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Abstract

Accurate and scalable crop classification is important for food security and sustainable resources
management. The temporal development of crops, i.e., their phenology, is a continuous phenom-
ena that if properly captured and analyzed, can help to recognize them. The novel model, Neural
Controlled Differential Equations (NCDE), extends the disruptive Neural Ordinary Differential
Equations (NODEs) for processing time series, and allows their hidden state to be dynamically
controlled by a continuous representation of the data. This thesis’ objective is to explore if a
model with a fully continuous hidden state, such as NCDEs, can achieve improved performance
in crop classification. The experimental results obtained showed that their performance is still
inferior to the state-of-the-art models for this task, however a careful study of their weaknesses
suggested potential opportunities for further improving them. In particular it was found that the
continuous data representation method chosen for the data may severely affect the performance
of the model. Therefore, evaluating improved interpolation and regression methods with respect
to those evaluated here are a promising direction to boost their performance.

Keywords: Remote sensing, crop classification, crop phenology, deep learning, time series mod-
elling, neural controlled differential equations, recurrent neural networks.

Résumé

La classification précise et à grande échelle des cultures est importante pour la sécurité alimentaire
et la gestion durable des ressources. Le développement temporel des cultures, c’est-à-dire leur
phénologie, est un phénomène continu qui, s’il est correctement saisi et analysé, peut aider à les
reconnaître. Le nouveau modèle, Équations Différentielles Neurales Contrôlées (NCDE), étend
les Equations Différentielles Neurales Ordinaires (NODE) pour traiter des séries temporelles,
et permet à leur état caché d’être dynamiquement contrôlé par une représentation continue
des données. L’objectif de cette thèse est donc d’explorer si un modèle qui définit un état
caché entièrement continu, tel que les NCDE, peut atteindre une meilleure performance dans
la classification des cultures. Les résultats obtenus ont montré que leur performance est encore
inférieur à l’état de l’art pour cette tâche, mais une étude attentive de leurs faiblesses a suggéré
des opportunités potentielles pour les améliorer. En particulier, il a été constaté que la méthode
choisie pour le représentation continue des données peut affecter sévèrement la performance des
NCDEs. Ainsi l’évaluation de méthodes d’interpolation et de régression améliorées par rapport
à celles évaluées ici donnent une direction prometteuse pour augmenter leur performance.

Mot-clés: Télédétection, classification des cultures, phénologie des cultures, apprentissage pro-
fond, modélisation des séries temporelles, équations différentielles neurales contrôlées, réseaux
neuronaux récurrents.

v



vi



Contents

Acknowledgements iii

Abstract v

Résumé vi

1. Introduction 1
1.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Related work 5
2.1. Traditional machine learning approaches . . . . . . . . . . . . . . . . . . . 5
2.2. Deep learning approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Methods 9
3.1. Deep learning and neural networks . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1. Long short-term memory networks . . . . . . . . . . . . . . . . . . 12
3.2.2. Gated recurrent units . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Neural ordinary differential equations . . . . . . . . . . . . . . . . . . . . . 14
3.3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4. The ODERNN model . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4. Neural controlled differential equations . . . . . . . . . . . . . . . . . . . . 18
3.4.1. NCDE definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2. Stacked NCDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3. Continuous data representation methods . . . . . . . . . . . . . . . 21
3.4.4. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Data 25
4.1. TU Munich dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Swisscrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3. Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



Contents

5. Results 31
5.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2. Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1. Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2. Per-crop performance analysis . . . . . . . . . . . . . . . . . . . . . 34

5.3. Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.1. Observational mask importance . . . . . . . . . . . . . . . . . . . . 36
5.3.2. Interpolation methods . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.3. High-dimensional dataset . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4. Cloud cover study . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6. Discussion 47
6.1. Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2. Limitations of NCDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7. Conclusion 53

A. Hyperparameters analysis 57

viii



Chapter 1

Introduction

In this chapter the context of this work is first introduced, followed by its motivation and
contribution. An outline of the structure of the rest of the work is additionally provided
at the end of the chapter.

1.1. Context

Earth’s biophysical surface can affect the climate system, habitat’s biodiversity and
ecosystem’s capacity for supporting human needs [1]. Therefore, having an up-to-date
and accurate account of the planet’s land cover is essential for environmental research,
resources management, monitoring climate change and disaster prevention [2]. Remote
sensing is a field intrinsically related to land cover monitoring [1], and can provide an
affordable and accessible way of doing so at a large scale using satellite images [2], [3].

Agricultural land monitoring in particular, is of high relevance for securing a sustainable
food production around the world [3]–[5]. There are several factors that put pressure in
agricultural land, such as the intense growth in population anticipated for this century
[6], and the expansion of urban land and bio-fuel production [3]. On the other hand,
agriculture has been linked to environmental systems degradation [3], biodiversity loss
[7] and desertification when not properly managed [8], and as a result, the potential
for expanding crop land in exchange of range land and forest is limited [5]. All these
factors establish the necessity for agricultural monitoring. In particular, precise knowl-
edge about crop distribution provides crucial information for agricultural monitoring [4],
which can be used for the investigation of land management practices [5] and for the
design and application of resources management and agrarian policy, such as subsidies
[9]. Information about the crop distribution can be obtained via ground visits or surveys,
however remote sensing provides a more cost-effective way of doing so from a distance.
Such problem is known in the field as crop type identification or crop type classification
[9].

1.2. Motivation

When attempting to monitor and classify agricultural land, in order for a model to be
able to distinguish the different crops, a complete and accurate representation of their
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1. Introduction

distinctive attributes is helpful. In this regard, the phenological development of a crop
(i.e. its biological progression towards maturity) is a characteristic signature and thus
useful for their identification [10]. Single-date spectral information has proven to be un-
suitable for crop classification in practice, due to plants having similar spectral attributes
at certain stages of their growth [4], [5]. For decades researchers have attempted to char-
acterize crops by extracting their phenological information from multi-temporal data [4],
[5], [10]–[12], usually by computing vegetation indexes from the spectral values at the
different points in time. These studies and more recent ones [13], [14] have confirmed
the added benefit of multi-temporal monitoring and modelling for crop classification.
Nowadays many modern satellites have both a fine spatial resolution and a small tem-
poral revisit time, e.g. Sentinel-2 has 10-60 m spatial resolution bands and only a 5
days revisit time. Therefore the chances of acquiring many cloudless images throughout
the year are increased, allowing for effective time series modelling and plot-level crop
classification [13], [15].

Machine learning methods have been extensively used in remote sensing literature for au-
tomating crop classification, with models such as Maximum Likelihood Classifiers (MLC)
[12], [16], [17], Random Forests (RF) [3], [13], [18] and Support Vector Machines (SVM)
[19]–[21]. However, nowadays deep learning methods such as neural networks have gained
widespread popularity due to remarked success in the technological industry sector and in
many academic research fields, such as computer vision and machine translation, and are
increasingly being adopted by the remote sensing community as a toolbox for a variety
of problems [22], [23]. This kind of methods are well designed for fitting large amounts
of high-dimensional data and can learn highly non-linear relationships between the input
data and the target variable [23]. In particular, Convolutional Neural Networks (CNN)
have successfully been applied in remote sensing in areas such as object & wildlife de-
tection [24], [25] and semantic segmentation [25], [26], while Recurrent Neural Networks
(RNN) have been applied for modelling time series of satellite images for land cover and
crop classification [15], [27], [28]. CNNs are effective when dealing with satellite images,
as they can aggregate and extract contextual information from a pixel in an image by ap-
plying convolutions to its neighbour pixels, and therefore can model spatial and spectral
dependencies in the data. On the other hand RNNs are especially effective in modelling
sequential data such as time series, thus being able to learn temporal and spectral de-
pendencies in the data for each individual pixel of a time series of satellite images of a
given area. In this thesis, RNNs are considered as baselines models.

Models such as RNNs, encode relevant information learnt from input data in a hidden
state variable. Very recently, a novel family of deep learning models, called Neural
Ordinary Differential Equations (NODE) [29], has been introduced. This model also
encodes information in a hidden state, but the evolution of the hidden state is defined
by an ordinary differential equations whose right hand side (i.e., its vector field) can be
parameterized using a neural network, rather than an analytical function. In contrast to
RNNs, these models have a hidden state that is continuously defined [29], but they are
unable to process sequential input data by their own, such as time series. However, a
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variation of the model, called ODERNN has been proposed [30], which combines NODEs
with an RNN for reading new input data, and thus can effectively model time series.
The ODERNN model has been recently applied for the first time in remote sensing [31],
outperforming other non-contextual models for crop classification, such as RNNs and
Temporal Convolutional Neural Networks (TempCNN).

1.3. Contribution

Given the successful application of an ODERNN model for crop classification, this thesis
focuses on the exploration of a related model for this same problem. In 2020, a similar
model to NODE called Neural Controlled Differential Equations (NCDEs) was proposed
[32]. This model is a slight, but robust and elegant modification to a NODE model,
drawn from controlled differential equations [33]. Roughly speaking, this model is like
a NODE that is guided by a continuous-representation of the input data, which can be
built by interpolation or curve fitting [32]. Unlike an ODERNN model, a NCDE does
not require an RNN for reading the time series data, therefore the hidden state is allowed
to evolve continuously throughout the time series processing, while still being controlled
by the data, and it does not present "jumps" of the hidden state, unlike those observed
in an ODERNN model [31].

The reason behind preferring a smooth representation of the input, and hidden state,
stems from phenology. Phenology models have become an important component in fields
such as agriculture and ecology [34] and it is an active area of research [35]–[37]. These
models normally rely only on meteorological data [34], [36], but can also incorporate
satellite-based remote sensing products, like vegetation indexes [37]–[40]. The trend in
this line of work seems to recognize the value of continuous modelling of plant phenology,
because the underlying phenomenon itself is continuous [35], [37], [38], [40]. In particu-
lar, continuous time models that represent the phenological state through a continuous
latent state (i.e. hidden state) have been proposed, such as the use of a continuous
Hidden Markov Model (HMM) [35] and a spatio-temporal Bayesian approach [37]. The
methods of this thesis are in line with this trend, and posits that having a model with
a continuously defined hidden state, such as a NCDE, is better suited for modelling the
continuous underlying phenomena that determine a crop’s signature, i.e., its phenological
development. This work is the first attempt to use a NCDE approach to implicitly model
a phenological state, in this case using only remote sensing data coming from satellite
image and for the purpose of crop classification.

To this end the main focus of this thesis is to thoroughly analyze the operation and per-
formance of NCDEs with multi-temporal remote sensing datasets for crop classification
and to propose and validate modifications to the model. In particular, two modifications
are proposed, an alternative method for creating the continuous-input data representa-
tion than those proposed in the original paper [32] and also a stacked variant of the model
(S-NCDE). Selected state-of-the-art baselines models, together with the NCDE and the
S-NDCE models are evaluated by comparing their performance on two datasets, the TU
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1. Introduction

Munich dataset [15] and the Swisscrop dataset [41].

1.4. Outline

The thesis is structured as follows. Chapter 2 presents the previous work with machine
and deep learning for crop classification. Chapter 3 draws a basic introduction to deep
learning and defines the baselines and NCDE models evaluated. Chapter 4 presents the
two datasets used to evaluate the models. Chapter 5 summarizes the experimental results
of this work. Chapter 6 puts the results in perspective and discusses the advantages and
limitations of NCDEs as well as an outlook of future work. Finally, Chapter 7 presents
the conclusions and takeaways from this work.

4



Chapter 2

Related work

Crop classification via satellite images is a topic that has been extensively studied in
remote sensing literature since the late 60s. In fact, according to [42], the first work
looking to automate land use classification [16] in remote sensing used agricultural data.
In this chapter, traditional machine learning approaches for crop classification will be
presented, followed by the state-of-the-art deep learning approaches.

2.1. Traditional machine learning approaches

The classical approaches for crop classification do not usually consider temporal informa-
tion, and are normally composed of three sequential steps, namely, data pre-processing,
feature extraction, classification, and data post-processing [42]. In the pioneering work
by [16], multi-spectral information was considered by fitting the spectral bands to a
Gaussian distribution and using them as features, followed by a MLC, however the im-
portance of also including spatial and temporal was already acknowledged. Agricultural
land has common specific traits such as distinctive geometries [43] and a high vegetation
content, but differentiating between crops may be difficult [44]. Spectral features design
in the form of vegetation indexes, such as the Normalized Vegetation Difference Index
(NDVI) [45], are effectively used until this day for crop classification [3], [9], [20]. [9] used
a range of vegetation indexes and textural features such as the entropy and homogeneity
to classify crops in California using ASTER satellite images via Decision Trees (DT), a
rule-based machine learning algorithm. [3] used RFs, which are an ensemble of DTs and a
popular model for crop classification, for producing crop maps on several sites around the
world. [20] used NDVI and other vegetation indexes such as the Normalized Difference
Red Edge Index (NDRE) with SVMs, which are also a popular choice in remote sensing
[21].

