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Abstract

Learning-based monocular depth estimation has shown promising results. In particular,
the unsupervised approach based on view synthesis has achieved comparable or even
better performance than the supervised method. Two networks are jointly trained to
predict the depth map and ego-motion. However, there is a scale ambiguity of the depth
prediction. The output depth value are just up-to-scale.

In this project, we present a semi-supervised learning framework which can directly give
the absolute depth map. The scale ambiguity is removed through introducing a new loss
term. We evaluate our framework on both KITTI and our own dataset, and the result
shows that the absolute loss term is able to upgrade the model from relative to absolute
version.
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1. Introduction

Depth estimation from image has been researched for a long time. Depth map can also
be used in many scenarios. For example, it can provide useful information for driving an
autonomous vehicles. The distance information may reduce the risk of collision and help
build a safer autonomous driving system. Depth map is also a good alternative to the
Lidar, which is more expensive and cumbersome to carry.

Mathematically, the depth can be computed given an stereo image pair (at least two
images). It seems impossible to infer the depth when only a single image is given, since
the depth information is lost during the 3D (object in world) to 2D (object on image)
projection.

However, it’s obvious that we can perceive the image depth when looking at a single
image. Humans can exploit their previous knowledge to infer the image depth, like the
scales relative to the known size of familiar objects. In short, monocular depth estimation
is possible in intuition.

Due to the importance of monocular depth estimation, this task has been extensively
researched in recent years. Like other computer vision tasks, approaches based on deep
learning achieve remarkable success. Earlier works cast this task as a supervised learning
problems[1][2][3]. In these methods the models have been trained with a large dataset,
where the depth ground truth is available and used for supervising the prediction. How-
ever, high quality depth ground truths are hard to obtain. These annotations are often
collected by the expensive laser or depth camera.

Besides supervised method, recent works[4][5][6] shows that view synthesis can be an
effective supervisory signal for depth prediction. The idea is to apply the photometric
consistency on the synthesized view, while the photometric difference provides a super-
visory signal for training the model. In this method no ground truth is needed, while
its prediction performance is still comparable or even superior to its supervised counter-
part.

In this project, we will exploit the monocular depth estimation based on view synthesis.
Our framework is adapted from the architecture proposed by Zhou et al.[4], where a
relative depth map can be predicted. We try to upgrade the framework to output absolute
depth value, then train and evaluate on different datasets.
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1. Introduction

1.1. Related work

Monocular depth estimation can be divided into supervised or unsupervised approach,
depending on whether the depth ground truth is needed during training process.

Supervised monocular depth estimation Most supervised approaches are formu-
lated as a regression problem, where the difference between the depth prediction and
ground truth is minimized. In early work the feature is manually defined. Saxena et
al.[7] propose to estimate the single-view depth by training Markov random field(MRF)
with hand-crafted features. In [8] Liu et al. integrate semantic labels with MRF learn-
ing. Ladicky et al. improve the depth estimation performance by combining the semantic
labeling with the depth estimation.

The success of deep learning inspires many other methods. Eigen et al.[1] propose a deep
convolutional neural network(CNN) architecture to produce dense pixel depth. Based on
this architecture, many variant structures have been proposed to improve the prediction
performance. Li et al.[9] improve the estimation accuracy by combining the CNNs with
the conditional random filed(CRF), while Laina et al.[10] use the more robust Huber
loss as the loss function. Cao et al.[11] formulate the depth prediction problem as a
pixel-wise classification task. Besides CNNs, Kumar et al.[12] propose a model with
recurrent neural network(RNN) to provide spatio-temporally accurate monocular depth
estimation.

However, supervised approach requires large amounts of of accurate and pixel aligned
depth ground truth. And ideally, various scenes should be covered in the training dataset.
This type of data is difficult to obtain in real world. The lack of ground truth depth
map may hinder the performance of supervised approach. One possible solution is to
use syntheic data with perfect depth ground truth. In recent work [13], synthetic images
with highly accurate depth ground truth are use to train a depth estimation network,
and an image style transfer network is trained to convert a real image into the synthetic
domain, then the depth map can be estimated from real image.

