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Abstract

The application of deep learning methods in 3D semantic segmentation has gained significant attention,
driven by advancements in 3D data acquisition technologies and their decreasing costs. However, a major
bottleneck in this domain is the labor-intensive and costly process of manually labeling vast quantities of
3D data, especially when dealing with voluminous outdoor LiDAR data. One approach to address this chal-
lenge is to train deep learning models on synthetic data and subsequently apply them to real-world scenarios.
However, However, this approach can result in subpar performance due to the domain gap between synthetic
and real-world data. In this thesis, we address this challenge by developing an Unsupervised Domain Adap-
tation (UDA) pipeline for 3D semantic segmentation in outdoor urban scenes. We propose a 3-stage pipeline
that incorporates contrastive learning, transfer learning, and self-training. Within this pipeline, we employ a
teacher-student training scheme, focusing on calibrating the teacher model to enhance the quality of pseudo-
labels. This calibration process improves both the model’s robustness and performance. Our experiments,
conducted on UDA from SynLiDAR to SemanticKITTI and SemanticPOSS, demonstrate that our proposed
method is on par with the state-of-the-art. Notably, when intensity values of LiDAR data are used as input,
which introduces domain discrepancies, our method exhibits better robustness compared to other methods.
Moreover, the results reveal that the contrastive learning stage not only aids in learning domain-invariant
features but also in acquiring features that are discriminative for specific semantic classes. Lastly, we ac-
knowledge certain limitations, such as the lack of interpretability.
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Chapter 1

Introduction

In this chapter, we commence by presenting the intricate challenge posed by unsupervised domain adaptation
(UDA) in the context of 3D semantic segmentation. Section 1.1 outlines our motivations for undertaking this
challenge. Following that, in Section 1.2, we provide a formulated problem description. In Section 1.3, we
offer a preliminary glimpse into our specific research focus and the contributions we bring to this domain.
Finally, Section 1.4 provides an overview of the thesis’s structure, guiding you through the subsequent
chapters and their content.

1.1 Motivation

In recent years, there has been a growing interest in the domain of computer vision concerning three-
dimensional (3D) data [9]. This heightened attention can be attributed to several factors, including the
rich spatial geometric information it offers, enabling machines to better perceive their surrounding objects
and scenes when compared to traditional two-dimensional (2D) images [10]. Additionally, the rapid ad-
vancements in 3D data acquisition technologies, such as Light Detection and Ranging (LiDAR) and RGB-D
cameras, have substantially reduced the cost associated with acquiring 3D data [11]. As we observe the
progression of autonomous driving technologies, it becomes evident that 3D semantic segmentation holds a
pivotal and intricate role within the perception pipeline. This process involves categorizing individual points
within LiDAR scans into specific semantic classes, thereby providing crucial semantic information for real-
time decision-making and ensuring public safety [12]. Deep learning methods have proven their capabilities
in large-scale 3D point cloud semantic segmentation. However, they are facing several challenges.

Figure 1.1: Illustration of semantic segmentation for point cloud. [1]

The effective performance of deep learning models in downstream tasks, such as semantic segmentation,
necessitates the availability of extensive annotated datasets for training [13, 14]. However, the annotation
of 3D data is time-consuming and laborious [13, 15, 14]. To mitigate the scarcity of annotated data, some
existing approaches resort to the generation of synthetic 3D point cloud data and automatic annotations
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CHAPTER 1. INTRODUCTION

through the use of simulators capable of emulating LiDAR in virtual outdoor environments [15, 16, 17, 18].
Synthetic data can be generated in large quantities and comes with readily available ground truth annotations.
However, the real data collected by static or mobile LiDARs often exhibit irregular patterns and inherent
noise, including missing points, specular reflections, grazing incidence angles, and other types of noise
that are absent in synthetic data. While deep learning models have demonstrated profound capabilities in
specific contexts, they can sometimes face challenges in generalization, particularly in the face of domain
shifts [19, 14]. This means that their performance might degrade when confronted with tasks or domains
that are dissimilar to the ones they were trained on. This limitation arises because deep learning models tend
to learn representations that are fine-tuned to the training data but lack transferability and robustness when
applied to unseen domains.

Figure 1.2: Comparison between a synthetic LiDAR scan (left) and a real scan (right). [2]

To tackle the aforementioned challenges, research were conducted toward unsupervised domain adap-
tation (UDA) within the context of 3D semantic segmentation. UDA aims to transfer knowledge from a
labeled source domain to a completely unlabeled target domain. Essentially, UDA encourages deep learning
models to learn domain-invariant representations that are robust to domain shift. Current UDA methods that
exclusively operate on 3D point cloud data, referred to as uni-modal UDA [3], can be roughly categorized
into two groups: adversarial-based methods and self-training-based methods [8].

Adversarial-based approaches involve a min-max game between a discriminator and a generator, which
adversarially reduces domain shift by aligning feature distributions between domains [20, 21, 2, 8]. While
adversarial-based methods have demonstrated considerable success in 2D image semantic segmentation,
they are known for training difficulties due to their inherent instability. In the field of syn-to-real UDA for
3D semantic segmentation, notable advancements [8, 2] have been achieved through the incorporation of ad-
versarial training within a multi-task framework. Nevertheless, the adversarial branch does not consistently
yield strong results when functioning on its own.

In contrast, self-training-based methods [7, 22] iteratively retrain a model using confident pseudo-
labeled data generated within the target domain, thereby improving the generalization ability of the model
thanks to increased size of effective training data. Self-training-based methods offer the advantage of seam-
less integration with sorts of data augmentation techniques tailored for 3D LiDAR point clouds, allowing
model to learn representations in augmented domains and further improving its generalization ability.

In the context of limited label availability, recent research efforts in the domain of self-supervised learn-
ing [23, 24, 25] and few-shot learning [26, 27] for 3D point clouds have also provided with label-efficient
solutions. Provided with only a small amount of labeled data in the target domain, these endeavors have
yielded remarkable success, surpassing the performance of current UDA methods. This success prompts
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CHAPTER 1. INTRODUCTION

an intriguing question: Can we integrate these methods into a single framework to benefit from both sides,
leveraging the generalizable features obtained from self-supervised learning and the available source domain
labels, to further enhance performance?

1.2 Problem Statement

Given unlabeled point clouds Pt from the target domain, which consists of n points p1, p2, . . . , pn ∈ Rd with
d as the dimensional feature, and point clouds Ps with a set of semantic labels Ls from the source domain,
the objective is to determine the optimal mapping function Φθ that accurately assigns semantic labels to
each point within the point clouds Pt, where θ is the parameters. Mathematically, this can be represented as:

Φθ : Pt → Ln. (1.1)

In a typical UDA pipeline, two distinct tasks are involved: supervised learning from labeled data in the
source domain and unsupervised learning from unlabeled data in the target domain, as shown in Fig 1.3.
The supervised learning leverages the labeled source domain to transfer knowledge, while the unsupervised
learning aims to learn domain-invariant features from the unlabeled target domain.

Figure 1.3: A typical pipeline of UDA [3]. Lsup is the loss of supervised learning, while Lunsup is the one
of unsupervised learning.

1.3 Focus of This Work

In our work, we establish a connection between prior self-training-based UDA methods and self-supervised
representation learning techniques applied to 3D point clouds. Recognizing that both self-supervised learn-
ing and self-training techniques are rooted in semi-supervised methods and follow similar principles, we
assume a high degree of compatibility between these approaches.

Our approach draws inspiration from representation learning using a contrastive loss objective during
a pre-training stage, a concept borrowed from TARL [25]. We integrate this pre-training method with
CoSMix [7], a self-training-based UDA technique that trains the model within a mixed augmented space. To
bridge these two frameworks and retain the domain-shared representations acquired during the pre-training
phase, we devise a fine-tuning technique.

Furthermore, given that self-training methods rely on high-quality pseudo labels, we delve into the cali-
bration of a teacher-student architecture. This investigation aims to enhance the performance and robustness
of the trained model by refining the quality of the pseudo labels used during the self-training process.

In summary, our main contributions are the followings:

(1) We present a comprehensive UDA pipeline that seamlessly merges existing self-supervised represen-
tation learning techniques and self-training-based UDA methods for 3D point clouds.

3



CHAPTER 1. INTRODUCTION

(2) Experiments show our method is on par with the state-of-the-art.

(3) Recognizing the crucial role of high-quality pseudo labels in self-training methods, we embarked on
a deep exploration of the teacher-student model architecture. Our calibration techniques refine the
pseudo-label quality, enhancing both the robustness and performance of the final model.

