
Interdisciplinary Project Work

Crop Classification
with Neural Ordinary Differential Equations

Nando Metzger

18st of December 2020

Chair of Photogrammetry and Remote Sensing
ETH Zurich

in collaboration with: Swiss Federal Office for Agriculture

Professorship
Prof. Dr. Konrad Schindler

Supervision

Özgür Mehmet Türkoglu
Dr. Jan Dirk Wegner



Abstract

Optical satellite sensors cannot see the Earth’s surface through clouds. Despite the peri-

odic revisit cycle, image sequences acquired by Earth observation satellites are therefore

irregularly sampled in time. State-of-the-art methods for crop classification (and other

time series analysis tasks) rely on techniques that implicitly assume regular temporal spac-

ing between observations, such as recurrent neural networks (RNNs). We propose to use

neural ordinary differential equations (NODEs) in combination with RNNs to classify crop

types in irregularly spaced image sequences. In a later stage, we expand our model to work

with convolutional layers to also incorporate the spatial character of the satellite images.

The resulting ODE-RNN and CONV-ODE-RNN models consist of two steps: an update

step, where a recurrent unit assimilates new input data into the model’s hidden state; and

a prediction step, in which NODE propagates the hidden state until the next observation

arrives. The prediction step is based on a continuous representation of the latent dynam-

ics, which has several advantages. At the conceptual level, it is a more natural way to

describe the mechanisms that govern the phenological cycle. From a practical point of

view, it makes it possible to sample the system state at arbitrary points in time, allow-

ing one to integrate observations whenever they are available, and extrapolate beyond the

last observation. Our experiments show that ODE-RNN and CONV-ODE-RNN indeed

improve classification accuracy over common baselines such as LSTM, GRU, and temporal

convolution. The gains are most prominent in the challenging scenario where only a few

observations are available (i.e., frequent cloud cover). Moreover, we show that the ability

to extrapolate translates to better classification performance early in the season, which is

important for forecasting.
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1 Introduction

Monitoring of agricultural lands is important to manage food production, biodiversity, and

forestry, among others. An increasing world population and changes in consumer habits

require new agricultural areas or intensification of existing ones: ≈38% of the Earth’s land

surface is already covered with crops and pastures (Foley et al. 2005). Cropland expansion

and more intensive agriculture are linked to ecological problems like deforestation, biodi-

versity loss, and soil degradation. Crop monitoring supports land management to minimize

such negative impacts.

With the increasing availability of high-resolution satellite data and annotations, crop clas-

sification with machine learning methods has made great progress. Like vegetation in gen-

eral, agricultural crops have class-specific spectral properties depending on soil structure

(soil brightness, roughness), vegetation architecture (LAI, leaf angle, etc.), and leaf bio-

chemistry (chlorophyll, water content, nitrogen content, etc.). Importantly, the reflectance

of agricultural crops varies strongly due to their pronounced phenological cycle (Garnot et

al. 2019; Hu et al. 2017), so time series modeling is essential to achieve good classification.

Recurrent neural network (RNN) architectures are a powerful tool for sequence modeling,

and several state-of-the-art crop mapping methods are based on RNNs (M Rustowicz et al.

2019; Rußwurm and Körner 2017, 2018; Turkoglu et al. 2019). A main challenge when

working with satellite time series in the optical spectrum (e.g, Sentinel-2 or Landsat) are

atmospheric effects, in particular occlusion by clouds. If the region of interest is overcast

during image acquisition, then the corresponding observations do not contain any signal

from the crop on the ground, see Figs. 1 and 2. RNNs can, in principle, learn to discard

uninformative parts of the input. However, their performance degrades (Che et al. 2018;

Tan et al. 2020) when uninformative observations are frequent and arbitrarily scattered

across the time series (as often the case in repeat-pass satellite data). One reason for

this behavior is that RNNs are designed for discrete data sampled at regular intervals –

in our case with equal temporal spacing. RNNs regard the individual observations as an

ordered sequence, but beyond the sequence order they are unaware of time, as they do not

have a ”clock”. They cannot represent the dynamics of a system that is observed with

variable temporal spacing, since the state update depends only on the previous state and

observation, without any notion when that state is reached.

In this project, we deal with the classification of spectral time series into crop types,

in the presence of varying cloud cover. To handle the changing and uneven data gaps

due to clouds, we employ a method based on Neural Ordinary Differential Equations

(NODE, Chen et al. 2018). NODEs encode continuous dynamics that are, by themselves,
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Figure 1: Examples of Sentinel-2 time series data from TUM dataset (left for winter wheat,
right for corn). Observations obscured by clouds are marked in blue at the bottom. Note
their irregular distribution.

independent of observations, and have a metric notion of time, so that observations can

be included with conventional RNN operations whenever they are available. Hence, un-

informative observations can simply be skipped. Furthermore, we expand the model with

convolutional layers to model the spatial dimension of the satellite images. We validate

the proposed method on two different datasets, in combination with two different (ar-

guably, the two most popular) recurrent architectures, namely Long Short-Term Memory

(LSTM, Hochreiter et al. 1997) units and Gated Recurrent Units (GRU, Chung et al. 2014).