Unsupervised monocular depth estimation The photometric consistency between
nearby frames makes it possible to predict the depth without the ground truth. One
category is to learn depth from stereo image pairs, where the pose between the stereo
cameras is already known. Grag et al.[14] trains a network to predict the depth that
minimize the photometric difference between the true right view and the synthesized
right view. They use Taylor expansion to approximate the cost function and derive the
gradient. As a result this approximated objective is only sub-optimal. Godard et al.[5]
choose the spatial transformer network, yielding a cost function which is differentiable
without any approximation. They reconstruct the image using the predicted disparity,
where the left-right consistency consistency is enforced to encourage a more accurate
prediction.
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1. Introduction

Another category is to infer from single image sequence. Vijayanarasimhan [15] and Zhou
et al. [4]show that the learning of depth prediction and ego-motion at the same time is
possible. The depth network and pose network are jointly trained, and the supervision
signal is introduced by minimizing the photometric difference between the synthesized
view and true view. The ego-motion estimation from pose network makes it possible
to train without the stereo image pairs. In recent works, several other constraints are
introduced during the training. Yang et al. [16] utilize the consistency between normal
and depth. Mahjourian et al. [17] propose a 3D point cloud alignment loss.

1.2. Main tasks

In my project I mainly focus on the following two aspects:

Absolute upgrade The framework proposed by Zhou et al.[4] can only provide relative
depth. This is because the whole framework is trained in an unsupervised way, no
absolute information is used in this process. The predicted depth can be scaled arbitrarily
without increasing the predefined loss.

Although there is only a scaling difference between the absolute depth map and the
relative prediction, in reality this scaling factor is hard to find. In our project, we
encourage the network to output absolute depth by introducing an absolute loss term
Labs. The framework structure is modified to integrate the Labs with previously defined
loss.

In short, we formulate a new loss function, then train and evaluate on this modified
framework. More details regarding the absolute loss are in section 2.3.

Evaluate on our own dataset Besides the widely used KITTI dataset, we also format
our own dataset to do some training and evaluation. The image data is collected by
Gopro Hero5, in different areas of Switzerland.

Some prepossessing steps are needed to use these images. We conduct single camera
calibration to compute camera intrinsic, stereo calibration to determine the relation-
ship between different cameras. We also generate some ground truth of depth map for
evaluation.

We train and evaluate our framework on both KITTI and Gopro dataset, and compare
the results with each other. More details about the Gopro dataset can be found in section
3.2.
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1. Introduction

1.3. Report structure

This report is organized as following:

Section 2 illustrates the background theory of view synthesis, which is the main supervi-
sion signal of the framework. The formulations of different loss term are presented and
explained, including the appearance loss Lap, the smooth loss Lsmooth and the absolute
loss Labs. This section ends by detailing the architecture of two networks used in our
framework: Depth-net and Pose-net.

In Section 3 the description of datasets and some prepossessing steps are given. We first
present how KITTI dataset is used in our project, including the images we used and
how we split the train and test part. Then we give the details of Gopro dataset, like the
platform setup, the conversion from raw data, etc. The generation of depth ground truth
is illustrated in the end of this section.

The results are given and analyzed in Section 4. We present the qualitative results
on KITTI and Gopro dataset respectively, following some numerical evaluations for the
comparison of the prediction accuracy. Some analysis regarding the results are also
given.

This report is consummated with a summary of the project in Section 5, where some
conclusions and possible future work are also presented.
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2. Method

In the project we focus on the results of depth prediction, while the adopted framework
can provide both depth and ego-motion estimation. Figure 2.1 illustrates the general
structure.

Figure 2.1.: Framework Overview, adapted from Zhou et al. (2017)

There are two CNNs in this framework. One is the Depth network (Depth-net) which
takes a single image as input, then output a pixel-wise depth map(D̂). The other is the
Pose network (Pose-net), feeding with image sequence, and output the relative camera
pose(T̂ ) between different scenes. Here the image sequence consists of scenes captured
by a moving camera.

These two networks must be jointly trained, but can be tested independently. This is
because to synthesize the image (details in section 2.1), the results from both networks
are needed.

