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  ABSTRACT  
Lake ice is an observable that is part of the Essential Climate Variables (ECV) in the Global Observing 

System for Climate. This system is meant to monitor the changes of the climate and the effects of global 

warming and provide observations for this monitoring. 

Low spatial resolution satellite imagery from the VIIRS sensor with a ground sampling distance of 375 

m is used to determine lake ice in four target lakes in Switzerland: Sihlsee, Silsersee, Silvaplanersee and 

St. Moritzersee. The study period includes the three months October 2016, December 2016 and Feburary 

2017. For the supervised lake ice classification, only clean pixels, i.e. pixels that lie completely within 

the lake, that are also cloud-free are considered. Because there is no clean pixel in St. Moritzersee, it 

has to be excluded from this study. A manual labeling of frozen and non-frozen dates based on webcam 

images forms the ground truth. Linear Support Vector Machine (SVM) classification and regression are 

trained with different combinations of VIIRS channels as feature vector and 5-fold cross-validated. The 

classification results show for each lake high overall accuracies that reach values of >99%. But the 

results must also be treated with caution because of the low amount of the processed data, the uncertainty 

of the ground truth (difficult manual interpretation of the webcam images) and the probable cloud mask 

errors. 
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1. INTRODUCTION 1.1 Motivation 
The climate is changing and for a better understanding of those changes the Essential Climate Variables 

(ECVs) have been specified by the Global Climate Observing System (GCOS). They are now seen as 

the key observations to provide us with empirical evidence for the understanding and prediction of the 

evolution of climate. One of the forty-five ECVs is the lake ice cover that contains the observation of 

the lake ice extent and duration (World Meteorological Organization, 2017). 

Up to now there is no harmonized, operational database that includes lake ice observations of Swiss 

lakes over longer periods. The Swiss GCOS Office at MeteoSwiss started in Summer 2016 together 

with the project partners ETH Zurich, University of Bern and EAWAG the project Integrated 

Monitoring of Ice in selected Swiss Lakes that evaluates, compares and integrates various input data and 

processing methods for lake ice estimation. (MeteoSwiss, 2017). Therefore, different input data are 

analyzed for their feasibility: Webcam images, in-situ measurements and satellite images (ETH Zürich 

PRS, 2017). In this work (which is integrated in the above project), the focus is on VIIRS satellite 

images. These images are free and after establishing a processing chain, their processing can be fast. 

They have a high temporal resolution (at least one image per day), sufficient spectral resolution but only 

coarse spatial resolution. A major problem as with all optical satellite sensors is the clouds. 

 1.2 Work aims 
The primary aim of this work is to adapt the existing MODIS-based lake ice detection methodology to 

VIIRS satellite images and test its performance. The images used are from the VIIRS sensor on the 

satellite Suomi NPP. The five high-resolution Imagery-channels (I-bands) with a ground sampling 

distance (GSD) of approx. 375m at nadir and daily global coverage form the back-bone of the system. 

Support Vector Machine (SVM)-based supervised classification and regression is performed and cross-

validated. The ground truth is determined using the freely available webcams monitoring the target 

lakes.  

The study is concentrating on four target lakes: Sihlsee, Silsersee, Silvaplanersee and St. Moritzersee. 

This lake selection among the six lakes treated in the Meteowiss project is done for some reasons. Firstly, 

many of the Swiss lakes do not freeze regularly during the winter months, especially the bigger ones 

that lie in the flat midland. Secondly, only lakes that are big enough with respect to the GSD of the 

imagery can be considered. Lastly, the restriction is due to the necessity of having validation data that 

is needed for such a supervised classification approach. For this project the ground truth comes mainly 

through webcam images that exist for these four lakes.  

Table 1 shows the main characteristics of the lakes and Fig. 1 localizes them. It can be seen, that the 

three lakes in the valley of Engadin (Silsersee, Silvaplanersee and St. Moritzersee) lie on a remarkably 

higher altitude and are noticeably smaller than Sihlsee. The two different environmental settings will 

allow to see if the processing results are of similar quality, independent of these lake characteristics 

differences, and thus the method can be applicable also to other lakes. 