To the best of our knowledge, our work is the first to apply neural ordinary differential

equations for time series analysis in remote sensing. We show that the application of

NODEs to satellite image time series is fairly straight-forward, opening up a host of po-

tential applications. We believe that NODEs may be beneficial for many remote sensing

tasks beyond crop mapping, since the problem of uninformative observations and/or data

gaps is a ubiquitous, general problem of optical earth observation.
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Figure 2: Example of Sentinel-2 image time series from TUM dataset (visualization using
bands B02, B03, B04). The last image is the ground-truth map where different colors
correspond to different crop types.

2 Related Work

Classification of crops from satellite image data has been studied intensively in the remote

sensing literature. In early work, rule-based systems (Conrad, Fritsch, et al. 2010) or clas-

sical machine learning (Inglada et al. 2015; Wardlow et al. 2008) were used. Such methods

mostly relied on handcrafted features such as the Normalized Difference Vegetation Index

(NDVI) (Conrad, Fritsch, et al. 2010; Foerster et al. 2012; Peña-Barragán et al. 2011;

Ustuner et al. 2014). To model the temporal dynamics, methods used beyond consensus

voting or concatenation, also employed floating windows (Conrad, Dech, et al. 2014), hid-

den Markov models (Bailly et al. 2018; Siachalou et al. 2015) and dynamic warping (Belgiu

et al. 2018).

More recent approaches tend to avoid handcrafted features and employ deep learning.

Rußwurm and Körner 2017 investigate the use of Long Short-Term Memory (LSTM) net-

works to model the temporal evolution of different crop types’ spectral characteristics. In

follow-up work, a convolutional version of LSTM is used to learn spatio-temporal pat-

terns of the crop classes (Rußwurm and Körner 2018). Other popular neural architectures

have also been used to represent temporal dependencies; such as temporal convolutional

networks (TCNs, Lea et al. 2016), which employ convolutions along the time dimension

(Pelletier et al. 2019), a 3D convolutional neural network that models both spatial and

temporal dimension (Ji et al. 2018), and transformers, which instead use a learned atten-

tion mechanism to focus on informative time steps in the sequence (Rußwurm, Lefèvre,

et al. 2019).
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A recurring question when working with time series of observations is how to handle miss-

ing data. A frequent strategy is imputation, i.e., explicitly filling the gaps by predicting the

missing values. Many different variants exist, including simple (e.g., linear or spline) inter-

polation, supervised learning methods such as k-nearest neighbours (Batista et al. 2002)

or Random Forests (Stekhoven et al. 2012), and algebraic methods for low-rank matrix

completion (Koren et al. 2009; Mazumder et al. 2010). These methods have also been used

in remote sensing. In Nguyen et al. 2018 the authors used a k-NN imputation techniques to

estimate the forest biomass from Landsat time series, similarly Brooks et al. 2012 predicted

the missing data by leveraging Fourier analysis.

There have been attempts to extend recurrent networks and propagate information through

data gaps. In the simplest case, missing values are replaced by the last observed value or

the dataset mean, but it has also been proposed to gradually decay the input towards

the mean (Che et al. 2018). That work also suggests appending the time that has passed

since the previous observation to the input. Tresp et al. 1998 integrate an RNN with

a Kalman filter, whereas GRU-D uses exponential decays to model the behavior of the

variables over time. For remote sensing images, it has been proposed to reconstruct the

missing data with a convolutional encoder-decoder network, exploiting the fact that gaps

with associated ground truth are trivial to simulate for training (Zhang et al. 2018).

Neural Ordinary Differential Equations (NODEs) (Chen et al. 2018) can be used as a

generic building block to integrate a self-contained dynamic model into deep learning ar-

chitectures, see below. By themselves, NODEs do not ingest observations, but they can

be combined with standard recurrent units to form ODE-RNNs, where a NODE repre-

sents the dynamics and some RNN unit serves to update the hidden state when input is

available at irregular intervals (Rubanova et al. 2019). Extensions of that idea include a

GRU-like version of NODE, where the sporadic input of observations is interpreted as a

Bayes update, termed ODE-GRU-Bayes (De Brouwer et al. 2019); using Controlled Dif-

ferential Equations to obtain smooth temporal dynamics without jumps when the hidden

state is updated with new input data (Kidger et al. 2020); and the Vid-ODE architecture

which consists of a convolutional version of ODE-RNN as an encoder for tasks like video

interpolation and extrapolation (Park et al. 2020).
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3 Methodology

3.1 Recurrent Neural Networks

Recurrent neural networks have established themselves as a powerful tool for modelling

sequential data. They have brought significant progress in a variety of applications, in

recent years notably language processing and speech recognition (A. Graves et al. 2013;

Nallapati et al. 2016; Sak et al. 2014). RNNs are feed-forward neural networks that iter-

atively update a hidden state vector h with the same computational unit (or ”cell”). At

a given time t, a new observation (input) is combined with the previous state ht−1 in a

non-linear mapping that outputs the new state ht.

ht = f(xt,ht−1,W ) , (1)

with W being the trainable parameters of the cell. The input sequence has an overall

length T , which can vary from sample to sample. The final hidden state hT can be seen as

a ”cumulative encoding” that summarises the complete sequence, and serves as input for a

decoder that maps it to the desired output, for instance a class label or a forecast of some

biophysical variable. To fit the model to the training data, its parameters W are adjusted

to minimise a suitable loss function that measures the prediction error of either the final

states or all the intermediate states of the training sequences. Usually that minimisation

uses some form of stochastic gradient descent (Linnainmaa 1976; Rumelhart et al. 1986).