2.1. View synthesis as supervision

As mentioned before, the Depth-net is trained in an unsupervised way, no depth ground
truth is used. The main supervision signal comes from the appearance difference between
the synthesized view and the true target view.

View synthesis is to synthesize an view (denoted as target view: It) from a given image
(denoted as source view: Is). It and Is should be the same scene but captured at different
perspective. To synthesize the view, it is necessary to compute the relative camera pose
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2. Method

T̂t→s between the moving camera captured It and Is, as well as the depth map D̂t for
the target view It.

Figure 2.2.: View synthesis, adapted from Zhou et al. (2017)

As illustrated in Figure 2.2, the synthesized image is reconstructed pixel by pixel. In
other word, for each pixel pt on the target image It, we need to find its corresponding
pixel ps on source image Is. This correspondence relationship satisfies the following
formula:

ps ∼ KT̂t→sD̂t(pt)K
−1pt (2.1)

pt and ps are homogeneous coordinates of a specific pixel on It and Is respectively. K
denotes the camera intrinsic matrix. T̂t→s is a 3×3 matrix, describing the relative camera
pose. D̂t(pt) is a scalar value denoting the depth for pt.

However, the computed ps is a continuous value, lying between different pixels of the
source image It. To sample the pixel intensity of pt from It, the bi-linear sampling
method is adopted to interpolate the value. The intensity of four neighboring pixels
around ps are used (top-left, top-right, bottom-left and bottom-right). The final pixel
intensity is interpolated by:

Îs(pt) = Is(ps) =
∑

i∈{t,b},j∈{l,r}

wijIs(p
ij
s ) (2.2)

where wij is linearly proportional to the spatial proximity between ps and pijs .

The use of bi-linear interpolation is also locally fully differentiable, considering the back-
propagation of gradient during the training process. This means neither simplification
nor approximation is needed for the cost function.

Here we introduce our first loss term: appearance loss Lap, which can be formulated as:

Lap =
1

N

∑
i,j

|(It − Îs)ij | (2.3)

where It is the true target view, and Ît is the synthesized view from source image Is.
The final Lap equals to the average of pixel intensity difference over all image pixels.
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2. Method

2.2. Multi-scale depth prediction & smooth regularization

The gradient derived from Lap is proportional to the pixel intensity difference between
It(pt) and four neighbors of Is(ps). If the correct ps is located in texture-less area or far
from the correct estimation, it will be difficult to train, since the gradient is either close
to zero or slow to converge.

To overcome this problem, the multi-scale appearance loss is applied. The target image
will be synthesized at four different scales, which double in image size at each of the
subsequent scales. The final appearance loss equals to the sum of loss over all scales:

Lap =
∑
scale

Lap,scale (2.4)

The depth map at different scales is also needed. With the introduction of multi-scale
depth estimation, the gradient can be derived from a larger spatial context, which fa-
cilitates the back-propagation of gradient even in texture-less area and accelerate the
training speed.

We also expect the depth map prediction to be smooth. An real depth map of a scene
should be smooth in most parts, while only have a sudden depth change at area where
two objects are spatially separated.

We apply the L1 regularization on the predicted depth map. This is because the L1 pe-
nalization tends to result in a sparse distribution of smoothness: where only a small pro-
portion of area is allowed to be fluctuated, while most part are smooth(close to zero).

In our implementation, the L1 norm of the second-order gradients for the disparity map
should be minimized. Here we apply smoothness regularization on the predicted disparity,
instead of the depth map, because the direct output of the Depth-net is a disparity. More
details regarding the Depth-net is given in 2.4.

This smoothness regularization is imposed over all involved scales. We apply a correction
factor for disparity smoothness at different scales as shown in the following equation:

Lsmooth =
∑
scale

1

2scale
1

Nscale

∑
i,j

|∂xxD̂ij
scale|+ |∂xyD̂

ij
scale|+ |∂yxD̂

ij
scale|+ |∂yyD̂

ij
scale| (2.5)

Here the scale ranges from 0 to 4, corresponding to the 4 disparity maps the Depth-net
predicts. 1

2scale
is the correction factor, while 1

Nscale
is to average the smoothness over all

image pixels.
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2. Method

2.3. Absolute-loss term

Until now no absolute information is introduced in our framework. Thus the network
output, D̂ and T̂ from Depth-net and Pose-net are just relative depth and translation.
This is because the synthesized view are computed according to equation 2.1. As no con-
straint (absolute information) is imposed, the predicted depth or translation elements in
T̂ can be scaled arbitrarily, as long as these two terms can jointly conform the relationship
indicated in equation 2.1.

