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Chapter 1

Introduction
Climate change is one of the main challenges humanity is facing today, calling for new methods
to quantify and monitor the rapid change in global and local climatic conditions. Various lake
observables are related to those conditions and provide an opportunity for long-term monitoring,
among them, the duration and extent of lake ice. Remote sensing of lake ice also fits well with
the Climate Change Initiative (CCI+, 2017) by the European Space Agency (ESA), where lakes
and lake ice were newly included. Additionally, CCI+ promotes long-term trend studies and
climate studies, as recognised by the Global Climate Observing System (GCOS). Furthermore,
lake ice influences various economic and social activities, such as winter sports and tourism,
hydroelectric power, fishing, transportation, and public safety (e.g., winter and spring flooding
due to ice jams). In addition, its impact on the regional environment and ecological systems is
significant, which further underlines the need for detailed monitoring.

Satellites are a secure source for remote sensing of the Cryosphere and for sustain-
able, reliable and long term trend analysis. Additionally, satellite images are currently the
only means to monitor large regions systematically and with short update cycles. This in-
creasing importance of satellite observations has also been recognised by the GCOS. Recently,
a machine learning-based semantic segmentation approach for lake ice detection using low
spatial-resolution (250m-1000m) optical satellite data (MODIS and VIIRS) was proposed [6].
Although the nominal temporal resolution of those sensors is very good (daily coverage), the
main drawback of this methodology is frequent data loss due to clouds, which reduces the ef-
fective temporal resolution. This is critical, since important phenological variables depend on
frequent, reliable observation. In particular, the ice-on date is defined as the first day when the
lake surface is (almost) completely frozen and remains frozen on the next day, and ice-off is
defined symmetrically as the first day where a significant amount of the surface is liquid water,
and remains in that state for another day [7]. The GCOS accuracy requirement for these two
dates is ±2 days. Systems based on optical satellite data will fail to determine these key events
if they coincide with a cloudy period. Moreover, low spatial resolution of MODIS and VIIRS
is also a bottleneck for spatially explicit ice mapping. Higher resolution optical sensors like
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(a) Non-frozen (01.09.2016) (b) Freeze-up (10.01.2017)

(c) Snow with skate tracks (08.02.2017) (d) Break-up (23.03.2017)
Figure 1.1: Examples of RGB composites of Sentinel-1 SAR data (RGB = [VV, VH, 0 ]) of
lake St. Moritz showing the lake in the four different states specified in the sub-captions.

Landsat-8 or Sentinel-2 do not provide a solution, due to their low temporal resolution and
susceptibility to clouds. On the contrary, Sentinel-1 represents a favourable trade-off between
spatial and temporal resolution. Additionally, Radar is unaffected by clouds, which in many
regions is a considerable advantage. Here we propose combined Sentinel-1 SAR and Sentinel-2
system, which meets the requirements of lake ice monitoring, and additionally comes for free
and with a commitment to ensure continuity of the observations. Its spatial and temporal reso-
lution (GSD ca. 10 m / revisit rate 1-3 days) make it possible to derive high-resolution ice maps
almost on a daily basis. For completeness, we mention that, taking into account estimation
uncertainty, the temporal resolution of Sentinel-1 falls just short of the 2-day requirement of
GCOS, still it can provide an excellent “observation backbone” for an operational system that
could fill the gaps with optical satellite data [6] or webcams [8].

Converting a Sentinel-1 image to a lake ice map boils down to 2-class semantic seg-
mentation, i.e., assigning each lake pixel to one of two classes, frozen or non-frozen. We do
this with the Deeplab v3+ semantic segmentation network [9]. Examples of Sentinel-1 SAR
composites over the lake St. Moritz is visualised in Fig. 1.1, showing the VV amplitude in the
red channel, and the VH amplitude in the green channel. The examples include the states
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non-frozen (01.09.2016, water), freeze-up (10.01.2017), frozen (08.02.2017, snow on top of ice)
and a break-up date (23.03.2017). In order to increase the temporal resolution of the system,
Sentinel-2 was added with the aim to fill gaps between Sentinel-1 observations or integrate
decisions from a single day with data from 2 satellites, performing a pixel-wise classification
from Sentinel-2 using a non-deep learning approach with SVMs.

Target lakes and winters. We analyse three selected lakes in Switzerland (Sihl, Sils,
Silvaplana, St. Moritz, see Table 1.1) over the period of two winters (2016 − 17 and 2017 − 18).
Sihl is located in the middle of the country, near the Apls, it has a dam which regulates the
amount of water it contains, and it doesn’t freeze during the whole winter. The three other
lakes are located close to each other in the same geographic region, referred to as Region Sils.
The lakes are comparatively small and situated in an Alpine environment, and they are known
to reliably freeze over completely every year during the winter months. For the two winters
2016 − 2017 and 2017 − 2018, all available images were collected for the nine months between
September 1 and May 31. After back-projecting the digitised lake outlines from Open Street
Map (OSM) on to the SAR images, for each lake, we extract the the lake pixels which lie inside
the polygon derived from the lake outline. In low-spatial resolution satellite images such as
MODIS and VIIRS, only few such lake pixels are available [6] making the analysis of very small
lakes such as St. Moritz difficult or even impossible, but thanks to the higher spatial resolution,
the Sentinel-1 time series provides us with millions of lake pixels, which makes it possible to
train powerful deep learning models for segmentation, which are extremely data-hungry.

Contributions. We address the problem of lake ice detection from Sentinel-1 SAR
data, as an alternative to optical satellite data which is impaired by clouds. In the process, we
show that a deep learning model pre-trained on an optical RGB dataset can nevertheless be
re-used successfully as initialisation for fine-tuning to Radar data. To our knowledge, our work
is the first one that utilises Radar data and deep learning for lake ice detection.

Table 1.1: Characteristics of the four target lakes. Altitude (L) and altitude (S) denote the
altitudes of the lake and the nearest meteo station respectively. The distance to the station is
also shown.

Sihl Sils Silvaplana St. Moritz
Area (km2) 11.3 4.1 2.7 0.78

Altitude (L) (m) 889 1797 1791 1768
Max. depth (m) 17 71 77 42

Meteo station Einsielden Segl Maria Segl Maria Samedan
Dist. to lake (km) 1.5 0.5 1 5
Altitude (S) (m) 882 1804 1804 1709

The chapter 2 begins with a description of the Sentinel satellite constellation for Earth
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Observation, an overview of the Google Earth Engine platform, and the basic concepts of
convolutional neural networks (CNNs), support vector machines (SVMs), and semantic seg-
mentation. Chapter 3 is where we talk about the related work in terms of environmental
monitoring Earth Observations, as well, as previous work for lake-ice segmentation with Radar
and optical space-based sensors. Chapter 4 presents the details of the dataset and in-depth
analysis of pre-processing the dataset for making it ready for training. All the experiments,
insights and evaluation results are provided in the chapter 6 and further conclusion is given in
chapter 7.
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Chapter 2

Theoretical Principles
The following section summarizes the relevant background information and theoretical princi-
ples which are the basis for the better understanding of this thesis. The chapter will cover a brief
introduction to the ESA Sentinel program, essential information about the Synthetic Aperture
Radar (SAR) and multispectral imagery, Google Earth Engine datasets and preprocessing steps
for different remote sensing sensors, and finally a short introduction to deep learning principles.

2.1 ESA Sentinel Satellite Program

The European Space Agency (ESA) is developing a series of next-generation Earth observation
missions, on behalf of the joint ESA/European Commission initiative GMES (Global Monitor-
ing for Environment and Security). The goal of the Sentinel program is to replace the current
older Earth observation missions which have reached retirement, such as the ERS mission, or
are currently nearing the end of their operational life span. This will ensure a continuity of
data so that there are no gaps in ongoing studies. The program plans to have at the end seven
satellite families in the orbit (Sentinel 1, 2, 3, 4, 5P, 5, 6) whereof three of them have been
launched already. The goals of the program are to monitor and to map the surface of the world.
The produced data can be used in for emergency mapping, iceberg monitoring, ice condition
forecasting at sea, ship detection, climate change monitoring and many other applications, pro-
viding robust datasets for all Copernicus services. All data from the Copernicus program are
free of charge and can be downloaded from Google Earth Engine platform, processing steps
and available products are discussed in Section 2.4. For this thesis, data was gathered from
two Sentinel constellations, Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 Multi-
Spectral Instrument (MSI); whose theoretical principals, acquisition modes, and product types
are described in and 2.3 respectively.
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2.1.1 Sentinel-1 Constellation

This chapter is based on [10] and [11]. Sentinel-1 is an imaging radar mission providing contin-
uous all-weather, day-and-night imagery at C-band. The SENTINEL-1 constellation provides
high reliability, improved revisit time, geographical coverage and rapid data dissemination to
support operational applications in the priority areas of marine monitoring, land monitoring
and emergency services. Sentinel-1 is the first satellite constellation of the Copernicus program
of ESA started in 2014. Today, there are two Sentinel-1 satellites (Sentinel-1A and Sentinel-1B)
operational in space. Sentinel-1A was launched in April 2014, Sentinel-1B two years later in
April 2016. They are both on the same sun-synchronous near polar orbit, sharing the same or-
bital plane with a 180◦ orbital phasing difference. The lifetime of these two satellites is planned
to be between 7 and 12 years. After this time, they shall be replaced by two new Sentinel-1
satellites (Sentinel-1C and Sentinel-1D). The satellites have a C-SAR system on board which
is mounted at the right side of the satellite (referenced to flight direction). The Sentinel-1
satellite has a repeat cycle of 12 days at the equator, giving a cycle time of 6 days with two
Sentinel-1 satellites. During these 12 days the satellite is orbiting the Earth within 98.6 min on
an altitude of 693 Km. The inclination is 98.18◦. The same point on earth is mapped within
one repeat cycle several times and the geographical scanning pattern is shown in Fig. 2.2.

2.1.2 Sentinel-2 Constellation

This chapter is based on [12] if nothing else is stated. Two identical SENTINEL-2 satellites
operate simultaneously, phased at 180◦ to each other, in a sun-synchronous orbit at a mean
altitude of 786 m. The position of each SENTINEL-2 satellite in its orbit is measured by a dual-
frequency Global Navigation Satellite System (GNSS) receiver. Orbital accuracy is maintained
by a dedicated propulsion system. This constellation aims aims at monitoring variability in
land surface conditions with Multispectral sensors.

2.2 Synthetic Aperture Radar

This chapter is based on [13] if nothing else is stated. The Sentinel-1 satellites use SAR systems.
Like a normal radar, this system sends out electromagnetic waves in the GHz range and detects
the backscattered echoes of the surface. The main difference to a normal side looking radar is
the higher azimuth resolution. A SAR-system is capable to work at different frequency bands.
Each band interacts differently with the surface, so they might be use in different applications.
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Figure 2.1: Sentinel Program (Status of ESA Earth Observation Programmes 2017).

(a) Revisit time of Sentinel 1 constellation (S1A & S1B) updated on May, 2019

(b) Revisit time of Sentinel 2 constellation (S2A & S2B), updated on October, 2019

Figure 2.2: Sentinel-1 and Sentinel-2 constellations revisit scenario
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Table 2.1: Different frequency bands with frequency and wavelength (Moreira et al, 2013).

Frequency Band Frequency [GHz] Wavelenght [cm]
P 0.25-0.5 60-120
L 1-2 15-30
S 2-3.75 8-15
C 3.75-7.5 4-8
X 7.5-12 2.5-4

Ku 12-17.6 1.7-2.5
Ka 25-40 0.75-1.2

Table 2.1 gives an overview about the different available frequency bands. Sentinel-1 operates
in the C-frequency band. SAR sensors are using frequency modulated pulse waveforms. That
means that the amplitude stays constant, but the frequency is varied. From the reflected signal
the SAR sensor measures the amplitude and the phase. A SAR system changes in predefined
cycles between transmitting and receiving mode. If the received signals are combined in the
right way, it is possible to generate a virtual aperture which is much bigger (based on a given
antenna size) and allows to build satellites with smaller antennae. Smaller antennae have also
a bigger opening angle which allows to observe the ground on the surface for a longer time than
with a normal side looking radar system [14].

2.2.1 Signal processing

The following paragraph is based on [13]. In contrast to visual sensor data, the raw SAR data
are not interpretable directly. Figure 2.3 summarizes the necessary transformation process
schematically. There are two different, consecutive filter operations used, range followed by
azimuth direction. These filter operations are done in the frequency domain and deliver an
image which is compressed in the range and the azimuth direction and contains the information
about the distance between the satellite and the ground points in the form of reflection intensity
data. Five additional correction steps have to be added afterwards in the Google Earth Engine
to get suitable, interpretable data (described in 2.4).

2.2.2 Acquisition Modes

This paragraph is based on [15] if nothing else is quoted. There are four different observation
modes used by the Sentinel-1 satellites: Stripmap (SM), Inferferometric Wide Swath (IW),
Extra Wide Swath (EW), and Wave (WV) . These modes differentiate specifically in their
area coverage (Fig. 2.4), with their characteristic listed in Table 2.5. For the purposes of this
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Figure 2.3: Summary of SAR processing steps where the range compressed data result from a
convolution of the raw data with the range reference function. In a second step the azimuth
compression is performed through a convolution with the azimuth reference function, which
changes from near to far range. Here the ” ∗ ” represents the convolution operation.