Many authors have additionally extracted temporal information about the phenological
state through profiling vegetation indexes in time and deriving statistics that can be used
as features for classification [4], [11], [12], [17], [18]. [11] used NDVI profiles from MODIS
satellite images and DTs as a classifier. [4] used bi-temporal information of vegetation
indexes and a ruled-based system with ASTER satellite images of Central Asia. Both [12]
and [17] built temporal NDVI profiles and extracted features from them, respectively fed
to an MLC and a k-Nearest-Neighbours classifier (KNN). [18] used a dynamical masking
system to obtain temporal NDVI from which several features are extracted by statistics
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and given to a RF classifier. RFs and SVMs are general purpose algorithms, and even
SVMs may be able to directly process time series input if an appropriate kernel function
is used [19]. [3] also used time series of vegetation indexes as features, but given directly
to an RF classifier, without explicitly deriving statistics from them. There is also some
studies that prove the additional benefit of having time information for crop classification
[13], [46]. [46] used NDVI profiles with a RF classifier and focused on finding an optimal
amount of dates and time windows to acquire the data. On the other hand, [13] also
used a RF classifier for crop classification, but without vegetation index profiling and
rather concatenated all the raw bands at the different times and fed them directly to the
classifier.

All this aforementioned approaches mainly rely on rule-based systems, including time
information through vegetation indexes, and do not explicitly model time series input.
Nevertheless, some authors have used models that were specifically applied for their
capabilities of modelling time series input in their architecture [5], [6], [47], [48]. [5]
used HMM, which is a generative type of graph model, that encodes information in
a hidden state. [47] used Conditional Random Fields (CRF), a discriminative type of
graph model, which as HMMs, also encodes prior information in a hidden state. [48] used
CRF for incorporating data into a HMM model and a final RF classifier, on inter-annual
images with the aim of modelling crop rotation. [6] used Time-Weighted Dynamical Time
Warping (TWDTW) while still relying on a temporal NDVI profile. This later model
is yet another example of the increasing application of models specifically designed to
process time series, for crop classification.

2.2. Deep learning approaches

In recent years, deep learning approaches have been successfully applied for crop classifi-
cation. These models usually avoid manual feature extraction, such as building statistics
from NDVI profiles, as was common with traditional machine learning approaches, and
rather allow the models to figure out their own feature representations from the data.
Perhaps the first application of neural networks to crop classification was done by [15]
using a Long-Short Term Memory (LSTM) neural network, a particular type of RNN,
for modelling temporal relationships in the raw spectral bands of 26 satellite images from
Bavaria, Germany. RNNs are in a way, comparable to a HMM, as they can explicitly
model time series and have an internal hidden state that holds the feature representations
[49].

On two follow-up papers to [15], [49], [50] used convolutional RNN (convRNN) models
[51], which have identical mechanics to a normal RNN but with convolutional operations
instead, thus effectively accounting for spatial information in the images. [52] also used
a convRNN model, but preceded by a U-net (i.e. a CNN variant) to first encode feature
representations in the data and then fed them to the convRNN model. [41], [53] created a
new variant of RNN cell, and used it as a convRNN model in crop classification problems,
achieving state-of-the-art results.
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2.2. Deep learning approaches

[2], [54], [55] used TempCNNs, which are CNNs that apply a convolution filter only in
the temporal dimension rather than a 2-D one in space, to learn time dependencies for
crop classification. [56], [57] used self-attention Transformers [58], which are a new type
of models that have revolutionized the field of natural language processing, to extract
relevant temporal information. These models compute an importance score for each
element of a time series, which allows them to focus their attention on the informative
portions of the time series.

[31] used a ODERNN model [30], for crop classification, achieving improved results com-
pared to simple RNN models. As stated in Chapter 1, this algorithm can continuously
model the dynamics of the hidden state of an RNN between its updates with input data,
which is thought to be the reason for their better performance. This last work serves
as an inspiration for this thesis, where the ODERNN method is considered as a baseline
model and the use of NCDEs for crop classification is explored, as a model that defines
a fully-continuous hidden state, rather than a semi-continuous one like ODERNNs do.

7





Chapter 3

Methods

In this chapter all the models used in this thesis are described. First, background in-
formation on deep learning is provided, so that readers unfamiliar to the topic may still
follow the contents of this work. Then, RNNs are defined and described, with a detailed
explanation of the two RNN models considered as baselines, the Gated Recurrent Units
(GRU) and the LSTM models. Subsequently, NODEs are defined and described in addi-
tion to the ODERNN method, which is the third baseline evaluated in this work. Finally,
NCDEs are defined and their operation and characteristics are described in detail, as well
as the interpolation and curve fitting methods used for creating continuous input data
representations for NCDEs.

3.1. Deep learning and neural networks

Machine and deep learning are fields of artificial intelligence that study how models can
learn tasks through experience. In practice, instead of explicitly instructing a program
with a particular solution to a task, the models learn to extract this information from
data itself. Deep learning is a subfield of machine learning, that is concerned with the
study of Artificial Neural Networks (ANN) or Neural Networks (NN) for short, which are
a family of models originally inspired by early attempts of modelling the neural circuits
in a brain [59]. In general, NNs may be mathematically defined as fθ, where θ denotes
their parameters. A neural network can be seen as a x → ŷ mapping, with ŷ = fθ(x).
Thus, they are functions whose parameters can be learnt from data. There are several
theoretical findings [60]–[63] (i.e., the universal approximation theorem), which show
that, even shallow neural networks, can approximate any mapping, provided that they
include non-linear functions in their design and a sufficiently large amount of learnable
parameters.

The simplest form of neural networks are called Feed-Forward Neural Networks (FFNN).
A representative diagram of their design in presented in Figure 3.1. This type of networks
always have at least one layer for taking in the input data and an output layer for giving
the predictions, in which case the network is said to be of one layer (i.e., the input layer is
not counted). They are called feed-forward because the information flows only from left to
right when making predictions, i.e., from the input data to the prediction. Additionally,
they can have hidden layers, for additional representational power. Therefore, Figure
3.1 represents a FFNN of three layers, for instance. Each layer consists of several units
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3. Methods

Input 
layer 

Hidden
layers 

Output 
layer 

Figure 3.1.: Schematic diagram of a feed-forward neural network, with two hidden lay-
ers of four units each, and where each sample in the input data is five-
dimensional and has two possible output classes.

or artificial neurons that compute a linear combination of the output of every unit in
the previous layer, followed by a non-linear function, called the activation function [64].
The amount of units in the input layer matches the input data dimensionality, while
for the output layer it matches the output’s dimensionality, e.g., two units for a binary
classification problem (the definition of a classification problem is provided later in this
section). The amount of hidden layers is also know as the depth of network, and if the
hidden layers have all the same amount of units, this latter number is known as the
width of the network. The name deep learning stems from this terminology [65]. Each
connection between pairs of neurons (i.e., the connecting lines in Figure 3.1), has a weight
associated to it, which is a parameter representing the strength of the connection and
each neuron has an additional additive bias term. If l denotes the lth layer of a FFNN,
the output of that layer is referred to as its activation, and is defined as follows:

al = gl(Wlal−1 + bl), (3.1)

Here, gl is the non-linear activation function applied after the lth layer, Wl is a matrix
that contains the weights of every connection with the previous layer, and bl is a vector
with a bias term for each unit in the layer. In this case, the collection of learnable
parameters θ, consists of all the different Wl and bl in each layer. The last layer L is
the output layer and computes ŷ (i.e., aL = ŷ). Conversely, the first layer takes in the
input data x, which means that: a0 = x.

There are several types of experiences or learning paradigms that a machine learning
model can learn from [65]. The most common one, is called supervised learning and this
work’s methods fall in that category. In supervised learning tasks the data consists of
x and y pairs, where x is the high-dimensional real-valued data fed to the model and

10



3.1. Deep learning and neural networks

y is the target variable, which can be a a single value or a sequence of them, which in
turn can be either discrete or real numbers. When the values in the target variable y are
part of a discrete set, the task is defined as a classification task. Since the classification
problem here has only a single-valued target variable, y is henceforth denoted simply as
y, and it is referred to as the class or label that a data point belongs to.

In its most common form, the learning process is governed by a gradient-based optimiza-
tion algorithm, which can be generically summarized as follows. The parameters of the
network are initialized and then batches of the input data are passed through the model,
in what is called a forward pass, making a prediction ŷ about the class of each sample in
the batch. A scalar loss is the computed, e.g., mean squared error, w.r.t. the true label
y. A backward pass then computes the gradient of the network’s parameters w.r.t the
loss by backpropagation (i.e., applying the chain rule). The parameters are then updated
by taking a step according to their gradients. This process is repeated until the loss
converges to a minimum and this is why it is also referred to as gradient descent. Several
optimization methods that perform gradient descent are usually readily implemented and
available in any deep learning framework [66], e.g., Stochastic Gradient Descent (SGD)
and Adam [67].

Another key concept of machine learning in general are the hyperparameters, which are
design parameters not learnt by the network itself, and that are rather defined in fore-
hand, e.g., the width and depth of a FFNN. They will affect a model’s capability to
properly fit the data, so an important part of machine learning is to find appropriate
hyperparameters via trial and error. Hyperparameters can be model specific or training-
algorithm specific. The two most important training hyperparameters that will appear
throughout this work are the learning rate and the batch size, which are common to all
gradient-based learning algorithms. The first determines the size of the update step of
the network parameters and the second one is how many samples of the data are in one
batch. Additionally, an epoch is when the network has seen all the batches that make up
the training set and the training may require several epochs before the model can fit the
data, so the maximum number of epochs to let the model run is also a hyperparameter.
Model specific hyperparameters are, for instance, the aforementioned width and depth
of a FFNN. Other relevant model-specific hyperparameters are described in each model’s
respective section.

Finally, in order to practically train a model (i.e., fit its parameters to data) and evaluate
its performance, the data is often split in three subsets, called the training, validation
and test sets. The objective is to learn a function fθ with the training set, that can make
predictions ŷ that approximate the true label y as closely as possible for the test set, which
is not revealed during training. The validation set is seen during training, but the model
does not explicitly learn from it. It is mainly used for finding appropriate hyperpameters
by evaluating the performance of the model on this set, while also controlling that the
model indeed generalizes well and does not overfit the training data (i.e., by checking
that the gap between the training and validation loss does not widen too much and that
the validation loss does not start to increase).
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3.2. Recurrent neural networks

Recurrent neural networks [68], are a special type of neural networks specifically designed
for handling sequential data, such as text or time series. Essentially, they are a type of
dynamical system that can read a sequence of data values one at a time and update their
internal state recursively by a non-linear transformation of its previous state and the
corresponding input value in the sequence. This internal state is called the hidden state
and it is usually denoted by h. These models, as any neural network, have trainable
parameters which are learnt through backpropagation and as a characteristic trait, are
shared across time. This trait allows these type of models to be represented as a single
computational unit or recurrent cell that is applied recursively for reading a data sequence
[65]. Examples of two different types of recurrent cells are depicted in Figure 3.2. Any
RNN cell, follows the same principle, and reads a sequence by applying itself as many
times as the sequence length. Mathematically, a generic RNN cell can be defined as:

ht = fθ(xt,ht−1), (3.2)

where fθ is the recurrent cell with learnable parameters. Each sample in the data x is a
collection of T + 1 ordered points: {x0, ...,xT } such that xt ∈ Rv for v ∈ N. Conversely,
h ∈ Rp, where the dimensionality p ∈ N of the hidden state is a hyperparameter. An
initial state h0 must also be provided, which usually consists of just zeros or small random
numbers.

In its most basic form, an RNN cell [69] is represented as:

ht = tanh(Wxt + Uht−1 + b) (3.3)

where tanh denotes the hyperbolic tangent as the activation function, W and U are
respectively the input and recurrent parameters and b is the bias term [69]. In here,
W ∈ Rp×v, U ∈ Rp×p, b ∈ Rp and the activation function is applied element-wise, thus
preserving dimensionality. Note that, as previously stated, W, U and b do not depend
on time. To decode the information encoded in the final hidden state, hT , and making a
prediction ŷ, often a simple learnable linear mapping (i.e., a singe linear layer; an analogy
for this is to apply a final FFNN, as in Figure 3.1, without any hidden layers and without
activation functions) is used as an output layer, which is external to the recurrent cell.
To provide a prediction that can be interpreted as the probability of each sample in the
data to be in each of the possible classes, the output is usually followed by a softmax
function (i.e. normalized exponential).

The RNN baselines models used in this work have slightly more sophisticated architec-
tures of recurrent cells, so each will have a dedicated subsection in this chapter.

3.2.1. Long short-term memory networks

The basic form of RNNs as presented before, can encounter difficulties while training with
a gradient-based optimization method and struggle to remember long-term relationships
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Figure 3.2.: Schematic diagram of an LSTM and a GRU cell structure. The yellow boxes
denote the layers in each cell finalized by their respective activation function
and the red circles denote point-wise operations, hence the � product in
the equations is denoted here by x for simplicity. Their respective gates are
written in blue.

in the data when the sequences get longer [70]. These difficulties are namely the vanishing
gradient problem and exploding gradient problem, which may as well occur in deep FFNNs.
Each problem refers, respectively, to an exponential decrease and an exponential increase
in the norm of the gradients, which make impossible for the network to learn correlations
between long-term dependencies, because the backward flow of information about the
loss becomes insufficient [71].

