
Interdisciplinary Project

Supervised by: Author:
Manu Tom (PRS), Prof. Konrad Schindler (PRS),
Prof. Fabian Walter (VAW)

Yuchang Jiang

Satellite-Independent
Embedding Learning for

Lake Ice Monitoring

Autumn Term 2020





Contents

Abstract v

Acknowledgement 1

1 Introduction 2

2 Related Work 4
2.0.1 Lake Ice Monitoring . . . . . . . . . . . . . . . . . . . . . . . 4
2.0.2 Data Fusion in Remote Sensing . . . . . . . . . . . . . . . . . 5
2.0.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 5

3 Data 6
3.0.1 Target lakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.0.2 Optical Images (MODIS and VIIRS) . . . . . . . . . . . . . . 7
3.0.3 SAR Images (Sentinel-1 SAR) . . . . . . . . . . . . . . . . . . 7
3.0.4 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Methodologies 9
4.0.1 Embedding Learning . . . . . . . . . . . . . . . . . . . . . . . 9
4.0.2 Application of Learnt Embedding . . . . . . . . . . . . . . . 10

5 Experiments & Results 14
5.0.1 Quantitative Result of Segmentation . . . . . . . . . . . . . . 14
5.0.2 Qualitative Visualization of Embedding . . . . . . . . . . . . 16
5.0.3 Qualitative Result of Time Series Plot . . . . . . . . . . . . . 17
5.0.4 Quantitative Result of Ice-on and Ice-off Dates . . . . . . . . 17
5.0.5 Miscellaneous Experiments . . . . . . . . . . . . . . . . . . . 21

6 Conclusion & Discussion 24

Bibliography 26

A Table of time series plot 27
A.1 Results of 2-step model . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Results of end-to-end model . . . . . . . . . . . . . . . . . . . . . . . 42

i



List of Figures

3.1 Geographic locations of lakes . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Network structure of Deeplab v3+ . . . . . . . . . . . . . . . . . . . 9
4.2 Network structure of fusion model (optical-optical) . . . . . . . . . . 10
4.3 Network structure of fusion model (optical-SAR) . . . . . . . . . . . 11
4.4 Network structure of 2-step model . . . . . . . . . . . . . . . . . . . 12
4.5 Details of structure of regression model . . . . . . . . . . . . . . . . 12
4.6 Network structure of end-to-end model . . . . . . . . . . . . . . . . . 13

5.1 Embedding from leave winter 2016-17 experiment and leave winter
2017-18 experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Zoomed-in visualization of embedding learnt by end-to-end model for
Lake Silvaplana in winter 2016-17 in leave winter 2016-17 experiment 17

5.3 Time series plot of 2-step model from leave winter 2016-17 experiment 18
5.4 Time series plot of end-to-end model from leave winter 2016-17 ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Time series plot of 2-step model (using LSTM) from leave winter

2016-17 experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ii



List of Tables

3.1 Summary of chosen lakes . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Summary of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Results of separated training of optical (optical-optical model) and
SAR images (Deeplab v3+) on Leave-one-winter experiments . . . . 15

5.2 Results of separated training of optical (optical-optical model) and
SAR images (Deeplab v3+) on leave-one-lake experiments . . . . . . 15

5.3 Results of optical-SAR fusion (or 2-step model) on leave-one-winter
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4 Results of optical-SAR fusion (or 2-step model) on leave-one-lake
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5 Results of end-to-end model on leave-one-winter experiments . . . . 15
5.6 Results of end-to-end model on leave-one-lake experiments . . . . . . 16
5.7 Results of ice-on and ice-off date from different methods in winter

2016-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8 Results of ice-on and ice-off date of 2-step model using regression tree

and rules with prior knowledge . . . . . . . . . . . . . . . . . . . . . 21
5.9 Results of using MLP in optical-optical model on leave-one-winter

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10 Results of using MLP in optical-optical model on leave-one-lake ex-

periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.11 Comparison of ice-on and ice-off dates in two winters . . . . . . . . . 23
5.12 Ice-on and ice-off date from 2-step model in leave winter 2017-18

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii





Abstract

Lake ice is an Essential Climate Variable (ECV) to study climate change. For
lake ice monitoring, two dates, ice-on and ice-off date, are of particular interest.
The previous studies in this field have proven the usefulness of using satellite data
sources like Moderate Resolution Imaging Spectroradiometer (MODIS), Visible In-
frared Imaging Radiometer Suite (VIIRS) , Sentinel-1 Synthetic Aperture Radar
(SAR) to monitor lake ice. As each satellite data source has its own advantages
and disadvantages, a possible but challenging way of improvement is data fusion.
Main challenges of data fusion are large spatial resolution difference and domain
gap between various remote sensing images.

This exploration work applies the idea of embedding learning to fuse three satellite
data sources, MODIS, VIIRS and Sentinel-1 SAR with fours lakes in Switzerland as
the region of interest. A variant of Deeplab v3+ is created to achieve optical-SAR
fusion and obtain embedding. To apply the learnt embedding for ice-on and ice-off
date determination, two different models are tried: 2-step model and end-to-end
model. The results indicate 2-step model can produce more accurate ice-on and
ice-off date comparing to end-to-end model and other previous methods. For three
large lakes, the accuracy of dates predicted by 2-step model is around 3 days while
the accuracy of one small lake is more than a week.

Keywords: lake ice monitoring, convolutional neural network, embedding learning,
data fusion, domain adaptation
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Chapter 1

Introduction

Climate change is a main challenge facing humanity, which requires rapid effort
[1]. To understand the evolution of climate change and provide guidance, Essential
Climate Variables (ECVs) are observed and investigated, according to the Global
Climate Observing System (GCOS) Climate Monitoring Principles. [2]. ’Lakes’ is
recognised as an ECV and the related products include lake ice cover so lake ice
monitoring is important for research about climate change. Besides, considering
the role of lake ice in winter activities, the economic and social values of lake ice
also underline the importance of lake ice monitoring.

From [3], there are two important dates for lake ice monitoring: one is ’ice-on’ date,
which is the first day when lake is completely frozen and the other one is ’ice-off’
date, the first day when lake is completely liquid water. Based on these two dates,
the freezing pattern of a lake can be observed and defined. The accuracy require-
ment defined by GCOS for ice-on and ice-ff date is ±2 days [4]. In the previous
works of lake ice monitoring, remote sensing images are main data sources to detect
lake ice and determine these two dates. In 2018, Tom et al. used MODIS and
VIIRS to monitor lake ice for lakes in Switzerland [5] and recently Sentinel-1 SAR
images are used to detect lake ice for lakes in alpine environment [4]. For optical
images like MODIS and VIIRS, they have good temporal resolution (almost daily
acquisition) but poor spatial resolution, for example, 250m for some spectral bands
of MODIS. Besides, optical images suffer from cloud problem, which reduces the
number of useful pixels. On the other hand, Sentinel-1 SAR can penetrate cloud
and have better spatial resolution, 10m but the temporal resolution is worse than
MODIS and VIIRS. Because of their limitations, it is still hard for the previous
lake ice monitoring system using MODIS, VIIRS or Sentinel-1 SAR to fulfill the
accuracy requirement defined by GCOS.

To improve the accuracy of prediction of ice-on and ice-off date, one possible way
is to fuse different satellite images to combine their advantages. However, there
are many challenges for data fusion in remote sensing field. To fuse optical im-
ages (MODIS and VIIRS) and SAR images (Sentinel-1) used in the previous works,
one main challenge is the large domain gap. It is hard to bridge the domain gap
between optical and SAR domain. Besides, how to fuse data with large spatial
resolution difference is another challenge: the spatial resolution of VIIRS, 375m is
much larger than that of Sentinel-1 SAR, 10m. Therefore, combining various satel-
lite data sources to improve the accuracy in lake ice monitoring is a possible but
challenging solution.

Here this work aims to fuse different satellite data (MODIS, VIIRS, Sentinel-1 SAR)
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by embedding learning. Through embedding learning, three satellite data sources
are fused together. The embedding learning task will be considered as a supervised
segmentation problem and the model is based on Deeplab v3+ [6]. The developed
embedding will be applied to predict the portion of water of the lake, from which
ice-on and ice-off dates are extracted for four lakes in two winters in Switzerland.
These extracted dates can be used to analyze the freezing pattern of lakes.

This report will firstly introduce related work including lake ice monitoring, data
fusion and domain adaptation in Section 2. Then selected data and data preprocess-
ing methods are discussed in Section 3. After introducing data, models implemented
are explained in Section 4 and experiment results are discussed in Section 5. Finally,
conclusion of the whole work is shown in Section 6.



Chapter 2

Related Work

2.0.1 Lake Ice Monitoring

The literature of lake ice monitoring is vast. For dataset, the majority of existing
works used satellite images. Latifovic and Pouliot extracted four important dates
(break-up start, break-up end, freeze-up start, freeze-up end dates) to define the
freezing pattern of Canadian lakes with the data of Advanced Very High Resolution
Radiometer (AVHRR) sensor in order to analyze climate change in long time series
[7]. Tom et al. applied Support Vector Machine (SVM) on MODIS and VIIRS
satellite images to perform lake ice detection for lakes in Switzerland [5]. Duguay
and Lafleur used Landsat Thematic Mapper (TM) and European Remote Sensing
(ERS)-1 SAR images to observe depth and ice thickness of lakes [8]. Then in the
last year, Tsai et al. used Sentinel-1 SAR images to detect web and dry snow for
mountainous areas [9]. Recently Sentinel-1 SAR images are trained with a deep
learning model (Deeplab v3+) to perform lake ice detection for lakes in Switzerland
[4]. Besides satellite images, other image sources like webcam images also play a
role in lake ice monitoring tasks. Xiao et al. proposed an encoder-decoder neural
network model to achieve segmentation on webcam images for lake ice monitoring
[10]. Then Prabha et al. implemented a Deep-U-Lab, a variant from Deeplab v3+
[6] to improve the performance of webcam images and showed the possibility of
using other crowd-sourced images on lake ice monitoring [11].