Table 2.2: Main characteristics of the four different acquisition modes: Stripmap (SW), Inter-
ferometric Wide Swath (IW), Extra Wide Swath (EW), and Wave (WV).

Characteristic
Mode SW IW EW WV

Swath width 80 Km 250 Km 410 Km Vignette
20 Km x 20 Km

Incidence angle 18.3◦ - 46.8◦ 29.1◦ - 46.0◦ 18.9◦ - 47.0◦ 21.6◦ - 25.1◦

34.8◦ - 38.0◦

Azimuth resolution 5 m 20 m 40 m 5 m
Ground range resolution 5 m 5 m 20 m 5 m

Polarisation option Dual HH+HV, VV+VH Single HH, VV
Single HH, VV

NESZ -22 dB
Default area of operation Small islands Land Sea-ice, polar zones Open ocean

thesis, IW with VV+VH polarisation was the mode in use, since it was covering land areas
corresponding to the region of Switzerland.

2.2.3 ESA SENTINEL-1 data products

ESA offers the data form Sentinel-1 on Copernicus Open Access Hub. This web portal offers
different customized data product levels from which one can choose. On Google Earth Engine,
only Ground Range Detected (GRD) product is available.
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Figure 2.4: Sentinel-1 Mode, Polarisation, and Observation Geometry [1].

Figure 2.5: Different acquisition modes of the Sentinel-1 satellites
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Figure 2.6: Graphical Representation of Sentinel-1 Core Products

• Level 0

– Raw SAR data contain the compressed and unprocessed instrument source packets,
with additional annotations and auxiliary information to support processing. It
could be processed with ESA SNAP toolbox.

• Level 1

– These products are the baseline products for the majority of users from which higher
levels are derived. From data in each acquisition mode, the Instrument Processing
Facility (IPF) generates focused Level-1 Single Look Complex (SLC) products and
Level-1 Ground Range Detected (GRD) products.

∗ Single Look Complex (SLC): Each pixel is represented by a complex number
which contains the whole phase and amplitude information. These images are
georeferenced using the orbit information and the altitude of the satellite [16].

∗ Ground Range Detected (GRD): This product contains data projected to
the ground using an Earth ellipsoid. This product has no phase information
anymore and has a nearly square spatial resolution. There are different res-
olutions available: Full Resolution (FR), High Resolution (HR) and Medium
Resolution (MR).

• Level 2

– This product contains the information about the Ocean Swell Spectra (OSW). Also
included in this level is the Surface Radial Velocity (RVL).

A detailed overview on the different offerings can be found in Fig. 2.6.

21



2.2.4 Radar Backscattering at different surfaces

The radar backscattering is influenced in a complex manner by a variety of factors, which can
be grouped into two main categories: sensor parameters and surface parameters.

Sensor parameters

• Wavelength

– The Sentinel-1 C-band sensor works with a frequency of 5.405 GHz. This corresponds
to a wavelength of 5.54 cm (Table 2.1)

• Incidence angle

– Signals emitted from different orbits will have different incidence angle for a partic-
ular point on Earth, thus obtaining different backscattering results as shown in Fig.
2.7. In Interferometric Wide Swath mode, the incidence angle ranges between 29.1◦

- 46.0◦ (Table 2.2).

• Polarisation

– The SAR sensor transmits a longitudinal eletromagnetic wave. It is possible to
transmit the longitudinal wave in a single plane (polarisation). It is also possible for
the SAR sensor to select the polarisation of the received signal (Fig. 2.8). Usually,
most scatterers reflect the wave in the same polarisation (co-polarised: HH, VV).
However, some of the signal may come back in a different plane, cross-polarised: HV
and VH [17]. For the regions in Switzerland analysed in this thesis, Sentinel-1 in IW
mode provides VV and VH polarisations. The main applications of each polarisation
are shown as follows:

∗ VV polarisation , has applications in studying the small-scale roughness of (cap-
illary) waves on the water surface, thus it is used extensively for surface wind
speed extraction.

∗ HH polarisation is important in the study of soil moisture, due to it’s capacity to
penenetrate vertically oriented crops (e.g. wheat and barley). Also, HH is very
suitable for separating marine ice and water, since it is less sensitive to water
roughness than VV polarisation, thus producing an improved contrast between
the two target types. For a similar reason, HH is used for ship detection.

∗ Cross-polarised SAR (VH or VH) detection from water surfaces is very low. For
this reason, it’s suitable for detecting targets on the water surface, as well as
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Figure 2.7: Orbits with different incident angle on the same point on Earth [2].

ice deformations (ridging, fractures, and rubble). Additionally, in the case of
forestry, the use of cross polarisation will improve the forest/non-forest discrim-
ination and the retrieval of low biomass values (forest regeneration, regrowth,
plantation).

Surface parameters
Surface parameters which can be either geometrical factors such as roughness, landscape

topography, etc. or physical factors such as the permittivity of the material on the surface (Table
2.3). Significant factors for lakes are also wind speed and direction, and the water content in
snow. For smooth and plain water, almost all radiation is scattered away from the sensor
making it appear very dark. As the wind speed picks up, waves occur on the water surface and
significant scattering can occur. When perfectly plain water is covered by perfectly plain ice,
microwaves penetrate the ice without absorption and are reflected at the ice-water interface,
however, away from the sensor and the ice covered lake appears to be completely black, at least
in theory. In reality, cracks in the ice scatter some microwaves back to the sensor. Therefore,
visible and well located cracks are clear indicators for ice cover. Furthermore, in reality, the
ice-water interface is never completely smooth, therefore some scattering can occur at these
boundaries which, however, can be weak. The older the ice, the more air bubbles are enclosed
in the ice which increase the backscatter within the ice volume by direct backscattering and also
by double reflection of microwaves at the air-bubbles and the ice-water interface. With snow
cover, the air-ice interface becomes increasingly rough which further increases the backscatter
signal. Finally, with snow melt, the liquid water content of the overlying snow pack increases
which significantly reduces the backscatter signal as the ice-water mixture of wet snow absorbs
a significant fraction of the microwave energy [18].
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(a) VV (b) HH

(c) VH (d) HV
Figure 2.8: Polarisations in different planes

Table 2.3: Estimated relative permittivity in Farads per meter (F/m) for different materials
[5].

Material Estimated relative permittivity
Soft new snow 4

Dry sand or rock 8
Granular snow 15

Compact wet snow 50
Pure water 80

Pure ice 95
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Table 2.4: Sentinel-2 MSI: MultiSpectral Instrument, Level-1C. Resolution is given in meters
(m), Wavelenght in nanometers (nm)

Name Resolution (m) Wavelenght (nm) Description
B1 60 443.9 (S2A) / 442.3 (S2B) Aerosols
B2 10 496.6 (S2A) / 492.1 (S2B) Blue
B3 10 560 (S2A) / 559 (S2B) Green
B4 10 664.5 (S2A) / 665 (S2B) Red
B5 10 703.9 (S2A) / 703.8 (S2B) Red Edge 1
B6 20 740.2 (S2A) / 739.1 (S2B) Red Edge 2
B7 20 782.5 (S2A) / 779.7 (S2B) Red Edge 3
B8 10 835.1 (S2A) / 833 (S2B) NIR

B8A 20 864.8 (S2A) / 864 (S2B) Red Edge 4
B9 60 945 (S2A) / 943.2 (S2B) Water vapor
B10 60 1373.5 (S2A) / 1376.9 (S2B) Cirrus
B11 20 1613.7 (S2A) / 1610.4 (S2B) SWIR 1
B12 20 2202.4 (S2A) / 2185.7 (S2B) SWIR 2

QA60 60 Cloud mask

2.3 Multispectral Instrument

2.3.1 ESA SENTINEL-2 data products

All is this section is taken from [19] if nothing else is stated.
There are 3 main processing steps in the Sentinel 2 pipeline, Level-0, Level-1 (A,B, and

C) and Level-2 (A). Following we described the characteristics of the only 2 products available
to users: Level-1C and Level-2A.

• Level 1C

– It includes radiometric and geometric corrections including ortho-rectification and
spatial registration on a global reference system with sub-pixel accuracy. It results
into a Top of Atmosphere (TOA) product with 13 UINT16 spectral bands rep-
resenting TOA reflectance scaled by 10000. Bands with their corresponding name,
resolution, wavelenght, and description are listed in Table 2.4.

• Level 2A

– It includes a scene classification and an atmospheric correction applied to TOA prod-
ucts. Level-2A main output is an orthoimage Bottom of Atmosphere (BOA)
corrected reflectance product in Table 2.4.
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Figure 2.9: Sentinel 2 tiles in UTM/WGS84 projection. Lake Sihl (shown as purple filled
rectangle) in corresponds to 32TMT, and lakes in Region Sils shown as yellow filled rectangle)
correspond to 32TNS.

2.3.2 Tiles

All is this section is taken from [20] if nothing else is stated. For Level-1C and Level-2A,
the granules, also called tiles, are 100x100km2 ortho-images in UTM/WGS84 projection. The
UTM (Universal Transverse Mercator) system divides the Earth’s surface into 60 zones. Each
UTM zone has a vertical width of 6◦ of longitude and horizontal width of 8◦ of latitude. In
Fig. 2.9 are shown the tiles corresponding to the Swiss territory.

2.4 Google Earth Engine

Google Earth Engine (GEE) is a planetary-scale platform for Earth science data & analysis.
It stores and provides datasets from Earth Observation satellite missions, preprocesses them,
and makes them freely accessible for education and research. GEE consists of a web-based
application for visualisation and with capacity to perform analysis work including classifica-
tions using machine learning algorithms like SVM, Random Forests, or K Means, with limited

26



computational capacity [21]. For further in-depth analysis, it is possible to run data collection
operations in order to download data via Google Drive, which provides GeoTiff and TFRecord
formats. Among the imagery catalogs available in GEE are Sentinel, Landsat, and MODIS.
Following are described the preprocessing steps performed by GEE to provide Sentinel 1 and 2
imagery.

2.4.1 Sentinel-1 SAR GRD

For Sentinel-1 the image set is called COPERNICUS/S1_GRD. This dataset contains Level-
1 Ground Range Detected (GRD) images which are preprocessed from Google and provide
backscatter coefficients in decibels. Google Earth Engine provides for Sentinel-1 data the
following five preprocessing steps with the Sentinel-1 Toolbox from ESA [21]:

• Apply orbit file

– Changes the orbit file with a corrected orbit file

• GRD border noise removal

– Corrects the noise at the border of the images

• Thermal noise removal

– Corrects the thermal noise between the sub-swaths

• Radiometric calibration

– Calculates the backscatter intensity using the GRD metadata

• Terrain correction

– Corrects the side looking effects using the SRTM 30 meters digital elevation model

The thermal noise removal, radiometric calibration and terrain correction are explained
in more detail in the following subsections.

2.4.2 Thermal noise reduction

This chapter is based on [22]. Thermal noise in satellite radar data originates mostly from the
heat generated by the satellite itself. It can become a problem if the backscattered radar signal
is of low intensity (dark image) and this noise has to be removed to give reliable information.
There are two different thermal noise corrections applicable.
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• Empirical thermal noise removal

• Theoretical thermal noise removal

An empirical thermal noise correction is based on the assumption that highly reflective
target areas, for example water surfaces without any disturbances, are not sending back any
radar signals. Noise signals in these areas are then considered thermal noise and are deducted
from the whole image. The advantage of this procedure is that it is very easy and produces
comparable results. On the other hand, in most cases there are only a few suitable target
areas available and in the end it remains empirically with a lot of uncertainties. In contrast,
a theoretical noise correction is using the whole set of metadata from the radar images. The
advantage of this procedure is, that any image can be used. The results of this correction are
also comparable with other images, which are corrected with this method. The theoretical
correction is based on Eq. 2.1:

Nσ = nr ∗ log(rs

r
) − 2 ∗ Gr + 10 ∗ log(sin(I))) (2.1)

• nr = noise reference level

• rs = slant range

• r = reference angle

• Gr = antenna pattern correction

• I = incidence angle

A theoretical thermal noise reduction has been applied by Google Earth Engine to all
data used in this thesis. It is stated that the preprocessing tools of the Sentinel-1 Toolbox from
ESA have been used.

2.4.3 Radiometric calibration

This chapter is based on [23]. The radiometric calibration transforms the radar reflectivity to
physical units (for example decibel). The radar reflectivity contains a real and an imaginary
part. The Level 1 products of Sentinel 1 contain Calibration Annotation Data Sets (CADS).
Four Look Up Tables (LUT) can be found in these datasets. With one of them it is possible to
transform the radar reflectivity Aσ into the radar cross-section σ0 . After this correction the
area is normalized and is aligned with the ground range plane. In the CADS an average height
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is used on an ellipsoid earth model. With this ellipsoid at hand, the area normalization factor
can be simplified to sin(α) for the radar cross-section. Eq. 2.2 is needed for the calculation of
the radar cross-section σ0:

σ0 = DN2 ∗ K

A2
dn

∗ 1
G2

eap

∗ ( 1
Rref

)3 ∗ sin(α) (2.2)

• 1
G2

eap
= elevation antenna pattern (EPA) correction

• ( 1
Rref

)3 = range spreding loss (RSL) correction

• Adn = product final scaling from internal SLC to final SLC or GRD

• α = local incidence angle of the used earth model

• K = calibration constant

• DN = pixel amplitude directly taken from the measurement file

In the case of Sentinel-1, the EAP and RSL corrections are by default applied by the
S-1 IPF such that the above formula simplifies to Eq. 2.4.3:

σ0 = DN2

A2
dn ∗ K

∗ sin(α) (2.3)

If the Look up Tables (LUT) are used Eq. can be simplifeyd to the Eq. :

σ0 = DN2

A2
σ

(2.4)

A radiometric calibration has been applied by Google Earth Engine to all data used in
this thesis. It is stated that the preprocessing tools of the Sentinel-1 Toolbox from ESA have
been used.