1.4 Thesis Organization

This thesis is structured in the following way. Chapter 2 explores related work in the fields of LiDAR Se-
mantic Segmentation, Self-supervised Representation Learning, Unsupervised Domain Adaptation for 3D
Semantic Segmentation, and Calibration for Deep Learning Models. Chapter 3 starts by introducing a theo-
retical basis, then covers detailed methodology of our approach. Chapter 4 presents our experimental setup
and results, followed by a comparison between the proposed method and previous approaches. Chapter 5
engages in a comprehensive discussion, including an ablation study, implications, limitations, and directions
for future work. Finally, Chapter 6 concludes the thesis, summarizing key findings and contributions.
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Chapter 2

Related Work

In this chapter we introduce the literature related to our approach. Section 2.1 We start by exploring LiDAR
Semantic Segmentation (Section 2.1) and categories of methods used to tackle this task. Section 2.2 provides
a examination of Self-supervised Representation Learning, highlighting its role in acquiring generalized
representations without relying on human-labeled data.

Section 2.3 delves into Unsupervised Domain Adaptation for 3D Semantic Segmentation, covering var-
ious approaches for adapting models from labeled to unlabeled domains. Lastly, Section 2.4 Calibration
for Deep Learning Models introduces the challenges of trustworthiness in deep learning and methods to
mitigate overconfidence and enhance model reliability.

2.1 LiDAR Semantic Segmentation

Semantic segmentation plays a crucial role in computer vision. In the realm of 3D semantic segmenta-
tion, methods can be broadly classified into three groups: point-based, projecton-based, and voxel-based
techniques. Moreover, combining these methods can help leverage various sources of information and po-
tentially improve performance.

Point-based methods [28, 29] utilize point features and positions as inputs, employing various operators
to gather information from neighboring points. Voxel-based methods [30, 31], on the other hand, partition
3D space into regular voxels and apply sparse convolutions. Modern libraries [31, 32] for sparse com-
putation have dramatically increased the inference speed in 3D space. However, voxelization causes loss
of information depending on the chosen resolution. Projecton-based methods [19, 1, 33] project 3D point
clouds into 2D range or Bird’s Eye View (BEV) images, then apply 2D semantic segmentation methods,
which has the advantages of lower computational cost compared to other methods directly working in 3D
space [9]. Additionally, methods that combine these modalities have shown significantly improved per-
formance. Leveraging the widely adopted Vision Transformer backbone in 3D vision has also enhanced
LiDAR semantic segmentation [33].

2.2 Self-supervised Representation Learning

Self-supervised representation learning aims to learn representations capable of generalizing to downstream
tasks without relying on human-labeled data [34]. In its early stages, this approach utilized pretext tasks to
acquire valuable representations. In the field of LiDAR perception, similar to 2D self-supervised learning
methods, reconstruction-based and contrastive learning based methods are widely employed. In addition,
prediction-based and flow-based methods have been developed to align with the intrinsic characteristics of
urban LiDAR point clouds [34].
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CHAPTER 2. RELATED WORK

Successful reconstruction-based pre-training methods in 2D vision and natural language processing
(NLP) have been adapted for 3D point cloud. For example, Zhang et al. [35] proposed using a transformer-
based masked auto encoder that reconstructs masked surfels for point cloud. Ye et al. [26] introduced
PointBert, a mask point modeling (MPM) based on the masked language modeling (MLM) strategy in
BERT [36].

Furthermore, contrastive learning methods that contrast 3D region of interests has proven effective for
3D semantic segmentation as downstream task. SegContrast [23] enhances downstream semantic segmenta-
tion by extracting class-agnostic segments from point clouds and applying a segment-wise contrastive loss,
producing robust and fine-grained feature representations transferable between datasets. Similarly, Proposal-
Contrast [24] contrasts region proposals in a 3D context using spherical proposals instead of bounding boxes,
and employs cross-attention for capturing geometric relations within each proposal. Moreover, TARL [25]
extracts segments by aggregating sequences of point clouds and applying clustering. It then contrasts the
point-wise features to segment mean-wise features with a contrastive loss.

These methods have proven their effectiveness and, to a certain degree, align with the objectives of
Unsupervised Domain Adaptation, as they are both label-efficient approaches that minimize the need for
labeled data in downstream tasks.

2.3 Unsupervised Domain Adaptation for 3D Semantic Segmentation

Unsupervised Domain Adaptation (UDA) aims to adapt a 3D semantic segmentation model from a labeled
domain to an unlabeled domain. Recent work has also explored synthetic-to-real adaptation for point clouds.

For indoor 3D scenes, DODA [15] remains the sole UDA research for semantic segmentation. It pro-
poses a syn-to-real approach that mimics occlusion and noise patterns present in real scenes and create an
intermediate domain through the manipulation of source and target cuboids.

For urban scenes, some existing approaches [2, 19, 37, 14, 38] attempt to address this challenge by pro-
jecting LiDAR point clouds onto depth images and subsequently applying 2D UDA techniques to mitigate
domain shifts. Nevertheless, it is important to note that the projection from 3D to 2D introduces a loss of
geometric information, which is further compounded by the absence of color information typically present
in 2D data.

Another line of approaches [16, 12, 7, 39] directly perform domain adaptive semantic segmentation on
LiDAR point cloud. For instance, Complete & Label [12] learns to complete input voxels to represent the
underlying surface, thus creates a new domain used as a pivot for domain adaptation. PCT [16] employs
GANs to translate synthetic point clouds to match the sparsity and appearance of real ones. SALUDA [39]
further proposes to employ an auxiliary implicit surface completion task along with the original semantic
segmentation task to learn domain invariant representation. PMAN [8] proposed an adversarial multitask
network that incorporates self-supervised learning on LiDAR intensity and an auxiliary nonparametric clas-
sifier using class prototypes from the source domain to improve semantic consistency and mitigate traditional
adversarial learning side effects.

Additionally, some methods [7, 40] mix point clouds from source and target domains to generate inter-
mediate representations with reduced domain discrepancies. Polarmix [40] uses two cross-scan augmenta-
tion techniques. Firstly, it utilizes scene-level swapping, which exchanges point cloud sectors between two
LiDAR scans. Secondly, it employs instance-level rotation and paste, which cuts and rotates point cloud
instances across scans. On the other hand, CoSMix [7] takes a different approach by extracting segments
from both domains by (pseudo) labels and subsequently pasting them into the other domain. This thus
creates augmented intermediate domains, enhancing the model’s generalization to the target domain.
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2.4 Calibration for Deep Leaning Models

Trustworthiness is a fundamental requirement for deep learning applications in real-world scenarios [41].
However, achieving this is challenging, as modern deep learning models are known to be overconfident when
making predictions [6]. For example, in the context of this thesis topic, self-training methods using teacher-
student architecture rely on pseudo-labels with high quality, which could lead to poor performance when the
teacher is overconfident in incorrect predictions or underconfident in correct predictions. To mitigate this
issue, one of the simplest, fastest and effective calibration methods is Temperature Scaling (TempScale) [6].
However, in our setting, the ground-truth target labels are not accessible. Without ground-truth labels,
some methods [42, 43, 44] have achieved good calibrations and uncertainty estimations of deep learning
models by training an extra generative model which can yield the likelihood estimation of output logits.
For instance, Density-Softmax [42] makes use of a flow-based model to estimate the probability density of
backbone output, which is then used to calibrate the model when multiplied with the logits generated by
the classifier. TransCal [43] calibrates a model in the context of UDA, by adopting a logistic regression
classifier to estimate the density ratio of domains to further estimate target calibration error. Calibrated
Teacher [44] utilizes a regression calibrator to further underscore the effectiveness of calibration in self-
training. However, training an additional model for processing 3D point cloud can be memory-intensive. As
a result, we further explore PseudoCal [45] which proposes to calibrate deep learning models on a pseudo
mixed validation set using TempScale in a supervised manner.
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Chapter 3

Materials and Methods

In this chapter, we begin by laying the groundwork for our methodology. Section 3.1 covers essential
aspects such as deep learning in 3D space, point cloud pre-processing techniques, and the calibration of
deep learning models. Subsequently, Section 3.2 elaborates on our 3-stage approach for tackling the UDA
challenge in 3D semantic segmentation.

3.1 Prerequisite

A complete UDA pipeline consists of several key components. In this thesis, we use the popular voxel-
based sparse 3D U-Net, implemented in the MinkowskiEngine library [31], as our backbone to facilitate fair
comparisons with other Unsupervised Domain Adaptation (UDA) methods.

3.1.1 Learning in 3D Space

Convolutional neural networks (CNN) rely on convolution and pooling operations to learn feature maps.
When it comes to 3D space, the learning cost of CNN can be expansive. To make it efficient to learn in high
dimensions, modern frameworks for 3D computer vision exploit sparse representation of data and utilize
sparse convolution to accelerate computation. Fig. 3.1 depicts the process of sparse convolution. For exam-
ple, Choy et al. [31] proposed a a 4D spatio-temporal convolutional neural network called MinkowskiNet for
3D video perception. A generalized sparse convolution is proposed to effectively process high-dimensional
data. For LiDAR point cloud data, we can represent a set of 3D coordinates C and the associated features
F as:

C =


x1 y1 z1 b1
x2 y2 z2 b2
...