LSTM networks were specifically designed to address these limitations by adding another
internal state called the memory cell, in addition to gates that can learn to control the
inflow and outflow of information from the memory cell [72]. In the original LSTM design,
these gates are the input and output gates. The input gate is designed to protect the
memory cell from irrelevant perturbations in the input data by learning to override the
input or to allow it to update the memory of the network. Conversely, the output gate
protects the memory cell from perturbations in the output flowing back into the network’s
memory. Subsequent developments included a forget gate in the architecture. Such gate
prevents the hidden and cell states to grow unbounded, by allowing the network to learn
to reset its memory when needed [73]. Recent studies have confirmed the importance
of the forget gate and also of the final activation function [74]. The following set of
equations defines the architecture of a modern LSTM network:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(3.4)
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where � denotes the Hadamard product (i.e. element-wise product), which preserves
dimensionality; σ is the logistic sigmoid function; i, f and o respectively denote the
input, forget and output gates and are all defined similarly to Equation 3.3, but with a
different activation function; and c denotes the memory cell state variable. Essentially,
the memory cell is updated by a weighted sum (modulated by the forget and input gate)
of a new memory state candidate, c̃t, and the previous memory state ct−1, where c̃t is
calculated in the same way as a simple RNN (Equation 3.3). A representative diagram of
the set of Equations 3.4 is presented in Figure 3.2a. Note how each gate directly affects
the output of the respective point-wise multiplication that succeeds them, by controlling
the amount of information that can continue its path for computing the new cell and
hidden states.

3.2.2. Gated recurrent units

Gated recurrent units are a recently proposed simplified version of an LSTM [75]. They
have only two gates, an update gate z and a reset gate r, thus reducing the number of
parameters compared to a LSTM network, which has one more gate. Despite of their
lower number of parameters, they have been shown to perform equally well or better
than LSTMs for certain tasks [75]. A GRU architecture is defined as follows:

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

(3.5)

The update and reset gate are defined in the same way as the gates of an LSTM and there
is no separate memory cell, thus the hidden state is directly exposed. The hidden state
is a linear combination of the previous state ht−1 and a candidate activation or state h̃t,
which in turn can have a varying access to the memory of the hidden state depending on
the reset gate influence. As for the LSTM cell, a representative diagram is presented in
Figure 3.2b. Note how the structure has less elements than LSTMs, but a more intricate
circuit, which allows them to extract information from data more efficiently.

Although LSTM and GRU networks are effective in attenuating the vanishing and explod-
ing gradient problems compared to a simple RNN cell, complex and long input sequences
may still pose a threat to a proper training procedure. As a result, other techniques such
as gradient clipping may be required to counteract it [71], [74].

3.3. Neural ordinary differential equations

Neural ordinary differential equations are a novel and increasingly popular type of deep
learning model. In this section, first some background information is given about their
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origin, then their definition is presented and their characteristics are described, followed
by the definition of the ODERNN model.

3.3.1. Background

Although NODEs were only formally proposed in 2018 [29], the intuitions that led to
their development come from observations made by different authors in recent years [76]–
[79]. These observations pointed that the sequence of transformations performed by the
layers of a Residual Network (ResNets [80], a successful recent type of neural networks),
can be interpreted as a simple discretization of an Ordinary Differential Equation (ODE)
[29], [81]. ResNets are FFNNs, but in addition to the current layer’s transformation done
by fθ they also directly add a previous layer’s state or activation, which is the key for
them to be interpretable as an ODE. Equation 3.6 summarizes the dynamics of a ResNet
block, in which l ∈ {0, ..., L}, represents a layer of the network [29], [80]. Note that, in
the same way as for FFNNs, a key difference of Resnets with RNNs (Equation 3.2) is
that the learnable parameters are not shared among layers (i.e., θl instead of θ).

hl = hl−1 + fθl(hl−1) (3.6)

With a simple manipulation of Equation 3.6 and by increasing the number of layers, or
conversely by taking the discretization step to its infinitesimal limit, the classic definition
of a derivative can be recovered, thus defining a NODE model [29], [82].

3.3.2. Definition

As previously described, NODE models can be regarded as a continuous-time analogue
of ResNets [83]. Then, a neural ordinary differential equation can be defined as:

dh(t)

dt
= fθ(h(t)) (3.7)

where for some p ∈ N, fθ : Rp → Rp is a neural network with parameters θ, hence
the name: neural ODE. Similarly to RNNs, h defines the model’s hidden state and its
dimensionality p is a hyperparameter. As fθ is usually just a FFNN, its width and
depth will be additional hyperparameters in this model. Note that Equation 3.7 is like
a regular ODE definition, with the exception that f here, is parameterized by a neural
network instead of being an analytical function like in normal ODEs. Borrowed from
ODE nomenclature, f is often referred to as the vector field in the literature. Even
though fθ does not necessarily needs the time to be included as an argument, it can be
done, so that it may be included as an extra dimension in h as a form of augmentation
if desired [29], [32].

Given an initial hidden state h(0), the solution h(T ) to this differential equation, can be
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obtained by solving the following initial value problem (IVP):

h(0) = ξφ(x)

h(T ) = h(0) +

∫ T

0
fθ(h(τ))dτ

ŷ = lψ(h(T ))

(3.8)

which can be solved with a fixed step ODE solver or with an adaptative-step ODE solver
up to a desired accuracy. An example of their operation can be found in each particular
segment in Figure 3.3 (i.e., without a final ξφ and lψ, as in the set of Equations 3.8),
which are part of the ODERNN model introduced later in this section. The ODE solver
in a NODE generates a continuous hidden state on-the-fly, while integrating Equation
3.7. The mathematical formalities in Equation 3.8 are the following. First, the variable
τ in the integral represents the internal time variable of the ODE that is used for taking
the discretization steps. Then for some v, p ∈ N representing the input and hidden
dimensions respectively: ξφ : Rv → Rp and lψ : Rp → R define additional learnable linear
mappings with parameters φ and ψ, that are needed to respectively encode the input
data into hidden dimensions and to decode the hidden state to make a prediction, and
additionally, to ensure that NODEs does not present expressivity constraints, i.e., limits
in their approximation capabilites [81], [82]. In particular, an initial linear layer acts as
a form of augmentation for NODEs, that allows them to learn any x→ ŷ mapping [84].
Note that since in order to solve an ODE one must solve an IVP, in the set of Equations
3.8 the input data is forced to be encoded only in the initial value of the hidden state
h(0).

3.3.3. Characteristics

NODEs do not have a depth explicitly defined like traditional FFNNs, but a good analogy
is the number of function evaluations of the vector field that are performed by the ODE
solver [29]. When using a fixed-step solver, a NODE is similar to a ResNet with as many
layers as the number of time steps that are taken by the ODE solver. However, when
using an adaptative-step ODE solver, it is free to evaluate the vector field fθ wherever
it needs to find the solution of the integral. In this latter case, a NODE can be referred
to as a continuous-depth model, where the model becomes "increasingly deep" as it tries
to fit the data [29].

The main advantages of having a model evaluated by an ODE solver, such as in NODEs,
are the following:

• Memory efficient backpropagation. The gradients can be computed using the
adjoint sensitivity method [85], which is more memory efficient (i.e., constant mem-
ory use regardless of the batch size) than traditional backpropagation, as it does
not need to store the forward pass activations for the backward pass. Conversely,
it can be slow, as it needs to solve a second ODE backwards in time to find the
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gradients of the solution of the first ODE’s loss w.r.t the parameters θ and its initial
value h(0) (i.e., ∂L∂θ and ∂L

∂h(0)) [29], [82].

• Continuously defined dynamics. The model is defined by an ODE, thus the
hidden state is continuously defined. This means that this type of model is theo-
retically well suited for modelling phenomena that follow a continuously evolving
underlying process (e.g., the phenological development of crops). Even though the
variable t in an ODE (Equation 3.7) represents time, it is just an internal detail
of the model and has no relationship to the timestamps of some time series input
data for example. In fact, as previously mentioned, a NODE model on its own
cannot model sequential input, such as time series. Nevertheless, the model can be
used as an independent building block and coupled with other models that are able
to process sequential data, in order to take advantage of its continuously-defined
dynamics [29].

3.3.4. The ODERNN model

NODEs are similar to RNNs in the sense that they have shared parameters among their
"layers", but they lack the ability to incorporate input data at each step and are entirely
defined by the initial conditions of the ODE. In the other hand, RNNs only have discrete
dynamics, which means that their hidden state is not defined between the update steps,
whereas as previously stated, a NODE’s hidden state is continuously defined.

A model that couples both of these types of models, called ODERNN, has been recently
proposed [30]. This model is comparable to other modelling attempts that allow an
RNN’s hidden state to evolve continuously between updates of incoming sequential data,
such as exponentially decaying the hidden state between observations [86]. An ODERNN
model can be summarized as follows:

h̃t = ODEsolve(fθ,ht−1, [0,∆t])

ht = RNN(xt, h̃t)
(3.9)

where RNN symbolically denotes Equation 3.2 with any variant of RNNs, which in this
work is a GRU cell. Complementary, ODEsolve denotes an ODE solver that solves an IVP
with integrand fθ and initial value ht−1 between the limits [0,∆t], where ∆t represents
the time difference between observations xt−1 and xt. An explanatory diagram can be
found in Figure 3.3. The simplest version of an ODERNN model is constituted of one
RNN cell and subsequently solves one NODE (as in the set of Equations 3.8, but without
the input and output linear mappings) between each of the RNN input data readings,
i.e., where the discontinuities in the hidden state are. Note that the hidden state must
be shared between each NODE and the RNN, which means that the hidden state gets
interrupted every time there is incoming data and gets overridden by the output of the
RNN. From a mathematical perspective, their definition and operation is like the one of
an RNN model, with the sole difference that between each of the RNN’s update steps,
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Figure 3.3.: Schematic diagram of a ODERNN model. The hidden state that is contin-
uously defined by a NODE, gets interrupted by an RNN update when there
is incoming data, which are represented by the black dotted arrows. After
each RNN update is made, a new NODE is defined and solved.

ht−1 is allowed to evolve as a NODE and then the result of this evolution h̃t is fed to
the RNN, instead of ht−1 as usual.

Similarly to the LSTM and GRU models, the final hidden state h(T ), encodes all in-
formation about the input sequence and can be decoded to make predictions, with an
additional final linear layer, as lψ in the set of Equations 3.8.

3.4. Neural controlled differential equations

Neural controlled differential equations were recently introduced as a related model to
NODEs that can address the limitation of incorporating incoming information, and thus
are able to process sequential data by themselves [32], [83]. Controlled differential equa-
tions (CDEs) belong to the relative small field of mathematics called rough analysis [33]
and they are a type of differential equations whose vector field trajectories continuously
depend on a time-varying function X (i.e., the control), rather than only on the initial
value like in an ODE does.

3.4.1. NCDE definition

In order to define a NCDE, the controlX or also called the data path, must first be defined.
Given a time series of multi-dimensional data points, X is a continuous approximation
of the values of each of the separate data dimensions in time, which can be obtained by
simple linear interpolation, for instance. This means that given a collection of data points
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and their corresponding timestamps x = ((t0,x0), (t1,x1), ..., (tn,xn)), where xi ∈ Rv−1

and ti ∈ R, then X is defined as a continuous function that maps any time t between t0
and tn to values in the data dimensions, i.e., [t0, tn]→ Rv. Methods for constructing X
and some details about their requirements are discussed in section 3.4.3.

The definition of a NCDE in differential form is a straightforward modification to that
of a NODE (recall Equation 3.7) and is denoted as:

dz(t)

dt
= fθ(z(t))

dX(t)

dt
(3.10)

where fθ is also a vector field parameterized by a neural network. In here, z denotes the
hidden state, and the change of notation from h is just done to keep consistency with
the original paper and to differentiate it from the other models, despite of representing
the same. Note that NCDEs relate to CDEs in the same way as NODEs do to ODEs,
so a CDE is defined identically to Equation 3.10, but with f not necessarily being learnt
from data.

After creating X, the full mapping from input data to prediction with a NCDE can be
defined in a similar way to NODEs, by integrating Equation 3.10 and including input
and output mappings as follows:

z(t0) = ξφ(X(t0))

z(tn) = z(t0) +

∫ tn

t0

fθ(z(s))dXs

ŷ = lψ(z(tn))

(3.11)

where similarly to the set of Equations 3.8, ξφ : Rv → Rp and lψ : Rp → R are learnable
linear mappings for a hidden state z of size p ∈ N, and fθ : Rp → Rp×v is a FFNN [32],
[83]. Therefore, as in an ODERNN model, a NCDE has at least three model-specific
hyperparameters: the dimensionality p of the hidden state, and the width and depth
of the vector field fθ. Note that for NCDEs, time must be appended as a channel in
the data before creating X, which is needed to avoid translational invariance [32] and
to prevent loss of information, because the model does not necessarily need the original
timestamps as explained in section 3.4.4.