2.4.4 Terrain correction

The following section is based on [24]. The terrain correction removes distortion effects origi-
nating from the side looking geometry of the radar system. This is necessary because otherwise
the radar images could not be used in combination with other georeferenced products as for
example a shapefile. A short summary about three important distortion effects due to the side
looking geometry of a SAR are listed below:

• Slant-range scale distortion:
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Figure 2.10: Left: Slant range scale distortion, middle: Foreshortening, right: Layover

– This effect is visualized in Fig. 2.10 at the left. The distances on the ground between
a− b and c−d have the same length. However, in the radar image the distance c−d

will be longer than the distance a − b. The reason is that radar measures distances
over time differences. The red lines in Fig. 2.10 are symbolizing the front of a radar
wave, ∆t1 is smaller than ∆t2 . That means that the distance for the radar wave
traveling to a − b will be shorter and the wave will be reflected earlier at the surface
leading to a shorter total time between transmitting and receiving the radar wave
package, resulting in a shorter ab distance.

• Relief displacement:

– Foreshortening: this effect is caused by the surface of the earth. In Fig. 2.10 in
the middle the effect is visualized. The distance a − b on the slope of the mountain
will be measured as zero. The radar wave will be reflected at a and b at exactly the
same time. If the slope of the mountain is not parallel to the radar wave front (as
visualized between c and d, the distance will be measured as too short because of
the slant-range distortion (see point above).

– Layover: In a layover the radar wave front hits the top of the mountain first. The
radar reflection at the top of the mountain will be reflected before the signal reaches
the ground of the mountain. This means as shown in Fig. 2.10 at the right, that
for point b, the horizontal distance to the satellite is shorter than the horizontal
distance of point a. In the radar image the slope of the mountain lays above the
bottom (point a) of the mountain.

All data used in this thesis have been terrain corrected by the algorithms of Google
Earth Engine. It is stated that the preprocessing steps of the Sentinel-1 Toolbox from ESA
have been used.
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2.5 Introduction to Machine Learning Models

2.5.1 Support Vector Machine (SVM)

Support Vector Machine is currently a hot topic in the statistical learning area. In late 1990s,
the traditional neural network approaches suffered severe difficulties with generalization and
producing models which is the main reason for the foundation of Support Vector Machines. In
statistical learning, support vector machines are supervised learning method with associated
leaning algorithms that analyse dataset [25].
In a p − dimensional space, a hyperplane is a flat affine subspace (a subspace need not pass
through the origin) of dimension p − 1. It is defined by equation

β0 + β1x1 + ... + βpxp = 0 (2.5)

for parameters β1...βp, in this case the point X = (x1...xp lies on the hyperplane. Now, suppose
X does not satisfy 2.5, but

β0 + β1x1 + ... + βpxp > 0 (2.6)

then we say X lies on the one side of the hyperplane. On the other hand, if

β0 + β1x1 + ... + βpxp < 0 (2.7)

then X lies on the other side of the hyperplane.
Based on this, we can demostrate that the hyperplane is able to divides this p −

dimensional space into two halves, which will be the basic idea of classification.
In order to decide which separating hyperplane to use, we need to use the maximal

margin classifier, which is also known as the optimal separating hyperplane (Fig. 2.11). The
maximal margin classifier is farthest from the training observation. That is, when we compute
the distance of each observation to the separating hyperplane, the minimal one is what we
called the margin. The maximal margin classifier is the hyperplane for which the margin is the
largest [26].

2.5.2 Convolutional Neural Networks

Neural Networks consist of individual units called neurons that are grouped by layers. When
images are fed to such an architecture, the computer sees it as an array of pixels and tries to
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Figure 2.11: SVM hyperplane in a binary classification.

Figure 2.12: Example of the structure of Convolutional Neural Network [3]

look for a base pattern, some kind of features that can lead the image to a specific image-level
label, pixel-level label or instance level label. In a supervised scenario, the dataset comprises
of images and labels which are fed into the network together. Figure 2.12 shows one of the first
CNN based Image classification models called LeNet [3].

Generally, a convolution is defined as an operation between two real-valued functions,
each function usually represents, for example, a signal or measurement. This operation is
applied in a form of a filter, also called a kernel, across the input image in a sliding window
fashion. These filter weights are parameters that are learned with back-propagation. Their
convolutional layers are mostly combined with pooling layers to prevent the network from
growing indefinitely and helps the network to generalize better. Pooling layers are very popular
with image classification networks where the output nodes are equal to the number of classes.
But, these are not very efficient with image segmentation tasks where spatial information is
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of utmost priority [27]. A further description about the network in use for this thesis and its
parameters is shown in chapter 5.

2.5.3 Semantic Segmentation

Semantic segmentation refers to the process of linking each pixel in an image or a region of
interest (lake in our case) to a class label 2.13. The standard semantic segmentation model
works on the concept of encoder-decoder architecture, which converts the image into a compact
form, like a latent space, and then this form is decoded to get pixel-level information. The
dimensionality of this latent space is much lower than that of the original image space. And,
this gives rise to the concept of downsampling and upsampling [27].

(a) RGB image (b) Pixel-wise classification
Figure 2.13: Semantic Segmentation of the lake Sihl (Red: non-frozen, Blue: frozen) on top of
a RGB image from Sentinel 2, on a transition day from non-frozen to frozen (31/12/2017).

Downsampling and Upsampling. One of the fundamental methods to downsample
an image is regular pooling. Pooling layers reduce the dimensionality of the input space along
with keeping the information of the significant features intact like highlighting the max fea-
tures. Another method which can serve the same purpose as pooling is strided convolutions.
The benefit of using convolutional striding over pooling is that pooling operation is fixed but
convolutions can be learned. In other words, we are trying to learn the "pooling operation"
thereby increasing the models expressive ability. For upsampling, the goal is to increase the
spatial resolution so that the final output vector (semantic label) has the same dimension as
the input vector space. For that, strided transpose convolutions come into the picture. These
functions go from deep and narrow layers to wider and shallower ones [27].
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Fully Convolutional Neural Networks. The first end-to-end trainable fully convo-
lutional network for image segmentation was devised by [28]. The network is fully convolutional
and uses deconvolutional layers to upsample the feature maps back to the original input size.
This is trained using pixel-wise loss. Moreover, this model employs skip connections to com-
bine high-level feature map representations with more specific and dense ones at the top of the
network.

Transfer learning. Deep supervised classification approaches need huge amount of
labelled data and a large amount of resources to train a model from scratch. Such data volumes
are often not available. Even if they are, labelling them is costly and increases the computational
cost of model training. Transfer learning mitigates this bottleneck by using an already trained
model from some related task as a starting point. Given the fact that the initial layers of a
neural network learn rather generic local image properties, a model trained on a huge image
dataset can be re-utilized on a different dataset with a much smaller amount of fine-tuning
(re-training) to the specific characteristics of the new data [18].
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Chapter 3

Related work
Many studies discussed the trends in lake ice formation in different parts of the globe. For
example, trends in lake freeze-up and break-up across Canada for a long period from 1951
until 2000 [29], decreasing tendency in lake freezing in several Swiss lakes were reported in
[7]. Later, response and role of ice cover in lake-climate interactions was reviewed [30]. This
paper observed that the ability to accurately monitor lake ice will be an important step in the
improvement of global circulation models, regional and global climate models and numerical
weather forecasting. Canadian Lake Ice Model (CLIMo) is used to simulate lake ice phenology
across the North American Arctic from 1961-2100 [31], using two climate scenarios produced
by the Canadian Regional Climate Model (CRCM). They projected changes to the ice cover
using 30-year mean data between 1961-1990 and 2041-2070, which suggested a probable drift
in freeze-up (0-15 days later) and break-up (10-25 days earlier). For lakes, that work reviewed
a number of topics, including ice cover concentration, ice extent and phenology, and ice types,
as well as ice thickness, snow on ice, snow/ice surface temperature, and grounded and floating
ice cover on shallow Arctic and sub-Arctic lakes.

Using Radar data. It was proposed to determine the depth and thickness of ice in
shallow lakes and ponds using the Landsat Thematic Mapper and European Remote Sensing
(ERS)-1 SAR data [32]. Almost a decade later, a study of the shallow lakes in the north
slope of Alaska to find the response of ice cover on the climate conditions using Radar remote-
sensing and numerical analysis was done [33]. A machine learning-based automated ice-vs-water
classification was proposed using dual polarisation SAR imagery [34]. Later, A study on the
ice freezing and thawing detection in shallow lakes from Northern Alaska with spaceborne SAR
imagery was performed [35]. Ice phenology in lakes of the Lena river delta was monitored using
TerraSAR-X backscatter [36]. An assessment of lake ice phenology in the Northern Hemisphere
from 2002 to 2015 was performed [37]. The effect of the lake size on the accuracy of a threshold-
based classification of ground-fast and floating lake ice from Sentinel-1 SAR data was assessed
[38]. Recently, an interesting machine learning approach was put forward to detect wet and dry
snow in mountainous areas using Sentinel-1 SAR data [39]. Moreover ,various algorithms such
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as thresholding, Iterative Region Growing with Semantics (IRGS) and k-means were presented
for the generation of a floating lake ice product from Sentinel-1 SAR data for various permafrost
regions (Alaska, Canada and Russia) [40]. RADARSAT-2 SAR data has been used to monitor
ice cover in lakes during the spring melt period in the Yukon area of the Canadian Arctic
[41]. They put forward a threshold-based classification methodology and observed that the
HH and HV backscatter from the lake ice have significant temporal variability and inter-lake
diversity, RADARSAT-2 imagery was used to develop a threshold-based method to determine
lake phenology events for the mid-latitude lakes in Central Ontario from 2008 to 2017 [42]. Also,
RADARSAT-2 imagery (dual polarised) was used for developing a lake ice classification system
acquired over lake Erie, with the IRGS method [43]. Additionally, polarimetric RADARSAT-2
(C-Band) was used to observe the scattering mechanisms of bubbled freshwater lake ice [44].

SAR data analysis is challenging, and deep learning could play a significant role because
of its ability to learn task-specific, hierarchical image features. [45] used CNNs to estimate sea
ice concentration using SAR data acquired during freeze-up period in the Gulf of St. Lawrence
on the east coast of Canada. Deep Learning was used to detect ice on Swiss lakes using SAR
Sentinel-1 data, based on a pixel-wise classification with 2 classes, frozen and non-frozen [18].

Using webcams. A system that detects lake ice in webcam data with the help of a
deep neural network is described in [8]. Public webcams have two main advantages compared
to optical satellite images. Firstly, they are usually not affected by clouds, except for the
comparatively rare case of dense fog. Secondly, they have a very high temporal resolution
(up to one image per 10 min). Though the approach generated excellent results, it also has
disadvantages. Webcams are usually placed arbitrarily (e.g., too far away or covering a small
lake area), and often only low above the lake, leading to great scale differences between front
and back of the lake surface. Moreover, they are prone to hardware failure, and, being very
cheap cameras, they have poor spectral and radiometric quality with significant compression
artifacts. Another practical problem with webcams is that it is very difficult to operationalise
them at country- or even world-scale. Finally, deep learning based system, capable to classify
per pixel water, ice, and snow on crowd-sourced images was implemented [46].

Using optical data. A machine learning-based methodology for lake ice detection
using low resolution optical satellite images was proposed [6]. The main problem with optical
satellite images is the data loss due to clouds. However, the authors showed that the algorithm
produces consistent results when tested on data from multiple winters. In addition, researchers
used Landsat-8 multi-spectral data for extraction of frozen lakes and water-vs-ice classification
[47]. Recently, a feasibility study, which targeted for a unified lake ice monitoring system that
combines images from optical satellites, in-situ temperature data and webcam images [48].
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Chapter 4

Data

4.1 Sentinel-1

Sentinel-1 maps the same point on Earth several times within one repeat cycle. Due to the large
across-track area coverage of the satellites and the latitude of our target area in Switzerland
(and most other areas where lakes freeze), the revisit time is further reduced. For the lakes in
study, it can bee seen from Table 4.3 that the temporal resolution in winter 2017 − 18 is better
than that of 2016 − 17. This is because of missing data from S1B. Though S1B was launched
in April 2016, the corresponding data is fully available in the GEE platform (refer Section 4.2,
data collection and pre-processing) only from March 2017. In addition, Sentinel-1 scans the
lakes in Region Sils with four orbits and lake Sihl is scanned by two (Table 4.2).