...
...

...
xN yN zN bN

 ,F =


f1
f2
...
fN

 , (3.1)

where bi is the batch indices of i-th coordinate and fi is a vector of usually 4 dimensions representing xyz
coordinates and intensity value for LiDAR data.

The associated open-source auto-differentiation library, MinkowskiEngine, provides tools to voxelize
and batch the point cloud data, and offers sparse implementations of layers commonly used in CNN. Like
many other UDA methods for 3D semantic segmentation, our framework is independent to the model ar-
chitecture. We use a provided backbone MinkowskiUnet34C that is also widely used in many other related
works [7, 25, 39], ensuring fair and consistent comparisons. The architecture of a MinkowskiNet can be
illustrated in Fig. 3.2.
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Figure 3.1: Sparse convolution [4].
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4.4.2 Generative Sparse Tensor Networks

3D generation tasks include completion and reconstruction. First, a shape completion network infers

a complete unaltered data or a complete 3D shape from a partial observation or scan of a 3D shape.

A 3D reconstruction network also generates 3D shapes as an output, but unlike the completion

network, it takes a low-dimensional feature as an input. This feature can be simply a global feature

from an image or a one-hot vector indicating a 3D model index.

Both networks use generalized transposed convolution as the key component that upsamples

a low-resolution sparse tensor into a high-resolution sparse tensor. The generalized transposed

Figure 3.2: Semantic Segmentation Sparse Tensor Network [4].
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In semantic segmentation task, the objective is to maximize the mIoU (mean Intersection over Union)
as an evaluation metric to assess overall segmentation performance. The loss function used during training
is typically the Dice loss [46], Cross Entropy loss or their variants. The Dice loss for the binary-class case
can be formulated as follows:

LDL2 = 1−
2
∑N

i=1 pi · gi∑N
i=1 p

2
i +

∑N
i=1 g

2
i

, (3.2)

where the sums run over the N voxels, of the predicted binary segmentation mask pi ∈ P and the ground
truth binary mask gi ∈ G. For multi-class case, the final Dice Loss is calculated as the mean over all C
classes:

LDice =
1

C

C∑
i=1

LDL2. (3.3)

On the other hand, the Cross Entropy loss can be expressed as:

LCE(p, y) = −
N∑
i=1

yi · log(pi), (3.4)

where yi and pi represent the ground truth label and predicted class probabilities for class i, respectively,
N is the number of classes. It is worth noting that in the implementations, variants of these losses may be
used.

3.1.2 Point Cloud Pre-processing

In this subsection, we break down our point cloud preprocessing pipeline and introduce several fundamental
components.

Ground Removal. We adopt PatchWork [5], an real-time unsupervised ground detection algorithm for
LiDAR point cloud, to seperate ground points and non-ground points, which will help yield better results
when clustering points of potential meaningful objects. It encodes a point cloud into a Concentric Zone
Model-based representation, which efficiently distributes cloud points among bins while maintaining com-
putational efficiency. It then applies Region-wise Ground Plane Fitting to identify hard samples and Ground
Likelihood Estimation to reduce false positives. The algorithm can be illustrated in Fig 3.3.

Figure 3.3: Overview of Patchwork [5]
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Registration. For LiDAR scan data with pose information, we directly transform the point coordinates
into a uniform frame. Otherwise, we perform point cloud registration and optimization to align these point
clouds into a common coordinate system using tools implemented in the Open3D library. Specifically, the
registration process involves pairwise registration of each LiDAR scan to others using an Iterative Closest
Point (ICP) algorithm. In the pairwise registration, the algorithm iteratively aligns the source cloud with
the target cloud, estimating transformation matrices and information matrices to minimize the differences
between corresponding points. The full registration function directs this process among multiple LiDAR
scans by creating a pose graph to keep track of the transformations between the point clouds.

Clustering. Once we have an aggregated and processed point cloud, the next step is to extract semantically
meaningful objects from the data. Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [47] is a clustering algorithm ideally suited for this task. We can automatically group points
into clusters representing distinct objects or regions in the 3D scene.

Voxelization. To able to perform sparse convolution, we need to map the continuous 3D coordinates of
point cloud data to a discrete grid. This process is called quantization or voxelization. The MinkowskiEngine
library offers convenient functions for this purpose, allowing point cloud coordinates to be quantized with
respect to a specified resolution [31].

3.1.3 Model Calibration

We introduce calibration for neural networks and relevant metrics. Calibration aims for the model’s confi-
dence scores to accurately reflect the likelihood of correctness. Neural networks output “confidence” scores
p̂ along with predictions ŷ in classification. Ideally, these confidence scores should match the true correct-
ness likelihood, which can be expressed as P (ŷ = y|p̂ = p) = p,∀p ∈ [0, 1] . For example, if we assign
80% confidence to 100 predictions, then we would expect that 80% of the predictions are actually correct.
If this is the case, we say the network is calibrated [6]. However, this perfect calibration is impossible to
achieve. There are several metrics to measure if a model is calibrated.

Reliability Diagram. Reliability Diagram [48] is simple way to visualize calibration by plotting accuracy
as a function of confidence. Since confidence should reflect accuracy, we would like for the plot to be an
identity function. If accuracy falls below the main diagonal, then our network is overconfident. This happens
to be the case for most neural networks, such as this ResNet trained on CIFAR100 as shown in Figure 3.4.
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Figure 3.4: Confidence histograms (top) and reliability diagrams (bottom) for a 5-layer LeNet (left) and a
110-layer ResNet (right) on CIFAR-100. [6]

Expected Calibration Error. While reliability diagrams provide a visual assessment of calibration, it is
more convenient to have a single scalar summary statistic. One widely used metric for evaluating calibration
error is the Expected Calibration Error [49] (ECE). The ECE divides probability predictions into M bins,
with each bin Bm representing a range of confidence scores. It then calculates the weighted average of the
difference between observed accuracy and predicted confidence within each bin.

LECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|, (3.5)

where n represents the number of samples, and for the m-th bin, the accuracy is computed as acc(Bm) =
|Bm|−1

∑
i∈Bm

1(yi = yi), and the confidence is computed as conf(Bm) = |Bm|−1
∑

i∈Bm
p̂i.

Temperature Scaling. Temperature Scaling (TempScal) [6] is a widely-used calibration method in scenar-
ios where data is assumed to be independently and identically distributed (i.i.d.). It is a post-hoc calibration
technique that optimizes a temperature scaler T using the negative log-likelihood (NLL) loss on a labeled
validation set by comparing softmax predictions with true labels. Let z represent the logit vector associated
with input data x and ground-truth labels y, and σ(·) denote the softmax function. The target temperature,
denoted as T̂ , can be obtained through the optimization formulated as follows:

T̂ = argmin
T

E(xi,yi)∈DLNLL(σ(zi/T ), yi) (3.6)
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3.2 Method

In this section, we introduce the 3-stage pipeline of our method, which are Contrastive Learning (Pre-
training), Transfer Learning (Fine-tuning) and Calibrated CoSMix. Our approach begins with the pre-
training of a neural network using a mean-teacher scheme, followed by fine-tuning of the pre-trained model
in the source domain. Finally, we leverage our implementation of CoSMix [7] to further refine the model
through a self-training architecture. Overviews of these stages can be found in Fig. 3.6, Fig. 3.7 and Fig. 3.9.

Figure 3.5: Extracted segments from a point cloud aggregated by several scans. Note that the clusters are
computed from non-ground points.

3.2.1 Contrastive Learning

Inspired by TARL [25] and other UDA methods that employ auxiliary self-supervised learning tasks, we
believe that conducting contrastive learning in both source and target domains can enhance domain-invariant
representation learning. Our method’s contrastive learning process largely aligns with TARL [25]. Given
that LiDAR data for urban scenes are captured in time sequences, scans at different times serve as natural
augmented views of the same objects, making them suitable for contrastive learning.

Extract segments. At each time t, we represent the LiDAR data as a point cloud denoted as P t =
{pt1, ..., ptR} as a set of 3D points pr ∈ R3. To extract LiDAR point segments with high-level semantic
information, we begin by employing PatchWork [5] to separate the point cloud P t into two categories:
gound points Gt and non-ground points P̂ t, where P t = Gt ∪ P̂ t and Gt ∩ P̂ t = Ø. Finally, the HDB-
SCAN [47] clustering algorithm is applied to the densified non-ground points P̂ t, generating M segments
St = {St

1, ..., S
t
M} that represent individual objects. The extracted segments can be illustrated in Fig. 3.5.