Previous works demonstrate that there is a diversity of dataset and methods used
in lake ice monitoring tasks. For dataset, although the majority used satellite
images, there is a recent trend for other sources like webcam images. Each dataset
may have its own advantages and disadvantages. For optical satellite images like
MODIS and VIIRS, they have nearly daily temporal resolution but poor spatial
resolution (for example, 250m for some spectral bands of MODIS). Besides, optical
images suffer from cloud problem, which reduces the number of useful pixels further.
For SAR images, they can avoid cloud problem but have worse temporal resolution
than optical images. For webcam or crowd-source images, they are only available for
some certain lakes and it is hard to configure those public cameras. As for methods,
the traditional methods like SVM are widely used while deep learning methods like
convolutional neural network are getting more and more attentions. Therefore, it
would be nice if we can benefit from data fusion and leverage state-of-art deep
learning methods.
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2.0.2 Data Fusion in Remote Sensing

Data fusion has been a popular topic in remote sensing field for decades. The tradi-
tional data fusion in remote sensing tries to combine high-resolution panchromatic
band and low-resolution multispectral bands (pansharpening). This includes meth-
ods like Brovey transformation and principal component substation [12]. Besides,
spatiotemporal fusion is an increasing trend to achieve high spatial and temporal
resolution. [13]. Song et al. applied convolution neural network to combine the spa-
tial information of Landsat images with the temporal information of MODIS image
[14]. Besides fusing two optical image sources, there is also a trend to fuse different
kinds of remote sensing images. Last year Feng et al. created a two-branch neural
network in which one branch could extract features from hyperspectral images and
the other branch could extract features from Light Detection and Ranging (LiDAR)
data [15]. Then features are combined to predict labels for urban land-use mapping.
Recently Hughes et al. proposed a three-step deep learning framework to combine
optical and SAR images, which could improve the accuracy of geo-localization for
optical images [16]. Based on previous methods, it is possible to fuse different kinds
of satellite images and deep learning seems to be the start-of-art method for data
fusion as it is able to capture high-level features and make decisions. To achieve
data fusion in this work, we would like to explore the possibility of using embed-
ding learning, a common idea in Natural Language Processing tasks, in the field of
remote sensing.

2.0.3 Domain Adaptation

Domain adaptation can capture transferable representation or embedding by deep
learning network [17]. Thus, it can be a strategy to solve the problem of the lack of
labeled data and also be applied to data fusion. Classic domain adaption includes
fine-tuning or modifying model trained on source data with target data and using
metrics to capture the discrepancy between source and target data distribution [18].
On the other hand, deep domain adaptation tries to narrow the domain gap by
optimizing the architecture of deep neural network, which usually involves ’weight-
sharing’ or ’weight-related’ idea. Recent works have proven the effectiveness of deep
domain adaptation. Chopra et al. employed a Siamese network for weight sharing
and feature extraction to perform domain adaption [19]. Then Lv et al. used
weight-sharing convolutional layers in a deep learning network to extract features
from source and target images for semantic segmentation task [20]. Instead of
weight-sharing, Rozantsev et al. used weight-related idea: there is a loss function
to minimize the difference of weights in blocks for source and target images [18]. As
weight-sharing and weight-related idea are proven to be useful in domain adaption,
this work will try to use similar idea in the field of remote sensing data fusion.



Chapter 3

Data

3.0.1 Target lakes

To monitor lake ice, four lakes in Switzerland, lake Sihl, Sils, Silvaplana and St.Moritz
are chosen. From Figure 3.1, three lakes, Sils, Silvaplana, St Moritz are closer to
each other and may have similar environment while lake Sihl is far away from oth-
ers. Besides, lake Sihl is an artificial lake. It is created by damming river Sihl and
flooding section of nearby valley. As shown in Table 3.1, those lakes have different
altitude, area size and depth. Therefore, the diversity of lakes in our data can help
test the generalisation of developed model. For each lake, we have the satellite data
(MODIS, VIIRS and Sentinel-1 SAR) for two winters, winter 2016-17 and winter
2017-18.

Figure 3.1: Geographic locations of lakes

Table 3.1: Summary of chosen lakes

Chosen Lakes
Sihl Sils Silvaplana St.Moritz

Area(km2) 11.3 4.1 2.7 0.78
Altitude(m) 889 1797 1791 1768
Max.Depth(m) 17 71 77 42
Volume(Mm3) 96 137 140 20
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3.0.2 Optical Images (MODIS and VIIRS)

MODIS and VIIRS data for four lakes in two winters are chosen and preprocessed
with the same preprocessing procedure as introduced in [5], which includes georef-
erencing, absolute location correction, cloud filtering and bilinear interpolation for
low-resolution bands (for example, upsample 500m band to 250m for MODIS). All
cloud-free lake pixels in the acquisition with more than 30% non-cloud coverage are
extracted. After processing, there is no VIIRS data for lake St.Moritz. Because
the area size of lake St.Moritz is only 0.78km2 and the spatial resolution of VI-
IRS is 375m, there is no pixel full of lake can be extracted. As for band selection,
instead of using all available bands, 12 out of 36 spectral bands are selected for
MODIS and 5 out of 22 spectral bands are selected for VIIRS data as suggested
by [5]. To form image with uniform size, lake pixels are padded with background
pixels to form 12x12 image size for each channel. Therefore, the size of preprocessed
MODIS image is 12x12x12 and the size of preprocessed VIIRS image is 12x12x5.
The summary of optical images is displayed in Table 3.2.

3.0.3 SAR Images (Sentinel-1 SAR)

Sentinel-1 SAR data for four lakes in two winters are chosen and are preprocessed
with the same preprocessing methods as stated in [4], which includes border noise
removal, thermal noise removal, radiometric calibration, terrain correction, log scal-
ing and cropping to 128∗128 size. Although there are four polarisation for Sentinel-1
SAR, only VV and VH polarisation are available for the region of interest so the
final image size of Sentinel-1 is 128 ∗ 128 ∗ 2. The summary of Sentinel-1 images is
displayed in Table 3.2.

Table 3.2: Summary of data

Data
MODIS VIIRS Sentinel-1

Satellite Type Optical Optical SAR
Spatial Resolution 250m 375m 10m
Temporal Resolution 1d 1d 2-3d
No. Channel 12(36) 5(22) 2(4)
Cloud Problem Yes Yes No

3.0.4 Ground Truth

There are three sources of ground truth data in this work: per-pixel segmentation
ground truth, per-day label of lake condition, ice-on and ice-off date of lake.

For per-pixel segmentation ground truth, there are three classes: frozen, nonfrozen
and background (or no-lake). They are labeled by human operator for all three
satellite data. However, due to the difficulty of labeling pixels in transition period
(when lake is a mixture of water and ice), only data in non-transition period (when
lake is totally frozen or totally liquid water) are available.

For per-day label of lake condition, human operators annotated the ground truth
by observing available webcam data with one of nine possible labels: snow, ice,
water, more snow, more ice, more water, clouds, unclear, no data. For practical
use, these text labels are converted into numeric values to represent the portion of
water: convert ’snow’ and ’ice’ to 0, ’more snow’ and ’more ice’ to 0.25, ’more water’
to 0.75 and ’water’ to 1. For days with uncertain labels like ’clouds’, ’unclear’ or
’no data’ labels, we replace it with the label of the closest day, if valid ground truth
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exists for that day.

For ice-on and ice-off date, they are based on visual interpretation of human op-
erators. These ground truth data are downloaded from the open source repository of
previous work [4] (https://github.com/czarmanu/sentinel lakeice/tree/master/data/gt).
The ground truth data are available for all four lakes in winter 2016-17.



Chapter 4

Methodologies

Methodologies are divided into two parts:

1. Achieve embedding learning with a segmentation model

2. Apply embedding to a specific task: the prediction of the nonfrozen (liquid
water) portion of lake

4.0.1 Embedding Learning

Deeplab v3+

Deeplab v3+ is proved to be a promising model for semantic segmentation tasks
[6]. As shown in Figure 4.1, Deeplab v3+ leverages atrous convolution to capture
information at different scales and combine the low-level features with high-level
features. As suggested by [4], Deeplab v3+ is a good choice for lake ice monitoring
tasks with Sentinel-1 data. Therefore, we used Deeplab v3+ to train Sentinel-1
SAR data and the loss function used here is cross entropy loss function.

General parameter settings: epoch number is 100, batch size is 16, optimizer is
Adam [21], learning rate is 0.0001, use pretrained MobileNetV2 [22] on ImageNet
[23] as backbone, set 1, 2, 3 as rate for atrous convolution.

Figure 4.1: Network structure of Deeplab v3+

Optical-Optical Fusion

Because MODIS and VIIRS have poor spatial resolution, it is not suitable for deep
network structure. Thus, a shallow network with 1x1 convolutional layers are de-
signed to fuse them. As Figure 4.2 shows, different encoders are used for MODIS
and VIIRS and one shared block is used for weight sharing and combination. Each

9
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encoder is one 1x1 convolution layer. The shared block consists of several 1x1
convolution layers and concatenation layers. With encoders and shared block, the
feature layer (green block) with 12x12x32 size can be treated as learnt embedding.
The loss function used here is cross entropy loss function.

General parameter settings: epoch number is 5-10 for MODIS and VIIRS, batch
size is 8, optimizer is Adam [21], learning rate is 0.0005.

Figure 4.2: Network structure of fusion model (optical-optical)

Optical-SAR Fusion

With pretrained optical-optical fusion model and Deeplab v3+ model, the encoder
of Deeplab v3+ can be combined with optical-optical fusion model to form optical-
SAR fusion model, which means each component of optical-SAR fusion model is
already pretrained. The overall network structure of this optical-SAR fusion is
depicted in Figure 4.3. Because the last layer of standard Deeplab v3+ is an up-
sample layer to preserve the resolution of input images (as shown in Figure 4.1),
one upsample layer is added in the end of optical-SAR fusion model if inputs are
Sentinel-1 SAR images. This will not affect the training of model as there is no
trainable parameters in upsample layer. Although the image size segmentation re-
sult is different for three data sources, it is not a problem for this fusion model:
convolutional layers can take images with different size as input.