To upgrade the framework to output true absolute value, we introduce an absolute loss
term Labs on the translation output from Pose-net:

Labs = |ttrue − tpred| (2.6)

where ttrue and tpred are the true and the prediction of the camera translations respec-
tively. t = (tx, ty, tz), while the movement is mainly along the z-axis, as the vehicle often
drive forwardly.

The true translation is inferred from the vehicle speed. As the time interval between the
capture of two frames is rather small(normally only 0.1s), we assume the vehicle expe-
rience uniform acceleration linear motion during this period. The speed is recorded by
the inertial navigation system(INS) in KITTI dataset, or CAN-Bus in Gopro dataset.

The Labs encourages the Pose-net to predict the true absolute translations, and thus forces
the Depth-net to give absolute depth accordingly. Notice that the Labs is irrelevant with
different scales. This is because Labs is imposed on the predicted camera pose, which
remains constant even we re-scale the captured image.

The final loss is a weighted sum of the three loss mentioned above, as illustrated in Figure
2.3. The objective function can be formulated as equation 2.7.

Figure 2.3.: Illustration of final loss, adapted from Zhou et al. (2017)
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2. Method

L = Lap + αsmoothLsmooth + αabsLabs (2.7)

Here two weight coefficients αsmooth or αabs should be determined before training.

2.4. Network architecture

Depth-net The architecture of Depth-net is illustrated in Figure 2.4. This network is
first proposed by Mayer et al.[18], where an Encoder-Decoder structure is adopted. The
size of the predicted depth map is guaranteed to be the same with the one of input image.

Figure 2.4.: Depth-net, from Zhou et al. (2017)

The input of Depth-net is a single RGB image, and output depth map at four different
scales. As shown in Figure 2.4, the decoder adopts skip connection by concatenating
feature maps from encoder, and output multi-scale side predictions. Each convolutional
layer is followed by ReLU activation, except for those prediction layers. The activation
for prediction layer is sigmoid function whose output ranges from 0 to 1. We re-scale
this output and add a bias term to get the predicted disparity map:

disp = α× sigmoid(x) + β (2.8)

So the direct output of Depth-net is actually the disparity. To compute the depth from
the disparity prediction, a transformation is needed, as shown in the following formula:

depth =
1

disp
(2.9)

For a rectified stereo image pair, the transformation between disparity and depth is:
depth = bf/disp, where b and f are the baseline length (in unit of meter) and focal
length (in unit of pixel). Compared with equation 2.9, it can be inferred that we assume
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2. Method

there is a virtual cameras besides the real camera, whose product of the baseline and
focal length is 1. While the predicted disparity is with respect to the frame captured by
this virtual camera.

Meanwhile the α and β in equation 2.8 reflects our belief for the depth range. We choose
α = 10 and β = 0.007, meaning that the depth ranges from 0.01 to around 143 meters.

Table 2.1.: Details of Depth-net
Encoder Part

layer k s channels input
conv1 7 2 3/32 RGB
conv1b 7 1 32/32 conv1
conv2 5 2 32/64 conv1b
conv2b 5 1 64/64 conv2
conv3 3 2 64/128 conv2b
conv3b 3 1 128/128 conv3
conv4 3 2 128/256 conv3b
conv4b 3 1 256/256 conv4
conv5 3 2 256/512 conv4b
conv5b 3 1 512/512 conv5
conv6 3 2 512/512 conv5b
conv6b 3 1 512/512 conv6
conv7 3 2 512/512 conv6b
conv7b 3 1 512/512 conv7