Temproal Contrast. In order to perform contrastive learning between segment views at different time,
we need to extract segments from an aggregated point cloud. We then define a time interval that spans n
LiDAR scans, from which we will extract views of objects. Within the interval, we transform the scans
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to a common global coordinate frame to be aggregated. For synthetic data with no pose information, we
perform point cloud registration as described as the previous Section 3.1.2. This aggregation results in an
aggregated point cloud, which we denote as P = {P t+1, P t+2, ..., P t+n}. As in the individual scan case,
we can cluster P̂ to get the M segments S = {S1, . . . , SM}. By keeping the point index mapping from the
aggregated point cloud to the individual n scans, we can identify the n segments of the same object viewed
at different times as Sm = {Sm

t+1, . . . , S
m
t+n}. We then list the temporal views from each of the M segments

as S1:M = {S1
t+1, . . . , S

1
t+n, . . . , S

M
t+1, . . . , S

M
t+n}.

Training. For each batch, we sample two scans P t1 and P t2 at different times, where t1 < n
3 and t2 >

2n
3 ,

ensuring that they provide different views of the same object. To ensure the inclusion of the unseen scans,
the next batch starts at this unseen interval n

3 < t < 2n
3 . By configuring n as a multiple of 3, we include all

data within the training sequence for training.

Student

Teacher

projection

projection

Predictor

Segment-
wise mean

EMA update

Figure 3.6: Overview of Contrastive Learning stage of our pipeline.

During the forward pass, we compute point-wise features F t1 and F t2 from the backbone, respectively.
As the target embedding, we list from F t2 the set of M segments St2 . For each segment in St2 , we compute a
mean representation using its associated point-wise features. These mean representations are then processed
with a self-attention Transformer encoder, serving as a projection head, to get M target mean feature vectors
st2 ∈ RM×D, where D denotes the feature dimension.

For each point in a segment from t1, we keep the features at point level, using the Transformer encoder
to compute point-wise intra-class correspondences. Segment points will be re-sampled with a maximum
number of points P to deal with memory requirement of attention mechanism. Then we input the re-
sampled segment points-wise feature F̂ t1 to the projection head, follow by another Transformer encoder as
predictor. The output is the point-wise feature vectors st1 ∈ RM×P×D.

Using the segment target mean representations st2 and the predicted point-wise feature vectors st1 for
each segment, we compute a loss to minimize the differences between the point features and the corre-
sponding segment mean representations. We calculate the temperature-scaled cosine similarity δt1→t2 with
respect to the corresponding segment-mean representation from t2 as follows:

δt1→t2
m,p,k =

(st1m,p)
T st2k

τ
. (3.7)
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Next, we use the cross-entropy loss to maximize the similarity between each point p from a segment m
for all M segments and the corresponding target segment mean representation as follows:

Lt1→t2 = −
M∑

m=1

P∑
p=1

log

(
exp(δt1→t2

m,p,m)∑
k exp(δ

t1→t2
m,p,k )

)
. (3.8)

This loss encourages points within the same segment to converge toward a mean representation while
separating them from other segments. To ensure bidirectional learning, we repeat the forward pass, swapping
t1 and t2. This enables the model to learn correspondences from t1 to t2 and vice versa. The final loss is the
sum of losses computed for both directions.

Lfinal = Lt1→t2 + Lt2→t1. (3.9)

To acquire domain-invariant representations, we employ an alternating approach between the source
and target domains at each epoch in the training process described above. When dealing with a synthetic
source domain, it is possible that this domain may contain repetitive or redundant samples. We implement
a sub-sampling strategy on the source data, which balances the number of samples from both domains and
facilitates the model to gain more distinctive insights from the target domain.

3.2.2 Transfer Learning

Student

projection classifier

classifier

Source Domain

Figure 3.7: Overview of Transfer Learning stage of our pipeline.

After pre-training in both the source and target domains, we proceed with fine-tuning the model for
the semantic segmentation task, focusing on the source domain where we have access to semantic labels.
To achieve considerable semantic segmentation ability while avoiding over-fitting into the source domain,
we limit the number of training epochs for fine-tuning. We define the student network as Φθ, including
the backbone and a classification head, where θ is the parameters. Then, the student’s output logits can be
denoted as:

zpoint = Φθ(X s). (3.10)

Additionally, we leverage the projection head from the contrastive learning phase to perform an addi-
tional auxiliary segment-wise prediction task. This auxiliary task acts as a regularization, maintaining the
contrastive features learned to the fullest extend and helping to prevent overfitting to the source domain.
We denote the output logits of segment-wise head as zsegment, and the corresponding segment labels as
Ys
segment. For each segment, we label the semantic class according to the major class of the points. If the

percentage of points from the major class is less than a threshold th, this segment is labeled as ignored class.
For segment-wise and point-wise prediction, we use the focal loss [50] and the Lovász-Softmax loss [51]

as the loss functions Lsegment and Lpoint respectively, since we found this combination performs better than
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Dice loss [46] in fine-tuning. Additionally, a weight factor λ is introduced to scale Lsegment. The objective
is to minimize the following loss:

Lfine−tuning = Lpoint(σ(zpoint),Ys) + λLsegment(σ(zsegment/τ),Ys
segment). (3.11)

We select a small temperature value τ to steer Lsegment toward segment instance classification, which
aligns with the previous contrastive learning objective, preserving the learned features and preventing their
degradation during fine-tuning.

3.2.3 Calibrated CoSMix.

CoSMix [7] is a 3D UDA method that leverages data augmentation techniques for point cloud. It utilizes
two mixed point cloud datasets. The first dataset combines the source and confident pseudo-labeled target
patches, narrowing the domain gap. The second dataset blends the target with randomly selected source
patches to prevent overfitting. Moreover, it employs a teacher-student learning paradigm to iteratively refines
pseudo-labels, reducing domain disparity. However, the pseudo-labels used rely on the teacher model’s
predictions, which are thresholded using Softmax-based confidence values, a method known to produce
overconfident labels. Recent calibration methods not only improve label quality but also are shown effective
in domain adaptation tasks. For instance, PseudoCal [45] is a model calibration technique for 2D image
semantic segmentation that also uses mixing strategy and pseudo labeling. Given the shared similarities
between PseudoCal and CoSMix, incorporating these methods has potential for further improvement.

Semantic Selection. Before mixing points and labels across domains, class frequency distribution in the
source domain is calculated and stored. A point cloud patch corresponds to a subset of points of the same
semantic class. In the source domain, patches are chosen based on the frequency distribution of semantic
classes. Specifically, we define a function f that randomly selects a subset of classes Ỹs based on the
available labels Ys and the corresponding class frequency distribution Ps

Y at each iteration.

Ỹs = f(Ys, 1− Ps
Y , α), (3.12)

where α denotes the ratio of selected classes for each point cloud and Ỹs ∈ Ys. For instance, by setting
α = 0.5, a number of patches corresponding to the 50% of the available classes will be selected by sampling
them based on their class frequency distribution, i.e., long-tailed classes will have a higher likelihood to be
selected.

For the target domain, patches are selected using pseudo-labels Ŷt generated by the teacher network,
considering their confidence levels and adhering to a predefined threshold. Specifically, we define a pseudo-
label selection function g. The selected pseudo-labels are defined as

Ỹt = g(Ψθ′(X t), ζ), (3.13)

where Ψθ′ is the teacher network, ζ is the confidence threshold used by the function g and Ỹt ∈ Ŷt. X t

denotes set of points that correspond to Ŷt. We further denote the selected point clouds as X̃ s and X̃ t.

Compositional Mix. This compositional mix module is to blend the selected semantic patches into mixed
point clouds. This module involves three key operations: local random augmentation, where patches are
independently augmented; concatenation, where augmented patches are combined with the point cloud
of the other domain; and global random augmentation, where the mixed point cloud undergoes random
augmentation. A mixed point cloud is shown in Fig. 3.8. This mixing process is executed separately for the
target-to-source (t → s) and source-to-target (s → t) branches. We define augmentation function AugL,
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AugG for local and global augmentations respectively. Then the new point cloud mixed in the source-to-
target (s → t) branches can be represented as:

X s→t = AugG(AugL(X̃ s) ∪ X t), (3.14)

If we denote the above process as a mixing function mix, then the augmented mixed point clouds and new
labels can also be represented as:

X s→t = mix(X s,X t, 0),Ys→t = Ỹs ∪ Ŷt, (3.15)

X t→s = mix(X t,X s, 1),Yt→s = Ỹt ∪ Ys, (3.16)

where 0 (1) means treating the labels of the to-be-mixed point cloud as pseudo-labels (ground-truth labels)
respectively.

Figure 3.8: An example scan of the mixed point cloud.