The integral in the set of Equations 3.11 is a generalized case of a classic integral, in
which the discretization variable goes through a function, and it is called a Riemann-
Stieltjes integral [87]. When X is differentiable, like in the considered case, it can be
directly evaluated as: dXs = dX

ds (s)ds. Then, Equation 3.11 may be redefined as follows:

z(t0) = ξφ(X(t0))

z(tn) = z(t0) +

∫ tn

t0

fθ(z(s))
dX

ds
(s)ds

ŷ = lψ(z(tn))

(3.12)
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Figure 3.4.: Schematic diagram of a NCDE model. The continuous input data path X is
constructed by approximating the time series data points, by cubic splines
interpolation for instance. The hidden state is defined by a CDE, which is
an ODE with a vector field that is continuously controlled by the derivative
of the data path X.

The integral here now is like a regular one in a NODE, but where instead of a vector
field fθ, a controlled vector field is integrated, which can be denoted as gθ,X(z, s) =
fθ(z)dXds (s). This last equation is a matrix-vector product, which after computing may
be directly solved with the same tools as for solving NODEs and just requires passing
gθ,X rather than fθ to the ODE solver. Note that gθ,X is also equivalent to the right
hand side of Equation 3.10. Figure 3.4 presents a simplified visual representation of the
operation of a NCDE. First, a continuous input path is constructed from time series
data. Then, the NCDE is initialized by sampling the data path X at the first timestamp
value, before it proceeds to solve an ODE with a controlled vector field, i.e, controlled
by the derivative or slope of the data path X. Finally, the prediction ŷ is obtained by
applying a linear mapping to the terminal hidden state value of the NCDE.

3.4.2. Stacked NCDE

The S-NCDE model is implemented in this work as a novel extension to a simple NCDE.
This model implies solving two CDEs. In a differential form, this accounts to solve the
following system of equations:

dz(t)

dt
= f(z(t))

dX(t)

dt
du(t)

dt
= g(u(t))

dZ(t)

dt

(3.13)
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This means that, w.r.t. the set of Equations 3.12, one needs to solve two different
integrals rather than one. To this end, the chosen implementation consists of solving the
two CDEs subsequently by interpolating the entire solution sequence zt = (z0, ..., ztn)
of the first CDE to build a new continuous path or control Z in a similar way than
the first control X is built from the input data. This second control is then used as a
continuous-time path to control the second CDE, whose terminal value is decoded into
a prediction as usual. In particular, a S-NCDE model can be defined for t ∈ [t0, tn] as
follows:

z(t0) = ξφ(X(t0))

z(t) = z(t0) +

∫ t

t0

fθ(z(s))
dX

ds
(s)ds

u(t0) = ζυ(Z(t0))

u(tn) = u(t0) +

∫ tn

t0

gω(u(s))
dZ

ds
(s)ds

ŷ = lψ(u(tn))

(3.14)

In here, the new terms w.r.t. Equation 3.12 are: Z : [t0, tn]→ Rp, which is a continuous-
time representation of the solution sequence zt of the first CDE; gω : Rp → Rp×p,
which is the vector field of the second CDE, parameterized by a FFNN with learnable
parameters ω; and ζυ : Rp → Rp is an additional linear mapping that learns the initial
value of the second CDE in a similar way to what ξφ does for the first CDE. Figure 3.5
provides a visual representation of the model. The second CDE is stacked on top of the
first one, and operates in the same way as the bottom one, but with the discrete solution
sequence of z taking the role of the data points on the first CDE. A continuous path of
z must be reconstructed, in order to control the second CDE.

Finally, note that for simplicity, this particular implementation defines the same dimen-
sionality for the hidden states z and u, however this does not need to be the case in
general. Additionally, the method considered for constructing Z can be the same as the
one for creating X, like it is the case for the experiments of this thesis, but also does not
need to be the case in general.

3.4.3. Continuous data representation methods

The possible methods for constructing X that are considered in this work are: linear
interpolation, natural cubic splines interpolation and squared exponential kernel regres-
sion. For every method the goal is to obtain a continuous representation of the input
data such that X(s) is defined ∀s ∈ [t0, tn], where {t0, ..., tn} is the set of all timestamps
of the input observations. The multi-dimensional bold notation for X is purposely left
aside henceforth in this section, as each method is applied only to 1-D data, i.e., ap-
plied separately in each dimension of the data. A brief summary and references for each
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Figure 3.5.: Schematic diagram of a S-NCDE model. Two hidden states coexist and
are defined by two different CDEs. The data path Z takes samples of z in
alignment with the timestamps, to build a continuous representation of it to
control u.

method are given in what follows.

• Piece-wise linear interpolation. This is the simplest form of interpolation, it
produces a linear segment between each pair of consecutive points in each time
series. The continuous linear segments are defined by Equation 3.15, where its
derivative is just the slope ai of each segment (i.e., dXi

ds (s) = xi+1−xi
ti+1−ti = ai).

Xi(s) = xi + (s− ti)
xi+1 − xi
ti+1 − ti

= xi + (s− ti)ai , for s ∈ [ti, ti+1] (3.15)

• Piece-wise natural cubic spline interpolation. Natural cubic splines are a
third-order polynomial interpolation, computed piece-wise like the linear interpo-
lation. Each segment or piece i of the interpolation can be defined by Equation
3.16 between each pair of knots, which exactly match the original data, like it is
the case of linear interpolation. The coefficients of each segment can be found by
solving a tri-diagonal system of equations [88]. Its derivative is straightforward to
compute and it is given by Equation 3.17.

Xi(s) = ai + bis+ cis
2 + dis

3 , for s ∈ [ti, ti+1] (3.16)
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dXi

ds
(s) = bi + 2cis+ 3dis

2 , for s ∈ [ti, ti+1] (3.17)

• Squared exponential kernel regression. This is a form of curve fittingi via
Gaussian Process (GP). The objective of this method is to model the data points,
perturbed by some noise which is normally distributed, by the following equation:

x = f(t) + ε , ε
i.i.d∼ N (0, σ2n) (3.18)

It does so by modelling a joint likelihood distribution of the points with a covariate
function or kernel, which, in this case, is the squared exponential kernel (i.e., SE
kernel, also known as radial basis function kernel). Other than being a very common
choice, the key advantage of this kernel is the fact of being differentiable [89]. The
SE kernel for this setting is defined as:

κ(ti, tj) = σ2f exp

{
(ti − tj)2

2L2

}
+ σnI , ∀ ti, tj ∈ {t0, ..., tn} (3.19)

where σf , L and σn are hyperparameters defining the signal variance, the length-
scale and the noise variance, respectively. The curve fitting coefficients will be
given by α in Equation 3.20, where K is the covariance matrix built from all the
observations at timestamps {t0, ..., tn} and I is the identity matrix.

α = (K + σnI)
−1x (3.20)

Note that after fitting the data points, the result is a posterior probability in the
space of continuous functions whose point-wise values follows a multivariate normal
distribution defined by a mean and a covariance matrix. However, since NCDEs
can not process probabilistic inputs, in this case only the mean of the posterior
distribution is recovered. Therefore, the mean approximation of the data path X
is defined by Equation 3.21 [89] and its derivative by Equation 3.22.

X(s) =
n∑
i=0

ακ(ti, s) , for s ∈ [t0, tn] (3.21)

dX

ds
(s) =

n∑
i=0

α∇κ(ti, s) =
n∑
i=0

ασ2fκ(ti, s)
(ti − s)
L2

, for s ∈ [t0, tn] (3.22)

A separate interpolation has to be done for each time series of every example in the

iAlthough it could also be enforced to exactly match the data points, in which case it would be strictly
speaking an interpolation.

23



3. Methods

input data, which means that if the batch of input data is of size B and has v dimensions
or features, there will be B × v different interpolations to be performed for that batch.
In addition, there are some considerations to uphold depending on the type of methods
used. For example, the control X of a NCDE should be twice-differentiable if the adjoint
sensitivity method is being used for backpropagation [32]. When this is not the case X
will not be smooth (e.g., like with linear interpolation) and the adjoint backpropagation
method with an adaptive ODE solver can be undesirable slow. However this can be
avoided in practice by explicitly telling the ODE solver where the kinks are, so it avoids
evaluating the function at this points where the derivative has discontinuities [32]. Addi-
tionally, all this methods except for the linear interpolation method are non-causal, which
means that they need to look at future points to approximate the whole signal. When
using NCDEs for inference, this means that only the linear interpolation method can be
used, as long as there are no missing values in the data. In the case there are missing
values, normal linear interpolation would also not work, and some minor adjustments to
this method must be made.

3.4.4. Properties

A relevant property that CDEs possess is reparametrization invariance [90], which implies
that the terminal value or solution of a CDE is invariant to reparametrizations of the
continuous data path. This means that, theoretically speaking, one could build the input
data path with any array of timestamps, regardless of the original time series regularity,
as long as the original timestamps are appended as a channel or feature in the data, to
ensure that no information is lost. In fact, this is the standard practice with NCDEs.

3.5. Software

All the code is written in Python and the models are implemented in Pytorch [91], a
deep learning library which offers automatic differentiation. NODEs are solved with
torchdiffeq library [29] and NCDEs with torchcde library [32], which is a wrapper library
around torchdiffeq to compute NCDEs and that also offers built-in controls such as linear,
rectilinear and natural cubic splines interpolation. All the code implemented for this work
can be found in GitHub: https://github.com/JoaquinGajardo/NeuralCDEcrops.
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Chapter 4

Data

The two multi-temporal remote sensing datasets considered for evaluating the models
are presented in this chapter. A detailed separate description is provided for both of the
datasets, followed by a section describing the common data pre-processing methodology.

4.1. TU Munich dataset

This dataset, henceforth referred to as the TUM dataset, was proposed in [15] and con-
sists of a time series of 26 multi-spectral satellite images from Sentinel-2A, collected over
a 102 km × 42 km area in the north of Munich, Germany, which has homogeneous agri-
cultural, geographical and climate conditions. The images were retrieved over the same
area for 26 different dates, between December 31st, 2015 and August 29th, 2016. There
are four bands or channels originally available at 10 m ground sampling resolution (GSR),
the B2 (blue), B3 (green), B4 (red), B8 (near infrared) bands and two 20 m GSR bands,
which are the B11 and B12 bands (short-wave-infrared 1 and 2 respectively) and were
upsampled to 10 m GSR by nearest-neighbour interpolation. The original data includes
19 ground truth classes, provided by the Bavarian Ministry of Agriculture in the form of
field geometries: 18 different crop types with their respective names, plus an additional
class other for the case where no field geometry was available. The crop classes are: corn,
meadow, asparagus, rape, hops, summer oats, winter spelt, fallow, winter wheat, winter
barley, winter rye, beans, winter triticale, summer barley, peas, potatoes, soybeans and
sugar beets. The data was atmospherically corrected with the SEN2COR toolbox [92]
for obtaining the bottom-of-atmosphere (BOA) reflectance and to additionally obtain a
clouds or bad weather binary mask. Patches of 3× 3 pixels are considered as additional
features, which after flattening makes up a total dataset of roughly 350000 pixels time
series of time length 26 and feature dimension 54. Labels are one-hot soft-assignments
(i.e. a probability for each class), because bordering pixels were weighted, for preventing
hard-assignments and loss of information, although most of them are zeros and ones.

The dataset is divided into a train, validation and test sets and was further pre-processed
by [31], from whom the data was directly sourced for this work. In particular, data points
without any labels and those with only one valid observation in the time series were
removed. The uninformative pixels were masked out as zeros with the help of the clouds
mask (i.e. multiplying the input data with the clouds mask element-wise). Additionally,
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4. Data

the dataset contained a label for each pixel at each different time, so they were reduced
to one label per pixel for the entire time series by summing in the time dimension and
normalizing, which is possible because of the one-hot encoding format of the labels. The
final train, validation and test sets sizes are 287858, 55740 and 1499, respectively, thus
accounting for roughly a 85%/15% split between the train and validation sets. The test
set was discarded due to its small size, and because it does not contain all of the classes.
Figure 4.1 presents the classes distribution for each set.

The dataset is further pre-processed in this work by removing the last time step, which
only contains cloudy observations. In addition, a reduced-features version of the dataset
is considered in most of the experiments, which excludes the neighbourhood and thus
only considers the 6 bands from the central pixel as features. The reason for this is
discussed in Chapter 5.
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Figure 4.1.: TUM dataset class distribution.
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4.2. Swisscrop

4.2. Swisscrop

This dataset was gathered by [41] and used in [31]. It contains multi-spectral Sentinel-
2A satellite images collected over an area of 50 km × 48 km in the Cantons of Zürich
and Thurgau, Switzerland, at 142 different times between January 2019 and December
2019. The original dataset contains over a 100 different crop classes, with ground truth
provided by the Swiss Federal Office of Agriculture and it is highly imbalanced, meaning
that there are many classes which have few instances. Additionally, the dataset is of
massive size, accounting for more than 400 GB of memory. Therefore, since the aim of
this work is exploratory, just a sample of the dataset is used in order to speed up the
development. The dataset considered has 52 possible labels, and only four channels per
pixel, the red, green, blue and near-infrared bands, without considering a neighbourhood.
As with TUM dataset, the data has been previously atmospherically corrected with the
SEN2COR toolbox [92]. Moreover, the majority classes have been down-sampled to
10000 instances, thus producing a fairly balanced dataset, with a few exceptions. The
train and validation sets splits are 75%/25% and the classes distribution for both sets
are shown in Figure 4.2. The class names are: {0: unknown class 0, 1: apples, 2: beets,
3: berries, 4: biodiversity area, 5: buckwheat, 6: chestnut, 7: chicory, 8: einkorn wheat,
9: fallow, 10: field bean, 11: forest, 12: gardens, 13: grain, 14: hedge, 15: hemp, 16:
hops, 17: legumes, 18: linen, 19: lupine, 20: maize, 21: meadow, 22: mixed crop, 23:
multiple, 24: mustard, 25: unknown class 1, 26: oat, 27: pasture, 28: pears, 29: peas, 30:
potatoes, 31: pumpkin, 32: rye, 33: sorghum, 34: soy, 35: unknown class 2, 36: spelt, 37:
stone fruit, 38: sugar beet, 39: summer barley, 40: summer rapeseed, 41: summer wheat,
42: sunflowers, 43: tobacco, 44: tree crop, 45: vegetables, 46: vines, 47: unknown class
3, 48: wheat, 49: winter barley, 50: winter rapeseed and 51: winter wheat}. The four
unknown classes (i.e., 0, 25, 35 and 47) are entirely missing in this sample dataset, and
some classes such as chestnuts and gardens have very few examples.