Decoder Part
layer k s channels input
upconv7 3 2 512/512 conv7b
iconv7 3 1 1024/512 upconv7+conv6b
upconv6 3 2 512/512 iconv7
iconv6 3 1 1024/512 upconv6+conv5b
upconv5 3 2 512/256 iconv6
iconv5 3 1 512/256 upconv5+conv4b
upconv4 3 2 256/128 iconv5
iconv4 3 1 128/128 upconv4+conv3b
disp4 3 1 128/1 iconv4
upconv3 3 2 128/64 iconv4
iconv3 3 1 129/64 upconv3+conv2b+disp4
disp3 3 1 64/1 icon3
upconv2 3 2 64/32 iconv3
iconv2 3 1 65/32 upconv2+conv1b+disp
disp2 3 1 32/1 iconv4
upconv4 3 2 256/128 iconv5
iconv4 3 1 128/128 upconv4+conv3b
disp4 3 1 128/1 iconv4

More details regarding the Depth-net can be found in the above Table 2.1. Here the k
and s are short for kernel and stride respectively. In the channel column the number of
input and output channel is given.

Pose-net The input of Pose-net is an image sequence consists of source view Is and
target view It. They are concatenated along the color channel. The network output is
the relative camera pose, parameterized as a 6-dimensional vector (corresponding to 3-D
translation and 3 Euler angles). Suppose the image sequence contains N images, and
only one of them is the target view we want to synthesize. Then the network will output
6× (N − 1) values for each source view in this sequence.

The Pose-net has 7 stride-2 convolutional layers, followed by one 1×1 convolutional layer
which gives the pose prediction. All convolutional layers in the network is followed by
ReLU activation except for the last prediction layer, where no non-linear activation is
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2. Method

Figure 2.5.: Pose-net, adopted from Zhou et al. (2017)

applied. More details of the Pose-net can be found in Table 2.2. The N in this table is
the number of images in the image sequence.

Table 2.2.: Details of Pose-net
Encoder Part

layer k s channels input
conv1 7 2 [3×N ]/16 RGB
conv2 5 2 16/32 conv1
conv3 3 2 32/64 conv2
conv4 3 2 64/128 conv3
conv5 3 2 128/256 conv4
conv6 3 2 256/256 conv5
conv7 3 2 256/256 conv6
pred 1 1 256/[6× (N − 1)] conv7
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3. Data

We train and evaluate the above framework on two datasets. One is the popular KITTI
dataset[19], the other is the Gopro dataset which is collected by ourselves. In this chap-
ter the general description of the datasets is given, and some prepossessing steps are
explained.

3.1. KITTI dataset

KITTI dataset is widley used in the field of autonomous driving. Its platform consists of
multiple sensors, including one inertial navigation system (GPS/IMU), one laser scanner,
two grayscale and two color cameras, etc. All sensors have been calibrated with each
other, and the captured images have also been synchronized with other data.

In our implementation only the color images are used. The camera intrinsic matrix is
provided. The true translation value between It and Is, which is corresponding to the
output of Pose-net, is computed from the records of inertial navigation system.

The static frames in dataset should be excluded. This is because the view synthesis is
used as the main supervision signal, while it is meaningless to synthesize a target view
which is exactly the same with the input source view. After excluding static frames,
finally 40109 frame pairs are used for training.

For the evaluation of depth prediction, we use the 697 images from Eigen test split[1]. The
depth ground truth are generated from the output of laser scanner. As the scanner only
provides the coordinates of laser point, the ground truth depth map will be relatively
sparse. In testing step we only compare pixels with depth value, no interpolation is
applied to fill the missing depth.

3.2. Gopro dataset

We also collect some data by ourselves. The recording platform is equipped with various
sensors, including multiple Gopro cameras which provide a panoramic view of the sur-
rounding, the Bumblebee stereo cameras for generating depth ground truth, a CAN bus
for recording speed, etc.

In our project mainly the following data are used for training:
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3. Data

1. Front-view RGB images collected by Gopro Hero5;

2. Vehicle speed from CAN bus (for computing the translation);

Originally the images are captured in 60Hz as a video. We re-sample this video in 10Hz
and synchronize them with other data. The collected frames cover various scenes, like
city area, countryside, residential part and expressway, etc. We only use frames in city
and residential area for training and testing, since frames in these areas tend to have
more texture, which may benefit the network performance a lot.