Calibration. In our implementation, a calibration step takes place before the first training epoch. Essen-
tially, we calculate a temperature value to calibrate the teacher model so that qualitative pseudo labels are
accessed. Reported by [45], if two data sets exhibit a similar correct-wrong pattern, they should also share
a similar temperature when using TempScal [6]. We split the source dataset into training set and validation
set beforehand. Then, we mix the source validation set X s

val and target training set X t to a mixed validation
set X cal to mimic the correct-wrong pattern as the real target for calibration, on which we further apply
temperature scaling to calibrate the teacher network in a supervised manner. Different from the mixing
strategy used during training the student network, we consider pseudo target labels as ground-truth labels
and source validation labels as pseudo labels. This strategy is designed to create a validation domain that
resembles a more unseen domain, thereby resulting in a more conservative temperature value when applying
temperature scaling. The mixed validation set is mathematically represented as:

Xcal = mix(X s
val,X t, 1),Ycal = Ys

val ∪ Ŷt. (3.17)

Subsequently, we can obtain a temperature value T̂ by referring to Equation 3.6. This value is applied
when the teacher network generates pseudo-labels. It’s important to note that temperature scaling does not
influence the model’s accuracy but rather adjusts the confidence-accuracy curve. The calibration in this
context can stablize the training by help us choose the confidence threshold for generating pseudo-labels.
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Figure 3.9: Overview of proposed calibrated CoSMix. Part of the figure is adapted from [7].

Training. CoSMix leverages a teacher-student learning approach to refine pseudo-labels iteratively and
minimize domain disparities. For each batch, the teacher network Φθ′ starts to generate pseudo-labels on the
target domain by retaining predictions with Softmax-based confidence above a threshold ζ. When utilizing
intensity values as input, we employ a two-step normalization process. First, we normalize the batch source
intensity Is using its own mean µs and variance σs. Subsequently, we recover it using the mean µt and vari-
ance σt derived from the batch target intensity. The same procedure is applied to the batch target intensity.
Mathematically, these can be represented as follows:

Îs =
Is − µs

σs
, (3.18)

I ′s = Îs · σt + µt, (3.19)

Ît =
It − µt

σt
, (3.20)

I ′t = Ît · σs + µs, (3.21)

where Îs, Ît represent the normalized batch source and target intensity respectively, I ′s and I ′t represents the
recovered batch source and target intensity respectively.

Then the above described Semantic Selection, Compositional Mix are applied to get mixed point clouds
X s→t, X t→s and labels Ys→t, Yt→s. To update the student network Φθ, segmentation loss on (s → t)
branch is define as:

Ls→t = Lseg(Φθ(X s→t),Ys→t), (3.22)

where Lseg is implemented as the Dice Loss [46]. Similarly on (t → s) branch, the segmentation loss is
defined as:

Lt→s = Lseg(Φθ(X t→s),Yt→s). (3.23)

Furthermore, we utilize the projection head to extract point-wise features of each segment ss→t and
st→s. A cosine embedding loss serves as an additional constraint since ss→t and st→s correspond to the
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same points within the augmented space:

LCosEmbedding = 1− cos(ss→t, st→s). (3.24)

Finally, a total segmentation loss as follow is to be minimized.

Ltotal = Ls→t + Lt→s + ωLCosEmbedding (3.25)

Additionally, the teacher network’s parameters are updated periodically through an exponential moving
average mechanism, contributing to the ongoing improvement of pseudo-labels and domain adaptation.
Every γ iterations, we update the teacher parameters θ′ as follows:

θ′i = βθ′i−1 + (1− β)θ, (3.26)

where i indicates the training iteration and β is a smoothing coefficient hyperparamenter.
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Chapter 4

Experiments and Results

This chapter starts from introducing the Dataset and Metrics in Section 4.1 used for evaluating our method.
Moreover, we provide a comprehensive overview of the Implementation Details in Section 4.2, encompass-
ing essential parameters and configurations for the various stages of our UDA pipeline. Finally, we compare
the proposed method with previous approaches in Section 4.3.

4.1 Datasets and Metrics

Let us revisit the goal of this thesis: adapting a model from the synthetic source domain to the real-world
target domain without relying on ground-truth target labels for LiDAR semantic segmentation in urban
environments. Our choice for the source domain is SynLiDAR [16], a synthetic dataset that has the largest
number of scans, annotated points and semantic classes among all synthetic autonomous driving datasets.
For target domains, we consider SemanticKITTI [52] and SemanticPOSS [53], which are widely used in
previous UDA for LiDAR semantic segmentation research. These two dataset offer quite different outdoor
environments and are captured from different spatial perspectives. Although SemanticPOSS is smaller than
SemanticKITTI in terms of dataset size, it contains a larger quantity of moving objects than SemanticKITTI,
such as person and rider. This contrast between the two target datasets serves as a valuable benchmark for
evaluating the generalization capabilities of UDA methods in our experiments. Furthermore, Table 4.1
provides an overview of various outdoor LiDAR point cloud datasets.

SemanticKITTI. The LiDAR data of SemanticKITTI is collectd from urban environments in Germany,
using Velodyne HDL-64E sensor mounted on the vehicle’s roof. It provides dense semantic annotations for
each individual scan of sequences 00–10 in KITTI dataset [54]. According to the official setting, sequence
08 is the validation split, while the remaining are the train split. SemanticKITTI uses sequences 11–21 in
KITTI as the test set, whose labels are held on for blind online testing. We follow the setting of previous
UDA methods, where all results are reported from evaluation on sequence 08.

SemanticPOSS is generated in a university campus using vehicle equipped with a Pandora 40-line sensor
module and a GPS/IMU localization system to collect point clouds data. The dataset contains 5 sequences,
where we follow the same validation protocal as [7, 8] and use sequence 03 for validation and others for
training.

SynLiDAR. SynLiDAR provides high-quality synthetic point cloud data collected from various virtual
scenes created using Unreal Engine 4. These virtual scenes simulate outdoor environments such as cities,
towns, and harbors, offering a wide range of scenarios. The dataset includes precise point-wise annotations
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for 32 semantic classes. Moreover, Its intensity values are simulated using a rendering model’s prediction
for the synthetic point clouds. It is worth noting that the rendering model is trained on SemanticKITTI.
Therefore, the intensity values of SynLiDAR exhibit similarity with those of SemanticKITTI, while showing
a significant gap with those of SemanticPOSS. We use the ‘mini’ version of this dataset defined by [7] for
training, which is essentially a subsampled representation of the complete dataset.

Class Mapping. We map SynLiDAR labels from 32 classes into 13 classes for SemantickPOSS and 19
classes for SemanticKITTI.

Metrics. The commonly used metric for evaluating the performance of semantic segmentation models is
the mean Intersection over Union (mIoU). It quantifies the degree of overlap between predicted and ground
truth segmentation masks using a single value. It is calculated as follows:

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
, (4.1)

where N is the number of classes or categories, TPi is the number of true positives for class i, FPi is the
number of false positives for class i, FNi is the number of false negatives for class i.

In addition to the mIoU, we also examine IoU for each individual class, providing assessment of our
model’s performance on a per-class basis.

Table 4.1: Overview of Outdoor Autonomous Driving Datasets.
Dataset Year #Samples #Classes Representation Label

KITTI [54] 2013 15K frames 8 RGB & LiDAR Bounding box
nuScenes [55] 2020 40K 32 RGB & LiDAR Point category & Bounding box
Waymo [56] 2020 200K 23 RGB & LiDAR Point category & Bounding box

STF [57] 2020 13.5K 4 RGB & LiDAR &
Radar

Bounding box

ONCE [58] 2021 1M scenes 5 RGB & LiDAR Bounding box
SemanticKITTI [52] 2019 43,552 scans 28 LiDAR Point category
SemanticPOSS [53] 2020 2,998 scans 14 LiDAR Point category

SynLiDAR [16] 2022 198,396 scans 32 Synthetic LiDAR Point category
SemanticSTF [59] 2023 2,086 scans 21 RGB & LiDAR Point category

Intensity as input. Given that SynLiDAR’s intensity values are generated from SemanticKITTI data, they
share a similar distribution when compared to SemanticPOSS. However, incorporating intensity as an input
feature introduces additional dissimilarity between the source and target domains. Following [8], we will
investigate the impact of including intensity as an input feature in the upcoming experiments and present the
results in this chapter, both with and without intensity as input.
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Figure 4.1: Intensity distribution of 3 datasets [8]. Note that the intensity values of SemanticPOSS have
been devided by 100.

Figure 4.2: Visualization of intensity values of scenes from 3 domains [8]. Red regions in the each image
correspond to high intensity, while blue ones correspond to low intensity.

4.2 Implementation Details

We employed the voxel-based neural network MinkowskiUnet34C as our backbone. The training pipeline
was implemented using PyTorch [60] and PyTorch Lightning [61]. Contrastive learning pre-training was
performed with a batch size of 4 using 4 Quadro RTX 6000 GPUs on the Euler cluster provided by ETH
Zurich. And the Fine-tuning and Calibrated Cosmix stages are conducted on a single NVIDIA GeForce RTX
3090. To complement the following paragraphs, we list the hyperparameter choices in Table 4.2, Table 4.3
and Table 4.4.

