPR.2016.352.

[19] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban

scene understanding, in: Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.485

35

http://dx.doi.org/10.1109/CVPR.2016.352


7. Appendix: Experiments of Thermal Images

This appendix shows some initial experiment results of thermal images. We

still adopt the pre-trained DeepLabV3+ model of Photi-Lakeice dataset and

fine-tune with labeled thermal images. We manually pick 2,335 thermal images

with meaningful content and annotate 15 images for training. Prediction results490

are shown in Fig. 30
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Figure 30: Comparison of Prediction Results of Thermal Images Trained on DeepLabV3+

with Different Parameter Settings, Using 15 Labeled Thermal Images

First Column: Thermal Images;

Second Column: Predictions with Parameter Setting of

base learning rate = 0.00001, learning policy = ”poly”, training number of steps =

10, 000;

Third Column: Predictions with Parameter Setting of

base learning rate = 0.00001, learning policy = ”poly”, training number of steps =

100, 000;

Fourth Column: Predictions with Parameter Setting of

optimizer =′ adam′, adam learning rate = 0.00001, training number of steps = 10, 000;
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