The whole training process of this fusion model includes two stages: the first one is
to pretrain Deeplab v3+ on Sentinel-1 SAR and pretrain optical-optical fusion on
MODIS and VIIRS; the second stage is fine-tuning. The main reason of fine-tuning
is to make shared block be compatible with both optical and SAR images. To fine
tune the optical-SAR fusion model, Sentinel-1 data are used to go through this
model, which includes the joint training of the encoder of Deeplab v3+ and main
shared block. During this process, the first 82 layers of the encoder of Deeplab
v3+ are frozen as the extraction of low-level features should be unaffected. After
fine tuning, the feature layer (green block in Figure 4.3) can be treated as learnt
embedding. The loss function used here is cross entropy loss function.

General parameter settings: epoch number is 20, batch size is 16, optimizer is Adam
[21], learning rate is 0.0001.

4.0.2 Application of Learnt Embedding

2-Step Model

2-step model consists of two steps:

1. use the mentioned segmentation model (optical-SAR fusion model) to learn
embedding
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Figure 4.3: Network structure of fusion model (optical-SAR)

2. use learnt embedding to predict the portion of water in the lake with a re-
gression model

As depicted in Figure 4.4, the first step is the same as optical-SAR fusion. Because
the size of optical and SAR images are different, the size of embedding of SAR
images is larger than that of optical images. Thus, one post-processing step is to
resize the embedding of SAR images to ensure uniform embedding size. Then the
learnt embedding (the green block) is stacked along time dimension to leverage
temporal information. For example, the embedding from yesterday, current day
and the day after are stacked together and feed into the second step, a regression
model, which will output the portion of water of a lake. Here we use ’timestep’ to
denote the number of embedding stacked along time dimension so for the example
mentioned before, the timestep is 3. In regression model, the top four layers are
convolution layers operated on each time dimension followed by a reshape layer
(in order to reduce time dimension). Before this reshape layer, the dimension of
feature layer is (batch size, timestep, image width, image height, channel size). After
the reshape layer, the dimension of feature layer becomes (batch size, image width,
image height, timestep * channel size). Then three convolution layers are performed
on the reshaped features followed by a fully connected layer. The detailed network
structure is summarized in Figure 4.5. For step 1, we still use cross entropy as loss
function. As for step 2, the following loss function is used:

Lreg = LMSE + αLline + βLnms (4.1)

LMSE : Mean Squared Error
Lline: fit predictions of neighboring days to a simple straight line (kx + b) and
compute the orthogonal distance between each prediction to the straight line. It
can act as a smooth function to suppress noises for the final time series plot. The
detailed computation is as the following formula:

Simple line fitting in a batch:

k =
ylastpred − y

first
pred

batch size
, b = yfirstpred (4.2)

Orthogonal distance computation of the i-th prediction in a batch:

distancei =
|ki+ b− yipred|√

k2 + 1
(4.3)

Lnms: compute the variance of predictions from the same day to perform non-
maximum suppression. As different satellite sources are combined, it is possible to
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have more than one acquisition for one day. This loss can minimize the differences
between those predictions from the same day.

General parameter settings: The settings for step 1 is the same as that of optical-
SAR fusion. For step 2, time dimension is 7, epoch number is 30, batch size is 8,
optimizer is Adam [21], learning rate is 0.0005, α and β are 0.08.

Figure 4.4: Network structure of 2-step model

Figure 4.5: Details of structure of regression model

End-to-End Model

Instead of treating embedding learning and task solving as two separated steps,
end-to-end model tries to combine them into a two-branch model. This end-to-end
model consists of two branches:

1. use segmentation model (optical-SAR fusion model) as segmentation branch
to guide embedding learning

2. use regression model (same as the second step in 2-step model) to guide em-
bedding learning and obtain the portion of water in the lake simultaneously

As shown in Figure 4.6, the previous step 1 (segmentation model) becomes the
segmentation branch while the step 2 (regression model) becomes the other branch.
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The network structure of each branch is the same as the corresponding step in
Figure 4.4. The training process of end-to-end consists of pretraining and joint
training stages. In pretraining stage, optical-optical fusion model and Deeplab v3+
are pretrained. Then in joint training stage, all satellite images are feed into end-
to-end model. During joint training, the first 82 layers of Deeplab v3+ are frozen
as the low-level feature extraction will remain the same. For the joint training, the
loss function is defined as:

Le2e = w1Lseg + w2Lreg + w3Lcon (4.4)

Lseg: cross entropy loss
Lreg: as defined in Equation 4.1
Lcon: compute the absolute difference between prediction from the regression branch
and the portion of water calculated from segmentation result:

portion =
#nonfrozen pixels

#lake pixels
(4.5)

General parameter settings: The segmentation part of end-to-end model consists of
pretrained optical-optical model, the encoder of Deeplab v3+ and the shared block.
The pretraining process uses the same parameter setting as the settings mentioned
in Deeplab v3+ and optical-optical fusion part. As for joint training, time dimen-
sion is 7, epoch number is 10, batch size is 8, optimizer is Adam [21], learning rate
is 0.0001, α is 0.25, β is 0.05, w1 and w2 are 0.5 and w3 is 1.

Figure 4.6: Network structure of end-to-end model



Chapter 5

Experiments & Results

To check the performance of models, usually data are split into training and test-
ing set by some portion for experiment, for example, 75% for training and 25%
for testing. However, we need to keep data completeness for each lake in order to
generate complete time series plot and extract ice-on/off date. Therefore, instead
of splitting data randomly, ’Leave-One-Out’ setting is used in experiments. Here
the ’Leave-One-Out’ means leave one winter or leave one lake. For example, leave
winter 2016-17 experiment means training on the data of all lakes in winter 2017-18
and testing on the data of all lakes in winter 2016-17. Those segmentation models
(Deeplab v3+, optical-optical fusion, optical-SAR fusion) are trained on data from
non-transition period as segmentation ground truth from transition period is not
available. We use accuracy and mean Intersection-over-Union (mIoU) to check the
performance of segmentation models. As for 2-step model and end-to-end model,
the segmentation parts are pretrained on data from non-transition part but all data
from non-transition and transition period are used to generate embedding, which
means when generating embedding in training stage, data from transition period
will not be counted for loss computation. Then regression part will take data from
both periods. To check the performance of 2-step and end-to-end model, we conduct
rough visual checking on time series plots as there is no suitable metric available.

The reported results include quantitative and qualitative measurements. For quan-
titative measurements, accuracy and mIoU are used as segmentation metrics. For
qualitative checking, we focus on the visualization of embedding and time series
plot of predicted portion of water. To compare with previous related works, ice-on
and ice-off dates are extracted and discussed.

5.0.1 Quantitative Result of Segmentation

To check the stability of models, all leave-one-out experiments (two leave-one-
winter-out and four leave-one-lake-out experiments) are performed for segmentation
models including Deeplab v3+ on Sentinel-1 SAR, optical-optical fusion on MODIS,
VIIRS and optical-SAR fusion on all satellite images. The results of segmentation
using separated models for optical images and SAR images are shown in Table 5.1
and Table 5.2. The results of segmentation of optical-SAR fusion are displayed
in Table 5.3 and Table 5.4. Comparing the results of separated models (Deeplab
v3+ and optical-optical fusion) with that of optical-SAR fusion, both accuracy and
mIoU are similar so the data fusion is successful with aspect to segmentation. As
optical-SAR fusion is directly used as the first step in 2-step model, it also suggests
the segmentation part of 2-step model is successful. For the segmentation branch
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of end-to-end model, results are shown in Table 5.5 and Table 5.6. Comparing the
results of 2-step model and end-to-end model, it seems end-to-end model performs
slightly better than 2-step model. As the final objective is to narrow the domain gap
and obtain embedding instead of semantic segmentation, a better result of segmen-
tation does not mean end-to-end model is superior. A more detailed investigation
is required for learnt embedding.

Table 5.1: Results of separated training of optical (optical-optical model) and SAR
images (Deeplab v3+) on Leave-one-winter experiments

Image Source winter 16 winter 17

accuracy mIoU accuracy mIoU
MODIS 96.57% 82.72% 97.55% 85.96%
VIIRS 98.75% 87.46% 98.79% 86.16%

Sentinel-1 94.42% 75.14%% 95.90% 80.92%

Table 5.2: Results of separated training of optical (optical-optical model) and SAR
images (Deeplab v3+) on leave-one-lake experiments

Image Source Sihl Sils Silvaplana St.Moritz

accuracy mIoU accuracy mIoU accuracy mIoU accuracy mIoU
MODIS 97.90% 73.54% 99.38% 89.21% 97.57% 82.17% 99.79% 81.93%
VIIRS 89.10% 84.73% 95.19% 78.64% 98.47% 72.20% - -

Sentinel-1 94.49% 61.84%% 96.20% 82.97% 95.04% 79.85% 95.36% 76.45%

Table 5.3: Results of optical-SAR fusion (or 2-step model) on leave-one-winter
experiments

Image Source winter 16 winter 17

accuracy mIoU accuracy mIoU
MODIS 96.62% 83.65% 96.64% 81.62%
VIIRS 98.75% 87.95% 99.07% 87.76%

Sentinel-1 95.04% 78.51% 94.89% 78.20%

Table 5.4: Results of optical-SAR fusion (or 2-step model) on leave-one-lake exper-
iments

Image Source Sihl Sils Silvaplana St.Moritz

accuracy mIoU accuracy mIoU accuracy mIoU accuracy mIoU
MODIS 93.32% 81.40% 98.34% 89.61% 97.70% 83.09% 99.78% 82.33%
VIIRS 98.16% 86.41% 99.35% 89.35% 99.41% 88.50% - -

Sentinel-1 94.24% 62.22% 94.91% 79.69% 94.85% 80.17% 94.39% 74.14%

Table 5.5: Results of end-to-end model on leave-one-winter experiments

Image Source winter 16 winter 17

accuracy mIoU accuracy mIoU
MODIS 96.99% 85.32% 97.19% 84.22%
VIIRS 99.05% 91.57% 99.31% 90.37%