Contrastive Learning. In the contrastive learning phase, we use the AdamW optimizer [62] with a learn-
ing rate of 2 × 10−4 and a weight decay of 10−4. Training is performed with a batch size of 4. For
SynLiDAR → SemanticKITTI, we train for 600 epochs, alternating between the SemanticKITTI and Syn-
LiDAR datasets every epoch. For SynLiDAR → SemanticPOSS, we randomly select a subset of samples
in SynLiDAR with a ratio of 0.1 to match the size of SemanticPOSS and train for 4500 epochs. Following
the settings of [25], we set n = 12 for the scans of SemanticKITTI to be aggregated. For SemanticPOSS,
we set n = 6. The voxel resolution is configured to 0.05 m for the input point clouds, with a maximum
of 40,000 points per point cloud. During segment pooling, we limit it to a total of M = 50 segments with
a maximum of P = 300 points per segment to avoid memory overflow. We use τ = 0.1 to compute the
temperature-scaled cosine similarity δ in Equation 3.7 and a momentum of 0.999 to update the momentum
network based on the online network weights every step.
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Table 4.2: Contrastive Learning Parameters.
Parameter Value Description

learning rate 2× 10−4 Learning rate
weight decay 10−4 Weight decay coefficient of optimizer
batch size 4 Batch Size
epochS→K 600 Number of epochs (SynLiDAR → SemanticKITTI)
epochS→P 4500 Number of epochs (SynLiDAR → SemanticPOSS)
sub-sample rate 0.1 The percentage of selected source data samples (SynLiDAR → Seman-

ticPOSS)
nS→K 12 Number of scans aggregated for SemanticKITTI
nS→P 6 Number of scans aggregated for SemanticPOSS
voxel size 0.05 m Voxel resolution
num. points 40,000 Max number of points per point cloud
M 50 Max number of segments per scan
P 300 Max number of points per Segment
τ 0.1 Temperature coefficent for Eq. 3.7
β 0.999 Momentum coefficent for updating teacher

Fine-tuning. We fine-tune the model for the semantic segmentation task using only the source dataset
SynLiDAR. If the ratio of major point class within a segment is less then the threshold th = 0.7, the
segment will be labeled as the ignored class. A weight factor of λ = 0.005 is chosen for the segment-wise
loss. For SynLiDAR → SemanticKITTI, we train using the AdamW optimizer with a batch size of 8 and a
learning rate of 10−4 for 1 epoch. For SynLiDAR → SemanticPOSS, we down-sampled SynLiDAR with a
ratio of 0.2 and trained for 6 epochs with the Stochastic Gradient Descent (SGD) optimizer and a learning
rate of 10−3. Using a smaller number of epochs helps prevent overfitting to SynLiDAR. The temperature
value τ = 0.1 was set for the segment-wise prediction loss, as the same as in the previous phase, to better
preserve segment-wise features.

Table 4.3: Fine-tuning Parameters.
Parameter Value Description

th 0.7 Threshold for labeling a segment from based on the major
class of its points

λ 0.005 Segment-wise loss weight as in Eq. 3.11
epochS→K 1 Number of epochs (SynLiDAR → SemanticKITTI)
epochS→P 6 Number of epochs (SynLiDAR → SemanticPOSS)
sub-sample rate 0.2 The percentage of selected source data samples
lrS→K 2 · 10−4 Learning rate (SynLiDAR → SemanticKITTI)
lrS→P 10−3 Learning rate (SynLiDAR → SemanticPOSS)
τ 0.1 Temperature coefficent for Lsegment as in Eq. 3.11

Calibrated Cosmix. We set the ratio of selected class α = 0.5, the weight for the Cosine Embedding
loss ω = 0.001, and the confidence threshold ζ is set to the average confidence of the calibrated teacher
network before the first training epoch. Our settings of data augmentation are consistent with those in [7],
where we perform rotations between [−π/2, π/2] and scaling between [0.95, 1.05] for both local and global
augmentation, and random downsampling for 50% of the patch points. For SynLiDAR → SemanticKITTI,
we train using the AdamW optimizer with a batch size of 8 and a learning rate of 2 · 10−4 for 3 epoch.
For SynLiDAR → SemanticPOSS, we used SGD optimizer with a learning rate of 10−3. The teacher

24



CHAPTER 4. EXPERIMENTS AND RESULTS

parameters θ′i with a momentum of β = 0.99 updates every γ = 500 steps for SemanticKITTI and γ = 1
step for SemanticPOSS. The same parameter setting is applied to both mixing branches.

Table 4.4: Calibrated Cosmix Parameters.
Parameter Value Description

α 0.5 Class Selection Ratio
ω 0.001 Cosine Embedding Loss Weight
ζ Avg. Confidence Confidence Threshold
rotation [−π/2, π/2] Random rotation of point cloud
scaling [0.95, 1.05] Random scaling of point cloud
down-sample rate 0.5 The percentage of selected points in a point cloud
epochS→K 3 Number of epochs (SynLiDAR → SemanticKITTI)
epochS→P 6 Number of epochs (SynLiDAR → SemanticPOSS)
lrS→K 2 · 10−4 Learning rate (SynLiDAR → SemanticKITTI)
lrS→P 10−3 Learning rate (SynLiDAR → SemanticPOSS)
β 0.99 Momentum coefficent for updating teacher
γS→K 500 Number of iterations to update teacher (SynLiDAR → SemanticKITTI)
γS→P 1 Number of iterations to update teacher (SynLiDAR → SemanticPOSS)

4.3 Comparisons with Previous Methods

In this section, we present our quantitative results for both benchmarks. Our main focus is to compare the
results of our proposed method with CoSMix [7], which serves as the baseline for our approach. Addition-
ally, we include a comparison with a set of adversarial-based methods, which employ a different approach.
The results for these methods are sourced from PMAN [8], whose backbone is MinkUnet14A, a slightly
different variant of our backbone MinkUnet34C. We use the notation “XYZ” to represent that only XYZ
coordinates are used as input. Similarly, XYZ coordinates with Intensity as input is denoted as “XYZI”. “S”
and “A” denote self-training-based method and adversarial-based method respectively.

SynLiDAR → SemanticKITTI (XYZ). Table 4.5 reports the results for adaptation from SynLiDAR to
SemanticKITTI, where the proposed method outperforms all other methods achieving an mIoU score of
34.4%. First, compared with the source-only baseline, our method achieves +14% absolute gain. We obtain
considerable performance improvement (+4.5%) compared to CoSMix. The per-class IoUs show that the
proposed method outperforms the other methods by a large margin on certain classes which are relatively
easy to be clustered by HDBSCAN. For instance, we achieve an impressive + 14.8% gain on ’car’, + 23.6%
on ’truck’, and + 9.9% on ’motocycle’.
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Table 4.5: Results on SynLiDAR → SemanticKITTI (XYZ).
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Source only - 42.0 5.0 4.8 0.4 2.5 12.4 43.3 1.8 48.7 4.5 31.0 0.0 18.6 11.5 60.2 30.0 48.3 19.3 3.0 20.4
AdaptSegNet [20] A 52.1 10.8 11.2 2.6 9.6 15.1 35.9 2.6 62.2 10.4 41.3 0.1 58.1 17.1 68.0 38.4 38.7 35.9 20.4 27.9
CLAN [63] A 51.0 15.8 16.8 2.2 7.8 18.7 46.8 3.0 68.9 11.1 44.9 0.1 59.6 17.5 71.7 41.1 44.0 37.7 19.8 30.5
AdvEnt [21] A 59.9 13.8 14.6 3.0 8.0 17.7 45.8 3.0 67.6 11.3 45.6 0.1 61.7 15.8 72.4 41.5 47.0 34.5 15.3 30.5
DAST [64] A 50.6 9.7 8.2 2.6 6.9 13.1 34.4 2.2 65.2 11.0 41.7 0.1 58.0 14.1 58.6 34.4 35.6 32.7 18.8 26.2
FADA [65] A 49.9 6.7 5.1 2.5 10.0 5.7 26.6 2.3 65.8 10.8 37.8 0.1 60.3 21.5 60.4 37.2 31.9 35.4 17.4 25.6
MRNet [66] A 49.5 11.0 12.2 2.2 8.6 16.0 46.4 2.7 60.0 10.5 41.9 0.1 55.1 16.5 68.1 38.0 40.7 36.5 20.8 28.3
SALUDA [39] S 52.1 8.6 15.0 1.9 3.8 21.4 43.4 1.7 53.7 7.8 38.0 0.1 59.2 22.3 69.1 30.8 45.1 38.0 12.6 27.6
CoSMix [7] S 56.4 10.2 20.8 2.1 13.0 25.6 41.3 2.2 67.4 8.2 43.4 0 57.9 12.2 68.4 44.8 35.0 42.1 17.0 29.9
PMAN [8] A 71.0 14.9 24.8 1.6 6.6 23.6 61.1 5.5 75.3 10.5 54.1 0.1 47.9 17.4 69.6 38.6 61.5 37.0 18.6 33.7
Proposed S 85.8 2.6 34.7 25.6 11.3 24.3 50.6 4.0 69.9 1.2 43.8 0.0 68.1 17.6 75.3 38.2 37.7 41.0 21.9 34.4

SynLiDAR → SemanticKITTI (XYZI). Table 4.6 shows that, with intensity as input, the proposed
method achieved with an mIoU score of 34.5% with a +12.8% gain over source-only baseline, showing
a similar performance as Table 4.5. We can observe that PMAN outperforms us by +1.8% and has a gain of
+2.7% over not using intensity, demonstrating the effectiveness of the auxiliary regression task on intensity
value. However, it is interesting to note that the proposed method seems to be less sensitive to the inclu-
sion of intensity values as input. The similarity of intensity between both domains might explain why the
proposed method achieves consistent performance regardless of whether intensity information is included
in the input data.