 
Table 1: Overview over the characteristics of the four lakes. Source: (swisstopo, 2017) Name Coordinates (Lat, Lon) [°] Height [m] Area [km2] Sihlsee 47.12067, 8.78560 889 10.85 Silsersee 46.41927, 9.73294 1797 4.1 Silvaplanersee 46.44866, 9.79199 1791 3.2 St. Moritzersee 46.49345, 9.84476 1768 0.78 
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Fig. 1: Localization of the four target lakes. Zoomed-in on top right: Sihlsee. Zoomed-in on bottom right from bottom to top: 

Silsersee, Silvaplanersee and St. Moritzersee 

 

The satellite data of the following three months are analyzed: - October 2016 - December 2016 - February 2017 

 

These three months show a variety of seasonal changes. October is still in the fall, December is at the 

start of the winter with first snow fall and cold temperatures and in February the accumulated cold winter 

days lead to frozen lakes. The limitation to only these months was necessary because the cloud-masks 

that are needed for the processing were at the time not yet processed for more months.  

 1.3 Some related work 
As already mentioned, this work is part of a bigger project. Out of it also a study from Tom et al. (2017) 

used a similar approach with the satellite imagery of MODIS for the winter 2011-12 and summer 2012. 

A classification accuracy of >95% could be achieved. Another report that originates out of the 

overarching project is from Sütterlin et al. (2017). They used a single-channel lake surface water 

temperature (LSWT) algorithm to detect lake phenology. For that the I05 channel of the VIIRS sensor 

forms the input.  1.4 Structure of the report 
After this introductory chapter, the VIIRS sensor and its data and the webcam validation data are 

described in chapter 2. The third chapter gives an overview of the methodology and includes for all the 

important processing steps an additional explanatory subchapter with intermediate results. Afterwards 

the final results of the classification are shown and discussed. The conclusion summarizes the work 

outcomes and gives an outlook on the possible future work.  
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2. DATA 2.1 VIIRS sensor and imagery channels 
The VIIRS (Visible Infrared Imaging Radiometer Suite) sensor is on the Suomi-NPP weather satellite 

that was launched on 28 October 2011. For more details on Suomi-NPP and VIIRS see Suomi-NPP 

(2017). The instrument is a whiskbroom scanner with sixteen channels of moderate spatial resolution 

(0.75 km at nadir) and the five Imagery channels I01 to I05 with a spatial resolution of approx. 0.375 

km at nadir. Here, only the I-channels with already calibrated data, the Sensor Data Records (SDR), are 

used, also to facilitate a comparison to the processing methods of the University of Bern, which were 

using only the I-channels. The effective bit depth of these images is 24, but is stored as 64-bit. The 

detailed spectral information and the main applications of these channels are described in Table 2. The 

channels 1-3 are in the reflective spectrum, whereas channels 4-5 are in the emissive region.  
Table 2: Imagery channels with their specific spectral regions. Source: Suomi-NPP (2017) Channel Spectral region Center wavelength [µm] Bandwidth [µm] I01 Visible and Near infrared  0.640 0.05 I02 Visible and Near infrared  0.865 0.039 I03 Short Wavelength infrared 1.61 0.06 I04 Mid wavelength infrared  3.74 0.38 I05 Thermal infrared  11.450 1.9  

The satellite flies at a nominal altitude of 829 km and delivers two times daily global coverage (once 

during the day and once during night). Here only the daytime acquisitions are useful, but because of 

overlapping swaths of two consecutive orbits, our target area is often covered more than once per day. 

An important cause of data reduction at the acquisition level is the bow-tie effect that is caused by the 

whiskbroom working principle. This effect causes more than 2x bigger pixel footprints at the end of the 

scan (angle of +/-56.28°) and the scan width that is at nadir 11.7 km increases to 25.8 km. Fig. 2 shows 

in the lower part exemplarily such a swath. The orange and purple pixels are deleted and causes, as can 

be seen in the image on top of it, missing data stripes. In the further processing of the mapping and 

reprojection these deletions must be treated and have to be recovered by averaging or duplication of the 

neighborhood (Seaman, 2013).  
 