Table 4.1: Dataset statistics for Sentinel 1 and Sentinel 2, shown as (S1 / S2). The non-
transition days, on which a lake is fully frozen or fully non-frozen, and transition days (partially
frozen dates) are shown. For S1 all available observations are available in the table, for Sentinel
2, only observations with cloudiness less than 30% per lake. acq. denotes the number of
acquisitions along the winter, lake pixels the number of pixels corresponding to each lake per
observation.

Lake Winter Non-transition days Transition days Total # lake
Non-frozen Frozen # acq. pixels

Sihl 2016-17 44 / 20 14 / 4 3 / 1 61 / 25 104927
2017-18 61 / 13 10 / 1 19 / 4 90 / 18

Sils 2016-17 40 / 9 42 / 5 37 / 1 119 / 15 40908
2017-18 76 / 9 65 / 6 40 / 5 181 / 20

Silvaplana 2016-17 36 / 7 44 / 4 39 / 2 119 / 13 26563
2017-18 85 / 9 66 / 5 30 / 5 181 / 19

St. Moritz 2016-17 66 / 6 42 / 5 11 / 1 119 / 12 7521
2017-18 84 / 9 77 / 5 20 / 4 181 / 18

For lake Sihl and region Sils, Sentinel-1 operates in IW mode (refer to Section 2.2.2
for more details on mode and polarisation) polarises the emitted and detected signals only in
VV and VH modes as shown in Fig. 2.4. The distribution of backscatter values of frozen
and non-frozen pixels in these bands are shown in Fig. 4.2. Note that the separability in VV
appears better than in VH.
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Table 4.2: Details of the orbits scanning Region Sils (lakes Sils, Silvaplana, St. Moritz) and
lake Sihl, such as orbit number, flight direction, scan start time in Universal Coordinate Time
(UTC), and approximate incidence angle.

Region Sils

Orbit Flight dir. Scan time Incidence angle
15 ascending 17:15 41.0◦

66 descending 05:35 32.3◦

117 ascending 17:06 30.8◦

168 descending 05:26 41.7◦

Sihl
Orbit Flight dir. Scan time Incidence angle

15 ascending 17:15 41.0◦

66 descending 05:35 32.3◦

Figure 4.1: Location of the two regions of study with their corresponding Sentinel-1 orbits and
directions (ascending or descending). Lake Sihl shown in yellow, Region Sils shown in blue.
Flight paths were obtained from [4].
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(a) Distribution of VV (b) Distribution of VH
Figure 4.2: Distribution of frozen and non-frozen pixels for VV and VH polarisations (combined
data from lakes Sihl, Sils, Silvaplana and St. Moritz along 2 winters).

4.2 Sentinel-2.

Table 4.3: Temporal resolution of different sensors and an integrated system. S1 contains all
SAR images, S2 (clear only) contains the count of the images with cloudiness < 70%, S1+S2
contains the count of S1 + S2 (clear only), and S1 + S2 (all images) contains the count S1+S2.
When combining both S1 and S2, the intersection of both sensors on the same day in counted
just as 1.

Lake Winter S1 S2 (clear only) S1+S2 S1+S2 (all images)

Sihl 2016-17 4.5 10.92 3.9 2.81
2017-18 3.0 15.2 2.87 2.28

Sils 2016-17 2.3 18.2 2.14 1.96
2017-18 1.5 13.7 1.47 1.37

Silvaplana 2016-17 2.3 22.75 2.1 1.96
2017-18 1.5 14.4 1.47 1.37

St. Moritz 2016-17 2.3 22.75 1.95 1.96
2017-18 1.5 15.2 1.44 1.37

Data collection and pre-processing. Google Earth Engine (GEE) is a cloud-based
platform for large-scale geo-spatial data analysis [21]. It stores and provides data of various
satellite missions, performs data pre-processing and makes them freely available for education
and research purposes. The Sentinel-1 backscatter coefficients (in decibels) were downloaded
from the GEE platform after several inbuilt pre-processing steps such as GRD border noise
removal which corrects the noise at the border of the images, thermal noise removal for cor-
recting the thermal noise between the sub-swaths, radiometric calibration which calculates the
backscatter intensity using the GRD metadata, terrain correction to correct the side looking
effects using the digital elevation model (SRTM, 30m), and log-scaling to transform the ap-
proximate distribution of the SAR responses from Chi-squared to Gaussian (see Fig. 4.2). We
note that we did not perform any absolute geolocation correction, since the back-projected lake

39



outlines suggested a sufficient accuracy.
Transition and non-transition days. All the data from two winters was divided

into two categories: non-transition dates where the lake is fully frozen or fully non-frozen,
and transition dates with partially frozen lake surface. Both the freeze-up and break-up dates
belong to the transition category. The dataset statistics are shown in Table 4.3.

Ground truth. For each lake, a single label (frozen, non-frozen) per day was assigned
by a human operator after visual interpretation of the freely available webcam data. The
webcam-based ground truth thus generated was further enriched by visual interpretation of the
Sentinel-2 images whenever available. However, some remaining noise in the ground truth is
likely due to interpretation errors, as a result of overly oblique viewing angles of webcams and
compression artefacts in the images. Note also, we have the ground truth available only for the
non-transition days.

After back-projecting the digitised lake outlines from Open Street Map (OSM) on to the
SAR images, for each lake, we extract the the lake pixels which lie inside the polygon derived
from the lake outline. The only lake which required additional processing was Sihl, since it
contains 2 bridges which were remove, leaving only clean pixels in the shape.
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Chapter 5

Methodology
5.1 Sentinel 1

Semantic Segmentation. We define lake ice detection as a two class (frozen, non-frozen)
pixel-wise classification problem and tackle it with the state-of-the-art semantic segmentation
network Deeplab v3+ [9]. The non-frozen class comprises of only water pixels. Whereas a
pixel is considered to be part of the frozen class if it is either ice or snow, since in the target
region, the frozen lakes are covered by snow for much of the winter. The standard procedures
in machine learning-based data analysis are followed. The dataset is first divided into mutually
exclusive training, validation and test sets. The Deeplab v3+ model is then fitted on the training
set. This model is further used to predict the images in the validation set, which provides an
unbiased evaluation of the model’s predictive performance outside the training set while tuning
the hyper-parameters. Lastly, the trained model is tested on the previously unseen test dataset.

Deeplab v3+ is a deep neural network for semantic segmentation [9], which has set
the state-of-the-art in multiple semantic segmentation benchmarks, including among others
PASCAL VOC 2012 [49] and Cityscapes [50]. It combines the advantages of both Atrous
Spatial Pyramid Pooling (ASPP) and encoder-decoder structure. Atrous convolution allows
one to explicitly control the resolution of the features computed by the convolutional feature
extractor. Moreover, it adjusts the field-of-view of the filters in order to capture multi-scale
information. Deeplab v3+ also incorporates depthwise separable convolution (per-channel 2D
convolution followed by pointwise 1×1 convolution) which significantly reduces the model size.
The architecture of Deeplab v3+ is shown in Fig. 5.1.

Network parameters. We used the mobilenetv2 implementation of Deeplab v3+, as
available in TensorFlow. The train crop size was set to 129 × 129 (effective patch size is
128 × 128) and the eval crop size to the full image resolution. All models were trained for
40′000 iterations with a batch size of 8. Atrous rates were set to [1, 2, 3] for all experiments.
The cross-entropy loss function was minimised with standard stochastic gradient descent, with
a base learning rate of 1e − 3.

Transfer learning. We use a Deeplab v3+ model pre-trained on the PASCAL VOC
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Figure 5.1: Deeplab v3+ architecture.

2012 close-range dataset as the starting point and fine-tune it on the relatively small Sentinel-1
SAR dataset (see Table 4.3). Surprisingly, we find that pre-training on RGB amateur images
greatly improves the performance even on a data source as different as interferometric Radar,
with greatly improved results compared to training from scratch only on the SAR data.

5.2 Sentinel 2

SVM. A sklearn implementation [51] was used to perform a pixel-wise classification from
Sentinel-2 images, this with a linear kernel, regularization parameter (C ) set to 1.0, gamma set
to scale, and tolerance set to 1e-3. Only non-cloudy pixels were taking into account, masking
cloudy pixel with the Sentinel-2 cloud mask product. For training a balance dataset is created,
the smaller class with n pixels is completely taken, and from the other class only n pixels are
randomly selected.

5.3 Sentinel 1+2 System

Multi-temporal analysis First, a daily prediction in percentage of non-frozen pixels is per-
formed. Then, a time series is created, with values from Sentinel 1 and 2, if for the same day
data from both sensors is available, then Sentinel 2 result is chosen. After that, a median filter
with K=3 is applied on top of the result.

Ice on/off. The ice on and ice off identify when the freezing up and breaking up
processes occur, respectively. The ice on occurs after 2 consecutive days with percentage of
non-frozen pixels > 90%. In the other hand, the ice off dates occurs after 2 consecutive days
have a percentage of non-frozen pixels < 90%.
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Chapter 6

Experiments & Results
We use various measures to quantify performance, including recall, precision, overall accuracy,
and the IoU score (Jaccard index). In semantic segmentation experiments, we used only lake
pixels and only non-transition dates to train the network and to compute performance metrics.
This is due to the lack of per-pixel ground truth on the transition dates. However, qualitative
analysis and time series analysis are done on all the dates.

6.1 Quantitative results

For developing an ideal operational system for lake ice monitoring, the data from a couple of
lakes from a few winters would have to be used to train the model which can then be tested
on unseen lakes and winters. However, generating ground truth for each lake is a tedious task.
Nevertheless, we make sure that the data from at least one lake from one full winter is in the
training set for the classifier to learn the proper class decision boundaries.

We employ Cross-Validation (CV), i.e., the data is partitioned into k folds, usually of
approximately the same size. Then, the evaluation is done k times, each time using one fold as
test set and the union of all remaining folds as training set. Leave-one-out cross-validation is
the setting where the number of folds equals the number of instances (in our case the number
of winters/lakes) in the dataset.

6.1.1 Leave one-winter out CV

The goal of leave-one-winter-out CV is to investigate the generalisation capability of a model
trained on one winter when tested on a different winter. The results for Sentinel-1 are shown
on Table 6.1 and for Sentinel-2 on Table. For Sentinel-1, it can be seen that we achieve
excellent results for both winters with average accuracies of 93.1% and 93.8% for 2016−17 and
2017−18 respectively. Sentinel-2 average accuracies are 96.5% and 81.6% as shown in Fig. 6.3.
The results show that the proposed model generalises well across the potential domain shift
caused by the specific conditions of different winters, without having seen data from any day
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Table 6.1: Leave one winter out cross validation on Sentinel-1. Top: Results on 2016-17, trained
on 2017-18, Bottom: Results on 2017-18, trained on 2016-17. Total units are in millions of
pixels, except for precision, recall, and accuracy (bottom right cell in each table).

True
Prediction Non-frozen Frozen Recall

Non-frozen 8.58 0.05 99.4%
Frozen 0.87 3.84 81.6%
Precision 90.8% 98.8% 93.1%

True
Prediction Non-frozen Frozen Recall

Non-frozen 12.4 0.25 98.0%
Frozen 0.88 5.09 85.3%
Precision 93.2% 95.4% 93.8%

Table 6.2: Per-class- and mean IoU values of frozen and non-frozen classes for each lake.
Sentinel-1 data of a lake from winter 2016 − 17 is tested using a model trained on the data
lakes from all lakes in 2017 − 18.

IoU
Winter 2016-17 2017-18

Non-frozen 90.7% 91.5%
Frozen 81.9% 81.9%
Mean 86.3% 86.7%

within the test period. See Tables 6.2 and 6.4 for the per-class and mean IoU values for each
winter.
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Table 6.3: Leave one winter out cross validation on Sentinel-2. Top: Results on 2016-17, trained
on 2017-18, Bottom: Results on 2017-18, trained on 2016-17, with a balanced dataset (number
of -non-frozen pixels is equal to the number of frozen pixels). Total units are in millions of
pixels, except for precision, recall, and accuracy (bottom right cell in each table).

True
Prediction Non-frozen Frozen Recall

Non-frozen 2.61 0.02 99.4%
Frozen 0.11 0.76 98.0%
Precision 96.1% 98.0% 96.5%

True
Prediction Non-frozen Frozen Recall

Non-frozen 1.59 0.40 80.0%
Frozen 0.06 0.45 88.1%
Precision 96.3% 53.0% 81.6%

Table 6.4: Per-class- and mean IoU values of frozen and non-frozen classes for each lake.
Sentinel-2 data of a lake from winter 2016−17 is tested using a model trained on the data lakes
from all lakes in 2017 − 18, with a balanced dataset (number of -non-frozen pixels is equal to
the number of frozen pixels).

IoU
Winter 2016-17 2017-18

Non-frozen 95.5% 77.6%
Frozen 86.1% 49.5%
Mean 90.8% 63.6%
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6.1.2 Leave one-lake out CV

We also report results of a leave-one-lake-out CV experiment to check the generalisation ca-
pacity of the model across lakes. The results are shown on Tables 6.5 and 6.7. While testing
for all data of a lake (e.g. Sils) from two winters, the data from the other two lakes (e.g. Sihl,
Silvaplana, St. Moritz) from the same two winters is used for training. The prediction achieves
>84.9% overall accuracy for all four lakes. As a side result of this experiment, we also report
the precision-recall curves in Fig. 6.1 for a detailed per-class performance assessment. For both
the frozen and non-frozen classes, the area under the curve is nearly optimal for lake Sils and
very good performance is achieved on lakes Silvaplana and St. Moritz, for Sihl, a lake located
in a completely different region from the rest of the lakes and with half temporal resolution
results were significantly lower in both sensors. See Tables 6.6 and 6.8 for the per-class and
mean IoU values for each lake on Sentinel-1 and Sentinel-2 respectevely.