Table 4.6: Results on SynLiDAR → SemanticKITTI (XYZI).
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Source only - 42.5 8.6 14.6 0.6 3.8 15.3 49.0 1.3 19.4 5.5 28.0 0.1 37.8 10.3 63.1 31.5 41.6 28.1 11.3 21.7
AdaptSegNet [20] A 61.5 15.8 15.4 2.1 7.3 17.1 45.9 2.5 63.0 10.2 43.2 0.1 55.4 14.2 67.2 39.4 42.6 31.9 18.9 29.1
CLAN [63] A 61.9 20.1 27.2 2.5 9.6 20.1 55.2 4.1 68.9 11.5 46.2 0.1 60.9 16.2 72.8 41.8 42.0 34.9 18.9 32.4
AdvEnt [21] A 63.5 19.0 18.1 2.8 8.7 17.3 48.4 2.2 72.1 11.6 47.2 0.1 60.0 17.8 71.5 41.8 47.7 36.0 20.0 31.9
DAST [64] A 60.8 16.7 19.5 2.1 7.2 17.5 39.6 2.4 65.2 11.1 43.7 0.1 57.0 16.4 56.6 38.8 35.5 31.1 17.7 28.4
FADA [65] A 61.4 14.0 12.7 1.1 1.6 17.6 31.9 1.9 64.6 10.4 38.5 0.1 59.5 15.8 56.6 39.3 39.3 33.8 19.6 27.3
MRNet [66] A 62.2 16.1 16.7 2.4 7.8 17.9 41.6 2.1 65.7 10.8 43.9 0.1 55.4 15.4 66.6 40.9 40.5 31.7 17.8 29.2
PCT [16] S 70.8 7.3 13.1 1.9 8.4 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7 28.9
PolarMix [40] S - - - - - - - - - - - - - - - - - - 31.0
CoSMix [7] S 61.4 8.6 24.0 0.9 5.3 25.6 55.5 3.6 58.0 8.3 41.8 0 58.7 16.4 73.5 41.5 36.7 44.7 14.4 30.5
PMAN [8] A 74.9 18.0 33.3 1.9 7.8 28.7 52.7 4.0 77.6 12.6 56.9 0.1 63.8 17.9 74.1 43.8 63.5 38.3 19.3 36.3
Proposed S 87.2 4.4 39.0 25.6 11.3 25.6 52.6 8.5 46.9 11.3 39.1 0.0 73.9 18.5 76.3 39.0 31.8 40.1 25.1 34.5

SynLiDAR → SemanticPOSS (XYZ). Table 4.7 provides the results for adaptation from SynLiDAR to
SemanticPOSS without intensity as input. The proposed method outperforms the baseline method CoSMix,
showcasing a performance gain of +2.4%. Nevertheless, making a direct comparison between our results and
those of PMAN is challenging in this setting, because of large performance variations between the baseline
methods employed by our approach and PMAN. We show the results reported by PMAN in Table 4.8, where
the performances of source-only and CoSMix exhibit gaps of 8.8% and 3.8% respectively.
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Table 4.7: Results on SynLiDAR → SemanticPOSS (XYZ).

Methods M
ec

h.
pers. bi.clst car trunk veget. traf. pole garb. build. cone. fence bi.cle ground mIoU

Source only - 34.6 32.4 27.2 17.0 61.8 0.5 27.0 13.1 50.2 14.6 24.3 3.19 78.0 29.5
CoSMix [7] S 58.4 46.6 37.2 22.0 71.0 17.2 35.7 29.3 69.3 23.0 30.6 10.1 80.1 40.8
Proposed S 58.2 60.1 39.8 21.1 69.5 24.4 34.4 32.9 70.5 23.2 39.1 3.6 79.2 42.8

Table 4.8: Results from [8] on SynLiDAR → SemanticPOSS (XYZ).

Methods M
ec

h.

bi.clst car trunk veget. traf. pole garb. build. cone. fence bi.cle ground pers. mIoU

Source only - 47.2 43.6 37.8 70.3 11.1 33.8 19.5 67.9 11.2 19.9 9.6 77.9 47.8 38.3
AdaptSegNet [20] A 43.9 48.2 39.0 69.6 15.5 33.6 21.3 64.3 12.7 25.0 11.6 76.0 49.9 39.3
CLAN [63] A 43.9 46.6 41.3 71.0 15.1 34.3 20.4 69.6 9.5 23.2 12.0 75.1 51.3 39.5
AdvEnt [21] A 44.6 47.6 40.3 71.2 15.6 35.6 22.0 68.4 10.6 25.9 10.4 76.7 52.3 40.1
DAST [64] A 44.6 46.1 39.7 71.1 17.7 34.0 20.3 68.7 11.4 23.0 11.6 76.2 50.3 39.6
FADA [65] A 39.6 41.2 38.8 69.2 16.3 32.1 18.1 67.9 11.5 22.0 13.0 71.4 47.9 37.6
MRNet [66] A 43.5 47.2 39.1 70.4 15.5 32.8 22.0 66.1 13.2 24.2 11.2 76.8 50.0 39.4
CoSMix [7] S 53.6 47.6 44.8 75.1 16.8 37.9 25.3 72.7 19.9 39.7 10.8 80.0 56.5 44.6
PMAN [8] A 52.6 61.5 46.8 75.1 18.8 36.5 21.4 74.7 18.3 25.8 37.5 73.7 61.9 46.5

SynLiDAR → SemanticPOSS (XYZI). Table 4.9 shows that our method achieves an mIoU of 37.9 out-
performing other methods, while performance of all methods have dropped compared to Table 4.7 due to
dramatically different intensity distribution of both domains.

Table 4.9: Results on SynLiDAR → SemanticPOSS (XYZI).

Methods M
ec

h.

bi.clst car trunk veget. traf. pole garb. build. cone. fence bi.cle ground pers. mIoU

Source only - 6.8 27.8 13.3 53.5 2.0 13.8 5.9 52.5 1.9 6.9 1.3 61.2 6.8 19.5
AdaptSegNet [20] A 47.2 39.5 23.8 68.9 5.1 32.4 15.4 58.4 2.9 19.3 8.8 76.5 53.1 34.7
CLAN [63] A 49.5 40.6 28.4 71.1 6.2 32.7 15.6 63.9 2.3 18.9 8.1 75.8 56.1 36.1
AdvEnt [21] A 49.1 39.5 21.0 69.8 7.0 33.0 15.8 61.8 1.9 28.5 6.2 77.8 55.0 35.9
DAST [64] A 45.9 38.2 22.4 69.3 3.7 23.1 13.8 61.5 3.1 14.3 7.6 73.7 48.9 32.7
FADA [65] A 48.6 38.4 23.0 72.2 5.4 31.4 13.9 64.5 2.9 19.3 9.4 76.0 51.0 35.1
MRNet [66] A 47.5 39.4 24.5 79.0 5.3 33.7 14.8 60.9 3.5 18.5 8.3 76.3 53.8 35.1
PCT [16] S 34.8 27.8 18.6 63.7 4.9 41.0 16.6 64.1 1.6 12.1 6.6 63.9 28.9 29.6
PolarMix [40] S - - - - - - - - - - - - - 30.4
CoSMix [7] S 31.6 42.9 34.1 59.5 0.5 23.0 17.3 52.3 1.8 1.1 2.3 78.5 16.6 27.8
PMAN [8] A 50.4 39.1 28.4 71.3 4.3 35.2 18.3 63.3 3.6 30.3 5.6 76.8 59.5 37.4
Proposed S 53.4 35.9 18.4 68.1 21.2 32.2 15.8 67.3 6.5 34.9 2.3 78.8 57.6 37.9
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Chapter 5

Discussion

In this chapter, we take a close look at our proposed method’s performance by conducting an Ablation
Study in Section 5.1, where we break down our approach into its fundamental parts, examining how each
component influences the results. Additionally, we consider the Implications and Limitations in Section 5.2
of our work, acknowledging both its strengths and the hurdles it faces in practical applications. Finally, we
outline potential research directions for Future Work in Section 5.3.