Sentinel-1 96.43% 84.32% 92.93% 74.60%
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Table 5.6: Results of end-to-end model on leave-one-lake experiments

Image Source Sihl Sils Silvaplana St.Moritz

accuracy mIoU accuracy mIoU accuracy mIoU accuracy mIoU
MODIS 92.88% 80.55% 93.07% 80.59% 98.50% 90.64% 99.77% 87.18%
VIIRS 97.50% 84.34% 97.79% 85.46% 99.62% 94.29% - -

Sentinel-1 91.07% 64.21% 89.26% 61.70% 94.46% 80.01% 94.56% 77.89%

5.0.2 Qualitative Visualization of Embedding

As we use segmentation model to achieve embedding learning task, checking the vi-
sualization of embedding is important. After performing dimension reduction with
t-distributed Stochastic Neighbor Embedding (t-SNE) [24], the embedding from two
models, 2-step model and end-to-end are displayed in Figure 5.1. Here we chose t-
SNE instead of Principle Component Analysis (PCA) as t-SNE is better to preserve
the neighboring relationship. With t-SNE, we can have a rough idea about which
embedding are clustered in the high-dimensional space. In Figure 5.1, the embed-
ding resulted from 2-step model look reasonable: they are clustered by colors, which
represent the portion of water in the lake. As for the result of end-to-end model, the
embedding are not clustered by colors but by something else. To investigate this
problem, we use satellite type to represent the symbol shape of embedding. The
result of Lake Silvaplana in winter 2016-17 from end-to-end model is shown in Fig-
ure 5.2, in which MODIS, VIIR, Sentinel-1 SAR are in round, square and diamond
shape. It is obvious that embedding are clustered by satellite type so the domain
gap is still large in the result of end-to-end model. Comparing the result of these
two models, 2-step model can narrow the domain gap better. As 2-step model only
uses segmentation while end-to-end model combines segmentation and regression
to guide embedding learning, the results suggest segmentation model can perform
embedding learning better than the joint learning of segmentation and regression.
However, although embedding learnt by 2-step model is better, we can still notice
some domain gaps, especially in leave winter 2017-18 experiment. To summarize,
there is still large space for investigation and improvement for embedding learning.

((a)) Embedding from 2-step model ((b)) Embedding from end-to-end
model

Figure 5.1: Embedding from leave winter 2016-17 experiment and leave winter
2017-18 experiment
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Figure 5.2: Zoomed-in visualization of embedding learnt by end-to-end model for
Lake Silvaplana in winter 2016-17 in leave winter 2016-17 experiment

5.0.3 Qualitative Result of Time Series Plot

From both 2-step model and end-to-end model, daily predictions of the portion of
water are obtained for each lake. To check the performance, leave winter 2016-17
experiment is conducted on both models. These predictions can form the time
series plots in Figure 5.3 and 5.4. In time series plots, ground truth based on visual
interpretation of human operator is shown as blue line and predictions from different
months are shown as points with different colors. From Figure 5.3, the result of 2-
step model is close to ground truth, especially in non-transition period. Because we
only have non-transition training data for embedding learning, it is ’unsupervised’
and hard to predict the portion of water in transition period. In general, the result
of 2-step model captures the general trend of ground truth and the corner points
(for example, ice-on and ice-off dates) are clear. Among results of all four lakes, time
series plot of lake St.Moritz is not as good as others. Considering the small area size
of this lake, the imbalance of data may cause the generalisation problem of 2-step
model. As for the result of end-to-end model in Figure 5.4, it is more noisy and
many predictions are deviated from ground truth. Because the embedding learning
of end-to-end is worse than 2-step model, it indicates the successful embedding
learning and narrowed domain gap are essential for an accurate time series plot.

5.0.4 Quantitative Result of Ice-on and Ice-off Dates

Ice-on and ice-off dates are important for lake ice monitoring. Based on daily pre-
dictions of portion of water, ice-on and ice-off dates are extracted. Regression tree
is used to fit predictions and split them into intervals: water period, freezing period,
frozen period, melting period and water period. Then the end of freezing period is
considered as ice-on date and the end of melting period is considered as ice-off date.
The results of ice-on and ice-off dates in winter 2016-17 from different methods
are summarized in Table 5.7. Two columns in blue (2-Step and E2E) are results
of 2-step model and end-to-end model. GT is the ground truth based on visual
interpretation by human operator. There are two methods from previous works:
’M+V’ means a combination of MODIS and VIIRS prediction results with Support
Vector Machine (SVM) and ’Webcam’ means the prediction results of using neural
network on webcam images [25]. By comparing results from different methods to
ground truth, 2-step model slightly outperforms other methods: for lake Sihl, lake
Sils and lake Silvaplana, 2-step model can produce better results than end-to-end
model and other previous methods. Comparing predicted dates of four lakes, the
predictions of lake Sihl and lake Sils are more accurate than other. This is because
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((a)) Lake Sihl in winter 2016-17

((b)) Lake Sils in winter 2016-17

((c)) Lake Silvaplana in winter 2016-17

((d)) Lake St.Moritz in winter 2016-17

Figure 5.3: Time series plot of 2-step model from leave winter 2016-17 experiment
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((a)) Lake Sihl in winter 2016-17

((b)) Lake Sils in winter 2016-17

((c)) Lake Silvaplana in winter 2016-17

((d)) Lake St.Moritz in winter 2016-17

Figure 5.4: Time series plot of end-to-end model from leave winter 2016-17 experi-
ment
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they are two large lakes and their large amount of data can dominant the training
of models. As for lake St.Moritz, the smallest lake, the performance of 2-step model
is not good. For this small lake, there is no useful lake pixel in VIIRS data at all
and only a few useful pixels in MODIS data. Training data of lake St.Moritz is not
enough comparing to the data of other lakes. Besides, the freezing pattern of lake
St.Moritz is different from others: lake St.Moritz will freeze at an earlier date and
it has a longer frozen period. Thus, the lack of training data and diversity of lake
freezing pattern add the difficulty of prediction.

Table 5.7: Results of ice-on and ice-off date from different methods in winter 2016-17

Date GT M+V[25] Webcam[25] 2-Step E2E

Ice-on (Sihl) 1 Jan. 3 Jan. 4 Jan. 2 Jan. 2 Jan.
Ice-off (Sihl) 14 Mar., 15 Mar. 10 Mar. 14 Feb. 10 Mar. 3 Mar.
Ice-on (Sils) 2 Jan., 5 Jan. 6 Jan - 4 Jan. 4 Jan.
Ice-off (Sils) 8 Apr., 11 Apr. 31 Mar. - 12 Apr. 13 Apr.

Ice-on (Silvaplana) 12 Jan. 15 Jan. - 9 Jan. 15 Jan.
Ice-off (Silvaplana) 11 Apr. 30 Mar. - 13 Apr. 7 Apr.
Ice-on (St.Moritz) 15-17 Dec. 1 Jan. 14 Dec. 2 Jan. 1 Jan.
Ice-off (St.Moritz) 30 Mar.-6 Apr. 7 Apr. 18 Mar-26.Apr. 12 Apr. 12 Apr.

In Table 5.7, regression tree is employed to extract ice-on and ice-off dates from the
predictions of 2-step model and end-to-end model because regression tree is a good
non-parametric unsupervised method which requires no prior knowledge or param-
eter selection. However, this is also the disadvantage of regression tree method:
as there is no prior knowledge or parameter, regression tree is unconstrained and
unstable. Even a small variation of data can affect the result of regression tree. The
inputs of regression tree are the predictions generated by neural networks (2-step
model and end-to-end), whose training involves randomness. Thus, the randomness
in the training of neural network will lead to the variation of predictions, which will
affect the performance of regression tree in the end.

To avoid the unstable problem of regression tree method, another decision rule with
prior knowledge is tried to determine ice-on and ice-off date. After organizing pre-
dictions in Tables in Appendix A.1, a decision rule with prior knowledge is used:
the day from which the water portion is lower than 25% is considered as ice-on date
and the day from which the water portion is higher than 75% is considered as ice-off
date. The results of ice-on and ice-off dates from 2-step predictions based regression
tree method and prior knowledge method are summarized in Table 5.8. Comparing
the results from two methods, their deviation is larger for ice-off date and smaller
for ice-on date, which suggests our model is more certain for the prediction of ice-on
date. From this comparison, it is still hard to determine which method is better, re-
gression tree or the rule with prior knowledge. A possible improvement direction is
to combine these two methods: regression tree suffers from unstable problem while
prior knowledge method can add constraint to increase stability; prior knowledge
method suffers from discrete predictions (for example, no acquisition for 7 and 8
of January so we do not know if the ice-on date is 6 of January of 9 of January)
while regression tree can capture the general trend of predictions to overcome the
discrete prediction problem.
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Table 5.8: Results of ice-on and ice-off date of 2-step model using regression tree
and rules with prior knowledge

Date GT 2-Step (RT) 2-Step (prior) deviation between 2 decision rules (days)

Ice-on (Sihl) 1 Jan. 2 Jan. 2 Jan. 0
Ice-off (Sihl) 14 Mar., 15 Mar. 10 Mar. 17 Mar. 7
Ice-on (Sils) 2 Jan., 5 Jan. 4 Jan. 4 Jan. 0
Ice-off (Sils) 8 Apr., 11 Apr. 12 Apr. 13 Apr. 1

Ice-on (Silvaplana) 12 Jan. 9 Jan. 6 Jan. 3
Ice-off (Silvaplana) 11 Apr. 13 Apr. 14 Apr. 1
Ice-on (St.Moritz) 15-17 Dec. 2 Jan. 2 Jan. 0
Ice-off (St.Moritz) 30 Mar.-6 Apr. 12 Apr. 21 Apr. 9

5.0.5 Miscellaneous Experiments

This part contains results and discussion of model design, further analysis of lake
freezing pattern and more experiments for 2-step model.

• Model design
Before reaching the final model design, more possibilities of models are tried.
Here we will discuss the result of using Multi-Layer Perceptron (MLP) in
optical-optical fusion and using Long Short-Term Memory (LSTM) as regres-
sion model in the second step of 2-Step Model.