Fig. 2: Bottom: schematics of bow-tie effect, bow-tie deletion and aggregation scheme for single-gain  

M-bands (scale is exaggerated in the track direction. Top: example of bow-tie deletion effect when the 

raw data is displayed in sample space. Source: Cao et al. (2013) 
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Some attention has also to be paid on the geolocation of the satellite images. The information about how 

to geolocate the images into any reference system is independently stored in geolocation files. For the 

I-bands two different such geolocation files exist. The GIMGO projects everything onto a smooth 

ellipsoid, whereas GITCO also corrects for the terrain. In Switzerland the ground surface elevations 

change strongly, therefore it is necessary to use the GITCO-product to locate the images with high 

accuracy. 

For more detailed explanations and background the VIIRS Sensor Data Record (SDR) User’s Guide by 

Cao et al. (2013) is a recommended reading. The information in this chapter depends on this source, if 

not otherwise stated.  2.2 Webcam images 
Freely available webcam images can be automatically downloaded from the Internet in real-time and 

can provide ground truth via manual interpretation, which is however not always easy, and thus 

sometimes uncertain. They deliver multiple images per day and give a good base for labeling frozen and 

non-frozen lake areas.  

For the period of the VIIRS data the automatic download wasn’t activated in October, but there we can 

confidently assume that the lakes were not frozen. From some webcams an only partial time coverage 

is given. For the following dates images are completely missing due to some technical problems: 

- 01. – 03. December 

- 24. – 28. December 

- 17. February 

- 22. – 25. February 

 

Fig. 3 shows for each lake webcam footage of two cameras and how their view changes for frozen and 

non-frozen dates. The problematics that arise by determining the ground truth out of the webcam images 

are explained in Chapter 3.6.  
 

Fig. 3: Example images of two webcams per lake. From upper left corner in clockwise direction: Sihlsee, Silsersee, 

St. Moritzersee, Silvaplanersee. The upper images in the blocks are from 4. Dezember 2016, except for the two at the 

very left are from 16.12 (their first date of recording). All lower images in the blocks are from 15. February 2017.  
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3. METHODOLODY AND DATA PROCESSING 3.1 Overview of the processing chain 
The flowchart in Fig. 4 gives an overview of the processing chain with examples of the input data. In 

the following subchapters the procedure and the intermediate results of the processing steps are 

described.  

 
Fig. 4 Flowchart showing the pipeline that is set up for lake ice detection. OSM stands 

for OpenStreetMap.  
In Chapter 3.2 the preprocessing of the raw satellite data is discussed, the product of it are images that 

show all the same extent. The lake outlines that are originally extracted from OpenStreetMap are 

generalized, projected onto the images using the georefencing information and corrected for absolute 

geolocation errors, this step being explained in Chapter 3.3. The combination of the backprojected and 

for absolute geolocation errors corrected lake outlines and satellite images define the clean pixels 

(Chapter 3.4). Using the cloud-masks for excluding cloudy clean pixels results in a cloud statistic whose 

results are described in Chapter 3.5. For the classification only acquisitions where more than 30% of all 

lake pixels are cloud-free are used. 

Regarding the ground truth determination (Chapter 3.6), webcam images and some, rather scarce, 

information from media in the Internet are combined to estimate frozen and non-frozen dates. 

Chapter 3.7 describes the characteristics of the grey-values of all clean and non-cloudy pixels, labeled 

as frozen and not-frozen. For getting an idea, which channels should be used for the classification we 

also compute the relative importance of the single channels for the differentiation of the two classes 

with the boosting-software xgboost from Chen et al. (2016). The last subchapter 3.8 explains the 

working principle of the SVM and shows the chosen parameters.  
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3.2 Preprocessing Satellite Images 
All the preprocessing steps of the raw VIIRS-imagery is done by the University of Bern. This includes 

the download of the data from the Comprehensive Large Array-data Stewardship System (CLASS), 

reprojecting and resampling the images into the spatial reference system WGS84-UTM 32N, cropping 

the images so that they all show the same extent and save it in the .tif data format. 