The mean IoU for lake Sihl on winter is significantly lower than the other leave one-
winter out experiments, also it makes the leave one-winter out decrease its accuracy. As shown
in Table A.13, IoU for class frozen is below 35% for every individual training set. One of
the reasons that explain this situation are the non-frozen days in which the cloud mask is
not marking those pixels as clouds (27/09/2017 and 30/04/2018), and the SVM algorithm is
classifying them as frozen. Also, a frozen (32/12/2017) is classified mostly as non-frozen, since
is an "black" icy day, and due to the lack of these samples in other training sets, most of pixels
are misclassified.
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Table 6.5: Results on Sentinel-1 for lakes Sihl, Sils, Silvaplana, and St. Moritz. Confusion ma-
trices are shown for the leave-one-lake-out cross-validation experiment. Units are in millions
of pixels, except for precision, recall, and accuracy (bottom right cell in each table).

Sihl
True

Prediction Non-frozen Frozen Recall

Non-frozen 9.15 1.82 83.4%
Frozen 0.22 2.29 91.4%
Precision 97.7% 55.7% 84.9%

Sils
True

Prediction Non-frozen Frozen Recall

Non-frozen 5.22 0.01 99.9%
Frozen 0.39 4.01 91.1%
Precision 93.0% 99.9% 95.9%

Silvaplana
True

Prediction Non-frozen Frozen Recall

Non-frozen 3.61 0.02 99.4%
Frozen 0.22 2.67 92.4%
Precision 94.2% 99.3% 96.3%

St. Moritz
True

Prediction Non-frozen Frozen Recall

Non-frozen 1.05 0.05 95.3%
Frozen 0.08 0.79 90.7%
Precision 92.8% 93.8% 93.2%

Table 6.6: Per-class and mean IoU values of frozen and non-frozen classes for each lake.
Sentinel-1 data of a lake from winter 2016 − 17 is tested using a model trained on the data
lakes from all lakes in 2017 − 18.

IoU
Lake Sihl Sils Silvaplana St. Moritz

Non-frozen 81.8% 92.9% 93.8% 88.7%
Frozen 52.9% 91.0% 91.8% 85.5%
Mean 67.3% 92.0% 92.8% 87.1%
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Table 6.7: Results on Sentinel-2 for lakes Sihl, Sils, Silvaplana, and St. Moritz. Confusion ma-
trices are shown for the leave-one-lake-out cross-validation experiment. Units are in millions
of pixels, except for precision, recall, and accuracy (bottom right cell in each table).

Sihl
True

Prediction Non-frozen Frozen Recall

Non-frozen 3.12 0.28 91.7%
Frozen 0.07 0.56 88.2%
Precision 97.7% 66.2% 91.1%

Sils
True

Prediction Non-frozen Frozen Recall

Non-frozen 0.65 0.04 94.2%
Frozen 0.04 0.39 91.3%
Precision 94.5% 90.8% 93.1%

Silvaplana
True

Prediction Non-frozen Frozen Recall

Non-frozen 0.39 0.01 98.2%
Frozen 0.03 0.21 89.3%
Precision 94.0% 96.7% 94.9%

St. Moritz
True

Prediction Non-frozen Frozen Recall

Non-frozen 0.11 0.00 98.3%
Frozen 0.02 0.06 74.9%
Precision 85.7% 96.7% 89.1%

Table 6.8: Per-class and mean IoU values of frozen and non-frozen classes for each lake.
Sentinel-2 data of a lake from winter 2016 − 17 is tested using a model trained on the data
lakes from all lakes in 2017 − 18.

IoU
Lake Sihl Sils Silvaplana St. Moritz

Non-frozen 89.7% 89.4% 92.4% 84.5%
Frozen 60.8% 83.6% 86.7% 73.1%
Mean 75.3% 86.5% 89.5% 78.8%
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(a) Sihl (b) Sils

(c) Silvaplana (d) St. Moritz

Figure 6.1: Precision-recall curves for lakes Sihl, Sils, Silvaplana, and St. Moritz. The iso-f1
curve connects all points in the precision/recall space whose F1 scores are the same. Sentinel-1
data of a lake from two winters (2016−17 and 2017−18) forms the test set for a model trained
on the data from the other two lakes in both winters.

49



6.2 Qualitative analysis.

Exemplary qualitative results are depicted in Fig. 6.2. We show the classification results on
frozen, non-frozen, and transition dates along with the probability map (blue means higher
probability of frozen, red means higher probability of non-frozen). For better interpretation of
the result, especially for the transition date, we show the corresponding image from Sentinel-2.

Figure 6.2: Qualitative results for lake Sihl on a non-frozen day (row 1), lake Sils on a frozen
day (row 2), and lake Silvaplana on a non-frozen day with clouds (row 3), and lake St. Moritz
on a frozen day with a shadow on top. For each lake we show the Sentinel-1 composite image
(column 1), the ground truth (column 2), the predicted probability map from Deeplab (column
3), and the corresponding binary classification map (column 4). Additionally, column 5 shows
the corresponding prediction from SVM, and in column 6 Sentinel-2 image for better visual
interpretation.

Discriminating between snow/ice and water should be particularly difficult in case of
strong wind and associated waves, due to the increased roughness of the water. We have
checked for correlations with the wind speed (available from nearby weather stations), but
could not find any clear relationship. It appears that the system can handle windy conditions
practically equally well – which is further supported by the excellent overall results, as the area
is moderately wind-prone such that repeated failures on windy days would impact the overall
statistics. Clouds don’t represent any issue for SAR, but for optical data, even when we don’t
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take into account pixels that are masked out due to cloudiness the problem is not completely
solved, since the cloud mask presents some true negatives that are directly treated by the SVM
as frozen, as shown in Silvaplana case in Fig. 6.2.
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6.3 Time-series.

The ice-on and ice-off dates are of particular interest for climate monitoring. From the per-
day semantic segmentation results, we estimate the daily percentage of frozen surface for each
observed lake. Thus, for each available SAR image, we compute the percentage of frozen pixels,
throughout the entire winter. Although we do not have per-pixel ground truth on the partially
frozen transition days, we know whether the lake has more water (shown with a value of 75%
in the ground truth) or more ice/snow (shown with a value of 25% in the ground truth).
Even though some miss-classifications exist during the transition days, the non-transition days
are almost always predicted correctly, probably because the network was trained entirely on
non-transition days. In Figures 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 are shown the results of percentage
of frozen pixels and for a comparison, we also plot the time series of the temperature values
(sliding window mean of the daily median, window size of 7 days) obtained from the nearest
meteo station. The corresponding detection of ice on and ice off days is detailed in Table 6.9,
where the ground truth of the event, the detection by only using Sentinel-1 and by combining
Sentinel-1 and Sentinel-2 is calculated for the first occurrence freeze up of break up per lake,
per winter.

Table 6.9: Dataset statistics. The non-transition days, on which a lake is fully frozen or fully
non-frozen, and transition days (partially frozen dates) are shown. S1 contains results per day
from Sentinel-1, with a median filter with K=3. S1+S2 contains results per day combining
Sentinel-1 and Sentinel-2, with a median filter with K=3. Highligheted in green are shown the
predictions with ±3 days from the ground truth (GT).

Lake Winter Ice on Ice off
GT S1 S1+S2 GT S1 S1+S2

Sihl 2016-17 01.01 23.01 11.01 14.03 04.03 04.03
2017-18 27.12 30.12 30.12 06.01 05.01 01.01

Sils 2016-17 03.01 10.01 10.01 13.04 16.04 16.04
2017-18 02.01 25.12 20.12 09.04 31.03 30.03

Silvaplana 2016-17 04.01 18.01 18.01 15.04 27.01 19.03
2017-18 02.01 29.12 29.12 09.01 22.01 22.01

St. Moritz 2016-17 16.12 29.12 15.01 01.04 03.01 30.03
2017-18 22.12 23.12 23.12 26.04 13.03 13.03

52



(a) Time series of percentage of non-frozen pixels for lake Sihl from winter 2016 − 17.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Einsiedln).

Figure 6.3: Correlation of our results (winter 2016 − 17) on lake Sihl with the ground truth
and the auxiliary temperature data.

(a) Time series of percentage of non-frozen pixels for lake Sihl from winter 2017 − 18.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Einsiedln).

Figure 6.4: Correlation of our results (winter 2017 − 18) on lake Sihl with the ground truth
and the auxiliary temperature data.
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(a) Time series of percentage of non-frozen pixels for lake Sils from winter 2016 − 17.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Segl Maria).

(c) Time series of percentage of non-frozen pixels for lake Silvaplana from winter 2016 − 17.
Figure 6.5: Correlation of our results (winter 2016 − 17) on lake Sils with the ground truth and
the auxiliary temperature data.
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(a) Time series of percentage of non-frozen pixels for lake Sils from winter 2017 − 18.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Segl Maria).

(c) Time series of percentage of non-frozen pixels for lake Silvaplana from winter 2017 − 18.
Figure 6.6: Correlation of our results (winter 2017 − 18) on lake Sils with the ground truth and
the auxiliary temperature data.
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(a) Time series of percentage of non-frozen pixels for lake St. Moritz from winter 2016 − 17.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Samedan).

Figure 6.7: Correlation of our results (winter 2016 − 17) on lake St. Moritz with the ground
truth and the auxiliary temperature data.

(a) Time series of percentage of non-frozen pixels for lake St. Moritz from winter 2017 − 18.

(b) Temperature (temporal moving average with window size of 7 days) from the nearest meteo
station (Samedan).

Figure 6.8: Correlation of our results (winter 2017 − 18) on lake St. Moritz with the ground
truth and the auxiliary temperature data.
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6.4 Miscellaneous experiments SAR

In all the experiments reported so far, we used the data from all four orbits (both ascending and
descending) and both polarisations (VV and VH). To study the individual effect of polarisations
VV and VH, we drop either of them and report the corresponding results on Table A.24 (left).
Note that mIoU drops by almost 33.1% when VV is left out, while it drops by only 3% without
VH, confirming the significance of polarisation VV for lake ice detection. This finding is also
aligned with the visual differences in Fig. 4.2. Note that we used the data from all four orbits
in this experiment.

Table 6.10: Per-class- and mean IoU values of frozen and non-frozen classes with different
polarisations. Data from all the four lakes from winter 2016 − 17 was tested using a model
trained on the data from all four lakes from winter 2017 − 18.

IoU
Polarisation VV, VH VH VV

Non-frozen 90.4% 75.2% 88.6%
Frozen 80.8% 39.7% 76.7%
Mean 85.6% 57.5% 82.6%
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Chapter 7

Conclusions and Outlook
We have described a system for reliable monitoring of lake ice based on Sentinel-1 SAR and
Sentinel-2 multispectral imagery, with the potential to retrieve long, consistent time series over
many years (assuming continuity of the satellite mission). The proposed method has been
demonstrated for four different Swiss lakes over two complete winters, and obtains good results
(accuracy higher than 84%), even when generalising to an unseen winter or lake. Given the
main advantage of SAR data for our purposes its ability to observe with very good spatial
and temporal resolution independent of clouds we see the possibility to extend our method
into an operational monitoring system. A logical next step would be to process longer time
series, which unfortunately is not yet possible with Sentinel-1. It is quite possible that even
a moderate time span, say 20 years, would suffice to reveal trends in lake freezing patterns
and perhaps also correlations with climate change. When combining Sentinel-1 with an optical
sensors, in our case Sentinel-2, the temporal resolution increases, however it’s not enough to
make significant improvements in the ice on/off detection compared to Sentinel-1 only. For this
reason, A combination of Sentinel-1 with a low spatial high temporal resolution optical satellite
(e.g. MODIS , VIIRS) might bring improvements. Also, adding webcam for detection of exact
dates of freeze up and break up, could ensure reliable identification of ice-on and ice-off dates
within the GCOS specification of ±2 days. Lake location-wise, our system is generalizing well
across lakes in the same region, where the incidence angle, temporal resolution, altitude, and
wind conditions are similar. However, when a lake with different characteristics appears, the
current system is capable to achieve an overall accuracy > 80%, but not a mean IoU > 80%.

58



Bibliography

[1] “Esa sentinel user guides - sentinal-1 mode, polarisation, and observation ge-
ometry.” https://sentinel.esa.int/web/sentinel/missions/sentinel-1/

observation-scenario. Retrieved 2020-12-05.

[2] P. Imhof, “Deep-learning-based lake ice detection using esa sentinel-1 sar data,” 2019.

[3] Y. LeCun, L. Bottou, T. Bengio, and P. Haffner, “Gradient based learning applied to
document recognition,” Proceedments of the IEEE, 2019.

[4] “Alaska satellite facility.” search.asf.alaska.edu. Retrieved 2020-20-05.

[5] S. Evans, “Dielectric properties of ice and snow - a review,” Journal of Glaciology, 1965.