The true translation value between frames is computed from the product of vehicle speed
and time interval between the capture of images. We regards the time interval as 0.1s,
since our sample rate is 10 Hz.

The camera intrinsic matrix is needed for both view synthesis (see equation 2.1) and
stereo camera calibration (in section 3.2.1). So both the Gopro Hero5 and Bumblebee
camera is calibrated in advance.

3.2.1. Depth ground truth generation

The ground truth depth maps are required for the evaluation of the Depth-net perfor-
mance. Our platform is equipped with Bumblebee XB3, a stereo vision camera system
which can be used to generate depth ground truth. 3 calibrated cameras are rigidly
mounted on the Bumblebee with known baseline. We use two of them to capture the
RGB images of the scene, and compute the depth map through pipeline of 3D recon-
struction.

Figure 3.1.: RGB image (captured by
the left Bumblebee camera)

Figure 3.2.: Depth map

Figure 3.1 and 3.2 shows the RGB image captured by the (left) Bumblebee camera and
its corresponding depth map. For the sake of visualization, we assign all pixels whose
depth are larger than 200 as 200 meters.

It can be seen that the generated depth map is not perfect, with some inaccurate depth in
area like the windows or the circular crossroad on the ground. It is true that the ground
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3. Data

truth generated from Bumblebee still contains some errors, although the proportion of
inaccuracy is rather small.

Note that the depth values at the left border are missing. This is because pixels at the
left border have no correspondence on the image captured by the right camera.

The generation of the depth ground truth consists of the following steps:

1. Generation of the depth map in the Bumblebee camera coordinate system;

2. Stereo calibration to get the relative pose between the Gopro camera and the
Bumblebee camera;

3. Transformation of the depth into the Gopro camera coordinate system.

The transformation of the depth from the Bumblebee camera coordinate system to Gopro
coordinate system is needed, since the Depth-net only provides the depth map in the
latter system.

We use Db and Dg to denote the depth map in Bumblebee and Gopro coordinate system
respectively. The rotation matrix Rb→g and translation vector Tb→g are inferred through
stereo camera calibration. Then we back-project each pixel on Db into a 3D point (say
Xb) inside the Bumblebee system, and apply the transformation according to formula
3.2.1 to get the 3D point Xg inside the Gopro system.

Xg = Rb→gXb + Tb→g

Finally the desired depth map is computed through projecting these 3D points onto the
image plane given the Gopro camera intrinsic matrix. The result is shown in Figure.
3.4.

Figure 3.3.: Original RGB image Figure 3.4.: Ground truth depth map on
Gopro image plane

Note that we ignore the sky area in the ground truth generation, the same as what Eigen
et al.[1] does in .

It can be seen that the depth values of a large proportion of pixels are missing, due to
the difference of field of view between the Bumblebee camera and the Gopro camera. In
evaluation we only consider pixels with ground truth.
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4. Experiments & Results

We evaluate our framework on KITTI and Gopro datasets. The network is implemented
in Tensorflow[20] with more than 33 million trainable parameters. The implementation
details and evaluation results are given in the following part.

4.1. KITTI dataset

The input of Pose-net should be an image sequence. The number of images in the
sequence is set as 3 for both experiments. For a sequence, we treat the central image as
the target view, which we try to synthesize from the other two images(source view). We
resize the image to 128×416 during training. While the original image size is 1392×512

The training takes about 13 hours on a single Titan X GPU for 20 epochs, with the
mini-batch size as 4. We set αsmooth = 0.2/s(s is the scaling factor for the multi-scale
disparity output), αabs = 1. The Adam optimizer is used with β1 = 0.9 and β2 = 0.999.
And the learning rate is fixed to be 0.0002 throughout the training process.

Figure 4.1 shows some examples of depth prediction. It can be seen that the general
structure of the image has been captured correctly.

Table 4.1 gives the numerical evaluation of the depth prediction. We compare the per-
formance between the result from Zhou et al. and us. For the first three indicators,a
smaller value indicates a better performance. For the last three columns a higher value
is good. The details of these numerical indicators are given in the appendix A.