Additionally, the University of Bern also provided the cloud-masks that are used for the filtering out of 

cloudy pixel. The original cloud-mask data includes four levels of cloud confidence. To get a binary 

cloud-mask a conservative approach is chosen, so that a unclear pixel is rather classified as cloudy than 

not. More information about their procedure can be found in the First Year Report of the project (ETH 

Zürich et al., 2017). 

Resulting are per acquisition five images (one per channel) and one cloud-mask, all the size of  

1945 x1763 pixel. Fig. 5 shows an I01-channel image with the related cloud-mask. 

The provided images that are not entirely covered by observations are manually discarded from the 

pipeline. This results in total 114 acquisitions with minimal one acquisition per day.   
Fig. 5: Left: I01 - channel on the 2. December, where the snow-covered Alps are clearly visible. Right: The 

corresponding cloud-mask (white = cloud, black = no cloud).  3.3 Lake outlines 
The lake outlines are the same as they are used in Tom et al. (2017) for the classification with MODIS. 

They are originating from OpenStreetMap and dowloaded via overpass-turbo.eu. They are generalized 

with help of the Douglas-Peucker-algorithm and projected into the image coordinates. 

To be sure that the lakes in the satellite images correspond to each other an absolute geolocation 

correction is done with the approach from Aksakal (2013). For that mostly cloud-free images for 

October and December 2016 of the second channel are used because of the strong lake contrast in this 

channel. The lake outlines included 15 bigger Swiss lakes. 

The results of this algorithm are shown in Table 3. Because no big difference for the four evaluated 

images appear, it is assumed that the shifts are stable, and the averaged shift is used for all images.   
Table 3: Results of the absolute geolocation correction. Image (day_time) Weighted mean  x-shift Weighted mean  y-shift Standard deviation x Standard deviation y Median x Median y d20161004_t1203164 0.0 -0.1 0.2 0.1 0 -0.2 d20161030_t1214511 0.1 -0.3 0.1 0.2 0 -0.3 d20161202_t1200406   0.0 -0.4 0.4 0.3 0 -0.5 d20161228_t1212151   0.0 -0.4 0.1 0.3 0 -0.35 Average 0.0 -0.3     
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3.4 Clean pixels 
After implementing the shift, it is computed which pixels lie completely within the lake (clean pixels) 

and which are crossing the lake outlines (mixed pixels). The result can be seen in Fig. 6 and the 

numerical values in Table 4. Unfortunately for St. Moritzersee no clean pixel exists. A possible, 

additional processing step could be to try a classification also with mixed pixels.   
Table 4: The number of clean and mixed pixels per acquisition and lake Lake Number of clean pixels Number of mixed pixels Sihlsee 45 63 Silsersee 11 37 Silvaplanersee 9 24 St. Moritzersee 0 11   

Fig. 6: The lake outlines projected on the images with the clean pixels illustrated as green squares.  3.5 Cloud-free clean pixels 
Clouds must be filtered out of the data to reach a good result in the classification, because they get easily 

confused with ice and snow. In Switzerland especially in the winter months the cloud cover is substantial 

over longer periods. This leads to a significant reduction of the information and could cause long 

observation gaps. Fig. 7 shows how high the percentages of clouded pixels are per acquisition. The red 

line is the defined threshold of 70%, that is adapted from the work of Tom et al. (2017). If the cloud 

percentage is higher than the threshold, the whole acquisition is excluded from the classification. The 

raw data for Fig. 7 can be found in the Appendix Table 9. The resulting number of now remaining 

acquisitions and their total amount of pixels per channel that we will use for the classification are listed 

in Table 5.   
Fig. 7: Timeline of the cloud-cover for the three lakes. The red line is the defined threshold over which the acquisition is 

excluded.   
Table 5: Total acquisitions and pixels per channel that are used for the classification. Lake Number of acquisitions  < 70% cloudy Total number of  non-cloudy pixels per channel Sihlsee 60 2431 Silsersee 59 612 Silvaplanersee 64 546 
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3.6 Ground truth 
As already mentioned in Chapter 2.2 the ground truth determination is manually done with the help of 

webcam images. For each day the labels frozen, not frozen or partially frozen were assigned. Dates that 

are assigned with partially frozen, meaning that only parts of the lake are frozen, would not be used for 