[6] M. Tom, U. Kälin, M. Sütterlin, E. Baltsavias, and K. Schindler, “Lake ice detection in low-
resolution optical satellite images,” ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. IV-2, 2018.

[7] H. J. Hendricks Franssen and S. C. Scherrer, “Freezing of lakes on the swiss plateau in the
period 19012006,” International Journal of Climatology, vol. 28, no. 4, 2008.

[8] M. Xiao, M. Rothermel, M. Tom, S. Galliani, E. Baltsavias, and K. Schindler, “Lake
ice monitoring with webcams,” ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. IV-2, 2018.

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation,” in European Conference
on Computer Vision, 2018.

[10] “Esa sentinel user guides - sentinel-1 mission summary.” https://sentinel.esa.int/

web/sentinel/missions/sentinel-1/overview/mission-summary. Retrieved 2020-12-
05.

[11] “Esa sentinel user guides - sentinel-1 overview.” https://sentinel.esa.int/web/

sentinel/missions/sentinel-1/overview. Retrieved 2020-12-05.

59

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
search.asf.alaska.edu
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview/mission-summary
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview/mission-summary
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview


[12] “Esa sentinel user guides - sentinel-2 satellite description.” ://sen-
tinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description.

[13] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. Papathanassiou, “A
tutorial on synthetic aperture radar,” Canadian Journal of Remote Sensing, vol. 1, no. 1,
pp. 6–43, 2013.

[14] J. Albertz, Einführung in die Fernerkundung (. WBG, 2009.

[15] “Esa sentinel user guides - sentinel-1 acquisition modes.” https://sentinel.esa.int/

web/sentinel/user-guides/sentinel-1-sar/acquisition-modes. Retrieved 2020-12-
05.

[16] “Esa sentinel user guides - level-1 slc products.” https://sentinel.esa.

int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/

level-1-algorithms/single-look-complex. Retrieved 2020-12-05.

[17] J. Johannessen, G. Digranes, H. Esdedal, O. Johannessen, P. Samuel, D. Browne, and
P. Vachon, “Ers-1 sar ocean feature catalogue,” ESA SP-1174, 1994.

[18] M. Tom, R. Aguilar, P. Imhof, S. Leinss, E. Baltsavias, and K. Schindler, “Lake ice
detection from sentinel-1 sar with deep learning,” in arXiv preprint: arXiv:2002.07040,
2020.

[19] “Esa sentinel user guides - sentinel-2 msi processing levels.” https://sentinel.esa.int/

web/sentinel/user-guides/sentinel-2-msi/processing-levels. Retrieved 2020-12-
05.

[20] “Esa sentinel user guides - sentinel-2 product types.” https://sentinel.esa.int/web/

sentinel/user-guides/sentinel-2-msi/product-types. Retrieved 2020-12-05.

[21] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google
earth engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Envi-
ronment, vol. 202, 2017.

[22] W. Albright, “Sar noise.” Retrieved from http://www2.gi.alaska.edu/~rgens/

teaching/asf_seminar/2002/sar_noise_floor.pdf. 2020-12-05.

[23] N. Miranda, “Radiometric calibration of s-1 level-1 products generated by the s-1 ipf,”
2015.

60

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/single-look-complex
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/single-look-complex
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/single-look-complex
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
http://www2.gi.alaska.edu/~rgens/teaching/asf_seminar/2002/sar_noise_floor.pdf
http://www2.gi.alaska.edu/~rgens/teaching/asf_seminar/2002/sar_noise_floor.pdf


[24] “Radar image distortions.” https://www.nrcan.gc.ca/maps-tools-publications/

satellite-imagery-air-photos/remote-sensing-tutorials/

microwave-remote-sensing/radar-image-distortions/9325, 2015. Retrieved
2020-12-05.

[25] H. Xiaotong, “Support vector machine and its application to regression and classification,”
2017.

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning.
Springer, 2009.

[27] R. Prabha, “Ice monitoring in alpine lakes using webcam and crowd-sourced data,” 2019.

[28] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[29] C. Duguay, T. Prowse, B. Bonsal, R. Brown, M. Lacroix, and P. Menard, “Recent trends
in canadian lake ice cover,” Hydrological Processes, vol. 20, no. 4, 2006.

[30] L. C. Brown and C. R. Duguay, “The response and role of ice cover in lake-climate inter-
actions,” Progress in Physical Geography: Earth and Environment, vol. 34, no. 5, 2010.

[31] L. C. Brown and C. R. Duguay, “The fate of lake ice in the north american arctic,” The
Cryosphere, vol. 5, no. 4, 2011.

[32] C. R. Duguay and P. M. Lafleur, “Determining depth and ice thickness of shallow sub-arctic
lakes using space-borne optical and sar data,” International Journal of Remote Sensing,
vol. 24, no. 3, 2003.

[33] C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto, “Response of
ice cover on shallow lakes of the north slope of alaska to contemporary climate condi-
tions (1950–2011): Radar remote-sensing and numerical modeling data analysis,” The
Cryosphere, vol. 8, no. 1, 2014.

[34] S. Leigh, Z. Wang, and D. A. Clausi, “Automated icewater classification using dual po-
larization sar satellite imagery,” Transactions on Geoscience and Remote Sensing, vol. 52,
no. 9, 2014.

61

https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/microwave-remote-sensing/radar-image-distortions/9325
https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/microwave-remote-sensing/radar-image-distortions/9325
https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/microwave-remote-sensing/radar-image-distortions/9325


[35] C. M. Surdu, C. R. Duguay, H. K. Pour, and L. C. Brown, “Ice freeze-up and break-up
detection of shallow lakes in northern alaska with spaceborne sar,” Remote Sensing, vol. 7,
no. 5, 2015.

[36] S. Antonova, C. Duguay, A. Kääb, B. Heim, M. Langer, S. Westermann, and J. Boike,
“Monitoring bedfast ice and ice phenology in lakes of the lena river delta using terrasar-x
backscatter and coherence time series,” Remote Sensing, vol. 8, no. 11, 2016.

[37] J. Du, J. S. Kimball, C. Duguay, Y. Kim, and J. D. Watts, “Satellite microwave assessment
of northern hemisphere lake ice phenology from 2002 to 2015,” The Cryosphere, vol. 11,
no. 1, 2017.

[38] G. Pointner, A. Bartsch, B. C. Forbes, and T. Kumpula, “The role of lake size and local
phenomena for monitoring ground-fast lake ice,” International Journal of Remote Sensing,
vol. 40, no. 3, 2018.

[39] Y.-L. Tsai, A. Dietz, N. Oppelt, and C. Kuenzer, “Wet and dry snow detection using
sentinel-1 sar data for mountainous areas with a machine learning technique,” Remote
Sensing, vol. 11, no. 8, 2019.

[40] C. Duguay and J. Wang, “Advancement in bedfast lake ice mapping from Sentinel-1 SAR
data,” in International Geoscience and Remote Sensing Symposium, 2019.

[41] T. Geldsetzer, J. van der Sanden, and B. Brisco, “Monitoring lake ice during spring melt
using radarsat-2 sar,” Canadian Journal of Remote Sensing, vol. 36, no. S2, 2010.

[42] J. Murfitt, L. Brown, and S. Howell, “Evaluating radarsat-2 for the monitoring of lake ice
phenology events in mid-latitudes,” Remote Sensing, vol. 10, no. 10, 2018.

[43] J. Wang, C. R. Duguay, D. A. Clausi, V. Pinard, and S. E. L. Howell, “Semi-automated
classification of lake ice cover using dual polarization radarsat-2 imagery,” Remote Sensing,
vol. 10, no. 11, 2018.

[44] G. Gunn, C. R. Duguay, D. K. Atwood, J. King, and P. Toose, “Observing scattering
mechanisms of bubbled freshwater lake ice using polarimetric RADARSAT-2 (c-band) and
uw-scat (X- and ku-bands),” Transactions on Geoscience and Remote Sensing, vol. 56,
no. 5, 2018.

[45] L. Wang, K. A. Scott, and D. A. Clausi, “Sea ice concentration estimation during freeze-up
from sar imagery using a convolutional neural network,” Remote Sensing, vol. 9, no. 5,
2017.

62



[46] R. Prabha, M. Tom, M. Rothermel, E. Baltsavias, L. Leal-Taixe, and K. Schindler in arXiv
preprint: arXiv:2002.07875.

[47] K. Barbieux, A. Charitsi, and B. Merminod, “Icy lakes extraction and water-ice classifi-
cation using landsat 8 oli multispectral data,” International Journal of Remote Sensing,
vol. 39, no. 11, 2018.

[48] M. Tom, M. Suetterlin, D. Bouffard, M. Rothermel, S. Wunderle, and E. Baltsavias,
“Integrated monitoring of ice in selected swiss lakes,” Final Project Report, 2019.

[49] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes challenge: A retrospective,” International Journal
of Computer Vision, vol. 111, no. 1, 2015.

[50] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The Cityscapes dataset for semantic urban scene understanding,”
in Computer Vision and Pattern Recognition, 2016.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

63



Appendix A

Appendices

A.1 Wind measurements
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(a) 2016 − 17

(b) 2017 − 18
Figure A.1: Wind measurements at 05:20 and 17:20 UTC from Samedan station for winters
2016-17 and 2017-18
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(a) VV, wind speed <5 Km/h (b) VH, wind speed <5 Km/h

(c) VV, wind speed >20 Km/h (d) VH, wind speed >20 Km/h
Figure A.2: Distribution of frozen and non-frozen pixels for VV and VH polarisations in different
wind speed condtions on Region Sils, along 2 winters. Best if viewed on screen.
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A.2 Detailed experimentation Sentinel-1

Table A.1: Results from Sentinel-1 of different training sets with validation on lake Sihl during
winter 2016-17. Each row contains results per every training set with 40K steps during training
process. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17
2017-18 99.4 37.1 83.4 99.9 83.0 37.1 60.1 85.0

Sils 2016-17 90.0 71.8 91.0 70.4 82.6 55.1 68.9 86.0
2017-18 98.7 43.0 84.6 94.4 83.7 42.0 62.8 85.7

Silvaplana 2016-17 89.7 86.4 94.5 73.0 85.3 65.5 75.4 89.7
2017-18 99.1 66.7 89.9 97.0 89.1 65.4 77.3 91.6

St. Moritz 2016-17 98.2 35.0 82.1 96.1 80.9 34.5 57.7 84.2
2017-18 96.9 61.5 88.6 88.7 86.2 57.0 71.6 89.1

Table A.2: Resultson Sentinel-1 of different training sets with validation on lake Sihl during
winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 98.1 29.9 89.4 76.1 87.9 27.3 57.6 88.9
2017-18

Sils 2016-17 87.7 78.1 95.6 51.6 84.6 45.1 64.9 86.7
2017-18 82.7 92.5 97.0 45.0 80.1 45.2 63.0 84.7

Silvaplana 2016-17 82.7 92.5 97.0 47.0 80.1 45.3 63.0 84.8
2017-18 98.1 37.3 90.0 79.0 88.4 34.0 61.2 89.9

St. Moritz 2016-17 97.8 29.2 88.6 84 86.8 27.7 57.2 89.4
2017-18 97.3 40 90.4 76.4 88.2 35.6 61.9 89.9

Table A.3: Resultson Sentinel-1 of different training sets with validation on lake Sils during
winter 2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 93.2 22.3 59.0 74.0 56.6 20.7 38.6 61.3
2017-18 99.0 5.1 56.0 100 55.7 5.1 30.4 57.1

Sils 2016-17
2017-18 99.4 75.5 83.8 100 83.4 75.5 79.4 89.4

Silvaplana 2016-17 99.5 90.4 92.5 99.5 92.1 90.0 91.0 96.3
2017-18 99.4 86.0 89.7 99.6 89.2 85.7 87.5 93.9

St. Moritz 2016-17 98.0 61.0 75.7 98.9 74.5 60.6 67.5 82.8
2017-18 98.6 71.9 80.6 98.2 79.7 71 75.4 87
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Table A.4: Results from Sentinel-1 of different training sets with validation on lake Sils during
winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 90.1 23.1 57.7 67.5 54.3 20.8 37.5 59.5
2017-18 99.1 7.8 56.1 100 55.8 7.8 31.8 57.7

Sils 2016-17 99.7 89.5 91.9 99.9 91.6 89.4 90.5 95.3
2017-18

Silvaplana 2016-17 98.9 88.5 91.0 98.7 90.0 87.5 88.8 95.0
2017-18 98.1 93.7 94.9 98.2 93.2 92.1 92.7 96.6

St. Moritz 2016-17 97.8 73.2 81.7 98.8 80.2 72.6 76.4 88.1
2017-18 97.5 84.4 87.7 96.9 85.8 82.2 84.0 92

Table A.5: Results from Sentinel-1 of different training sets with validation on lake Silvaplana
during winter 2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 95.6 19.3 58.7 79.4 57.2 18.4 37.8 61.2
2017-18 99.2 0.9 54.9 100 54.7 0.9 27.8 55.1

Sils 2016-17 99.7 66.5 78.3 99.9 78 66.4 72.2 84.9
2017-18 99.5 35.4 65.3 100 65.1 35.4 50.3 71.0