Table 4.1.: Numerical result on KITTI
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Original (relative) 0.1882 1.6386 6.7377 0.7259 0.8981 0.9574
Ours (absolute) 0.3841 8.4528 9.7858 0.5645 0.8021 0.9059

Since the original results are just up-to-scale, for evaluation these prediction values are
multiplied with a scaling factor ŝ = median(Dgt)/median(Dpred), which matches with
the median of the ground truth. While for our result no scaling is needed.

It can be seen that our results doesn’t perform as well as the original one. By checking
the result, we found the absolute loss Labs is a little bit high (shown in Figure 4.2).
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4. Experiments & Results

Figure 4.1.: Depth prediction(KITTI dataset)
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4. Experiments & Results

The absolute loss drops fast at beginning while keeps constant (around 0.4) in the follow-
ing training steps. As presented in section 2.3, the Labs equals to the difference between
the true translation and its prediction. On average the translation between each frame
is around 1 meter. So this means the predicted translation is around 0.6 meter, which is
always 0.4 less than the true value.

Figure 4.2.: Absolute loss Labs on KITTI dataset

Thus we think the training result only achieves a sub-optimum. Currently we doesn’t
manage to further improve the performance. This will be done in the future work,
through tuning some hyper-parameters or introducing more constraints.

4.2. Gopro datasets

In total 62597 image sequences are formatted for training. They are mainly captured in
the city or the residential area, where more texture can be found. To facilitate training
we crop the sky part and the bottom part(the front end of vehicle) of the image, and the
final image size is 149× 480.

We train the network from scratch for 20 epochs, taking about 18 hours on a single Titan
X GPU. The mini-batch size is 15. The smooth weight αsmooth = 0.2/s, absolute weight
αabs = 0.07. All other parameter settings are same with the one of KITTI experiment.

Our depth prediction has a good performance on textured area, but tends to fails for
homogeneous areas. As shown in the example of the third row of Figure 4.3, the network
inaccurately predicts a large depth value for the nearby ground.
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4. Experiments & Results

Figure 4.3.: Depth prediction(Gopro dataset)
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4. Experiments & Results

The inaccurate depth prediction in texture-less area results from the fact that, when
synthesizing the view, an inaccurate depth in homogeneous part won’t result in a big
pixel intensity difference, since all nearby pixels have similar intensity.

Intuitively, the introduce of smoothness constraint on disparity map may mitigate this
issue, since the it penalize a fluctuated disparity surface. But the prediction shows that
the smoothness regularization doesn’t address this problem. By checking the training
result in Figure 4.4, there is a big difference between the magnitude of Lap and Lsmooth.

This suggests the smoothness regularization is only valid in the early training stage, but
becomes less effective later, as the magnitude difference between Lap and Lsmooth are too
big.

1) Appearance loss Lap 2) Smooth loss Lsmooth

Figure 4.4.: Comparison between Lap & Lsmooth

We select 700 images in Gopro dataset to evaluate the prediction performance numeri-
cally. The same indicators are used as we choose in the KITTI experiment. Compared
with KITTI one, the result here is better, but still doesn’t outperform the original relative
result.

Table 4.2.: Numerical result on Gopro
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Gopro (absolute) 0.3064 4.0621 11.6787 0.4787 0.7573 0.8689

The Labs converges at around 0.07 meter level. This means the difference between true
translation (range from 0.5 to 1.1 meter) and its prediction is only 0.07 meter, which is
quite small.

Note that the value in Table 4.2 are the median over all 700 prediction indicators, rather
than the average. This is because, as mentioned in section 3.2.1, the generated ground
truth has some errors. Its influence will be mitigated if the median is used.
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4. Experiments & Results

4.3. Evaluation of generalization ability

We also evaluate the generalization ability of our framework, the result is shown in Table
4.3.

Table 4.3.: Generalization ability of the framework
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Trained on Gopro
Test on KITTI 0.3765 4.8738 10.5987 0.3512 0.6066 0.7559

Trained on KITTI
Test on Gopro 0.5922 8.3166 14.3095 0.2424 0.5062 0.7587

It can be seen that the model trained on Gopro has a much better performance than
the model trained on KITTI. The numerical accuracy tested on KITTI of the former
model(trained on Gopro), is even better than performance of the latter model(trained
on KITTI) on the KITTI test split.