the classification. To the best of my knowledge, in October and December the three lakes were not 

frozen whereas February was completely frozen for the three remaining lakes. A uncertainty remains at 

the end of December, where from 24. – 28. the webcam images are missing and otherwise the images 

are ambiguous. It is probable that on some days, especially during the morning hours, some thin layer 

of ice occurred. The changing light conditions between the webcam images makes it difficult to get to 

a conclusion. In the cases of doubt the decision fell to the label non-frozen, because the satellite images 

were never taken in the early morning but between 11 – 14 o’clock and therefore the thin ice sheet is 

considered as already leave melted. Fig. 8 shows such a questionable case. Another big uncertainty using 

only the webcam images is their incomplete coverage of the lake and therefore missing data for the 

hidden lake parts. Because of all these uncertainties, the period of 16. – 31. December will in future 

works not be used as input for the classification. It was not possible to include that change in this work 

due to time constraints. 

As additional sources Internet media were searched. The most useful but sparse information was 

delivered by the archive of the newspaper Engadiner Post and the Facebook site from the Kitesurfing 

school in Silvaplana. 

Bringing the labeling together with the previously estimated clean cloud-free pixels gives the final 

quantification of the input data for the classification (see Table 6).  
Table 6: Number of acquisitions and pixels per class Lake Acquisitions Frozen Pixels  Frozen Acquisitions  not Frozen Pixels  not Frozen Sihlsee 19 774 41 1657 Silsersee 15 153 44 459 Silvaplanersee 17 140 47 406  

The webcam images also show that the frozen lake can be subclassified. Either the lake is only covered 

by ice, or on top of the ice a layer of snow is accumulated. Fig. 9 shows a comparison of the appearance 

with two webcam images. These two states behave differently in the spectral characteristics and could 

complicate the classification. For the study period only Sihlsee had for the days 1. – 5. February no solid 

snow cover on top of the ice.    
Fig. 8: A thin ice sheet circled in red on the 22. December at 10.00 (left) that is no longer visible at 11.30 o'clock (right)  



11  

 
Fig. 9: Ice on 03 February (left) and snow cover on the 06. February (right) on Sihlsee.  3.7 Grey-value statistics and channel selection 

The distribution of the grey-values per channel are shown in Fig. 10. They show that the separability of 

the classes is good for channels 1 and 2 whereas the grey-values overlap strongly for the channels 3-5. 

Significant differences between the lakes are not visible. The non-frozen distribution for the 4th and 5th 

channels show two peaks. By splitting the non-frozen grey-values in those from October and December 

it is proved, that the two peaks coincide with the months (Fig. 15). The right peak is mainly formed from 

October values whereas December values overlap stronger with the frozen values.  
 

Fig. 10: Grey-value histograms for all the channels and all lakes. 
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Another way to look at the significance of the channels for the classification is to use them in the 

boosting software xgboost and determine the feature importance. The relative F-scores in Fig. 11 show 

how often one channel (feature) is responsible for the differentiation of the classes compared to all the 

other channels. After looking at the the grey-value histograms, it is surprising that channel 2 reaches 

only small F-scores. The explanation is that channel 1 and 2 have a very similar behavior but channel 1 

differentiates most of the time slightly better than channel 2 and therefore gets all the F-scores for itself. 

Silsersee is located next to Silvaplanersee behaves less similar that Silvaplanersee to Sihlsee. Therefore, 

environmental and lake characteristics seem not to influence the channel importance.   
Fig. 11: Relative F-scores for the channels computed with xgboost  3.8 Classification and regression with a SVM 

Support Vector Machines can be used for a supervised learning of classification problems (in this case 

binary, as only two target classes exist). The SVM searches for the hyperplane with a maximal margin 

between the classes. The data points that are the closest to the boundary form the support vectors after 

which the technique is named. A classification assigns the output strictly to a class (a hard classifier), 

whereas the regression returns a set of continuous values of probabilities (soft classifier). 

The result of an SVM-classification does not have to correspond to the result of the regression, where 

the probability of 0.5 defines the class borders. Where the maximal margin lies, depends on the data 

distribution and not the probability values of the regression. 