RNNs can in principle handle sequences of arbitrary and varying length; however, in their

most basic form,

ht = tanh(Wxxt + Whht−1 + b) (2)

they struggle to capture long-range dependencies in the input, the error signal is diluted

more and more with increasing distance (the ”vanishing gradient” problem). To address

this limitation, gated architectures have been proposed, most prominently Long Short-

Term Memory (LSTM, Hochreiter et al. 1997) and Gated Recurrent Units (GRU, Chung

et al. 2014). They use gates to store and retain information over longer time intervals, so

as to mitigate the vanishing gradient problem, see Fig. 3. Gates are modulation functions

that control the information flow into hidden state variables (note, LSTM has a second such

variable, the ”cell state”). Both LSTM and GRU are able to capture long- and short-range

dependencies in the data (Alex Graves et al. 2013; Sutskever et al. 2014).
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3.2 Neural Ordinary Differential Equations

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wxfxt + Whfht−1 + bf )

ot = σ(Wxoxt + Whoht−1 + bo)

zt = tanh(Wxzxt + Whzht−1 + bz)

ct = ft ◦ ct−1 + it ◦ zt
ht = ot ◦ tanh(ct)

ft = σ(Wxfxt + Whfht−1 + bf )

rt = σ(Wxrxt + Whrht−1 + br)

zt = tanh(Wxzxt + Whz(rt ◦ ht−1) + bz)

ht = ft ◦ ht−1 + (1− ft) ◦ zt

(a) LSTM (b) GRU

Figure 3: RNN cell structures and dynamics of LSTM and GRU. σ is the Sigmoid function,
◦ denotes the Hadamard (element-wise) product, and it, ft, ot are respectively the input
gate, forget gate, and output gate activations. zt is the update. LSTM additionally has
a separate cell state ct, whereas GRU has a reset gate rt instead of the input and output
gates.

3.2 Neural Ordinary Differential Equations

RNNs update their hidden state in discrete steps that are implicitly assumed to be evenly

spaced, as the state change between two adjacent steps does not depend on their time dif-

ference. However, natural phenomena usually follow some underlying process that evolves

continuously and longer time intervals correspond to larger changes. The hidden state of

an RNN instead, cannot be sampled at arbitrary times, but only at every discrete update.

Neural Ordinary Differential Equations (NODE) as proposed by Chen et al. 2018 can be

seen as a continuous version of RNNs. Instead of parameterising the update of the hidden

state as in equation 1, its continuous dynamics is parameterised by a neural network fθ:

dh(t)

dt
= fθ(ht, t,W ) (3)

where θ are the network parameters. This differential equation corresponds to an initial

value problem with input h0 and solution hT , hence it can be used as a generic feed-forward

building block. The NODE approach has several desirable properties:

6



3.3 Convolutional Layers

• As it defines a continuous transformation of the latent function, it can be sampled at

arbitrary, irregular times, which means that the model assumptions permit missing

data points in the time series.

• The hidden state depends explicitly on a time parameter t, endowing the model

with an awareness of time (respectively, rate of change), as opposed to only ordering

(respectively, change per step).

• One can train the model with the adjoint method (Pontryagin 1962) instead of clas-

sical backpropagation, which is more memory efficient, since one need not store in-

termediate values during the forward pass.

• The formulation is not tied to a specific ODE solver, so one can trade off computa-

tional cost vs. numerical accuracy by choosing an appropriate solver.

3.3 Convolutional Layers

A common method to process image-based data is to use convolutional layers (LeCun

et al. 1995). They are the core building blocks of various ground-breaking architectures

for computer vision tasks (He et al. 2016; Krizhevsky et al. 2012; Simonyan et al. 2014;

Szegedy et al. 2015). In contrast to fully-connected layers, convolutional layers are built

on the concept of local connectivity. This means that the number of parameters is reduced

considering only connections within the same spatial neighborhoods. The parameters of

this transformation are stored in kxk matrices (called filters), where k is usually chosen as

3. Weight sharing further reduces the number of trainable weights by applying the same

filter to all neighborhoods in the image. This procedure brings the advantage of translation

invariance. In practice, a convolution layer consists of several filters applied to the same

input. Moreover, convolutional neural networks (CNNs) are built by sequentially applying

convolutional layers and non-linearity functions (activation functions) to achieve higher

levels of abstraction.
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3.4 ODE-RNN: Combining NODE and RNN

3.4 ODE-RNN: Combining NODE and RNN

By itself, NODE updates the state vector h without taking into account any observations

x, i.e., it only represents the system dynamics. See equation 3. To inject observations

whenever they become available, we incorporate conventional recurrent units (we test both

LSTM or GRU), similar to Rubanova et al. 2019. The proposed approach alternates

between two steps:

1. state prediction with NODE, and

2. state update with RNN, based on the observed data.