For one hand this indicates that our framework have a good generalization ability. On
the other hand, this also indicates the model trained on KITTI dataset only achieved a
sub-optimum, as we analyzed before in section 4.1.
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5. Conclusion & Discussion

In this project we exploit the single-view depth prediction based on view synthesis. Two
network are jointly trained in our model, where Pose-net is supervised by the true trans-
lation, while Depth-net is self-supervised by the photometric error from the synthesized
view. With introducing an absolute loss term, the network is able to output the absolute
depth value. Although the prediction performance is inferior to the relative one, our
framework shows that it is possible to eliminate the scale-ambiguity of depth prediction
from view synthesis based method.

We also format our own Gopro dataset, covering various scenes and illumination condi-
tions. We generate the depth ground truth for the test images, and evaluate our model
on both KITTI and Gopro dataset.

From the experiment result, it’s clear that the introduce of absolute loss term can upgrade
the network from relative to absolute. It works better on Gopro dataset than KITTI, but
both don’t achieve the state-of-art prediction accuracy. Future improvement is possible
through trying different parameters, like changing the magnitude of αsmooth or αabs. We
can also modify the network architecture. For example the Resnet50[21] can be used to
replace the encoder part of Depth-net, as what Godard et al.[5] do in their work. The
result shows that Resnet50 achieves a better prediction performance.

One remaining issue is that the depth prediction generally fails in texture-less area, like
the image of expressway. As explained before, the failure is because the penalization
for inaccurate depth from homogeneous part is low. This is one significant drawback of
depth estimation whose supervision signal comes from the view synthesis(or generally,
image reconstruction).

To address this problem some other constraints are required. In terms of the smoothness
of depth, there is a huge difference between the appearance loss and smooth loss, as
shown in Figure 4.4. We can employ a more strict smoothness regularization, like the
one used in the work of Godard et al.[5] where the weight of disparity gradient is inversely
proportional to the image gradient. The idea is that the depth discontinuities often occur
at area where the image gradient is large.

It would be also interesting to utilize some semantic information. For example, we can
identify which pixel can be labelled as ground, and then enforce the continuity of the
homogeneous area on the predicted disparity map.
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5. Conclusion & Discussion

Another limitation is the premise to use view synthesis. According to [4], we implicitly
assume the followings when use the photometric error as supervisory signal:

1. the scene is static without moving objects;

2. there is no occlusion/disocclusion between the target view and the source view;

3. the surface is Lambertian so that the photo-consistency error is meaningful.

However in some cases these assumption is not true. For example, there are some pedes-
trians walking around, and the nearby vehicles are also moving.

To address this problem, Zhou et al.[4] propose an explainability network to predict a
pixel-wise mask for the target view. The network is trained to determine the dynamic
object or occlusion/disocclusion area on the image. When computing the appearance
loss these areas will be excluded.

However, this network doesn’t improve the performance of depth prediction a lot. This is
probably because the main error still comes from inaccurate depth in homogeneous area.
After fixing the main problem, the improvement by adding this explainability network
may become conspicuous.
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A. Performance Indicator

In Chapter 4 6 numerical indicators are used to evaluate the depth prediction perfor-
mance. These indicators are formulated as following. We use Dpred and Dgt to denote
the ground truth and prediction of depth map. All computations are pixel-wise.

Abs Rel: short for absolute relative error, formulated as 1
N

∑
|Dpred −Dgt| / Dgt.

Sq Rel: short for squared relative error, formulated as 1
N

∑
(Dpred −Dgt)

2 / Dgt.

RMSE: short for root mean squared error, formulated as
√

1
N

∑
(Dpred −Dgt)2.

δ refers to the relative difference betweenDpred andDgt. This indicator can be formulated
as δ = max(Dpred/Dgt, Dgt/Dpred). So the value in table for columns of δ < 1.25,
δ < 1.252 and δ < 1.253 are actually the percentage of δ whose magnitude is below 1.25,
1.252 and 1.253 respectively.
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