Given that the length of the time series is fairly large, the time series are down-sampled
in time for the experiments by a given factor, e.g., a time down-sample factor of two,
means that only every second step in the time series is considered, thus only considers
71 steps. A mask with the % of cloud coverage is also provided and a threshold of 10%
is used for considering a pixel as cloudy, thus producing a binary clouds mask. As with
the TUM dataset, uninformative pixels due to clouds or bad weather are represented as
zeros by masking the data with the clouds mask.

4.3. Pre-processing

The common pre-processing for both datasets consists of appending the timestamps as
an extra channel, as well as adding an additional channel with the observational mask.
The observational mask consists of only one channel because, for either dataset, whenever
there is a missing value in one of the channels at a given time in a given sample, every
other channel was also missing. Finally, the data is normalized by subtracting the mean
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Figure 4.2.: Swisscrop dataset class distribution.

and dividing by the standard deviation on a per-channel basis. For NCDEs, the pre-
processing requires some additional steps, detailed in the torchcde examples in GitHub,
at https://github.com/patrick-kidger/torchcde. In particular, missing values are
represented as NaNs (not-a-number), so that they can be detected by torchcde and
skipped during the interpolation, and the observational mask that is appended as an extra
channel is a cumulative one, because it will be reduced to a regular binary observational
mask when taking the derivative of the interpolation path X as in Equation 3.10, which
finally determines the vector field. There is a final caveat, whenever there are missing
values at the beginning or end of the time series. It is important that dX

dt , is as close
to zero as possible at this locations, because the hidden state z should not continue
evolving in this cases as there is no real observations, and a value of dX

dt equal to zero
would ensure it. Whenever there are missing values at the end or at the beginning of
a time series, the interpolation methods available at torchcde automatically pad (i.e.,
propagate) the last observed value towards the end and the first observed value towards
the beginning before proceeding with the interpolation. For linear interpolation, even
when just copying the last and first observed value and inserting them respectively at the
end and the beginning of the time series, it is ensured that the derivative would be exactly
zero, because the interpolation there would be an horizontal line. However, for natural
cubic splines, padding all missing time step values located at the beginning and end of
the time series is particularly important, as, otherwise, in order to ensure smoothness
the spline derivative can remarkably deviate from being zero. With this procedure, the
derivative of cubic splines is still not guaranteed to be exactly zero towards both ends,
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4.3. Pre-processing

but it is in general much closer to it. Therefore, since SE kernel regression method is not
part of torchcde, the pre-processing includes a final step to pad forward and backwards
the data as it was just described, to mimic the operation of the library. Hence, the
pre-processing implemented can be summarized as follows:

Step 1: Represent missing values as NaNs for NCDEs, while keeping them as zeros
for the baselines.

Step 2: Append time as the first channel.

Step 3: Append observational mask as an extra channel: a cumulative one for NCDEs
and a regular binary one for the baselines.

Step 4: Normalize each channel to zero mean and standard deviation equal to one.

Step 5: For NCDEs pad forward the last observed value of each time series and
backwards the first one, including the time channel.
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Chapter 5

Results

In this chapter the experimental findings of this work are presented. In section 5.1 the
experimental setup is described, including the hyperparameters selected for each model
and the different metrics used for comparing the results. In section 5.2 the base results
of each model for each dataset are exposed, with an additional analysis of the per-
crop performance obtained by the models. In section 5.3, the experimental results of
four ablation studies are presented, which highlight the effect of important configuration
choices for the NCDE and S-NCDE models, such as the interpolation method used,
the inclusion of an observational mask as a feature in the data, the impact of a high-
dimensional dataset on the NCDE and S-NCDE models’ architecture and performance,
and the effect of including cloudy observations in the data.

5.1. Experimental setup

The baselines models used for the experiments are the GRU, LSTM and ODERNN
methods, which are all RNN-based models, as described in Chapter 3. The models
evaluated against the baselines are the NCDE model, and a stacked variant of a NCDE,
i.e. the S-NCDE model. The main metrics used for comparing the models on the different
experiments are the overall accuracy and the average per-class F1-score (i.e. the harmonic
mean between precision and recall) of each individual pixel classified by the models. The
overall accuracy provides a general metric of performance, but it tends to be biased to the
dominant classes, whereas the average per-class F1-score allows for a better assessment
of the models’ capabilities for distinguishing every class in the dataset. Additionally, the
number of parameters of each model is reported in each table of results. The results are
reported on the validation set, because there was no appropriate test set available for
both datasets, as described in Chapter 4. Note that this induces a potential bias in the
results, but since no exhaustive hyperparameter optimization is performed, this bias is
considered to be rather small and the validation set can serve the purpose of comparing
the models in the different studies. All the experiments, with the exception of those
in section 5.3.4, have cloudy pixels represented as NaNs for the NCDE and S-NCDE
models, and as zeros for the baselines, as detailed in Chapter 4.

The configuration used for training the models is the following. The Adam optimizer
[67] was used, which is a robust stochastic gradient-based optimization algorithm. A
cross-entropy loss function was used, applied to the softmax of the output of each model.
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5. Results

For all the models, unless otherwise stated, an initial learning rate of 0.001 was used
on the optimizer. Following the setup of [32], the learning rate was reduced when the
performance failed to improve after a certain number of epochs and here the learning rate
was multiplied with a constant factor of 0.1 when the F1-score on the validation set did
not improve after two epochs. The training was done for a maximum of 40 epochs, with
early stopping [93] when the validation F1-score failed to improve after five epochs. The
model parameters at the epoch that achieved the best validation F1-score are the ones
kept and saved as the trained model, and thus the ones used for reporting the results.
The use of this methodology reduces training time and acts as a form of regularization,
i.e., prevents overfitting [65].

A simple per-model hyperparameter analysis for each dataset was performed and can be
found in the Appendix A. This analysis lead to the following hyperparameters choices
for each model. For the TUM dataset, the GRU and LSTM baselines used a batch size
of 256 and a hidden state size of 256. The ODERNN baseline had a batch size of 512,
and a hidden state size of 256, while the vector field is implemented as a FFNN with
width set to 256 units and with a tanh activation function after each linear layer, as
implemented in [30] and [32]. The NCDE model used a batch size of 1024 and its hidden
state size is set to 128, while the vector field is implemented as in [32], with a FFNN,
here of three hidden layers of 256 units. A ReLU (i.e. rectified linear unit) activation
function was used after every layer, with exception of the final one which was followed
by a tanh activation function. Lastly, the S-NCDE model used a batch size of 512, while
the two vector fields implemented were similar to those of a NCDE model, i.e., FFNNs of
two hidden layers with width set to 128. For the Swisscrop dataset, the hyperparameters
influenced the performance much more so than for the TUM dataset, and since only
one run was performed for each combination of values, the following hyperparameters
choices may not necessarily be as robust as for the TUM dataset. For the GRU, LSTM
and ODERNN baselines an initial learning rate of 0.01 was used. As for TUM dataset,
the GRU and LSTM model used a hidden state size of 256, while the batch size was
set to 1024 and 512 for GRU and the LSTM models, respectively. The vector field of
the ODERNN, NCDE and S-NCDE models are implemented in the same way as for the
TUM dataset, however there are some slight differences in the hyperparameters values.
For the ODERNN model, a batch size of 1024 and a hidden state size of 256 were used,
while the vector field had one hidden layer with a width of 128. The NCDE model used a
batch size of 1024, a hidden state size of 128, and its vector field was made of two hidden
layers and 256 units. Finally, the S-NCDE model used a batch size of 512, a hidden state
size of 32 for both hidden states, while both of the vector fields had one hidden layer
with 128 units.

The dopri5 adaptative ODE solver (i.e., a variant of the Dormand-Prince method [94],
which is the default option of torchcde and torchdiffeq) was used for ODERNN, NCDE
and S-NCDE, with a relative error tolerance of 10−4 and an absolute error tolerance of
10−6, while the adjoint method was used for computing the gradients in the backward
pass. Additionally, a semi-norm [95] was used for the adaptative ODE solver as it allowed
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for a faster training in most cases. All the hidden states of the baselines were zero-
initialized. All models parameters were initialized with the default Pytorch settings,
which uses a uniform He initialization [96] for linear layers and a uniform initialization
for all the RNN network’s parameters.

5.2. Model performance

In this section the main performance results of the models on each dataset are reported.
First, the base case results are exposed, followed by an analysis of the performance of the
models on each crop class. For the NCDE and S-NCDE models the linear interpolation
method is used with an equally spaced timestamps array (i.e., the default option of
torchcde). Additionally, the reduced-features version of the TUM dataset is used for all
the experiments in this section and in the rest of the thesis, with exception of the study
in 5.3.3. This is done because NCDEs present severe problems when the dataset is high-
dimensional, which is put in evidence in section 5.3.3 and discussed in Chapter 6. Due to
time constraints, every time series of the Swisscrop dataset was downsampled to length
36, as it was the case in the hyperparameters analysis too. Finally, the observational
mask was always appended as an additional feature, as explained in Chapter 4. All these
particular choices are later validated in section 5.3.

5.2.1. Base case

The main results for each model on the TUM dataset are presented in Table 5.1. As with
every other table of results from henceforth, the model that achieved the best performance
is marked in bold numbers. The best results are obtained by the ODERNN model,
outperforming the other baselines, and the NCDE and S-NCDE models. The results of
the baselines are in agreement with the results obtained by [31]. The ODERNN model
achieves a mean overall validation accuracy of 86.4% and a mean F1-score of 75.9%.
The NCDE and S-NCDE models achieve almost identical results between each other and
roughly a 0.6% lower accuracy and a 1.6% lower F1-score than the ODERNN model.
Note that the S-NCDE model can achieve similar results to the NCDE model with half
the number of parameters, but taking a considerably longer training time. Additionally,
Figure 5.1 summarizes the evolution of the validation loss of all models during training.
It can be observed that the baselines are able to achieve a lower loss on the validation set
than the NCDE and S-NCDE models, throughout the training. The GRU model observes
some considerable degree of overfitting towards the end, however the final results do not
reflect this due to the early stopping methodology that is applied.

The main results for each model on Swisscrop dataset are reported in Table 5.2. For this
dataset, the best results are obtained by the GRUmodel with an overall accuracy of 87.9%
and an average per-class F1-score of 90%. Surprisingly, the ODERNN model had a lower
performance than both of the other baselines, contrarily of what was seen on the TUM
dataset. However, this is thought to be due in part to the limited hyperparameter analysis
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Table 5.1.: Base case results on TUM dataset. The µ ± σ of the overall accuracy and
average F1-score across three runs is reported for each model, with the average
training time.

Model Accuracy (%) F1-score (%) Training time Parameters

GRU 86.2 ± 0.2 75.4 ± 0.7 4 min 210K
LSTM 86.2 ± 0.1 75.1 ± 0.4 5 min 275K
ODERNN 86.4 ± 0.2 75.9 ± 0.2 3.7 h 405K
NCDE 85.8 ± 0.1 74.3 ± 0.2 4 h 430K
S-NCDE 85.7 ± 0.1 74.3 ± 0.2 20 h 210K

performed for this dataset. The NCDE and S-NCDE models had again, nevertheless, the
lower performance of all models. The NCDE model achieved an accuracy of 85.5 % and
a F1-score of 86.6 %, while the S-NCDE model had a similar accuracy, but a F1-score
than was 1 % lower in average. The training times of the NCDE and S-NCDE models
are fairly high compared to the baselines and are higher than those observed on the
TUM dataset, presumably due mainly to the longer time series. As for the TUM dataset
the GRU and LSTM models can be successfully trained in under five minutes. Finally,
Figure 5.2 summarizes the evolution of the validation loss during training for the results
presented in Table 5.2. As it was observed for the TUM dataset, the baselines achieved
a lower validation loss than the NCDE and S-NCDE models, throughout the training.

Table 5.2.: Base case results on Swisscrop dataset. The µ ± σ of the overall accuracy
and average F1-score across three runs is reported for each model, with the
average training time.