At time t = 0 the hidden state h is initialized with Gaussian noise of small magnitude,

h0 ∼ N (0, σ2) with σ = 10−4. Starting from there, the hidden state at time ti is predicted

with the ODE solver and then updated with an RNN only if an observation xti is available

for the time step ti. If no observation is available, that second step is skipped. More

formally, these two steps are expressed as follows:

Prediction: hti := ODESolver
(
fθ,hti−1 , (ti−1, ti)

)
(4)

Update: hti := RNN(hti ,xti) (5)

We use a multi-layer perceptron (MLP) with two hidden layers for the ODE network fθ,

which is solved with the Euler method. The Euler method performs numerical integration

with an explicit first-order approximation and is considered the simplest explicit solver for

initial value problems on ODEs. We also tried more sophisticated solvers (the 4th-order

Runge-Kutta and the adaptive Dopri5), but noticed neither an increase in performance

nor a reduction of the variance as shown in Figure 4. The recurrent unit RNN in our

experiments is a LSTM or GRU. Figure 5 schematically illustrates the evolution of the

hidden state. The state hT at the final time T , after seeing all observations, serves as a

feature encoding of the complete time series and is fed into a fully-connected network to

map it to class probabilities for the different crop types.

3.5 CONV-ODE-RNN: Combining CNN, NODE, and RNN

The architecture of CONV-ODE-RNN closely follows the one for ODE-RNN in Section 3.4.

The main difference is the replacement of the fully-connected layers by convolutional layers.

Note, that in fully-connected layers the input vector is multiplied by a fully-occupied

matrix. When dense layers are replaced by the convolutional ones, the only change in

terms of architecture is that the fully-occupied matrix is replaced by a sparse matrix,

8



3.5 CONV-ODE-RNN: Combining CNN, NODE, and RNN

87.95 88 88.05 88.1 88.15 88.2

Accuracy [%]

Euler Runge-Kutta4 Dopri5

Figure 4: Validation accuracy on TUM dataset from 10 runs with different random seeds
using the 1st-order Euler, the 4th-order Runge-Kutta, and the adaptive Dopri5 (Dormand
et al. 1980) respectively as ODE solvers. Using the Euler method, the model achieved
a mean score of 88.12% with a standard deviation of 0.04%. The Runge-Kutta method
achieved a mean score of 88.06% with a standard deviation of 0.10%. The Dopri5 method
achieved a mean score of 88.07% with a standard deviation of 0.08%.
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Figure 5: Illustration of the hidden state trajectory. Observations are available at ti = t
and ti = t+ 1.

which is constructed by converting the filters into Toeplitz matrices (Toeplitz 1911). This

replacement also includes the fully-connected layers inside the RNN cells (see Figure 3)

and the classifier after the last hidden state. Although changing the ODE network fθ from

a fully-connected to a classical convolutional network is technically possible, filters larger

than 1×1 seem unreasonable. Since ODEs can be seen as stacking for incremental updates,

the receptive field grows tremendously fast by using 3 × 3 kernels. Instead, 1 × 1 kernels

are used, which act as pixel-wise transformations of the hidden trajectories.

Many datasets come with pixels-wise occlusion masks. In this architecture, we use this

information and use the output of the update step (Eq. 5) only for pixels that are not

occluded. For the occluded pixels, the value of the hidden state before the update is just

copied. In other words, we only update the hidden state when the pixel is observed.
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4 Datasets

In this work, two different dataset are used: The TUM dataset and the SwissCrop dataset.

The location of these are depicted in Figure 6.

Figure 6: Location of the two datasets.

4.1 TU Munich Crop Data

The TUM dataset was generated by Rußwurm and Körner 2017. It comprises a time

series of up to 26 multi-spectral Sentinel-2A satellite images with a ground resolution of

10 m. The data is collected over a 102× 42 km2 area north of Munich, Germany (Fig. 6),

between December 2015 and August 2016, and comes with ground truth annotations with

19 classes (18 different crop types, plus a rejection class ”other”). The data has been

atmospherically corrected with the standard settings of the Sen2cor toolbox (Louis et al.

2016) and comprises six bands, namely B2 (blue), B3 (green) B4 (red) B8 (near infrared)

B11 and B12 (both short-wave infrared). Lower-resolution bands are upsampled to 10 m

with nearest-neighbour interpolation. The intensities in each band were normalised to have

mean zero and unit energy. This dataset consists of patches of 3× 3 pixels centred at the

pixel of interest, and without further spatial information. We only use this data to for the

non-spatial models (e.g. RNNs and ODE-RNNs) by flattening the neighbourhoods into

54-dimensional vectors.

10



4.2 SwissCrop Data

4.2 SwissCrop Data

For the Swiss dataset, we have collected a time series of 71 multi-spectral Sentinel-2 satellite

images with a ground resolution of 10 m collected over a 50× 48 km2 area over the Swiss

cantons of Zurich and Thurgau (Fig. 6) between January 2019 and December 2019. As for

TUM, the data were atmospherically corrected with the Sen2cor toolbox (Louis et al. 2016)

and normalized to mean zero and unit energy per channel. We use 9 bands, B2 (blue),

B3 (green), B4 (red), B5, B6, B7 (all vegetation red edge), B8 (near infrared), B11, B12

(both short-wave infrared). As above, lower-resolution bands are upsampled to 10 m with

nearest-neighbor interpolation. For the non-spatial models (e.g. RNNs and ODE-RNNs),

intensities from a 3 × 3 neighborhood around each pixel of interest are flattened into 81-

dimensional input vectors. For the spatial models (e.g. CONV-ODE-RNNs), patches of

24×24 pixels are taken along with their corresponding 24×24 label patches. The crop labels

are provided by the Swiss Federal Office of Agriculture. The original nomenclature includes

a large number of crop classes with an extremely imbalanced, long-tailed distribution. We

collect all rare classes with a total of < 50′000 pixels per class into a common rejection

class ”No Label”, leaving us with 13 classes for the dominant crop types.
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5 Experiments

5.1 Setup

We test two different variants of the proposed method, using either LSTM or GRU to

include the observation data. These methods are then compared to the respective baselines

without the NODE part. For quantitative performance evaluation we use the F1-score

(harmonic mean between precision and recall) and the overall accuracy (fraction of correctly

classified total pixels). As a main metric we focus on the F1-score, since it is less influenced

by varying class frequencies, whereas the overall accuracy tends to be biased towards the

most dominant classes. Uninformative observations (clouds, water) are detected with the

corresponding tools of Sen2cor (Louis et al. 2016) and removed from the input time series.