Silvaplana 2016-17
2017-18 98.8 78.8 85.3 99 84.4 78.2 81.3 90.3

St. Moritz 2016-17 98.0 37.8 65.8 97.3 64.9 37.4 51.2 71.7
2017-18 95.4 70.4 79.5 93.4 76.6 67 71.8 84.5

Table A.6: Results from Sentinel-1 of different training sets with validation on lake Silvaplana
during winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 95.7 31.4 64.2 85.9 62.4 29.9 46.1 67.8
2017-18 99.2 1.7 56.8 100 56.6 1.7 29.2 57.2

Sils 2016-17 99.7 63.9 78.1 99.9 77.9 63.9 70.9 84.4
2017-18 99.4 58.9 76.2 100 75.8 58.9 67.4 82.4

Silvaplana 2016-17 99.7 69.4 81 99.9 80.8 69.3 75.1 87.1
2017-18

St. Moritz 2016-17 98.0 14.8 59.8 92.8 59.1 14.6 36.9 62.5
2017-18 95.4 81.7 87.1 93.8 83.5 77.5 80.5 89.9
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Table A.7: Results from Sentinel-1 of different training sets with validation on lake St. Moritz
during winter 2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 97.5 7.8 62.4 71.8 61.4 7.5 34.5 63.0
2017-18 98.6 0 61.1 0 60.6 0 30.3 61.2

Sils 2016-17 96.1 83.4 90.4 94.2 87.2 79.4 83.3 91.9
2017-18 99.2 34.4 71.0 99.9 70.6 34.4 52.5 75.0

Silvaplana 2016-17 99.1 64.5 82.1 99.9 81.5 64.4 73.0 87.4
2017-18 91.7 81.6 89.5 88.2 82.8 73.5 78.2 89.1

St. Moritz 2016-17
2017-18 96.9 87.3 92.3 95.6 89.7 84 86.9 93.8

Table A.8: Results from Sentinel-1 of different training sets with validation on lake St. Moritz
during winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 99.1 2.7 52.5 85.4 52.3 2.7 27.5 53.3
2017-18 98.6 0 61.1 0 60.6 0 30.3 61.2

Sils 2016-17 95.9 82.8 86.2 95.4 83.1 79.6 81.4 90.3
2017-18 99.2 65.7 77.1 99.9 76.7 65.7 71.2 84.5

Silvaplana 2016-17 99.1 71.7 80.8 99.9 80.3 71.7 76 88.2
2017-18 92.7 92.2 94.1 93.5 87.6 86.6 87.1 93.9

St. Moritz 2016-17 98.9 77.6 83.8 99.7 83.1 77.5 80.3 90.1
2017-18
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A.3 Detailed experimentation Sentinel-2

Table A.9: Results from Sentinel-2 of different training sets with validation on lake Sihl during
winter 2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17
2017-18 99.7 81.3 95.3 81.3 95 80.2 87.6 95.9

Sils 2016-17 99.9 68.3 90.5 68.3 90.4 68.2 79.3 92.0
2017-18 99.7 98.9 99.8 98.9 99.5 97.7 98.6 99.6

Silvaplana 2016-17 99.9 46.6 76.4 46.6 76.4 46.6 61.5 80.4
2017-18 99.6 99.9 100 99.9 99.5 97.8 98.7 99.6

St. Moritz 2016-17 99.9 92 98.2 92 98.1 91.7 94.9 98.5
2017-18 99.8 98.8 99.8 98.8 99.5 97.7 98.6 99.6

Table A.10: Results of different training sets with validation on lake Sils during winter 2016-17.
NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 89.2 98.3 99.3 98.3 88.6 76.8 82.7 91.7
2017-18 87.6 78.3 88.4 78.3 78.5 63.5 71.0 84.4

Sils 2016-17
2017-18 86.7 99.6 99.8 99.6 86.6 71.7 79.1 90

Silvaplana 2016-17 99.2 87.2 92.1 87.2 91.4 86.2 88.8 94.4
2017-18 84.7 99.8 99.9 99.8 84.7 66.8 75.8 88.3

St. Moritz 2016-17 96.3 95.6 97.7 95.6 94.2 89.3 91.7 96.1
2017-18 89.4 99.5 99.8 99.5 89.2 77.9 83.6 92.2

Table A.11: Results of different training sets with validation on lake Silvaplana during winter
2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 86.3 98.6 99.4 98.6 85.8 71.6 78.7 89.5
2017-18 89.3 83.8 91.1 83.8 82.1 69.9 76.0 87.3

Sils 2016-17 93.2 98.8 99.4 98.8 92.7 86.4 89.5 95
2017-18 85.6 99.1 99.6 99.1 85.3 70.3 77.8 89.1

Silvaplana 2016-17
2017-18 83.1 99.4 99.8 99.4 82.9 64.2 73.6 86.9

St. Moritz 2016-17 91.6 98.4 99.2 98.4 90.9 82.9 86.9 93.7
2017-18 86.5 98.9 99.5 98.9 86.2 72.3 79.2 89.8
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Table A.12: Results from Sentinel-2 of different training sets with validation on lake St. Moritz
during winter 2016-17. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 67.4 97.9 99.2 97.9 67.1 42.2 54.6 73.5
2017-18 71.7 81.7 89.2 81.7 65.9 51.1 58.5 74.9

Sils 2016-17 73.7 98.5 99.3 98.5 73.3 57 65.2 80.3
2017-18 66.7 98.6 99.5 98.6 66.5 40.1 53.3 72.6

Silvaplana 2016-17 73.9 97.6 98.8 97.6 73.3 57.3 65.3 80.3
2017-18 66.0 99.6 99.9 99.6 66 38.3 52.2 71.9

St. Moritz 2016-17
2017-18 68.9 98.4 99.4 98.4 68.6 45.8 57.2 75.2

Table A.13: Results from Sentinel-2 of different training sets with validation on lake Sihl during
winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 93.3 18.1 92.5 18.1 86.8 10.5 48.6 87.0
2017-18

Sils 2016-17 95.1 53.2 97 53.2 92.5 29.8 61.1 92.7
2017-18 92.9 54.5 99.5 54.5 92.4 7.4 49.9 92.4

Silvaplana 2016-17 95.5 32.9 91.8 32.9 88 24.3 56.2 88.5
2017-18 92.9 68.7 99.7 68.7 92.6 7.7 50.2 92.7

St. Moritz 2016-17 95.2 71.8 98.7 71.8 94 35.1 64.6 94.2
2017-18 93.1 57.5 99.3 57.5 92.5 11.1 51.8 92.6

Table A.14: Results from Sentinel-2 of different training sets with validation on lake Sils during
winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst mIoU
in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 99.8 97.5 98.2 97.5 98.0 97.2 97.6 98.8
2017-18 98.9 91.4 93.4 91.4 92.5 90.3 91.4 95.6

Sils 2016-17 99.9 86.3 88.7 86.3 88.6 86.2 87.4 93.3
2017-18

Silvaplana 2016-17 99.9 83.6 86.1 83.6 86 83.5 84.8 91.8
2017-18 99.6 99.8 99.9 99.8 99.4 99.2 99.3 99.7

St. Moritz 2016-17 100 84.2 86.6 84.2 86.6 84.1 85.4 92.2
2017-18 99.9 99.3 99.5 99.3 99.4 99.1 99.2 99.6
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Table A.15: Results from Sentinel-2 of different training sets with validation on lake Silvaplana
during winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 99.9 98.2 98.9 98.2 98.8 98 98.4 99.2
2017-18 95 96.2 97.9 96.2 93 88.2 90.6 95.4

Sils 2016-17 100 83.9 88.5 83.9 88.5 83.9 86.2 92.8
2017-18 98.8 99.4 99.7 99.4 98.5 97.5 98.0 99.0

Silvaplana 2016-17 100 79.6 84.6 79.6 84.6 79.5 82.1 90.4
2017-18

St. Moritz 2016-17 100 82.6 87.4 82.6 87.4 82.6 85.0 92.1
2017-18 99.8 99 99.4 99 99.3 98.8 99.0 99.5

Table A.16: Results from Sentinel-2 of different training sets with validation on lake St. Moritz
during winter 2017-18. NF stands for Non-frozen and F for frozen. Best mIoU in green, worst
mIoU in red.

Lake Winter Recall Precision IoU Accuracy
NF F NF F NF F Mean

Sihl 2016-17 99.1 99.2 99.5 99.2 98.6 97.7 98.1 99.1
2017-18 98.7 95.5 97.2 95.5 96 93.5 94.7 97.4

Sils 2016-17 99.7 84.9 89.3 84.9 89 84.5 86.8 93.1
2017-18 99.2 99.7 99.8 99.7 99 98.3 98.7 99.4

Silvaplana 2016-17 99.6 81.4 86.3 81.4 86 81 83.5 91.2
2017-18 98.4 99.9 99.9 99.9 98.3 97.2 97.8 98.9

St. Moritz 2016-17 99.8 83.5 88.1 83.5 87.9 83.3 85.6 92.5
2017-18
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A.4 Summary of daily results for all monitoring data

and lakes Sihl, Sils, Silvaplana, and St. Mortiz in

the winters 2016-17 and 2017-18

Table A.17: Prediction per day: Sihl 2016-17

Date Sentinel 1 Sentinel 2
01.09 100
02.09 100
09.09 99
12.09 100
13.09 100
22.09 100
25.09 100
26.09 100
29.09 100
30.09 100
07.10 100
12.10 100
19.10 100
22.10 100
29.10 100
31.10 100
01.11 100
08.11 97
12.11 100
24.11 100
01.12 100
06.12 100
08.12 98
18.12 100 98
21.12 93
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30.12 99
07.01 0
11.01 0
23.01 0
27.01 0
04.02 0
16.02 0 1
19.02 1
28.02 100
04.03 99
07.03 82
11.03 25
12.03 100
13.03 100
17.03 100
24.03 100
25.03 100
28.03 100
29.03 100
31.03 100
05.04 100
06.04 100
07.04 100
10.04 100 100
12.04 100
17.04 100
18.04 100
22.04 100
24.04 100
29.04 100
30.04 100
04.05 100
06.05 100
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10.05 100
11.05 100
12.05 100
16.05 100
17.05 99
18.05 100
23.05 100
24.05 100
27.05 100
28.05 100

Table A.18: Prediction per day: Sihl 2017-18

Date Sentinel 1 Sentinel 2
01.09 100
03.09 100
08.09 100
09.09 100
13.09 99
15.09 100
20.09 100
21.09 100
24.09 89
25.09 100
27.09 100 6
02.10 100
03.10 100
07.10 100 94
09.10 100
14.10 100 95
15.10 100
17.10 95
19.10 100
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21.10 100
24.10 85
26.10 100
27.10 100
31.10 100
02.11 100
03.11 94
07.11 100
08.11 100
12.11 100
14.11 100
18.11 100
20.11 100
24.11 100
26.11 100
30.11 100
02.12 100
03.12 93
06.12 100 93
08.12 100
12.12 100
13.12 86
18.12 100
21.12 85
23.12 72
24.12 91
26.12 0
30.12 0
31.12 57
01.01 99
05.01 100
07.01 100
11.01 100
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13.01 99
19.01 100
23.01 100
25.01 100
29.01 100
31.01 100
04.02 100
06.02 87
09.02 60
10.02 100
12.02 0
16.02 91
18.02 0
22.02 0
24.02 0
28.02 0
02.03 0
06.03 0
08.03 0
12.03 99
14.03 95
18.03 89
20.03 100
24.03 87
26.03 100
30.03 100
01.04 100
05.04 100
07.04 100
11.04 100
13.04 100
19.04 100
20.04 78
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23.04 100
25.04 100
30.04 37
01.05 100
05.05 100
07.05 100
11.05 100
12.05 81
13.05 100
17.05 100
19.05 100
23.05 100
25.05 100 26
29.05 100

Table A.19: Prediction per day: Sils 2016-17

Date Sentinel 1 Sentinel 2
01.09 100
05.09 100
08.09 100
09.09 100
12.09 100
13.09 100
17.09 100
20.09 100
24.09 97
25.09 100
26.09 100
29.09 100 100
30.09 100
02.10 100
06.10 62
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07.10 100
11.10 100
14.10 100
18.10 99
19.10 100
23.10 100
26.10 100
29.10 100
30.10 99
31.10 100
04.11 100
07.11 10
08.11 96
11.11 100
12.11 100
16.11 100
19.11 100
24.11 100
28.11 100 99
01.12 100
05.12 99
06.12 100
08.12 99
10.12 100
13.12 100
17.12 99
18.12 100 99
22.12 100
25.12 100
28.12 99
29.12 61
30.12 100
03.01 100
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06.01 0
07.01 15
10.01 0
11.01 0
15.01 0
18.01 0
23.01 0
27.01 0 6
30.01 0
03.02 0
04.02 0
08.02 0
11.02 0
15.02 0
16.02 0 1
20.02 0
23.02 0
27.02 0
28.02 0
04.03 0
06.03 0
07.03 0
10.03 0
11.03 0
12.03 0
13.03 0
16.03 0
17.03 0
18.03 0
19.03 0
23.03 2
24.03 13
25.03 0
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28.03 0 3
29.03 0
30.03 0
31.03 0
03.04 0
04.04 7
05.04 0
06.04 0
07.04 60
09.04 0
10.04 0
11.04 7
12.04 99
15.04 100
16.04 100
17.04 100 100
18.04 100
21.04 100
22.04 100
23.04 100
24.04 100
27.04 100
28.04 100
29.04 100
30.04 100
03.05 100
04.05 100
05.05 100
06.05 100
09.05 100
10.05 100
11.05 100
12.05 100
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15.05 100
16.05 100
17.05 100
18.05 100
21.05 100
22.05 100
23.05 100
24.05 100
27.05 100 100
28.05 100
29.05 100
30.05 100