Model Accuracy (%) F1-score (%) Training time Parameters

GRU 87.9 ± 0.4 90.0 ± 0.3 4.5 min 215K
LSTM 87.7 ± 0.2 89.4 ± 0.1 4 min 285K
ODERNN 86.4 ± 0.6 87.9 ± 0.6 3.5 h 280K
NCDE 85.5 ± 0.8 86.6 ± 0.8 13 h 305K
S-NCDE 85.4 ± 0.8 86.5 ± 0.8 1 d 9 h 170K

5.2.2. Per-crop performance analysis

An analysis of the crop predictions made by the ODERNN and NCDE models for the
TUM and Swisscrop dataset is presented in this section. In Figure 5.3, the per-class F1
scores obtained on average by the runs in section 5.2.1 are presented for the TUM dataset.
Both models were able to identify most of the classes with a similar performance, but
there are a few classes that are specially difficult for them to recognize. Fallow was the
most critical case, with a F1-score close of 29% for the ODERNN model and only 23% for
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Figure 5.1.: Validation loss for all models in base case scenario on the TUM dataset. For
each model the µ ± σ at every epoch and across three runs is visualized.
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Figure 5.2.: Validation loss for all models in base case scenario on the Swisscrop dataset.
For each model the µ ± σ at every epoch and across three runs is visualized.
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the NCDE model. Other problematic classes were winter triticale, winter rye, asparagus
and winter spelt. As it can be seen in the respective confusion matrices in Figures 5.5 and
5.6, fallow was often mistaken by the other or the meadow classes, while winter triticale
was confused mostly with the similar classes winter wheat and winter barley. Fallow
is a technique where arable land is let uncovered for a cultivation season, i.e., without
any crop or vegetation cover. For this reason, the variation of the reflectances values
throughout the year compared to any crop, which follow a phenological cycle, are likely
to be limited. The models seem to understand that it is not a normal crop but predict
that it is either a meadow or other, presumably because there is no sufficient observable
differences in the data, to help them discern between the non-crop classes.

For the Swisscrop dataset, the per-class F1-scores obtained by the ODERNN and the
NCDE models on the base case, are presented in Figure 5.4. For this dataset the non-
crop classes, such as gardens, pasture, meadow and hedge, are the most difficult for both
models to identify. The performance of the ODERNN and NCDE model is similar for
most of the classes, with exception of the garden and chestnut classes. As it was noted in
Chapter 4, this classes have very few examples, so the ODERNN model is more effective
at extracting information from this limited amount of examples. Finally, a visualization
of the kind of plot-level predictions that can be obtained with an NCDE model on this
dataset is presented in Figure 5.7. Unfortunately, only the relative position of the fields
is available without the pixels geo-localization, thus a reference background layer could
not be incorporated.

5.3. Ablation studies

In this section the results of four ablation studies, that evaluate the effect of the models’
configuration choices taken in section 5.2, are presented. All the studies in this section
were performed only with the TUM dataset. The ablation studies are: (i) neglecting the
use of the observation mask in the data, (ii) the interpolation method and time spacing
used, (iii) the effect of using all available features in the data, and (iv) the effect of
including cloudy observations.

5.3.1. Observational mask importance

This experiment evaluates the performance of the models when the observational mask
is not included as an additional feature in the data. The results are presented in Table
5.3. The performance of all models decreases, compared to the base case. However,
the effect is more distinct for the NCDE model, where for example the mean F1-score
obtained dropped by 1.7%, while it was only reduced by 0.3% for the GRU model or
0.6% for the ODERNN model, for instance. The effect is weaker in a S-NCDE model,
where there is only a 0.9% reduction on the F1-score. This results are in agreement
with those obtained by [32], who also observed that including the observational mask
as a channel is particularly important for a NCDE model. This may be attributed to a

36



5.3. Ablation studies

0.0 0.2 0.4 0.6 0.8
F1-score

other
corn

meadow
asparagus

rape
hop

summer oats
winter spelt

fallow
winter wheat
winter barley

winter rye
beans

winter triticale
summer barley

peas
potatoe

soybeans
sugar beets

odernn ncde

Figure 5.3.: Best validation F1-scores obtained on the TUM dataset classes for the base
case of the ODERNN and NCDE models. For each class, the average across
three runs is visualized.

case of informative missingness [86], which means that in this case, a NCDE model loses
relevant information about the location of missing values after interpolating the data, if
its not included as a channel. In contrast, the baselines can have an awareness of where
the missing values are, by just directly learning that they are represented by zeros. For
the NCDE and S-NCDE models, it is possible that when the observational mask is present
as a feature, they use it to learn to be more skeptical about longer segments of X, such as
those built by skipping several invalid observations, and to rely more on segments were
there was more valid observations. Note that when using a linear interpolation method,
the NCDE and S-NCDE models may still be able to capture this information by looking
for where the kinks in the interpolation are. Thus, since a S-NCDE model is in theory
a more powerful version of the NCDE model, it may be more effective at learning these
relationships, which could explain the weaker reduction in performance w.r.t the NCDE
model in Table 5.3.

5.3.2. Interpolation methods

In this section, the performance of the NCDE and S-NCDEmodels are studied when using
different interpolation and regression methods, and when using the original timestamps
to build them or not. The methods evaluated are linear and cubic splines interpolation,
and SE kernel regression. Using the original timestamps (i.e., irregularly spaced) in
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Figure 5.4.: Best validation F1-scores obtained on the Swisscrop dataset classes for the
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Figure 5.5.: Confusion matrix of ODERNN model on TUM dataset, normalized by rows.

Figure 5.6.: Confusion matrix of NCDE model on TUM dataset, normalized by rows.
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Figure 5.7.: Crop predictions (a) and accuracy map (b) for the same test area of Swisscrop
dataset with the NCDE model.
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Table 5.3.: No observational mask on TUM dataset. The µ ± σ across three runs is
reported for each model.

Model Accuracy (%) F1-score (%) Parameters

GRU 86.1 ± 0.2 75.1 ± 0.3 210K
LSTM 86.0 ± 0.1 74.7 ± 0.9 275K
ODERNN 86.1 ± 0.2 75.3 ± 0.2 405K
NCDE 85.4 ± 0.3 72.6 ± 0.8 400K
S-NCDE 85.5 ± 0.2 73.4 ± 0.4 205K

the interpolation is evaluated here, in contrast to the default implementation choice
on torchcde, which is to not build the interpolation with the original timestamps and
rather use an equally spaced time array. This is possible, as detailed in section 3.4.4,
because of the reparametrization invariance property of NCDEs, and as long as the
original timestamps are appended in the data to ensure that no information is lost.
Visualization examples of the methods are presented in Figure 5.8 for linear interpolation,
Figure 5.9 for cubic splines, and Figure 5.10 for SE kernel regression. Note how the
topology of the continuous path and the derivative values may considerably change for
the same sample, depending on the method used. The results for the NCDE and S-
NCDE models when using each method are presented in Table 5.4. The results show
that for the NCDE and S-NCDE models, a linear interpolation method is always better
than the cubic interpolation and the SE kernel regression. Additionally, it makes little
difference in terms of performance for both models if the equally spaced or irregularly
spaced schemes are used for the linear interpolation method, however it does makes an
appreciable difference in the F1-score when using the cubic splines interpolation. The
SE kernel regression method is only implemented for using the original timestamps, and
has the lowest performance of the three methods. However, since no search is made for
the SE kernel method’s hyperparameters, as disccused in Chapter 6, its performance
is expected to be improved with some additional work. In particular, its performance
may be improved to at least that of a cubic spline interpolation, if the regression is
enforced to exactly fit the data points. In terms of speed, for the NCDE model the SE
kernel methods is the fastest with an average run time of 1.5 hours, while the linear
interpolation methods and cubic spline methods take roughly 4.5 and 7 hours to train
respectively, regardless of the timing scheme used. On the other hand, for the S-NCDE
method, linear interpolation is the fastest with an average run time of 11 hours when
using equally spaced timestamps and 17 hours when using the original irregularly spaced
timestamps, while taking between 19 and 22 hours on average for all the other options.
Overall, using the linear interpolation method for both models with the default equally
spaced timing scheme seems to give the best trade-off between performance and speed
of computation, hence the choice of it in the rest of the experiments presented in this
chapter.
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5. Results

Figure 5.8.: Sample of linear interpolation on the TUM dataset. The dashed vertical
lines denote the timestamps used for interpolation. A thousand points are
used for each figure for visualization purposes.

Figure 5.9.: Sample of cubic splines interpolation on the TUM dataset. The dashed
vertical lines denote the timestamps used for interpolation. A thousand
points are used for each figure for visualization purposes.
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5.3. Ablation studies

Table 5.4.: Comparison of interpolation methods for NCDE model on TUM dataset. The
µ ± σ across three runs is reported for each model.

Equally spaced Irregularly spaced

Model Method Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

NCDE Linear 85.7 ± 0.1 74.2 ± 0.4 85.7 ± 0.1 74.1 ± 0.4
Cubic 85.4 ± 0.1 73.1 ± 0.2 85.2 ± 0.0 72.5 ± 0.1
SE kernel — — 81.7 ± 0.8 60.3 ± 4.3

S-NCDE Linear 85.6 ± 0.4 73.5 ± 1.0 85.6 ± 0.3 73.7 ± 0.9
Cubic 85.3 ± 0.2 72.7 ± 0.7 85.0 ± 0.2 71.8 ± 0.5
SE kernel — — 84.2 ± 0.3 69.4 ± 1.1

5.3.3. High-dimensional dataset

This study evaluates the models’ performance when using all the 54 original features of
the TUM dataset, plus one feature for original timestamps and one for the observational
mask as usual. The results are presented in Table 5.5. The best results are obtained
by the ODERNN model, with an accuracy of 87.4% and a F1-score of 77.5%. All the
baseline models observe an increase of at least 1% in accuracy and 1.6% in F1-score w.r.t.
the base case, thus they are able to effectively use the contextual information provided in
the additional features. In contrast, both the NCDE and the S-NCDE models observe a
sharp decrease in performance. In particular, the F1-score of the NCDE model decreases
by almost 6%, and the S-NCDE model does the same by 2.7%. Note also, that the
number of parameters of the NCDE model quintuplicate w.r.t. the base case, which is
prohibitively large compared to the other models, while the S-NCDE model only doubles
its number of parameters. As discussed further in Chapter 6, this is due to the fact that
the size of the final layer of the vector field is a product of the number of input channels,
the size of the hidden state and the width of the vector field. Therefore, as the S-NCDE
model can attain a similar performance w.r.t. the NCDE model, with a much lower size
of the hidden state without reducing its performance, the number of parameters does not
dramatically increase.

Table 5.5.: Performance of each model when using all features of TUM dataset. The µ
± σ across three runs is reported for each model.

Model Accuracy (%) F1-score(%) Parameters

GRU 87.3 ± 0.1 77.2 ± 0.2 245K
LSTM 87.2 ± 0.2 76.9 ± 0.3 325K
ODERNN 87.4 ± 0.1 77.5 ± 0.2 445K
NCDE 84.6 ± 1.0 68.4 ± 3.5 2015K
S-NCDE 85.4 ± 0.8 71.6 ± 1.5 410K
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5. Results

Figure 5.10.: Sample of SE kernel regression on the TUM dataset. The dashed vertical
lines denote the timestamps used for interpolation. A thousand points are
used for each figure for visualization purposes.

5.3.4. Cloud cover study

In this experiment the effect of including cloudy observations on the model’s performance
is studied. This is achieved by avoiding to mask out cloudy pixels in the original datasets
during data pre-processing. This study evaluates the practical ability of the models to
learn to disregard noisy uninformative observations, such as those usually observed in
raw satellite images. The results of this experiment are presented in Table 5.6.

Table 5.6.: Results for each model when using TUM dataset without masking out cloudy
observations. The µ ± σ across three runs is reported for each model.

Model Accuracy (%) F1-score (%) Parameters

GRU 85.5 ± 0.1 71.6 ± 0.3 210K
LSTM 85.7 ± 0.0 72.2 ± 0.2 275K
ODERNN 85.8 ± 0.1 72.5 ± 0.4 405K
NCDE 80.7 ± 1.1 58.8 ± 0.7 430K
S-NCDE 83.3 ± 0.9 64.0 ± 3.2 210K

The performance of all models drops remarkably w.r.t the base case, but it is especially
distinctive for the NCDE model. For instance, the ODERNN model’s accuracy is re-
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5.3. Ablation studies

duced by 0.6% and its F1-score drops by 3.4%, whereas the NCDE model experiences
a reduction of up to 5% and 15.5 % in accuracy and F1-score, respectively. On the
other hand, the S-NCDE again does show some degree of improvement compared to the
NCDE model, with only a 2.4% and 10.3% drop in accuracy and F1-score, respectively.
Overall, the NCDE and S-NCDE models are far more sensitive to the presence of cloudy
observations, than the baselines models. As in the experiments of section 5.3, the results
for the S-NCDE model are improved compared to those of the NCDE model, presum-
ably because it can learn more relevant temporal relationships from the data, due to the
increased processing, thus understanding and remembering better the characteristics of
uninformative cloudy observations.
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Chapter 6

Discussion

In this chapter, first the collection of results of the previous chapter are analyzed and
interpreted, followed by an exposition of the advantages and limitations of the NCDE
model. Finally, the outlook of future research with NCDEs for crop classification is
presented.