• Analysis of ice-on and ice-off date in two winters
To understand target lakes and chosen data, we will analyze ice-on and ice-off
dates in two winters to investigate their freezing pattern. This analysis can
also help understand the performance of models.

• More experiments for 2-step model
As 2-step model achieves higher accuracy than end-to-end, more experiments
are conducted for this model.

Multi-Layer Perceptron (MLP) in Optical-Optical Fusion

As MODIS and VIIRS images are small, it is natural to try models with simple
structure so the first trial is using MLP. The segmentation results of using MLP to
achieve optical-optical fusion are shown in Table 5.9 and Table 5.10. Comparing to
the segmentation results of using CNN (Table 5.1 and Table 5.2), it is obvious that
CNN is a better choice.

Table 5.9: Results of using MLP in optical-optical model on leave-one-winter ex-
periments

Image Source winter 16 winter 17 Average

accuracy mIoU accuracy mIoU accuracy mIoU
MODIS 89.81% 77.72% 93.80% 81.61% 91.81% 79.67
VIIRS 93.14% 85.67% 93.42% 82.75% 93.28% 84.21

Table 5.10: Results of using MLP in optical-optical model on leave-one-lake exper-
iments

Image Source Sihl Sils Silvaplana St.Moritz

accuracy mIoU accuracy mIoU accuracy mIoU accuracy mIoU
MODIS 91.75% 72.53% 82.63% 68.59% 89.60% 80.75% 83.88% 71.55%
VIIRS 93.12% 87.11% 93.69% 88.02% 93.12% 87.11% - -
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((a)) Lake Sils in winter 2016-17

((b)) Lake Silvaplana in winter 2016-17

Figure 5.5: Time series plot of 2-step model (using LSTM) from leave winter 2016-17
experiment

Long Short-Term Memory (LSTM) in 2-Step Model

After embedding learning, we stack embedding along time dimension to leverage
temporal information. A natural way to handle temporal information is using LSTM
model and the resulted time series plots of lake Sils and Silvaplana are shown in
Figure 5.5. There are many noisy points in plots, especially in transition period.
Besides, it is normal for LSTM to encounter overfitting problem as it requires much
more parameters than CNN model. Therefore, CNN is a better choice for this case.

Analysis of ice-on and ice-off date in two winters

For ground truth of ice-on and ice-off dates, they are only available for lakes in win-
ter 2016-17. However, we can estimate the possible dates based on interpretation
of per-day lake condition labels. For example, a long series of ’more snow’ labels
is followed by a series of ’more water’ and ’water’ labels. The date range of ’more
water’ and ’water’ labels can be the possible range of ice-off date. One exception is
for lake Sihl in winter 2017-18. Its freezing pattern is weird: lake is switching from
water to ice, then ice to water many times so it is hard to interpret ice-on and ice-off
date. To check the feasibility of this estimation method, we can estimate the dates
in winter 2016-17 and compare them with given ground truth. The estimated dates
and ground truth are close so this method is feasible. The estimated dates in win-
ter 2017-18 and ground truth in winter 2016-17 are summarized in Table 5.11. By
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comparing dates in two winters, it is noticed that ice-on dates are similar but ice-off
dates are quite different. In general, ice-off dates in winter 2017-18 are delayed so
lakes have relatively longer frozen period in this winter. The difference of ice-off
dates in two winters also explains the uncertainty of ice-off date prediction when
using 2-step or end-to-end model. To increase the certainty of date prediction, data
in several years are required for training.

Table 5.11: Comparison of ice-on and ice-off dates in two winters

winter 2016-17 (GT) winter 2017-18 (Estimated)

Lake Ice-on date Ice-off date Ice-on date Ice-off date

Sihl 1 Jan. 14 Mar., 15 Mar. - -
Sils 2 Jan., 8 Apr., 11 Apr. 1 Jan. 5 May.-18 May.

Silvaplana 12 Jan. 11 Apr. 27 Dec.-1 Jan. 3 May.-5 May.
St.Moritz 15-17 Dec. 30 Mar.-6 Apr. 17 Dec.-21 Dec. 1 May.-3 May.

More experiments for 2-step model

With estimated ’ground truth’ dates in winter 2017-18, we can run leave winter
2017-18 experiment for 2-step model and compare extracted dates with estimated
ones. Predicted and estimated dates are shown in Table 5.12. Among those dates,
the predictions of ice-off date of lake Sils and ice-on date of lake St.Moritz are worse
than others. In general, the prediction in leave winter 2017-18 is worse than result
in leave winter 2016-17 experiment, which indicates the instability issue of model.
Because of data hungry property of deep learning method and obvious differences
between freezing pattern in two winters, more training data (more than two win-
ters) are needed for 2-step model.

Table 5.12: Ice-on and ice-off date from 2-step model in leave winter 2017-18 ex-
periment

2-step model Estimated ’ground truth’

Lake Ice-on date Ice-off date Ice-on date Ice-off date

Sihl - - - -
Sils 29 Dec. 27 Mar. 1 Jan. 5 May.-18 May.

Silvaplana 31 Dec., 26 Apr. 27 Dec.-1 Jan. 3 May.-5 May.
St.Moritz 24 Nov. 4 May 17 Dec.-21 Dec. 1 May.-3 May.
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Conclusion & Discussion

Based on embedding learning, MODIS, VIIRS and Sentinel-1 SAR data are fused
successfully. We achieved optical-optical and optical-SAR fusion and applied learnt
embedding to determine ice-on and ice-off dates for four lakes over two winters
in Switzerland. Two ideas of overall modelling, 2-step and end-to-end, are tried.
The ice-on and ice-off dates resulted from 2-step model are closer to ground truth
comparing to end-to-end model and previous works. The result of this work has
explored the possibility to apply embedding learning idea in lake ice monitoring
task. However, there are still observable limitations in this exploration work.

From experiment results, there are three remaining problems: generalisation and
stability problem of models, domain gap in embedding space and selection of deci-
sion rule for date extraction. From the time series plots of 2-step model, the results
of three large lakes look good while the extracted dates of lake St.Moritz are far
away from ground truth. This suggests 2-step model is not generalised well for
this small lake. Adjusting the model structure or increasing data size may fix this
problem. Besides, embedding requires further investigation. Although the domain
gap is narrowed in the visualization of embedding learnt by 2-step model, the small
gap can still be observed. Exploring the embedding further may help improve the
model and increase accuracy of extracted date. Right now the accuracy of model
does not achieve the required accuracy. From GCOS, the accuracy requirement for
ice-on and ice-off dates is ±2 days so there is still space for improvements. The
other way for improvement is making adjustment to decision rule, when extracting
ice-on and ice-off date from time series plot. In this work, two decision rules, regres-
sion tree and simple rule with prior knowledge, are tried. Each of them has its own
advantages and limitations so a better decision rule to combine their advantages is
required.

To extend this work, more future direction can be considered. One direction is to
switch from supervised to unsupervised embedding learning. As unsupervised way
does not require human labelling, it is more practical in real applications. The other
direction is to feed in more data sources. For example, combining MODIS, VIIRS,
Sentinel-1 SAR and Sentinel-2 together in embedding learning stage. It may further
improve the accuracy of date prediction. Besides, although this work only applies
the idea of embedding learning in lake ice monitoring task, it is also valuable to try
similar idea in other earth observation tasks.
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Appendix A

Table of time series plot

A.1 Results of 2-step model

Lake Sihl, winter 2016-17

Date Water Portion
Date Water Portion
20160902 99.71
20160903 99.98
20160905 99.95
20160906 99.84
20160907 99.83
20160908 99.74
20160909 99.73
20160910 99.8
20160911 99.78
20160912 99.93
20160913 99.95
20160914 99.88
20160915 99.74
20160917 98.49
20160922 98.93
20160924 99.53
20160925 99.43
20160926 99.46
20160927 95.65
20160928 98.97
20160929 99.99
20160930 99.98
20161001 99.9
20161003 99.33
20161004 99.84
20161006 99.57
20161007 93.64
20161010 89.0
20161011 98.4
20161012 99.5
20161016 99.97
20161019 99.95
20161020 99.67
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20161022 99.82
20161023 99.66
20161028 99.65
20161029 99.62
20161030 99.98
20161031 99.93
20161101 99.91
20161103 99.62
20161104 97.9
20161112 99.39
20161115 99.94
20161116 99.71
20161124 99.84
20161126 98.83
20161128 84.04
20161130 98.92
20161201 99.66
20161202 99.96
20161203 99.9
20161204 99.87
20161205 99.65
20161206 99.54
20161207 99.74
20161208 99.83
20161209 95.42
20161210 99.11
20161211 99.65
20161212 99.77
20161213 99.95
20161214 99.88
20161215 99.65
20161216 99.69
20161217 99.87
20161218 99.98
20161219 99.98
20161221 99.52
20161222 99.18
20161223 99.1
20161224 99.56
20161226 99.55
20161228 99.9
20161229 99.73
20161230 99.58
20161231 96.2
20170101 65.12
20170102 2.17
20170103 0.0
20170106 0.0
20170111 0.01
20170113 0.02
20170115 0.0
20170118 0.0
20170119 0.0
20170120 0.0
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20170121 0.0
20170122 0.0
20170123 0.0
20170126 0.0
20170127 0.0
20170128 0.0
20170129 0.0
20170201 0.0
20170202 0.01
20170203 0.0
20170204 0.02
20170206 0.01
20170208 0.0
20170210 0.0
20170211 0.0
20170212 0.0
20170214 0.0
20170215 0.0
20170216 0.0
20170218 0.0
20170219 0.0
20170220 0.0
20170222 0.06
20170223 0.0
20170225 0.0
20170226 0.0
20170227 0.0
20170228 0.0
20170303 0.19
20170304 2.31
20170305 13.94
20170306 14.2
20170310 30.49
20170311 2.0
20170312 20.3
20170313 45.56
20170314 45.19
20170315 29.36
20170316 30.02
20170317 77.93
20170318 80.04
20170320 97.94
20170323 99.79
20170324 99.93
20170325 99.83
20170327 98.12
20170328 94.0
20170329 93.69
20170330 99.77
20170331 99.77
20170401 99.63
20170403 99.96
20170405 99.87
20170406 99.24
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20170407 97.08
20170408 98.52
20170409 99.86
20170410 99.99
20170411 99.97
20170412 99.66
20170413 99.42
20170415 99.65
20170417 96.1
20170419 96.64
20170421 99.74
20170422 97.12
20170423 99.4
20170424 99.35
20170427 98.92
20170429 91.85
20170430 76.81
20170502 99.4
20170503 99.72
20170505 99.98
20170509 99.94
20170510 99.97
20170511 99.04
20170512 99.5
20170513 98.03
20170515 99.64
20170516 99.67
20170517 99.97
20170518 99.97
20170521 99.83
20170522 99.96
20170523 99.83
20170524 99.74
20170525 99.14
20170526 98.84
20170527 99.74
20170528 99.89
20170529 99.88