5.2 Training Details

We implement the ODE network (fθ in Eq. 3 and 4) as a multi-layer perceptron with two

hidden layers. The number of neurons per layer is set to 255 for TUM, respectively to 220

for SwissCrop, reducing the capacity to account for the smaller number of classes. In the

convolutional version, we use one hidden layer with 1×1-convolutions and dimension 1024.

Otherwise, we use exclusively 3×3 filters for the rest of the convolutional architecture. The

size of the hidden state vector h is set to 80 for both datasets. For the CONV-ODE-RNN,

we use a hidden size of 70. A classifier with two hidden layers of 300 units each is used

to map the final state hT to class probabilities. For the CONV-ODE-RNN model, this

classifier consists of convolutional layers. Batch normalization (Ioffe et al. 2015) of the

hidden state is performed before every LSTM/GRU update and before the classification

layer. The model is trained using the Adamax optimizer (Kingma et al. 2014) with mini-

batch size 600 for TUM, respectively 500 for SwissCrop. A batch size of 6 (e.g. 6 patches of

size 24× 24) is used for the CONV-ODE-RNN model. The learning rate of the ODE-RNN

models is initially set to 0.07 and then decreased by a constant factor 0.9995 after each

batch iteration, corresponding to a half-life of 1400 batches. For the CONV-ODE-RNN, an

initial learning rate of 0.002 is used and a decay factor such that the half-life corresponds

to 20′000 batches. On the TUM dataset, the model is trained for 12 epochs or a total of

≈ 6′000 batch iterations. For the SwissCrop dataset, the models are trained for 50 epochs,

except for the CONV-ODE-RNN model, which is trained for 80 epochs.

We compare our model to several baselines that do not employ NODE. The implemen-

tations of the RNN baselines (LSTM and GRU) without ODE backbone closely follow
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Figure 7: Examples of hidden state trajectories (reduced to 1 dimension with Principal
Component Analysis). The blue and green markers denote prediction and update steps of
ODE-GRU, respectively. Red markers denote GRU updates.

those of ODE-RNN, so as to rule out implementation differences and make them com-

parable. We run two different versions of the RNN baselines: B-I leaves out the ODE

prediction step (equation 4), such that we are left with a conventional LSTM, respectively

GRU model; B-II also leaves out the ODE prediction, but adds the time interval δt since

the previous observation to the input vector. This trick gives the models the chance to

learn how to handle varying delays between observations. Empirically this variant, de-

noted by the suffix −δt, does slightly improve the performance for both LSTM and GRU.

A separate hyper-parameter search was done for each model. We found that, for both

B-I and B-II, for GRU, a hidden state of size 150 worked best. For LSTM, the size of

the cell state was also set to 150. The total number of learnable parameters per model

are listed in Table 1. As optimiser for the baseline models we used Adam (Kingma et al.

2014) with batch size 300, which we empirically found to work best. As a final baseline

for regularly sampled time series, without recurrence, we also run a temporal convolu-

tional network (TCN), with hyper-parameter settings similar to those recommended by

Pelletier et al. 2019. All models were implemented in Pytorch. Source code is available at

https://github.com/nandometzger/CONVODEcrop.
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5.3 Results

Method #Parameters

B-II
LSTM-δt 346k
GRU-δt 316k

NODE
ODE-LSTM 238k
ODE-GRU 256k

CONV-NODE
CONV-ODE-LSTM 1758k
CONV-ODE-GRU 1351k

Table 1: Number of trainable parameters per model (differences between B-I and B-II,
respectively between TUM and SwissCrop, are <5k). To achieve the best performance,
the NODE model needs significantly fewer parameters.

5.3 Results

In this section, the results of the conducted experiments are presented and discussed.

In Section 5.3.1, the absolute performance of the ODE-RNN models is compared to the

baseline model. The experiment of Section 5.3.2 examines the gain in performance when the

spatial component is modeled as well (e.g. using CONV-ODE-RNN models). Furthermore,

this chapter present experiments examine the usefulness of NODE-based models in special

scenarios in terms of availability data. Namely: for the case of a smaller dataset size

(see Section 5.3.3), the case of shorter time series, e.g. early season classification (see

Section 5.3.4), and the case of sparser sampled time series (see Section 5.3.5).