MATLAB has implemented both, an SVM classification and regression. For the input data (feature 

vector) all 31 possible channel combinations of the clean cloud-free pixels are tried out and the reached 

accuracies compared to each other.   

For the parameters the default values are used except for the following parameter. “Standardize” is set 

to True because the data sample is small enough to include a standardization which is always 

recommended. The standardization removes the influence of different scaled input vectors. The kernel 

function that is on default linear was not changed because it leads to sufficient accuracies. The 

implementation of a non-linear kernel will be done in future work for the comparison of the 

classification results of VIIRS to the ones of MODIS. For all the default parameter definitions see the 

MATLAB documentation of the fitcsvm function (MathWorks, 2017). 

A 5-fold cross-validation is performed for quantifiying of the accuracy of the model. With that approach, 

the data gets randomly split in 5 subparts. Four of them are used for the training of the model that is 

used to predict the fifth subpart (fold). This is done iteratively so that every fold is once predicted. The 

random assignment of the observations to the folds leads to slightly varying results for each new 

iteration.  
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4. RESULTS AND DISCUSSION  
For all possible channel combinations and the results of the cross-validation a confusion matrix 

computed up and the overall accuracies and the kappa values are computed. (Richards, 2012) 

Exemplarily the confusion matrix from the classification with the channels I01/I02/I03 for Sihlsee is 

shown in Table 7. From the 2431 pixels only 12 are wrongly classified with the same amount of six for 

both classes.  
Table 7: Confusion-matrix for Sihlsee with the channel combination of I01, I02, I03   actual class     non-frozen frozen sum user’s accuracies predicted class non-frozen 768 6 774 0.9922 frozen 6 1651 1657 0.9963  sum 774 1657 2431   producer’s accuracies 0.9922 0.9963           Overall Accuracy 0.995   Kappa Value 0.988 

 

The definition of the accuracy measures that are listed in Table 8 are:   𝑟  𝐴 𝑟 𝑦 =  𝑇  𝑖 𝑖 +𝑇  𝑖𝑇    𝑖   (Eq. 1)   𝐾  𝑉 =   𝐴 𝑦 − 𝑖 𝑖 𝑦  ℎ  − 𝑖 𝑖 𝑦  ℎ    (Eq. 2)  
The quality measures for the example above are therefore:  
  𝑟  𝐴 𝑟 𝑦 =   + = .   (Eq. 3) 
  𝑟 .  ℎ  𝑟 =  ∗  +  ∗ = .   (Eq. 4)   𝐾  𝑉 =  . − .− . = .   (Eq. 5)  
The classification is highly successful for many channel combinations. Overall accuracies higher than 

0.99 and kappa values higher than 0.98 are often achieved. Table 8 gives an overview of most successful 

channel combinations. Already with the sole usage of channel 1 the results are not much worse than the 

best combinations, whose accuracies are highlighted in red for Sihlsee and Silvaplanersee. For Silsersee 

17 channel combinations lead to a perfect classification.   
Table 8: Overall Accuracies and Kappa Values for different channel combinations. The results change slightly with each new 

iteration of SVM. Channel combinations Sihlsee Silsersee Silvaplanersee  Acc. Kappa Acc. Kappa Acc. Kappa I01 0.990 0.977 1 1 0.991 0.976 I01, I02, I03 0.995 0.988 1 1 0.993 0.981 I01, I02, I03, I04 0.995 0.988 1 1 0.995 0.985 I01, I02, I03, I05 0.995 0.988 1 1 0.993 0.981 I01, I02, I04, I05 0.993 0.985 1 1 0.995 0.985 I01 – I05 0.995 0.988 1 1 0.995 0.985  
The accuracy differences for the best combinations are not significant and have to be tested further on 

with bigger data sets to get more detailed performance insights. 
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The misclassifications from the example in  Table 7 occur in only three different acquisitions that are 

shown in Fig. 12. The reason why is clear for the 11. October (on the left): A veil of cloud lies across 

the lake and the cloud-mask did mask out not enough pixels or the pixels are influenced by the 

neighboring clouds. For the misclassifications in February no conclusive explanation can be given. A 

possibility is that the ground truth is wrong. The boundary of the SVM-classification lies in the orange 

region of the regression results and therefore around the probability value of 0.75. This is the reason 

why the yellow and green pixels are also classified to the class frozen.  
 