Lake Sils, winter 2016-17

Date Water Portion
Date Water Portion
20160902 97.05
20160903 97.04
20160904 93.33
20160905 93.36
20160906 97.26
20160907 98.32
20160908 98.48
20160909 98.97
20160910 98.32
20160911 99.63
20160912 99.86
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20160913 99.52
20160914 99.37
20160916 99.64
20160917 99.63
20160920 94.47
20160922 98.52
20160923 98.67
20160924 99.6
20160925 99.78
20160926 99.63
20160927 99.47
20160928 99.52
20160929 99.71
20160930 99.65
20161002 97.18
20161003 98.82
20161004 99.13
20161005 99.73
20161006 99.24
20161007 98.14
20161008 98.27
20161010 99.32
20161011 99.55
20161012 98.93
20161014 98.19
20161016 99.85
20161018 99.93
20161019 99.63
20161020 99.62
20161021 99.56
20161022 99.93
20161023 91.88
20161026 22.12
20161027 54.8
20161028 66.98
20161029 98.27
20161030 99.49
20161031 99.42
20161101 99.71
20161103 99.49
20161104 97.07
20161105 98.71
20161107 96.51
20161108 83.79
20161110 95.09
20161111 93.36
20161112 92.4
20161114 92.09
20161115 71.25
20161116 90.78
20161119 83.15
20161124 69.96
20161127 97.87
20161128 98.07
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20161129 95.84
20161130 96.52
20161201 97.25
20161202 94.33
20161203 86.71
20161204 95.46
20161205 93.76
20161206 93.87
20161207 98.33
20161208 98.59
20161209 99.2
20161210 99.36
20161212 99.31
20161213 99.68
20161214 99.17
20161215 98.96
20161216 98.27
20161217 99.26
20161218 96.02
20161219 92.16
20161221 89.12
20161222 98.18
20161223 98.88
20161225 98.86
20161226 98.61
20161227 98.29
20161228 99.33
20161229 99.25
20161230 97.34
20161231 95.67
20170101 94.64
20170102 95.75
20170103 45.29
20170104 7.2
20170106 0.34
20170109 0.1
20170110 0.25
20170111 1.2
20170112 0.01
20170115 0.01
20170116 0.0
20170117 0.0
20170118 0.0
20170119 0.0
20170120 0.0
20170121 0.0
20170122 0.0
20170123 0.0
20170124 0.0
20170125 0.0
20170126 0.0
20170127 0.0
20170129 0.0
20170130 0.01
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20170203 0.28
20170204 0.01
20170205 0.01
20170207 0.0
20170208 0.0
20170211 0.0
20170212 0.0
20170213 0.0
20170214 0.0
20170215 0.0
20170216 0.0
20170218 0.0
20170219 0.0
20170220 0.0
20170222 0.0
20170223 0.0
20170225 0.0
20170227 0.0
20170228 0.0
20170301 0.0
20170304 0.0
20170306 0.0
20170307 0.0
20170308 0.0
20170310 0.0
20170311 0.0
20170312 0.0
20170313 0.0
20170314 0.0
20170315 0.0
20170316 0.0
20170317 0.02
20170318 0.19
20170319 0.16
20170320 0.31
20170323 0.71
20170324 0.12
20170325 0.16
20170326 0.01
20170327 0.0
20170328 0.0
20170329 0.0
20170330 0.24
20170331 8.91
20170401 0.65
20170403 0.22
20170404 0.58
20170405 1.93
20170406 11.92
20170407 14.29
20170408 12.11
20170409 10.43
20170410 0.02
20170411 1.14
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20170412 28.71
20170413 82.78
20170414 95.48
20170415 98.62
20170416 52.53
20170417 18.61
20170418 2.66
20170419 10.16
20170420 49.12
20170421 92.33
20170422 97.78
20170423 94.2
20170424 92.97
20170427 49.72
20170428 67.84
20170429 50.42
20170430 88.63
20170501 96.99
20170502 89.32
20170503 89.37
20170504 92.37
20170505 98.42
20170506 94.82
20170509 98.43
20170510 99.72
20170511 98.91
20170512 91.19
20170513 98.68
20170514 98.42
20170515 98.44
20170516 99.51
20170517 97.49
20170518 98.13
20170520 96.25
20170521 98.26
20170522 99.57
20170523 99.14
20170524 97.94
20170525 99.14
20170526 98.98
20170527 99.35
20170528 99.38
20170529 96.15
20170530 99.75

Lake Silvaplana, winter 2016-17

Date Water Portion
Date Water Portion
20160902 99.36
20160905 99.16
20160906 99.01
20160907 99.3
20160908 94.67
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20160909 92.39
20160911 99.54
20160912 99.66
20160913 99.53
20160914 99.93
20160916 99.76
20160917 89.09
20160920 62.33
20160921 90.99
20160922 88.79
20160923 99.68
20160924 99.86
20160925 99.67
20160926 93.83
20160927 99.27
20160928 99.11
20160929 99.93
20160930 99.9
20161002 99.23
20161003 99.56
20161004 99.69
20161005 99.83
20161006 99.8
20161007 99.69
20161008 99.83
20161011 99.97
20161012 99.96
20161014 100.0
20161016 100.0
20161018 100.0
20161019 99.92
20161020 99.99
20161022 99.98
20161023 99.82
20161026 95.18
20161027 98.2
20161028 96.88
20161029 99.36
20161030 99.96
20161031 99.92
20161101 99.97
20161103 99.87
20161104 99.82
20161107 98.09
20161108 50.16
20161109 85.3
20161110 55.6
20161111 96.99
20161112 98.96
20161114 80.45
20161115 97.55
20161116 97.31
20161117 99.4
20161119 97.71
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20161124 82.42
20161126 94.17
20161127 98.66
20161128 99.66
20161129 98.75
20161130 99.22
20161201 96.21
20161202 97.08
20161203 97.97
20161204 99.21
20161205 98.69
20161206 96.19
20161207 98.11
20161208 99.35
20161209 99.88
20161210 99.75
20161211 99.81
20161212 99.43
20161213 90.96
20161214 96.48
20161215 97.16
20161216 98.94
20161217 99.44
20161218 88.81
20161219 82.39
20161221 87.13
20161222 99.73
20161223 98.74
20161225 93.6
20161226 90.76
20161227 97.79
20161228 99.69
20161229 99.96
20161230 99.84
20161231 99.02
20170101 99.08
20170102 98.41
20170103 72.92
20170106 10.54
20170109 1.69
20170110 0.88
20170111 3.13
20170112 0.15
20170115 0.01
20170116 0.0
20170117 0.0
20170118 0.0
20170119 0.0
20170120 0.0
20170121 0.0
20170122 0.0
20170123 0.0
20170124 0.0
20170125 0.0
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20170126 0.0
20170127 0.0
20170129 0.0
20170130 0.0
20170203 0.0
20170204 0.0
20170205 0.01
20170208 0.0
20170209 0.0
20170210 0.0
20170211 0.0
20170212 0.0
20170213 0.0
20170214 0.0
20170215 0.0
20170216 0.0
20170218 0.0
20170219 0.0
20170220 0.0
20170222 0.0
20170223 0.0
20170225 0.0
20170227 0.0
20170228 0.0
20170301 0.0
20170304 0.0
20170306 0.0
20170307 0.0
20170308 0.0
20170310 0.0
20170311 0.0
20170312 0.0
20170313 0.0
20170314 0.0
20170315 0.0
20170316 0.0
20170317 0.0
20170318 0.0
20170319 0.0
20170320 0.12
20170323 0.04
20170324 0.01
20170325 0.01
20170326 0.01
20170327 0.0
20170328 0.02
20170329 0.03
20170330 0.24
20170331 0.5
20170401 3.1
20170402 0.93
20170403 3.03
20170404 0.16
20170405 0.05
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20170406 0.42
20170407 12.78
20170408 52.32
20170409 58.34
20170410 2.36
20170411 0.26
20170412 1.19
20170413 30.13
20170414 91.48
20170415 99.13
20170416 98.85
20170417 94.62
20170418 67.86
20170419 92.12
20170420 85.07
20170421 99.22
20170422 99.76
20170423 96.92
20170424 99.3
20170425 98.22
20170427 79.17
20170428 92.12
20170429 44.92
20170430 52.63
20170501 97.44
20170502 74.08
20170503 97.6
20170504 99.73
20170505 99.62
20170506 99.89
20170509 98.18
20170510 99.96
20170511 99.98
20170512 99.79
20170513 99.76
20170515 99.85
20170516 99.94
20170517 81.5
20170518 39.77
20170519 70.07
20170521 87.37
20170522 99.97
20170523 99.29
20170524 92.1
20170525 94.79
20170526 96.9
20170527 99.84
20170528 99.9
20170529 99.94
20170530 99.94