5.3.1 Performance Comparison

Quantitative classification results for the TUM and SwissCrop datasets are reported in Ta-

bles 2 and 3, respectively. The proposed NODE method brings a consistent improvement

over pure RNN models, across both performance metrics, although having fewer param-

eters (see Table 1). For all further experiments, we compare to GRU-δt, since it is the

best-performing baseline. Note that all RNN baselines have been tuned for optimal perfor-

mance on the specific task and are already very strong, e.g., they significantly outperform

TCN (Pelletier et al. 2019), on both datasets. For a more detailed picture, we show the full

confusion matrix of ODE-GRU for the TUM data in Figure 8. Note the consistently high

accuracy across almost all crop classes. Significant miss-classifications happen only be-

tween the most ambiguous classes, namely: fallows (i.e., unproductive areas not currently

used for crops) are confused with meadows and with the diffuse ”other” class; and different

types of winter grains with similar phenotype and similar phenological cycle are sometimes
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5.3 Results

confused. We also visualize the difference between the confusion matrix of ODE-GRU and

that of the best baseline GRU-δt. For most classes, ODE-GRU increases the rate of correct

classifications and reduces confusions, in some cases up to >7 percent points. There is only

a single class out of 19 where ODE-GRU performs noticeably worse (peas). Furthermore,

we provide a visualization of the predictions for the validation data of the SwissCrop in

Figure 9.

Method F1-score (%) Accuracy (%)

TCN (Pelletier et al. 2019) 69.0 85.7
B-I LSTM 77.0 87.1

GRU 77.7 87.6

B-II
LSTM-δt 76.7 87.3
GRU-δt 78.9 87.6

NODE
ODE-LSTM 78.7 87.8
ODE-GRU 79.6 88.1

Table 2: Performance comparison on TUM dataset.

Method F1-score (%) Accuracy (%)

TCN (Pelletier et al. 2019) 70.0 80.1
B-I LSTM 72.6 85.2

GRU 74.6 85.5

B-II
LSTM-δt 73.7 85.2
GRU-δt 75.5 85.6

NODE
ODE-LSTM 74.6 85.6
ODE-GRU 76.1 85.9

Table 3: Performance comparison on SwissCrop dataset.

5.3.2 Convolution Model

In this experiment, we demonstrate the benefits of incorporating spatial information using

CONV-ODE-RNN. We conduct this experiment using the SwissCrop dataset, as it contains

the required georeferences of the pixels. We only take patches that have at maximum 10%

unlabeled of the pixels to ensure that the spatial component of the data is present. Note, the

class ”Other” is not joined into the class ”No Label”. Instead, the class ”Other” is treated

as a separate target class and the class ”No Label” is ignored by the model. Practically, this
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Figure 8: Per-class results for TUM data. Left: Normalised confusion matrix of ODE-
GRU. Rows denote the true classes, columns the predicted ones. Right: Benefit of ODE-
GRU over GRU-δt. Green denotes margins in favour of ODE-GRU (higher correctness
on the diagonal, respectively lower confusion off the diagonal), brown denotes margins in
favour of GRU-δt.

Figure 9: Crop map prediction by ODE-GRU for the complete validation area of Swisscrop,
and corresponding accuracy map (red denotes wrongly classified pixels).

16



5.3 Results

is achieved by assigning a weight of 0 to this class when calculating the loss. We assess the

performance of the GRU-based models since the results of the experiments in Section 5.3.1

shows that GRU-based models generally perform better than the LSTM-based versions.

Since the GRU-based models consistently perform better than the LSTM-based models.

The quantitative results of Table 4 show a significant improvement of more than 5% to F1

Score by using the convolutional model instead of the non-spatial models. The outcome

further shows that this improvement does not compromise accuracy.

Method F1-score (%) Accuracy (%)

B-I GRU 54.8 82.2
B-II GRU-δt 55.1 82.3

NODE ODE-GRU 55.2 82.2
CONV-NODE CONV-ODE-GRU 60.8 82.3

Table 4: Performance comparison on the modified SwissCrop dataset with patches of at
least 90% labeled pixels.

5.3.3 Dataset Size

The NODE model can be seen as a better prior on the temporal dynamics that accounts for

continuity of the process and for an isotropic time scale. In order to show that this prior on

the hidden state indeed makes sense and imposes a meaningful inductive bias, we amplify

its influence by reducing the amount of training data. We note that this small-data regime

is a relevant situation in agricultural remote sensing, where access to ground truth labels is

often the bottleneck. We randomly sub-sample the training set to 10%, respectively 1% of

its original size, train the models on the reduced set, and evaluate them on the same (full)

test set as before. As expected, performance decreases for both ODE-GRU and the GRU-δt

baseline if they are presented fewer training samples. However, the relative advantage due

to NODE increases as the model sees less data and must rely more on the prior, as shown

in Table 5. This supports our claim that the a-priori assumptions inherent in NODE better

match the temporal evolution of agricultural crops, respectively their spectral responses.

5.3.4 Early Classification

The architecture as proposed in Section 3.4 is capable of extrapolating the hidden trajectory

beyond the last data point in time, whereas conventional RNNs (including GRU) cannot

extrapolate without observations – this is illustrated on the right end of the trajectories in

Fig. 7. In the next experiment we investigate this difference, by comparing our ODE-GRU

17



5.3 Results

F1-score (%) Accuracy (%)
Method 100% 10% 1% 100% 10% 1%

GRU-δt 78.9 70.8 51.7 87.6 85.2 79.8
ODE-GRU 79.6 72.0 53.0 88.1 85.8 80.9

Difference +0.8 +1.2 +1.3 +0.5 +0.6 +1.1

Table 5: Performance comparison for small-data regime (TUM dataset), using 100%, 10%,
and 1% of the available training sequences.

to the GRU-δt baseline on the task of early classification. That task corresponds to the

practically important scenario of forecasting the area of each crop from a shorter time series

covering only the early part of the growing season, before most crops have been harvested.