Fig. 12: Dates with misclassifications for Sihlsee from left to right: 11.10.16 (ground truth: not frozen), 01.02.17 

(ground truth.: frozen), 02.02.17 (ground truth.: frozen). The upper row shows the classification, the lower the 

regression results. For the regression: Red (1) = non-frozen, blue (0) = frozen.  Where colored pixels inside the lakes 

are missing, the cloud-mask assigned them as cloudy.   
A timeline of the pixelwise results of the regression for Sihlsee, as it is shown in Fig. 13, gives an 

additional insight to the results. Notable is also how noisy the regression results are during the frozen 

period compared to the non-frozen one. This can be explained through the fact that the frozen state can 

appear in many different facets and that the reflecting characteristics of the snow cover changes steadily 

because of environmental influences. The respective timelines for Silsersee and Silvaplanersee can be 

found in the Appendix (Fig. 16 and Fig. 17).  
 

Fig. 13: The timeline shows the evolution of the regression values for each clean pixel of Sihlsee. Non-frozen = 1, 

Frozen = 0. Dates the pixels are cloud-free are indicated with small circles and a line connects them to each other. 

The outliers on the 11 October on the left part of the graph are well visible.  
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For Silvaplanersee the best classification result misclassifies three pixels wrongly as non-frozen in 

February. They are illustrated in Fig. 14. The reasons are not known.  

An unrelated striking aspect that can be seen in Fig. 14 (middle and right) is that some pixels have the 

exact same grey-values as their neighbors. It is possible that those are the leftover of the bow-tie effect 

(see Chapter 2.1). 

 
Fig. 14: Dates with misclassifications for Silvaplanersee from left to right: 12.02.2017, 16.02.17, 27.02.17 (ground 

truth for all: frozen). The upper row shows the classification, the lower the regression results. For the regression: 

Red (1) = non-frozen, blue (0) = frozen.    
The classification for Silsersee delivers for many channel combinations a perfect result without any 

misclassifications.  5. CONCLUSION AND OUTLOOK 
The results of the supervised classification and regression show that the lake ice detection with VIIRS-

imagery performs very well with accuracies pf over 98%. To achieve such good accuracies, it is 

necessary to have very accurate cloud-masks. The case of a defective cloud-mask, that caused 

misclassifications, highlights the importance. 

An intrinsic problem of optical satellite data is the missing information on cloudy days. This can lead to 

significant information gaps and a big reduction of usable data. An interpolation for these gaps will be 

especially challenging for periods of freezing and thawing.  

An important following task is to verify the results with more data, because the here used sample is 

rather small. A complete record of a winter that includes the thawing and freezing periods and a 

comparison of it to other years has to prove the robustness of the results. With bigger samples also the 

different sub-characteristics of the frozen class, ice or snow-cover on top of it, could be evaluated. 

In connection to the project Integrated Monitoring of Ice in Selected Swiss Lakes this work gives a basis 

for the comparison with the other implemented methods. To detect ice on small lakes like St. 

Moritzersee another approach is needed, or the classification of mixed pixels must be considered. 

For the future an integration of further data sources to the classification as temperature records could 

help in the interpolation of gaps. The inclusion of a temporal or spatial interpolation as a way to filter 

out outliers could leverage the already high accuracy.   
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APPENDIX  
Table 9: Cloud statistics for all acquisitions. 
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Fig. 15: Grey-value histograms for channels I04 and I05 for all lakes. Top: months October and February. Bottom: months 

December and February.    
Fig. 16: The timeline shows the evolution of the regression values for each clean pixel of Silsersee. Non-frozen 

= 1, Frozen = 0. Dates the pixels are cloud-free are indicated with small circles and a line connects them to 

each other.   
Fig. 17: The timeline shows the evolution of the regression values for each clean pixel of Silvaplanersee. 

Non-frozen = 1, Frozen = 0. Dates the pixels are cloud-free are indicated with small circles and a line 

connects them to each other. 