Lake St.Moritz, winter 2016-17
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Date Water Portion
Date Water Portion
20160905 97.53
20160906 96.9
20160907 90.88
20160908 83.99
20160909 77.83
20160910 96.09
20160911 95.21
20160912 98.19
20160913 97.57
20160914 97.94
20160917 96.14
20160918 97.61
20160920 97.37
20160921 95.75
20160922 97.4
20160923 97.37
20160924 89.4
20160925 59.21
20160926 50.2
20160928 13.4
20160929 82.9
20160930 68.57
20161002 47.37
20161003 70.22
20161004 97.14
20161005 90.38
20161006 97.29
20161007 71.82
20161011 20.39
20161012 37.0
20161014 67.58
20161016 88.85
20161018 95.07
20161019 95.96
20161020 90.73
20161022 97.08
20161023 95.8
20161026 98.95
20161027 98.34
20161028 99.25
20161029 99.71
20161030 99.13
20161031 97.36
20161101 91.83
20161103 92.45
20161104 91.9
20161107 88.91
20161108 97.33
20161109 95.6
20161110 99.6
20161111 97.19
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20161112 97.37
20161114 97.32
20161115 97.46
20161116 93.87
20161119 90.75
20161124 93.75
20161127 47.38
20161128 69.51
20161129 60.55
20161130 70.62
20161201 90.56
20161202 93.12
20161203 97.39
20161204 94.54
20161205 86.4
20161206 88.78
20161207 75.69
20161208 95.1
20161209 87.62
20161210 93.63
20161212 76.52
20161213 88.55
20161214 87.83
20161215 97.33
20161216 93.7
20161217 93.26
20161218 92.39
20161221 62.95
20161222 50.33
20161223 16.89
20161225 29.41
20161226 19.37
20161227 82.73
20161228 55.56
20161229 80.68
20161230 77.44
20161231 81.96
20170101 79.03
20170102 19.59
20170103 2.85
20170106 0.14
20170109 0.01
20170110 0.04
20170111 0.05
20170112 0.01
20170115 1.37
20170116 0.08
20170117 0.25
20170118 0.59
20170119 0.98
20170120 7.79
20170121 0.04
20170122 0.03
20170123 0.02
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20170124 0.06
20170125 0.01
20170126 0.0
20170127 0.02
20170129 0.0
20170130 0.0
20170203 0.0
20170204 0.0
20170208 0.0
20170209 0.0
20170211 0.0
20170212 0.18
20170213 0.01
20170214 0.0
20170215 0.0
20170216 0.02
20170218 0.0
20170219 0.0
20170220 0.0
20170222 0.0
20170223 0.0
20170225 0.0
20170227 0.0
20170228 0.0
20170301 0.0
20170304 0.0
20170306 0.0
20170307 0.0
20170308 0.0
20170310 0.0
20170311 0.0
20170312 0.0
20170313 0.0
20170314 0.0
20170316 0.0
20170317 0.0
20170318 0.0
20170319 0.0
20170320 0.0
20170323 0.0
20170324 0.0
20170325 0.02
20170326 0.0
20170327 0.0
20170328 0.0
20170329 0.0
20170330 0.0
20170331 0.07
20170402 0.0
20170403 0.0
20170404 0.0
20170405 0.04
20170406 0.17
20170407 0.59
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20170408 1.26
20170409 0.87
20170410 1.29
20170411 0.57
20170412 49.32
20170413 76.36
20170414 92.16
20170415 61.67
20170416 13.71
20170417 18.02
20170418 17.83
20170420 8.87
20170421 74.99
20170422 94.42
20170423 93.67
20170424 92.86
20170427 97.45
20170428 98.16
20170429 97.31
20170430 80.51
20170503 96.62
20170504 87.71
20170505 79.39
20170506 69.01
20170509 89.81
20170510 93.1
20170511 98.25
20170512 96.53
20170515 98.97
20170516 98.54
20170517 79.54
20170518 18.95
20170521 67.57
20170522 91.17
20170523 87.14
20170524 59.21
20170525 83.6
20170526 92.5
20170527 99.77
20170528 99.81

A.2 Results of end-to-end model

Lake Sihl, winter 2016-17

Date Water Portion
Date Water Portion
20160901 96.59
20160902 97.3
20160903 98.49
20160905 97.58
20160906 97.0
20160907 99.34
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20160908 98.82
20160909 97.04
20160910 97.89
20160911 99.11
20160912 98.74
20160913 98.96
20160914 97.72
20160915 97.43
20160917 96.61
20160922 97.31
20160924 97.03
20160925 98.37
20160926 94.27
20160927 92.33
20160928 98.52
20160929 99.07
20160930 97.85
20161001 95.93
20161003 96.65
20161004 98.72
20161006 99.07
20161007 99.01
20161010 92.77
20161011 95.07
20161012 96.77
20161016 98.72
20161019 97.37
20161020 96.03
20161022 97.67
20161023 98.72
20161028 98.49
20161029 98.33
20161030 98.74
20161031 99.26
20161101 99.3
20161103 98.97
20161104 98.61
20161112 93.69
20161115 94.24
20161116 87.48
20161124 86.96
20161126 94.01
20161128 97.39
20161130 97.31
20161201 99.59
20161202 99.65
20161203 99.42
20161204 98.64
20161205 98.63
20161206 98.22
20161207 99.39
20161208 97.96
20161209 97.21
20161210 97.39
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20161211 98.96
20161212 99.7
20161213 99.61
20161214 98.22
20161215 98.33
20161216 99.07
20161217 99.25
20161218 99.63
20161219 99.4
20161221 98.8
20161222 97.73
20161223 96.71
20161224 96.7
20161226 99.0
20161228 99.51
20161229 97.94
20161230 98.52
20161231 98.48
20170101 90.09
20170102 49.99
20170103 20.92
20170106 29.18
20170111 76.19
20170113 78.48
20170115 63.85
20170118 51.38
20170119 33.29
20170120 33.75
20170121 31.12
20170122 33.22
20170123 31.56
20170126 15.75
20170127 34.94
20170128 41.3
20170129 40.42
20170201 76.89
20170202 78.62
20170203 79.04
20170204 92.43
20170206 89.32
20170208 52.46
20170210 84.32
20170211 65.84
20170212 60.83
20170214 36.77
20170215 35.97
20170216 49.43
20170218 27.26
20170219 57.83
20170220 76.07
20170222 83.49
20170223 52.06
20170225 58.42
20170226 50.97
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20170227 53.33
20170228 75.84
20170303 83.81
20170304 82.27
20170305 88.3
20170306 87.88
20170310 84.42
20170311 92.36
20170312 95.46
20170313 96.77
20170314 95.57
20170315 94.72
20170316 95.0
20170317 96.15
20170318 98.24
20170320 95.72
20170323 97.27
20170324 96.08
20170325 98.6
20170327 98.68
20170328 95.58
20170329 95.14
20170330 97.05
20170331 99.03
20170401 98.83
20170403 96.14
20170405 95.61
20170406 93.72
20170407 96.46
20170408 98.38
20170409 98.52
20170410 98.7
20170411 98.43
20170412 98.06
20170413 92.17
20170415 78.69
20170417 85.17
20170419 62.21
20170421 93.94
20170422 97.2
20170423 92.7
20170424 92.51
20170427 87.82
20170429 89.0
20170430 96.78
20170502 96.06
20170503 96.55
20170505 96.25
20170509 94.36
20170510 96.39
20170511 93.24
20170512 98.22
20170513 92.13
20170515 97.42
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20170516 96.2
20170517 97.65
20170518 96.97
20170521 94.04
20170522 96.96
20170523 99.09
20170524 96.19
20170525 97.36
20170526 96.77
20170527 98.36
20170528 98.94
20170529 98.76
20170530 98.4
20170531 97.4

Lake Sils, winter 2016-17

Date Water Portion
Date Water Portion
20160901 93.72
20160902 89.22
20160903 90.91
20160904 92.27
20160905 86.84
20160906 92.44
20160907 93.35
20160908 92.02
20160909 90.01
20160910 91.65
20160911 91.75
20160912 96.27
20160913 97.13
20160914 94.74
20160916 97.37
20160917 95.42
20160920 97.36
20160922 96.55
20160923 96.7
20160924 95.18
20160925 94.59
20160926 92.95
20160927 89.44
20160928 92.1
20160929 97.31
20160930 96.77
20161002 92.41
20161003 86.73
20161004 91.28
20161005 95.92
20161006 98.01
20161007 94.34
20161008 93.0
20161010 95.55
20161011 95.64
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20161012 94.64
20161014 94.19
20161016 98.36
20161018 97.36
20161019 96.31
20161020 93.25
20161021 93.49
20161022 95.95
20161023 91.82
20161026 86.54
20161027 89.07
20161028 90.93
20161029 94.91
20161030 98.11
20161031 98.38
20161101 94.92
20161103 91.08
20161104 78.41
20161105 80.18
20161107 85.37
20161108 89.39
20161110 93.62
20161111 80.23
20161112 91.95
20161114 85.38
20161115 94.28
20161116 95.59
20161119 94.71
20161124 92.01
20161127 96.84
20161128 93.13
20161129 86.02
20161130 95.22
20161201 95.08
20161202 87.89
20161203 86.58
20161204 87.27
20161205 88.97
20161206 93.55
20161207 94.39
20161208 91.45
20161209 85.16
20161210 95.81
20161212 96.85
20161213 95.73
20161214 92.86
20161215 87.18
20161216 94.0
20161217 86.63
20161218 75.9
20161219 89.12
20161221 89.14
20161222 96.94
20161223 97.65
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20161225 96.05
20161226 91.77
20161227 92.93
20161228 94.37
20161229 94.77
20161230 95.11
20161231 91.71
20170101 92.01
20170102 91.86
20170103 79.59
20170104 40.29
20170106 19.21
20170109 53.77
20170110 64.74
20170111 42.3
20170112 44.49
20170115 33.41
20170116 30.81
20170117 20.09
20170118 5.64
20170119 7.57
20170120 19.11
20170121 25.96
20170122 6.82
20170123 11.06
20170124 27.85
20170125 31.19
20170126 23.81
20170127 3.14
20170129 1.14
20170130 9.65
20170203 2.58
20170204 0.48
20170205 0.92
20170207 0.91
20170208 0.08
20170211 0.27
20170212 4.53
20170213 9.22
20170214 7.74
20170215 3.42
20170216 4.5
20170218 15.58
20170219 12.03
20170220 2.68
20170222 2.2
20170223 1.82
20170225 2.63
20170227 0.29
20170228 0.0
20170301 0.0
20170304 0.0
20170306 0.0
20170307 0.02
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20170308 0.14
20170310 10.06
20170311 2.26
20170312 1.29
20170313 1.41
20170314 6.63
20170315 11.65
20170316 2.58
20170317 1.53
20170318 1.88
20170319 5.81
20170320 31.85
20170323 79.82
20170324 92.85
20170325 68.99
20170326 35.14
20170327 28.62
20170328 10.51
20170329 0.44
20170330 8.53
20170331 13.01
20170401 7.7
20170403 2.57
20170404 3.72
20170405 15.14
20170406 46.48
20170407 74.74
20170408 44.22
20170409 23.02
20170410 11.22
20170411 0.39
20170412 5.07
20170413 69.46
20170414 97.27
20170415 98.77
20170416 97.6
20170417 97.9
20170418 94.3
20170419 89.76
20170420 86.24
20170421 92.25
20170422 96.42
20170423 95.4
20170424 92.79
20170427 93.83
20170428 90.79
20170429 86.07
20170430 93.67
20170501 97.02
20170502 95.36
20170503 95.36
20170504 97.96
20170505 98.8
20170506 98.28
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20170509 98.69
20170510 99.43
20170511 97.5
20170512 97.48
20170513 94.57
20170514 95.35
20170515 93.69
20170516 96.74
20170517 97.23
20170518 96.21
20170520 95.93
20170521 92.14
20170522 96.84
20170523 98.81
20170524 93.13
20170525 96.04
20170526 91.42
20170527 98.03
20170528 96.56
20170529 95.23
20170530 90.35