In the context of agriculture, forecasting is a practically important scenario, for instance to

ensure food security or to inform policies for sustainable agriculture (Rußwurm, Tavenard,

et al. 2019). To simulate that setting, we truncate the time series of the test set and keep

only the leading 75%, respectively 50% of all time steps. For the conventional GRU, this

means that we have to classify from only the early part of the growing season, whereas with

ODE-GRU we can simply let the prediction step run beyond the last time step without

observations. We also tried to extrapolate with the conventional GRU, by feeding it the

global channel-wise mean values as input, but this did not improve the scores. Obviously

classification performance drops if only a part of the seasonal cycle is shown to the model

(Table 6). However, the relative improvement due to NODE increases quite significantly

as the time series ends earlier. This demonstrates the value of explicitly modeling latent

trajectories and being able to extrapolate them into the future beyond the last observation.

F1-score (%) Accuracy (%)
Method 100% 75% 50% 100% 75% 50%

GRU-δt 78.9 49.0 20.2 87.6 74.9 48.7
ODE-GRU 79.7 53.9 24.5 88.1 79.8 60.7

Difference +0.8 +4.9 +4.3 +0.5 +4.9 +12.0

Table 6: Performance comparison for early season classification (TUM dataset).

5.3.5 Missing Data Rate

In this experiment, the input image time series are also shortened, but this time by ran-

domly subsampling along the time dimension rather than truncation. I.e., the model
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5.3 Results

receives fewer observations (100/75/50/25% of the original number) per time series, but

those are still distributed over the entire phenological cycle, just sparser. Classification

performance is tracked for three different scenarios: sparser sequences for training, but full

density at test time; dense sequences for training, sparser ones at test time; and training

and testing with the same amount of sparsity. Table 7 shows that moderately subsampling

the training sequences does not greatly affect performance. In fact, for ODE-GRU we even

observe a slight increase, which we attribute to a data augmentation effect: By randomly

dropping a small portion of the images we increase the variability in the training set in

terms of temporal gaps. Apparently that added diversity outweighs the slightly sparser

sampling per sequence and helps to learn a better dynamical model. Naturally, the per-

formance degrades for both models when downsampling only the test sequences, making

them different from the sequences presented during training and thus creating a domain

shift. Still, ODE-GRU degrades slower than the GRU-δt baseline, resulting in a larger

relative edge. In the scenario where training and test data have progressively higher (but

matched) sparsity, performance decreases monotonically, see diagonal in Table 7. In this

setting ODE-GRU has an even (slightly) bigger edge as sparsity increases, showing that

the stronger dynamical model of NODE manages to preserve a meaningful hidden state

across longer temporal gaps. Across all the three scenarios, ODE-GRU not only consis-

tently outperforms the baseline without NODE dynamics, but also achieves larger gains

in the scenarios with fewer observations. The better handling of sparse time series with

few input images is consistent with our hypothesis that NODE can represent the temporal

evolution more faithfully and is therefore able to bridge longer and more irregular data

gaps.
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F1 (%) Accuracy (%)
Training Set 100% 75% 50% 25% 100% 75% 50% 25%

GRU-δt

T
e
st
in
g
S
e
t

100% 78.9 78.6 78.1 69.4 87.6 87.9 87.6 85.3
75% 71.9 76.2 — — 85.3 86.8 — —
50% 60.0 — 70.8 — 79.3 — 85.0 —
25% 32.4 — — 52.9 62.5 — — 77.6

ODE-GRU
100% 79.6 80.2 79.2 74.6 88.1 88.5 88.2 86.6
75% 74.5 77.7 — — 86.3 87.6 — —
50% 64.0 — 73.1 — 82.1 — 86.1 —
25% 36.2 — — 58.5 66.6 — — 80.8

Difference
100% +0.7 +1.6 +1.1 +5.2 +0.5 +0.6 +0.6 +1.3
75% +2.6 +1.5 — — +1.0 +0.8 — —
50% +4.0 — +2.3 — +2.8 — +1.1 —
25% +3.8 — — +5.6 +4.1 — — +3.2

Table 7: Performance comparison for sparser time series (TUM dataset) with input obser-
vations subsampled to 100%, 75%, 50%, 25% of the original density.

6 Conclusion

We have studied the use of neural ordinary differential equations (NODE) in combination

with conventional recurrent units to assimilate image observations, in order to model the

latent dynamics of spectral signatures over time. Our target application is crop classifi-

cation from optical satellite time series, with missing data due to cloud cover. We have

shown that the ODE-RNN model performs consistently better than conventional recurrent

network architectures that lack an explicit, isotropic notion of time. Moreover, we propose

the CONV-ODE-RNN, which embeds the spatial characteristics of satellite images into

the ODE-RNN model using convolutional layers. This further improves the F1 score by

more than 5%. Under favorable conditions with frequent revisits and low to moderate

cloud cover, conventional RNN models already perform quite well, yet we have observed

consistent improvements. The NODE prior becomes particularly useful under challeng-

ing conditions, for instance when only little training data is available, when the available

time series are sparse, and when the time series cover only a part of the growth cycle. In

these situations NODE exhibits significant benefits in our experiments, reaching up to 10%

higher F1-score for very sparse time series and up to 20% higher overall accuracy for the
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early classification scenario. As a side effect, we also found that the ability to represent

irregularly sampled time series and assimilate observations at arbitrary points in time al-

lows for a convenient form of data augmentation by randomly dropping some observations

from the training sequences.