Table A.20: Prediction per day: Sils 2017-18

Date Sentinel 1 Sentinel 2
01.09 50
02.09 100
03.09 100
06.09 100
07.09 100
08.09 100
09.09 100
12.09 100
13.09 100
14.09 100
15.09 100
18.09 100
19.09 94
20.09 100
21.09 100
24.09 100 81
25.09 100
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26.09 100
27.09 100
30.09 100
01.10 100
02.10 100
03.10 100
04.10 99
06.10 100
07.10 8
08.10 100
09.10 100 99
12.10 100
13.10 100
14.10 100
15.10 100
18.10 100
19.10 100 100
20.10 100
21.10 100
24.10 100 99
25.10 100
26.10 100
27.10 100
30.10 100
31.10 100
01.11 100
02.11 100
03.11 99
05.11 100
06.11 100
07.11 100
08.11 100 0
11.11 100
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12.11 100
13.11 91
14.11 100
17.11 100
18.11 100 97
19.11 100
20.11 100
23.11 100
24.11 100
25.11 100
26.11 100
29.11 100
30.11 100
01.12 99
02.12 100
03.12 97
05.12 100
06.12 87
07.12 99
08.12 99
11.12 100
12.12 100
13.12 100 66
14.12 100
17.12 90
18.12 30 0
19.12 33
20.12 1
23.12 0
24.12 2
25.12 0
26.12 52
29.12 0
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30.12 0
31.12 0
01.01 0
04.01 0
05.01 0
06.01 0
07.01 0
10.01 0
11.01 0
12.01 0 0
13.01 0
16.01 0
17.01 0
18.01 0
19.01 0
22.01 0
23.01 0
24.01 0
25.01 0
28.01 0
29.01 0
30.01 0
31.01 0
03.02 0
04.02 0
05.02 0
06.02 0
09.02 0
10.02 0
11.02 0
12.02 0
15.02 0
16.02 0 0
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17.02 0
18.02 0
21.02 0 0
22.02 0
23.02 0
24.02 0
27.02 0
28.02 0
01.03 0
02.03 0
05.03 0
06.03 0
07.03 0
08.03 0
11.03 0
12.03 0
13.03 0 0
14.03 0
17.03 0
18.03 0
19.03 0
20.03 0
23.03 0
24.03 0
25.03 0
26.03 0
29.03 42
30.03 100
31.03 99
01.04 99
02.04 0
04.04 0
05.04 93
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06.04 100
07.04 100 0
10.04 100
11.04 100
12.04 100
13.04 100
16.04 100
17.04 100 0
19.04 47
22.04 0 0
23.04 0
24.04 0
25.04 5
28.04 100
29.04 26
30.04 7
01.05 98
04.05 88
05.05 9
06.05 39
07.05 100 97
10.05 99
11.05 100
12.05 100
13.05 100
16.05 100
17.05 100
18.05 100
19.05 100
22.05 100
23.05 100
24.05 100
25.05 100
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28.05 100
29.05 100
30.05 100

Table A.21: Prediction per day: Silvaplana 2016-17

Date Sentinel 1 Sentinel 2
01.09 100
05.09 100
08.09 100
09.09 100
12.09 100
13.09 100
17.09 100
20.09 100
24.09 100
25.09 100
26.09 100
29.09 100 100
30.09 100
02.10 100
06.10 100
07.10 100
11.10 100
14.10 100
18.10 100
19.10 100
23.10 100
26.10 100
29.10 100
30.10 100
31.10 100
04.11 100
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07.11 21
08.11 96
11.11 97
12.11 100
16.11 100
19.11 100
24.11 100
28.11 100 99
01.12 100
05.12 100
06.12 100
08.12 100
10.12 100
13.12 100
17.12 100
18.12 100 100
22.12 100
25.12 100
28.12 100
29.12 100
30.12 100
03.01 100
06.01 87
10.01 83
11.01 96
15.01 0
18.01 5
23.01 65
27.01 12 4
30.01 14
03.02 0
04.02 0
08.02 0
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11.02 0
15.02 0
16.02 0 1
20.02 0
23.02 0
27.02 0
28.02 0
04.03 0
06.03 0
07.03 0
10.03 0
11.03 0
12.03 0
13.03 0
16.03 0
17.03 0
18.03 16
19.03 25
23.03 81
24.03 86
25.03 0
28.03 7 4
29.03 0
30.03 50
31.03 69
03.04 2
04.04 65
05.04 57
06.04 10
07.04 78
09.04 30
10.04 8
11.04 0
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12.04 12
15.04 93
16.04 100
17.04 100
18.04 87
21.04 100
22.04 100
23.04 100
24.04 100
27.04 100
28.04 100
29.04 100
30.04 100
03.05 100
04.05 100
05.05 100
06.05 78
09.05 100
10.05 100
11.05 100
12.05 96
15.05 100
16.05 100
17.05 99
18.05 100
21.05 100
22.05 100
23.05 100
24.05 100
27.05 100 100
28.05 100
29.05 100
30.05 86
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Table A.22: Prediction per day: Silvaplana 2017-18

Date Sentinel 1 Sentinel 2
01.09 59
02.09 100
03.09 100
04.09 91
06.09 100
07.09 95
08.09 97
09.09 100
12.09 100
13.09 100
14.09 40
15.09 100
18.09 100
19.09 79
20.09 100
21.09 100
24.09 100
25.09 100
26.09 98
27.09 100
30.09 100
01.10 100
02.10 100
03.10 99
04.10 99
06.10 100
07.10 99
08.10 95
09.10 100 99
12.10 100
13.10 96
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14.10 100
15.10 100
18.10 100
19.10 100 99
20.10 100
21.10 100
24.10 100 99
25.10 100
26.10 100
27.10 100
30.10 100
31.10 100
01.11 100
02.11 100
03.11 99
05.11 100
06.11 33
07.11 100
08.11 100 0
11.11 100
12.11 100
13.11 87
14.11 100
17.11 100
18.11 98 95
19.11 98
20.11 99
23.11 100
24.11 100
25.11 99
26.11 100
29.11 99
30.11 97
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01.12 100
02.12 99
03.12 95
05.12 100
06.12 100
07.12 100
08.12 100
11.12 99
12.12 68
13.12 100 95
14.12 100
17.12 100
18.12 79
19.12 99
20.12 100
23.12 89
24.12 97
25.12 96
26.12 9
29.12 2
30.12 0
31.12 0
01.01 0
04.01 0
05.01 0
06.01 0
07.01 0
10.01 0
11.01 0
12.01 0 0
13.01 17
16.01 2
17.01 6
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18.01 0
19.01 33
22.01 87
23.01 0
24.01 0
25.01 0
28.01 0
29.01 0
30.01 0
31.01 0
03.02 0
04.02 0
05.02 0
06.02 0
09.02 0
10.02 0
11.02 0 0
12.02 0
15.02 0
16.02 0 0
17.02 0
18.02 0
21.02 0 0
22.02 0
23.02 0
24.02 0
27.02 0
28.02 0
01.03 0
02.03 0
05.03 0
06.03 0
07.03 0
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08.03 0
11.03 0
12.03 0
13.03 91
14.03 44
17.03 0
18.03 0
19.03 0
20.03 1
23.03 0
24.03 0
25.03 0
26.03 0
29.03 87
30.03 87
31.03 94
01.04 2
02.04 0
04.04 11
05.04 52
06.04 100
07.04 69 0
10.04 26
11.04 0
12.04 1
13.04 100
16.04 100
17.04 12 0
19.04 93
22.04 0 0
23.04 0
24.04 42
25.04 39

96



28.04 100
29.04 1
30.04 8
01.05 28
04.05 100
05.05 100
06.05 100
07.05 100 82
10.05 100
11.05 100
12.05 100
13.05 100
16.05 100
17.05 100
18.05 100
19.05 100
22.05 100
23.05 100
24.05 100
25.05 100
28.05 100
29.05 100
30.05 100

Table A.23: Prediction per day: St. Moritz 2016-17

Date Sentinel 1 Sentinel 2
01.09 100
05.09 100
08.09 100
09.09 100
12.09 100
13.09 100
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17.09 100
20.09 100
24.09 100
25.09 100
26.09 100
29.09 100 100
30.09 100
02.10 100
06.10 100
07.10 100
11.10 100
14.10 100
18.10 100
19.10 100
23.10 100
26.10 100
29.10 100
30.10 100
31.10 100
04.11 100
07.11 2
08.11 95
11.11 90
12.11 100
16.11 100
19.11 100
24.11 100
28.11 100 100
01.12 100
05.12 100
06.12 100
08.12 100
10.12 100
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13.12 100
17.12 93
18.12 100 100
22.12 100
25.12 1
28.12 99
29.12 2
30.12 100
03.01 10
06.01 22
10.01 0
11.01 47
15.01 1
18.01 0
23.01 0
27.01 3 12
30.01 0
03.02 0
04.02 0
08.02 2
11.02 0
15.02 0
16.02 1 4
20.02 8
23.02 0
27.02 0
28.02 0
04.03 0
06.03 0
07.03 0
10.03 0
11.03 0
12.03 0
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13.03 0
16.03 0
17.03 1
18.03 1
19.03 0
23.03 0
24.03 0
25.03 0
28.03 0 11
29.03 0
30.03 100
31.03 42
03.04 15
04.04 7
05.04 100
06.04 100
07.04 96
09.04 98
10.04 100
11.04 100
12.04 100
15.04 100
16.04 100
17.04 100
18.04 100
21.04 100
22.04 100
23.04 100
24.04 100
27.04 100
28.04 44
29.04 95
30.04 100
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03.05 100
04.05 100
05.05 97
06.05 100
09.05 100
10.05 100
11.05 100
12.05 100
15.05 100
16.05 100
17.05 100
18.05 100
21.05 100
22.05 100
23.05 100
24.05 100
27.05 100
28.05 100
29.05 31
30.05 100

Table A.24: Prediction per day: St. Moritz 2017-18

Date Sentinel 1 Sentinel 2
01.09 100
02.09 100
03.09 100
04.09 96
06.09 100
07.09 100
08.09 100
09.09 100
12.09 100
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13.09 100
14.09 100
15.09 100
18.09 100
19.09 100
20.09 100
21.09 100
24.09 100
25.09 100
26.09 100
27.09 100
30.09 100
01.10 100
02.10 100
03.10 100
04.10 99
06.10 100
07.10 100
08.10 100
09.10 100 99
12.10 100
13.10 93
14.10 100
15.10 100
18.10 100
19.10 100 99
20.10 100
21.10 100
24.10 100 99
25.10 100
26.10 100
27.10 97
30.10 100
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31.10 100
01.11 100
02.11 100
03.11 99
05.11 100
06.11 100
07.11 100
08.11 100 0
11.11 100
12.11 100
13.11 100
14.11 100
17.11 100
18.11 100 94
19.11 100
20.11 100
23.11 100
24.11 100
25.11 100
26.11 100
29.11 100
30.11 100
01.12 100
02.12 100
03.12 75
05.12 91
06.12 100
07.12 100
08.12 99
11.12 36
12.12 100
13.12 100 2
14.12 95

103



17.12 100
18.12 62
19.12 87
20.12 11
23.12 0
24.12 69
25.12 53
26.12 0
29.12 0
30.12 0
31.12 0
01.01 1
04.01 1
05.01 1
06.01 1
07.01 1
10.01 1
11.01 1
12.01 1 0
13.01 1
16.01 1
17.01 0
18.01 0
19.01 1
22.01 0
23.01 1
24.01 1
25.01 1
28.01 1
29.01 1
30.01 1
31.01 1
03.02 1
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04.02 0
05.02 0
06.02 1
09.02 1
10.02 0
11.02 0
12.02 1
15.02 1
16.02 1 0
17.02 0
18.02 1
21.02 1 0
22.02 0
23.02 1
24.02 1
27.02 1
28.02 1
01.03 1
02.03 1
05.03 1
06.03 1
07.03 1
08.03 1
11.03 1
12.03 99
13.03 100
14.03 100
17.03 99
18.03 25
19.03 99
20.03 0
23.03 1
24.03 1
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25.03 0
26.03 1
29.03 0
30.03 100
31.03 95
01.04 100
02.04 0
04.04 100
05.04 100
06.04 4
07.04 100 0
10.04 0
11.04 1
12.04 11
13.04 99
16.04 100
17.04 0 2
19.04 100
22.04 4 6
23.04 1
24.04 11
25.04 33
28.04 44
29.04 3
30.04 100
01.05 100
04.05 100
05.05 100
06.05 100
07.05 100 62
10.05 98
11.05 100
12.05 100
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13.05 100
16.05 100
17.05 100
18.05 100
19.05 100
22.05 100
23.05 100
24.05 100
25.05 100
28.05 100
29.05 100
30.05 100
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