6.1. Analysis of results

Although for most of the experiments the performance of the S-NCDE model improves
compared to a NCDE model, all of them show that both NCDE model and S-NCDE
model have a lower performance than those of the baseline models. The NCDE and
S-NCDE model showed similar performance on the base case, but the training time of
the latter, may take up to a day or more. Meanwhile, the GRU and LSTM models could
be trained up to a good performance in under five minutes. Additionally, it was observed
in the per-crop performance analysis, that the ODERNN and the NCDE models had
similar performance on most classes, but the ODERNN model did better at predicting
minority classes in the data.

The ablation studies put in perspective several important considerations for the NCDE
models. In particular, while the performance of the baselines is only somewhat affected
when the observational mask is not considered, it is confirmed to be a crucial addition for
increasing the performance of NCDE models. NCDE models rely on a continuous-time
path of the input data, which skips the missing values, so it does not necessarily know
what part of the path has a better connection to the true observed values. Therefore
they trust every part of the interpolation path in the same way. On the other hand,
the baselines can learn how the missing values are represented and may be able to count
them. NCDE models struggle more without an observational mask channel in the data,
because then they do not know where the last true observation was made or even how
many of them they were.

As it was found in section 5.3.2, the interpolation or regression method chosen can
also have a considerable impact in the model’s performance. It is observed that linear
interpolation provides better empirical results. One straightforward reason to explain
this may be the previously exposed matter of having a flat end and beginning of the
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interpolation, whenever there is no valid observations there, like it can be observed in
Figure 5.8. This may be effective in reducing the degree of freedom of the ODE solver
to change the value of the hidden state, because as explained in Chapter 4, in those
cases the derivative of the interpolation is exactly zero and thus the hidden state will not
change when the solver evaluates the interpolation there. The previous is not the case for
the other interpolation and regression methods, therefore they might be systematically
misleading the solution of the hidden state when the ODE solver evaluates the data path
in those regions. As the data interpolation methods will unavoidably influence the hidden
state evolution, and given that the linear interpolation is only the simplest interpolation
method available, this raises the question as if other less naive and smooth interpolation
or regression methods could model the evolution of the data in a way that benefits
NCDEs more. In particular, SE kernel regression was evaluated in this work, but with
unsatisfactory results. However, given that this method itself has some hyperparameters,
if enough data time points are provided perhaps its hyperparameters could be learnt from
the data, potentially leading to better results than when using simple linear interpolation.

Additionally, it was shown that when using high-dimensional input data, the perfor-
mance of the NCDE and S-NCDE models was reduced (although less distinctively so
for the S-NCDE model) and their number of parameters rose considerably compared to
the baselines models. The previous means that the baselines were able to successfully
extract additional information on this features to improve their performances. This rise
in the number of parameters for the NCDE models when dealing with a high-dimensional
dataset has practical implications which will be discussed in the following section. Fi-
nally, an acute sensitivity of NCDEs to observations that are noisy and unrelated to crop
phenology, like the presence of clouds, was revealed in this work. Even though filtering
out cloudy observations is the common practice in remote sensing, the drop in the per-
formance of NCDEs when cloudy observations are not filtered out from the data, means
that the baselines models may still be used as end-to-end models on raw satellite image
data with an acceptable accuracy, while NCDEs probably would not be the preferred
choice in this scenario. Additionally, this provides further evidence for the belief that
the continuous data representation needed for the NCDE and S-NCDE models imposes
an additional inductive bias into these models w.r.t. the baselines.

6.2. Limitations of NCDEs

The exploration of a NCDE model for crop classification was motivated by the hypothesis
that a continuously defined hidden state may be more effective in modelling the phenolog-
ical development of a crop. However, the practical results obtained in this work did not
corroborate this hypothesis, due to their lower performance compared to an ODERNN
model or the RNN baselines. Assuming that no implementation error was made, the
main reasons behind this are thought to be either in the continuous data representation,
or in the ODE solver and are discussed in the following. First, a straightforward option
is that a more refined data interpolation method could further improve the results of
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6.2. Limitations of NCDEs

NCDE models. This is believed so, as it was empirically observed that the interpolation
method chosen indeed induces a strong prior in the model and can affect the performance
dramatically (e.g., with an uncalibrated SE kernel regression). Some ideas for a more
refined continuous data representation method are mentioned in section 6.3. Second,
an adaptative ODE solver method was used in the experiments, whose operation may
be particularly affected by a noisy dataset. The current implementation of this type of
solvers in torchdiffeq has batch-dependant time steps, because for evaluating a candi-
date step they compute a norm of the hidden state over the hidden state dimension and
the samples in the batch. This may lead to particularly noisy time steps taken by the
solver when the data is highly heterogeneous, such as that of Swisscrop dataset which
has many different classes (i.e., in a random batch some classes may be missing w.r.t a
different random batch). This could be a potential reason as of why it is observed that
the ODERNN method performs worst than the RNN baselines in the Swisscrop dataset.
In this case the ODEs in the ODERNN model that allow the hidden state to continuously
evolve, are actually hampering the performance of a GRU cell w.r.t. its performance on
a stand-alone GRU model (i.e., recall that a ODERNN model is implemented here with a
GRU cell). Some options for investigating this hypothesis and overcoming this potential
issue are given in section 6.3.

Whichever the case may be, unless better performances can be obtained with the NCDE
model, their practical advantages (e.g., less memory use than a ODERNN model [32])
are deemed limited compared to the baseline models, and there are several considerations
that either limit the model’s practicality or that require special attention when training
NCDE models:

Number of parameters. When the number of input features in the dataset rises, the
number of parameters in a NCDE model will rise proportionally on the last layer
of the vector field, which may become of great size compared to its neighbouring
layers. The dramatic drop in the NCDE model’s performance observed in section
5.3.3 is likely due to this reason, either because of the disproportionate architectural
design or a because of a severe overfitting problem, due to the five-fold rise in the
number of parameters w.r.t. the base case. In any case, this is a major problem
with NCDEs, because it means that if a dataset is high dimensional, one must
recur to feature reductions techniques, which will inevitably lose some information
and thus affect the performance of the model. Furthermore, if the dataset is also
fairly big in terms of number of samples and input dimensions, there are limited
options for increasing the number of parameters of the model without recurring in
a disproportionate size of the final layer in the vector field fθ.

Stability. Model’s stability in training (i.e., having a training loss that is decreasing
without big prominences) has been found by some authors, to be dependant on
the learning rate (lr) to batch-size (BS) ratio [97], [98], and the appropriate ratio
depends on the amount of parameters that the model has. In practice, it was
found in some preliminary experiments in this work that the bigger the network,
the lower the lr

BS ratio had to be to continue observing a stable training. This
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can be achieved by either lowering the learning rate or by increasing the batch
size, to ensure that update steps taken by the optimizer are not big or at least
the gradients are averaged out over more samples, thus preventing noisy parameter
updates. With that said, and bearing in mind the previously mentioned hypothesis
of potentially noisy steps taken by an adaptative ODE solver as well, one alternative
to prevent the latter, while also keeping a stable training loss, is to considerably
increase the batch size, and to increase the learning rate in linear proportion [97].
In this work, having a larger batch size of 1024 (i.e., w.r.t. to 512), was found to
be beneficial to the NCDE model. In some exploratory tests on the TUM dataset,
the batch size was further increased while still producing similar and stable results,
however having larger batch sizes on the Swisscrop dataset was not evaluated due
to time constraints.

Speed of computation. Even if using a semi-norm [95] for the ODE solver, did increase
the speed of computation for NCDEs, it was repeatedly observed across the ex-
periments that NCDEs are very slow to train compared to the GRU and LSTM
models. NCDEs can take several hours to fit the data and the S-NCDE model up
to days, while RNNs can do it in just a couple of minutes. This is big practical
constraint for developing new ideas and testing them quickly. In addition, one
must consider the computation time of the interpolation coefficients in the data
pre-processing. When missing values are largely present in the data, such as those
representing cloudy observations in this work, the available interpolation methods
in torchcde become slow. In spite of a particular model being slow to train, if they
would achieve considerable better results than other models in practice, trained
models could be applied at inference time for applied use, so it may not matter
if they were slow to train. However, given that NCDEs would additionally need
to interpolate the new time series at inference time, their practicality for creating
crop distribution maps over large areas is questionable, as it would take them a
much longer computation time compared to other models that do not require in-
terpolation such as RNNs or the ODERNN model. For a reference, the predictions
with the trained models over a fifth of the total area of the Swisscrop dataset (i.e.,
480 km2), from which a sample was used for visualization in Figure 5.7, took about
10 hours for the NCDE model and only one minute for the GRU model, using a
single GPU. This is a considerable 600 times difference, that could make the use of
NCDE models for making country-level crop maps, problematic depending on the
computational resources available.

6.3. Outlook

In this section, some possible directions for future work looking to improve the perfor-
mance and speed of NCDE models for crop classification are given.

• Vector field design. Improving the design of the vector field in terms of its final
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layer. For a vector field that is a FFNN, as implemented in the original NCDE
paper and in this work, its output layer is a linear layer that maps Rr → Rp×v,
when there are r hidden units. This means that this layer has r×p×v parameters,
so when the input dimension v is large, it may cause an ill-defined architecture. So
the development of ideas on how to circumvent this issue is required. Additionally,
the design of the controlled vector field gθ,X could be improved by squeezing dX

dt
values in a similar way that the final tanh activation function does so with the vec-
tor field fθ, which may be the reason of NCDEs’ sensitivity to noisy data. Finally,
other combinations of hidden state sizes between the two CDEs could be used when
using a S-NCDE model.

• Continuous data representation. As discussed in section 6.2, more sophisti-
cated interpolation or regression methods may provide improved results w.r.t. to
linear interpolation. In particular, a smooth method would be preferable, because
the underlying phenological process is smooth. One option is to improve SE kernel
regression by calibrating its hyperparameters with the data. Another option is to
hybridize a cubic spline interpolation to have a flat end and beginning if there are
missing values there, like it is the case for linear interpolation. In this case the hid-
den state would be ensured to remain unchanged when the vector field is evaluated
in those regions.

• ODE solver. Adaptative ODE solvers in torchdiffeq calculate a batch-dependant
norm, which is thought to affect the models performance on certain datasets. The
most straightforward approach to test this hypothesis would be to do a hyperpa-
rameter search with fix-step solvers and evaluating different step size values, for
the ODERNN and NCDE models on the Swisscrop dataset and see if better results
can be obtained. Other options may be to adjust the error tolerances of adaptative
solvers to smaller values, however this would incur into even larger training times;
or fix the current torchdiffeq algorithm for adaptative ODE solvers, to compute
only a sample-wise norm, in order to have independent norms used to solve the
ODEs on each sample. Alternatively, Hypersolvers [99] may be evaluated, which
add a learnable term to the solver step in order to enhance the solver and have
presumably a notable reduction on speed of computation.

• Uncertainty. NCDEs and NODEs, are not able to process stochastic input nor to
give any uncertainty estimates about their predictions, because ODEs and CDEs
are deterministic. Neural ODE processes [100], which define a stochastic process
over a distribution of NODEs, appears like a promising alternative that can pro-
cess and dynamically adapt to incoming data points from time series input like
NCDEs do, while also modelling uncertainty in the data, the hidden state and the
predictions.
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Chapter 7

Conclusion

In this work the use of Neural Controlled Differential Equations, a novel deep learning
model, was explored for the problem of crop classification with time series of satellite im-
ages. Modelling the temporal dimension is crucial for a better classification, since changes
on the reflectance values of the crops throughout the year holds distinctive phenological
information of each crop type. Deep learning methods that are able to process time
series data, are currently the state-of-the-art for crop classification, largely due to their
flexibility and scalability for dealing with data. Recurrent Neural Networks in particular,
have recently shown outstanding empirical results for crop classification. This type of
methods however, holds information in a hidden state that is not continuously defined,
which is thought to be a disadvantage when attempting to model continuous phenomena
such as the phenological development of a crop. To address this issue, a recently proposed
enhancement to an RNN model, the ODERNN model, has been successfully applied for
crop classification. This model is able to continuously define portions of the hidden state
of an RNN, and its empirical performance validate the added value of a continuous hid-
den state model as a proxy for crop phenology. For this reason, and also motivated by
research in ecology on continuous phenology models, it is believed that a model that
could rather define an entirely continuous hidden state would be more beneficial for the
task of crop classification. Neural Ordinary differential equations, are a type of deep
learning models that have recently entered the stage for continuous-state modelling and
are a rapid-pace area of research, with application to numerous fields. The ODERNN
model efficiently uses NODEs between an RNN cell data readings, for a semi-continuous
modelling of its hidden state. In the last year, NCDEs have been proposed as a related
model to a NODE that can model a fully continuous hidden state, unlike the ODERNN
model, and that can dynamically incorporate time series data by by defining a Controlled
Differential Equation. In contrast, NODEs behave like ODEs, thus are fully defined by
their initial value and have no mechanism for incorporating incoming time series data.