So far, we have chosen the most straight-forward way to update the hidden dynamics of

NODE when an observation becomes available. However, this procedure leads to discontin-

uous jumps of the hidden state with each update. We suspect that these jumps adversely

affect the model because they violate the ODE’s preference for a continuously evolving

state vector. In future work, this limitation could be addressed through tighter integration

between the prediction and update mechanisms or regularization of the update step.

Beyond our specific application, we believe that the NODE framework has great potential

for time series analysis in remote sensing and Earth observation, where data gaps are

ubiquitous, not only due to clouds but also caused by irregular acquisition patterns in

space or time, sensor failures and exchanges, transmission limits, etc.

21



BIBLIOGRAPHY

Bibliography

Bailly, Simon et al. (2018). “Crop-rotation structured classification using multi-source sen-

tinel images and LPIS for crop type mapping”. In: IGARSS.

Batista, Gustavo EAPA and Maria Carolina Monard (2002). “A Study of K-Nearest Neigh-

bour as an Imputation Method”. In: Int’l Conference on Hybrid Intelligent Systems.

Belgiu, Mariana and Ovidiu Csillik (2018). “Sentinel-2 cropland mapping using pixel-based

and object-based time-weighted dynamic time warping analysis”. In: Remote Sensing of

Environment 204, pp. 509–523.

Brooks, Evan B et al. (2012). “Fitting the multitemporal curve: A Fourier series approach

to the missing data problem in remote sensing analysis”. In: IEEE Transactions on

Geoscience and Remote Sensing 50.9, pp. 3340–3353.

Che, Zhengping et al. (2018). “Recurrent neural networks for multivariate time series with

missing values”. In: Scientific Reports 8.1, pp. 1–12.

Chen, Tian Qi et al. (2018). “Neural ordinary differential equations”. In: NeurIPS.

Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural networks

on sequence modeling”. In: NeurIPS Workshops.

Conrad, Christopher, Stefan Dech, et al. (2014). “Derivation of temporal windows for accu-

rate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal

RapidEye images”. In: Computers and Electronics in Agriculture 103, pp. 63–74.

Conrad, Christopher, Sebastian Fritsch, et al. (2010). “Per-field irrigated crop classification

in arid Central Asia using SPOT and ASTER data”. In: Remote Sensing 2.4, pp. 1035–

1056.

De Brouwer, Edward et al. (2019). “GRU-ODE-Bayes: Continuous modeling of sporadically-

observed time series”. In: NeurIPS.

Dormand, John R and Peter J Prince (1980). “A family of embedded Runge-Kutta formu-

lae”. In: Journal of computational and applied mathematics 6.1, pp. 19–26.

Foerster, Saskia et al. (2012). “Crop type mapping using spectral–temporal profiles and

phenological information”. In: Computers and Electronics in Agriculture 89, pp. 30–40.

22



BIBLIOGRAPHY

Foley, Jonathan A et al. (2005). “Global consequences of land use”. In: Science 309.5734,

pp. 570–574.

Garnot, V Sainte Fare et al. (2019). “Time-Space tradeoff in deep learning models for crop

classification on satellite multi-spectral image time series”. In: IGARSS.

Graves, A., A. Mohamed, and G. Hinton (2013). “Speech recognition with deep recurrent

neural networks”. In: ICASSP.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech recognition

with deep recurrent neural networks”. In: ICASSP.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural

Computation 9.8, pp. 1735–1780.

Hu, Qiong et al. (2017). “How do temporal and spectral features matter in crop classifica-

tion in Heilongjiang Province, China?” In: Journal of Integrative Agriculture 16, pp. 324–

336.

Inglada, Jordi et al. (2015). “Assessment of an operational system for crop type map

production using high temporal and spatial resolution satellite optical imagery”. In:

Remote Sensing 7.9, pp. 12356–12379.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift”. In: ICML.

Ji, Shunping et al. (2018). “3D convolutional neural networks for crop classification with

multi-temporal remote sensing images”. In: Remote Sensing 10.1, p. 75.

Kidger, Patrick et al. (2020). “Neural Controlled Differential Equations for Irregular Time

Series”. In: arXiv preprint arXiv:2005.08926.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.

In: ICLR.

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix factorization techniques

for recommender systems”. In: IEEE Computer Journal 42.8, pp. 30–37.

23



BIBLIOGRAPHY

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification

with deep convolutional neural networks”. In: Advances in neural information processing

systems, pp. 1097–1105.

Lea, Colin et al. (2016). “Temporal convolutional networks: A unified approach to action

segmentation”. In: European Conference on Computer Vision. Springer, pp. 47–54.

LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images, speech,

and time series”. In: The handbook of brain theory and neural networks 3361.10, p. 1995.

Linnainmaa, Seppo (1976). “Taylor expansion of the accumulated rounding error”. In: BIT

Numerical Mathematics 16.2, pp. 146–160.
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