5.1 Ablation Study

Table 5.1 reports the our method’s performance on SynLiDAR → SemanticKITTI (XYZI) with certain
components ablated. The ablations are categorized into three main sections: Pre-training, Fine-tuning, and
CoSMix.

Table 5.1: Ablations.
Module Modification mIoU

Pre-training
no pre-training 21.7

on target domain 25.6
on both domains 27.0

Fine-tuning
Dice loss 26.3

Lovasz-Softmax loss 27.0
+ Segment-wise loss 28.9

CoSMix

pre-trained model from [7] 30.5
our pre-trained model 33.0

+ AdamW 34.2
+ Calibration 34.5

In the Pre-training section, we observe how pre-training affects the model’s performance. Without any
pre-training, the mIoU is 21.7. When pre-training is done on the target domain alone, the performance
improves (+ 3.9%) to an mIoU of 25.6. Leveraging pre-training on both domains further increases mIoU
(+ 1.4%) to 27.0.

Moving to the Fine-tuning section, we explore different loss functions and observe their impact. When
using Dice loss, the mIoU is 26.3, and it increases (+ 0.7%) to 27.0 with the use of the Lovasz-Softmax
loss. The addition of the segment-wise loss Lsegment as in Eq. 3.11 leads to a notable performance boost
(+ 1.9%), reaching an mIoU of 28.9.

Lastly, using the original pre-trained model yields an mIoU of 30.5. However, our pre-trained model
surpasses this performance by + 2.5%, reaching an mIoU of 33.0. Further enhancements are achieved by
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switching to the AdamW optimizer, the same optimizer used in previous training stages, resulting in an
mIoU of 34.2, improving by (+ 1.2%). Finally, when calibration is employ we obtain an mIoU of 34.5.

Intensity normalization. The impact of utilizing intensity as an input feature in the context of the SynLi-
DAR → SemanticPOSS task is evident from the results presented in Table 4.7 and Table 4.9. In both tables,
it is clear that the inclusion of intensity values has noticeably decreased the performance of the models. This
decline in performance suggests that intensity values introduce further domain discrepancy.

Moreover, the results in Table 5.2 shows that when intensity normalization is applied, a significant
improvement of + 3.4% in the final performance is observed. These findings underscore the importance of
carefully considering the inclusion of intensity as an input feature in cross-domain tasks.

Table 5.2: Effect on intensity normalization on SynLiDAR → SemanticPOSS (XYZI).
no intensity with intensity normalization w/o intensity normalization

mIoU 42.8 37.4 34.0

Figure 5.1: Confidence histogram and reliability diagram for uncalibrated teacher.

Calibration. We generated confidence and reliability diagrams for both uncalibrated and calibrated mod-
els, depicted in Fig 5.1 and Fig 5.2 respectively. Notably, calibration plays a crucial role in addressing the
issue of model overconfidence. It reduces the average confidence value from approximately 0.8 to around
0.6. Moreover, we observe that calibration has the effect of moving the model’s reliability curve towards the
diagonal line. As a result, the model’s training becomes less sensitive to the choice of confidence threshold.
This enables us to cancel this hyperparameter, opting instead to use the calibrated average confidence as the
threshold for selecting pseudo-labels in our approach. This not only simplifies our method but also enhances
its robustness.
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Figure 5.2: Confidence histogram and reliability diagram for calibrated teacher.

5.2 Implications and Limitations

5.2.1 Implications

Our proposed method exhibits improved performance on two UDA benchmarks, making it practical for
various LiDAR-based applications.

One of the notable strengths of our approach is its robustness in handling LiDAR intensity values. Unlike
[8], which requires additional effort to leverage intensity data, our method shows resilience, regardless of
whether intensity data is provided as input, as indicated in Table 4.7 and Table 4.9. This robustness enhances
its practicality in various LiDAR-based tasks.

Furthermore, our results suggest that the proposed method outperforms other methods in specific classes
that are relatively easier to cluster using HDBSCAN [47], such as cars, trucks, motorcycles, and buildings
as shown in Table 4.5. This highlights its competence in handling common objects encountered in LiDAR-
based perception tasks.

In the Pre-training section of Table 5.1, we have demonstrated that unsupervised learning can facilitate
the acquisition of domain-invariant features in both source and target domains. In the Fine-tuning section,
the use of the same optimizer in both pretraining and fine-tuning stages consistently yields improved results.
Additionally, the introduction of constraints that mimic the pretraining objectives into the fine-tuning stage
enhances feature preservation, further contributing to enhanced performance.

In CoSMix, we cancel the the pseudo-label confidence threshold hyperparameter by directly using the
calibrated average confidence. While calibration itself does not directly impact the model’s accuracy, the
observed accuracy gain of +0.3% in Table 5.1 can be attributed to the improved selection of the confidence
threshold achieved through the calibration process. This underscores the significance of calibration in stabi-
lizing the training process.
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5.2.2 Limitations

Our approach does come with the trade-off of increased training time and computational resources in ex-
change for enhanced performance. Additionally, it involves a multi-stage training process, with each stage
having its own set of hyperparameters, increasing complexity compared to single-stage training methods.

Despite the simplicity and effectiveness of intensity normalization in mitigating domain discrepancies,
it is unable to fully align the data distributions between source and target domains. This limitation may
require further exploration of domain adaptation techniques to achieve stronger distribution alignment, so
that intensity information can be more effectively used for domain adaptation without widening the domain
gap.

While CoSMix demonstrates significant performance improvements in terms of evaluation metrics, it
is essential to acknowledge its inherent unexplainability. The synthetic scenes created by CoSMix may
not faithfully replicate real-world environments, making it less suitable for safety-intensive applications
like autonomous driving, where interpretability and trustworthiness are paramount. Future research should
consider addressing this limitation to make CoSMix more suitable for such critical domains.

In conclusion, our method showcases promising implications for LiDAR-based applications, offering
adaptability, robustness, and competitive performance. However, it is crucial to address the identified limi-
tations to ensure its applicability and reliability in real-world, safety-critical scenarios.

5.3 Future Work

In future research, we intend to explore synergies between our method and other clustering techniques to
generate more semantically meaningful segments. Additionally, we plan to delve deeper into unsupervised
learning techniques, possibly incorporating concepts like GrowSP [67] to expand the size of segments or
group segments into classes progressively.

Another crucial aspect of our future research is reducing the gap between UDA and fully supervised
learning. Despite the noticeable performance gains of our UDA pipeline compared to previous methods,
there remains a significant performance gap between UDA and supervised learning. This observation points
us towards two directions for future research: Weakly Supervised Learning and Uncertainty-Aware Domain
Adaptation. Weakly Supervised Learning allows to label only valuable data, enhancing model adaptation
results while reducing annotation costs. On the other hand, Uncertainty-Aware Domain Adaptation aims to
mitigate risks associated with unreliable predictions. This is particularly crucial for safety-intensive real-
world applications like autonomous driving, where mistakes are not tolerated.
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Conclusion

In this thesis, we present a 3-stage pipeline designed to address the challenge posed by unsupervised do-
main adaptation (UDA) for synthetic-to-real 3D Lidar semantic segmentation. The first stage of our method
leverages the capabilities of contrastive learning to facilitate the learning of domain-invariant representa-
tions from both synthetic and real-world LiDAR data. Our second stage involves transfer learning, where
we fine-tune the pre-trained model using labeled data from the source domain. Within this stage, we have
devised a fine-tuning strategy to effectively preserve domain-invariant features. In our third stage, we present
calibrated CoSMix, a refinement of an existing 3D UDA technique. This stage incorporates a calibration
technique to counteract the model’s overconfidence, thereby enhancing stability in the self-training pro-
cess. Data from both domains are merged to create augmented mixed domains, progressively enhancing
the model’s generalization capabilities. These three stages together form a comprehensive solution to the
UDA challenge in 3D LiDAR semantic segmentation. Our experimental results on two benchmarks indi-
cate that the proposed method is on par with the current state-of-the-art. As exemplified in UDA task from
SynLiDAR to SemanticKITTI with xyz coordinates as input, our method outperforms previous ones by
achieving an mIoU of 34.4%, with the second-best method and the source-only method achieving 33.7%
and 20.4%, respectively. While the proposed method shows competitive performance in UDA benchmarks,
we acknowledge the increased training time and complexity of our approach. We also recognize the lack
of explainability of CoSMix-generated-scenes, which may draw concerns when applied to safety-intensive
applications. This also motivates us to reduce the performance gap between UDA and fully supervised
learning, and to explore uncertainty-aware approaches to mitigate risks.
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