Lake Silvaplana, winter 2016-17

Date Water Portion
Date Water Portion
20160902 97.94
20160905 98.4
20160906 93.72
20160907 95.1
20160908 89.62
20160909 91.58
20160911 94.42
20160912 97.36
20160913 97.1
20160914 96.39
20160916 98.57
20160917 98.09
20160920 96.29
20160921 90.83
20160922 83.16
20160923 75.34
20160924 95.15
20160925 96.73
20160926 94.21
20160927 92.12
20160928 97.12
20160929 97.09
20160930 98.69
20161002 94.24
20161003 87.31
20161004 91.01
20161005 92.55
20161006 95.34
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20161007 94.83
20161008 96.15
20161011 96.3
20161012 95.63
20161014 98.58
20161016 99.81
20161018 99.32
20161019 98.56
20161020 99.28
20161022 99.51
20161023 99.15
20161026 99.38
20161027 98.63
20161028 87.94
20161029 93.92
20161030 95.68
20161031 96.78
20161101 98.05
20161103 97.99
20161104 98.71
20161107 95.55
20161108 71.61
20161109 79.5
20161110 86.46
20161111 95.8
20161112 96.51
20161114 88.22
20161115 88.33
20161116 95.93
20161117 98.98
20161119 99.17
20161124 96.79
20161126 98.01
20161127 92.32
20161128 94.92
20161129 90.69
20161130 93.55
20161201 94.14
20161202 88.73
20161203 82.35
20161204 93.13
20161205 96.81
20161206 93.08
20161207 89.11
20161208 95.85
20161209 95.02
20161210 93.19
20161211 86.73
20161212 89.41
20161213 94.26
20161214 91.31
20161215 82.5
20161216 95.47
20161217 96.11
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20161218 94.22
20161219 93.81
20161221 93.12
20161222 95.8
20161223 94.65
20161225 96.8
20161226 95.23
20161227 91.09
20161228 94.54
20161229 97.38
20161230 94.27
20161231 88.12
20170101 86.81
20170102 59.08
20170103 50.16
20170106 67.55
20170109 81.9
20170110 94.42
20170111 91.82
20170112 85.42
20170115 43.15
20170116 26.38
20170117 6.66
20170118 5.6
20170119 26.74
20170120 23.68
20170121 21.61
20170122 37.75
20170123 49.06
20170124 30.93
20170125 26.25
20170126 22.32
20170127 47.79
20170129 6.41
20170130 1.46
20170203 0.18
20170204 0.06
20170205 0.53
20170208 0.76
20170209 1.08
20170210 2.46
20170211 5.64
20170212 12.47
20170213 14.6
20170214 2.29
20170215 0.72
20170216 6.82
20170218 22.46
20170219 9.74
20170220 2.49
20170222 2.18
20170223 3.3
20170225 0.47
20170227 0.36
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20170228 0.33
20170301 0.16
20170304 0.03
20170306 0.03
20170307 0.0
20170308 0.08
20170310 3.23
20170311 1.27
20170312 4.43
20170313 3.45
20170314 6.0
20170315 18.63
20170316 5.24
20170317 0.21
20170318 0.1
20170319 0.77
20170320 19.85
20170323 13.87
20170324 9.95
20170325 6.41
20170326 34.27
20170327 55.03
20170328 13.1
20170329 9.58
20170330 36.39
20170331 42.62
20170401 6.58
20170402 10.35
20170403 3.38
20170404 4.63
20170405 13.2
20170406 14.17
20170407 49.75
20170408 55.63
20170409 20.65
20170410 44.79
20170411 65.09
20170412 76.8
20170413 34.86
20170414 20.27
20170415 0.35
20170416 0.87
20170417 0.75
20170418 3.51
20170419 32.48
20170420 57.36
20170421 67.18
20170422 96.05
20170423 95.27
20170424 98.07
20170425 99.62
20170427 99.79
20170428 98.91
20170429 82.56
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20170430 93.11
20170501 96.71
20170502 96.19
20170503 97.54
20170504 96.91
20170505 97.64
20170506 96.93
20170509 97.25
20170510 98.31
20170511 99.45
20170512 98.51
20170513 98.57
20170515 97.67
20170516 97.7
20170517 97.15
20170518 98.17
20170519 98.98
20170521 96.96
20170522 98.71
20170523 99.08
20170524 98.6
20170525 95.27
20170526 94.39
20170527 95.2
20170528 97.29
20170529 98.49

Lake St.Moritz, winter 2016-17

Date Water Portion
Date Water Portion
20160905 82.65
20160906 87.49
20160907 88.95
20160908 84.3
20160909 84.09
20160910 86.61
20160911 88.98
20160912 91.04
20160913 96.51
20160914 92.17
20160917 95.61
20160918 93.33
20160920 91.36
20160921 92.78
20160922 83.21
20160923 76.02
20160924 82.31
20160925 97.48
20160926 93.8
20160928 82.15
20160929 92.13
20160930 97.98
20161002 96.03
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20161003 90.68
20161004 92.63
20161005 85.58
20161006 90.15
20161007 95.34
20161011 96.44
20161012 94.25
20161014 90.6
20161016 97.59
20161018 90.4
20161019 86.39
20161020 95.95
20161022 94.84
20161023 92.81
20161026 89.21
20161027 93.36
20161028 80.74
20161029 81.48
20161030 90.4
20161031 81.2
20161101 27.57
20161103 38.66
20161104 16.61
20161107 20.81
20161108 22.26
20161109 63.43
20161110 94.63
20161111 89.74
20161112 91.6
20161114 87.12
20161115 87.65
20161116 96.7
20161119 95.71
20161124 98.17
20161127 95.76
20161128 81.85
20161129 77.3
20161130 73.89
20161201 81.03
20161202 89.37
20161203 87.4
20161204 81.93
20161205 76.79
20161206 80.9
20161207 75.07
20161208 77.91
20161209 81.19
20161210 90.66
20161212 94.52
20161213 86.46
20161214 76.8
20161215 69.65
20161216 83.05
20161217 92.06
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20161218 91.88
20161221 84.46
20161222 75.02
20161223 85.44
20161225 83.91
20161226 77.53
20161227 85.24
20161228 91.81
20161229 90.46
20161230 90.35
20161231 79.26
20170101 61.95
20170102 65.81
20170103 30.1
20170106 33.29
20170109 14.95
20170110 11.39
20170111 5.38
20170112 2.54
20170115 8.14
20170116 6.5
20170117 8.35
20170118 18.9
20170119 40.04
20170120 61.91
20170121 60.16
20170122 26.83
20170123 13.74
20170124 14.11
20170125 11.48
20170126 15.47
20170127 7.65
20170129 3.17
20170130 1.27
20170203 0.12
20170204 0.25
20170208 0.27
20170209 0.23
20170211 3.51
20170212 32.03
20170213 8.01
20170214 14.65
20170215 19.65
20170216 8.45
20170218 30.1
20170219 7.14
20170220 9.03
20170222 4.96
20170223 0.95
20170225 1.38
20170227 0.41
20170228 0.09
20170301 0.06
20170304 0.05
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20170306 0.04
20170307 0.11
20170308 0.03
20170310 0.29
20170311 0.81
20170312 1.36
20170313 10.25
20170314 1.22
20170316 1.31
20170317 0.16
20170318 1.68
20170319 3.21
20170320 7.13
20170323 3.99
20170324 5.35
20170325 4.43
20170326 22.19
20170327 4.83
20170328 2.9
20170329 1.39
20170330 7.08
20170331 23.61
20170402 10.51
20170403 1.17
20170404 0.74
20170405 0.63
20170406 2.89
20170407 2.44
20170408 2.85
20170409 2.03
20170410 3.06
20170411 8.05
20170412 88.81
20170413 83.2
20170414 73.24
20170415 82.1
20170416 87.19
20170417 94.96
20170418 97.38
20170420 97.04
20170421 91.39
20170422 96.94
20170423 99.1
20170424 99.83
20170427 99.79
20170428 99.37
20170429 97.79
20170430 98.28
20170503 99.14
20170504 97.83
20170505 98.59
20170506 97.28
20170509 95.11
20170510 97.16
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20170511 99.27
20170512 99.58
20170515 99.29
20170516 98.29
20170517 99.16
20170518 98.06
20170521 94.91
20170522 91.58
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