To evaluate NCDEs for crop classification, the model’s performance was methodologically
assessed on a series of experiments, in comparison to selected state-of-the-art baseline
models, namely, the aforementioned ODERNN model and two types of RNNs, the GRU
and LSTM models. In addition, a more complex stacked version of NCDEs, i.e., the
S-NCDE model, was developed and evaluated. All the models were studied with two
multi-temporal crop classification datasets, the TU Münich dataset, which consists of 19
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crop classes, and the Swisscrop dataset from Zürich and Thurgau, and has 52 crop classes.
First, the models were evaluated in a base case scenario for both datasets, consisting on
the configuration choices that better suited NCDEs, such as only using a reduced-features
version of TUM dataset or a shorter time series version of Swisscrop dataset, and includ-
ing the observational mask as a channel in the data. The best results were obtained
by the ODERNN baseline, closely followed by the two RNN baselines. The NCDE and
S-NCDE models showed similar performance, but the S-NCDE model could manage to
do so with fewer parameters at a cost of a higher computation time. In this latter aspect,
the RNN baselines were better than the other models by a considerable margin, and the
NCDE training time was always higher than that of the ODERNN model. In addition
the ODERNN and NCDE models’ performance at detecting each crop type was further
analyzed. It was observed in general, that both models were able to identify most of the
classes similarly well, however for difficult non-crop classes like fallow or pasture, minor-
ity classes like chestnuts or gardens, and very similar classes such as winter triticale and
winter rye, the ODERNN methods was consistently better than the NCDE model.

Subsequently, NCDEs and the other models were further scrutinized with a series of
ablation studies, in order to better understand their strengths and weaknesses. A study
where the addition of the observational mask as a channel was omitted, showed a de-
crease in performance for all models, but had a particularly adverse effect for the NCDE
model and the S-NCDE model, although to a lesser degree on the latter. Hence, it was
found that this is indeed an important consideration that must be taken with NCDE
models, as they first need to create a continuous data path with the data points, thus
losing the sense of location of the missing values in the data. When the observational
mask is not included, the NCDE models struggle to find out which portions of the con-
tinuous data path are more reliable. Later, the effect of using different continuous data
representation methods such as linear and cubic interpolation, in addition to the squared
exponential kernel regression, was explored for the NCDE and S-NCDE models. The
results confirmed the importance of the method selected and showed an overall better
performance with the simpler linear interpolation. Another study regarding the use of a
a higher dimensional input data revealed that the NCDE models are particularly affected
in this scenario, due to the effect that this has on the vector field’s network architecture,
whose parameters on the final layer depend directly on the input dimension size, thus
originating a disproportionate number of parameters. The S-NCDE model suffered this
problem to a lesser degree, and the baseline models could conversely benefit from the
additional features, thus increasing their performance. Finally, a study where the cloudy
observations in the dataset were not neglected, showed that every model experienced a
decrease in performance due to the presence of uninformative observations. The NCDE
model experienced the largest decrease in performance, followed by the S-NCDE model.
This result exposes the sensitivity of NCDE models to uninformative observations. Ad-
ditionally, it further lays in evidence that the need of creating a continuous data path
of real physical phenomena imposes an inductive bias or prior assumption to the NCDE
models, which is not present for the baselines models.
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Finding high performing and practical-to-use models for crop classification is of great
relevance for agricultural monitoring, as it allows for a scalable, effective and accurate
way of mapping crop distributions on a country-scale. This information is valuable for
resources management, agrarian policy making, ecosystems protection and food security,
among others. In this work it was shown that NCDE models are not yet at the level of
other state-of-the-art models for this task, and are slow to train or to test, compared to
RNN models. However, their performance is not far behind, specially considering that
they do not rely on an RNN model like the ODERNN model does, and it is believed that
there are solvable practical issues that hindered their performance and prevented them
from fully expressing the benefits of continuous-time modelling. In particular, smooth
methods for continuous data representation that comply with some desirable qualities
that linear interpolation shows, are worth to be explored, such as a cubic interpolation
with a flat end and beginning when there are missing values there, or to learn SE kernel
regression’s hyperparameters with the data. In addition, it is believed that an adequate
numerical solver configuration is indeed important for finding appropriate hidden state
solutions. It was observed on the Swisscrop dataset, that even an ODERNN model
would do worse-off than an RNN model, presumably because of the negative effect of
a batch-dependant adaptative ODE solver on a dataset with many classes. Therefore,
further work is needed to develop and test these and more ideas. What is certain, is that
the irruption of NODEs are a scientific breakthrough, where the ruling physical mod-
elling paradigm of differential equations and the new and powerful modelling paradigm
of machine learning have been combined. With the current pace of research in this topic,
these models are likely to influence and drive applications on many fields that have inher-
ently close connections to physical systems, such as remote sensing and environmental
modelling, in the years to come.
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Appendix A

Hyperparameters analysis

A separate grid analysis was performed for each model on each dataset, with one run
per combination of hyperparameters. For all models, an initial learning rate of 0.001 is
used (unless otherwise stated), which was found to be a robust choice in general. The
batch size is always part of the analysis in order to find appropriate learning dynamics
for the optimizer. In the same way as for all the experiments in the results section, the
learning rate was reduced with a factor of 0.1 when the overall validation F1-score failed
to increase after one epoch.

For TUM dataset, the reduced-features version of the dataset, explained in Chapter 4,
was used. Additionally, for the NCDE and S-NCDE models, linear interpolation method
with equally spaced intervals was used for the continuous data representations, as it was
the case too for Swisscrop dataset. The results for the GRU, LSTM, ODERNN, NCDE
and S-NCDE models are presented in Tables A.1 A.2, A.3, A.4, A.5, respectively. The
hyperparameters analyzed for GRU and LSTM models are only batch size and hidden
state size, and the values tried for both models are identical. The hyperparameters
analyzed for the ODERNN, NCDE and S-NCDE models are the same, i.e., batch size,
hidden state size, and width and depth of the vector field. The values used are similar,
with only slight differences in the values tried for the hidden state size. In each table, the
combination that was selected is marked in bold. For the NCDE and S-NCDE methods
this was not necessarily the combination that achieved the best performance on the
metrics, but one that performed acceptably, did not severly overfit, and had a similar
amount of parameters than the selected baselines models.

For Swisscrop dataset, the results for the GRU, LSTM, ODERNN, NCDE and S-NCDE
models are presented in Tables A.6 A.7, A.8, A.9, A.10, respectively. Due to time
constraints, the analysis was performed only on a fraction of the time series length with
a time downsampling factor of four, i.e., the length of the time series was downsampled
from 142 to 36, with the proceeding detailed in section 4.2. Additionally, for speeding
up the analysis with the ODERNN, NCDE and S-NCDE models, some information from
the analysis on TUM dataset is considered. Since the GRU and LSTM models are fast
to train, the learning rate was additionally considered in the analysis, as it was observed
that these models could improve their performance with a higher learning rate. For the
ODERNN the hyperparameters analyzed are the same than for the TUM dataset, with
the exception of the initial learning rate, for which a value of 0.01 was used, and for
the case of three hidden layers on the vector field, which was omitted because it was
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observed in the TUM dataset that the results were worse overall in this case. For the
NCDE model, the only change w.r.t the analysis on the TUM dataset is that the hidden
state size was always set to 128, which was found to work better on the TUM dataset.
Finally, for the S-NCDE model the analysis is substantially reduced, due to the long
training times, and only the batch size and the depth of the vector field are analyzed,
while the hidden state size is set to 32 and the hidden units of the vector field to 128,
like in the TUM dataset.

Table A.1.: Grid search over batch size (BS) and hidden state size (HC) for GRU model
on TUM dataset.

BS HC Accuracy (%) F1-score (%) Parameters

256 64 85.8 73.6 15K
128 86.2 74.6 55K
256 86.3 75.6 210K

512 64 85.1 71.3 15K
128 86.0 74.8 55K
256 86.2 75.0 210K

1024 64 84.8 69.2 15K
128 85.4 71.6 55K
256 86.1 74.1 210K

Table A.2.: Grid search over batch size (BS) and hidden state size (HC) for LSTM model
on TUM dataset.

BS HC Accuracy (%) F1-score (%) Parameters

256 64 85.3 71.7 20K
128 86.2 74.6 75K
256 86.4 75.0 275K

512 64 84.6 69.2 20K
128 85.9 73.7 75K
256 86.1 74.8 275K

1024 64 84.6 69.3 20K
128 84.8 70.0 75K
256 85.9 74.2 275K
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Table A.3.: Grid search over batch size (BS), hidden state size (HC), and width (HU)
and depth (HL) of the vector field for ODERNN model on TUM dataset.

BS HC HU HL Accuracy (%) F1-score (%) Parameters

512 128 128 1 86.0 73.7 90K
2 86.4 75.4 105K
3 86.3 75.3 120K

256 1 86.3 74.4 120K
2 86.5 75.7 185K
3 86.3 75.1 250K

256 128 1 86.6 76.0 275K
2 86.6 75.5 290K
3 86.6 75.8 310K

256 1 86.4 76.1 340K
2 86.6 76.1 405K
3 86.4 75.8 470K

1024 128 128 1 86.0 73.8 90K
2 85.8 72.3 105K
3 86.2 74.8 120K

256 1 85.7 72.9 120K
2 85.8 73.3 185K
3 85.8 73.4 250K

256 128 1 86.5 75.9 275K
2 86.5 75.5 290K
3 86.6 75.6 310K

256 1 86.5 75.8 340K
2 86.5 75.9 405K
3 86.3 74.6 470K
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Table A.4.: Grid search over batch size (BS), hidden state size (HC), and width (HU)
and depth (HL) of the vector field for NCDE model on TUM dataset.

BS HC HU HL Accuracy (%) F1-score (%) Parameters

512 64 128 1 85.1 72.4 75K
2 85.2 72.4 90K
3 85.2 72.2 110K

256 1 85.3 72.9 150K
2 85.2 72.4 215K
3 85.5 72.8 280K

128 128 1 85.2 72.9 150K
2 85.5 73.6 170K
3 85.7 73.8 185K

256 1 85.4 73.3 300K
2 85.2 72.7 365K
3 85.0 72.3 430K

1024 64 128 1 85.3 72.9 75K
2 85.1 72.4 90K
3 85.2 72.2 110K

256 1 85.4 73.1 150K
2 85.5 73.6 215K
3 85.7 74.1 280K

128 128 1 85.3 73.2 150K
2 85.0 72.0 170K
3 85.6 73.4 185K

256 1 85.5 73.8 300K
2 85.6 73.9 365K
3 85.7 74.2 430K
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Table A.5.: Grid search over batch size (BS), hidden state size (HC), and width (HU)
and depth (HL) of the vector field for the S-NCDE model on TUM dataset.

BS HC HU HL Accuracy (%) F1-score (%) Parameters

512 32 128 1 85.8 74.4 175K
2 86.0 74.8 210K
3 83.5 67.5 240K

256 1 85.6 74.4 350K
2 85.9 74.4 480K
3 85.8 74.2 610K

48 128 1 85.9 74.7 365K
2 85.9 74.8 395K
3 84.9 71.6 430K

256 1 85.7 74.7 720K
2 86.0 75.1 815K
3 84.6 70.4 985K

1024 32 128 1 85.3 72.8 175K
2 85.6 73.7 210K
3 85.6 73.8 240K

256 1 85.5 73.5 350K
2 85.6 74.2 480K
3 84.7 71.5 610K

48 128 1 85.0 72.2 363K
2 85.7 74.3 395K
3 85.5 73.4 430K

256 1 85.6 73.8 720K
2 85.7 73.7 850K
3 85.2 72.3 985K
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Table A.6.: Grid search over batch size learning rate (lr), batch size(BS) and hidden state
size (HC) for GRU model on Swisscrop dataset.

lr BS HC Accuracy (%) F1-score (%) Parameters

0.001 256 64 75.9 74.0 15K
128 83.1 82.4 60K
256 87.0 88.3 215K

512 64 71.5 68.4 15K
128 80.1 81.0 60K
256 86.4 87.7 215K

1024 64 66.1 61.3 15K
128 76.9 75.0 60K
256 86.0 87.6 215K

0.01 256 64 80.1 81.0 15K
128 86.6 87.9 60K
256 82.3 84.5 215K

512 64 79.0 78.9 15K
128 85.2 87.1 60K
256 86.1 87.8 215K

1024 64 78.7 79.4 15K
128 85.2 87.1 60K
256 87.4 89.3 215K
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Table A.7.: Grid search over batch size learning rate (lr), batch size(BS) and hidden state
size (HC) for LSTM model on Swisscrop dataset.

lr BS HC Accuracy (%) F1-score (%) Parameters

0.001 256 64 76.4 74.6 20K
128 83.0 83.9 75K
256 86.8 88.9 285K

512 64 72.5 70.4 20K
128 80.8 82.1 75K
256 86.2 85.9 285K

1024 64 67.9 64.7 20K
128 77.1 75.8 75K
256 82.9 82.4 285K

0.01 256 64 80.0 81.1 20K
128 85.1 86.7 75K
256 82.6 82.7 285K

512 64 78.6 79.4 20K
128 85.2 86.1 75K
256 88.0 89.4 285K

1024 64 79.3 79.5 20K
128 85.2 84.6 75K
256 79.5 78.3 285K
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Table A.8.: Grid search over batch size (BS), hidden state size (HC), and width (HU)
and depth (HL) of the vector field for ODERNN model on Swisscrop dataset.
The learning rate (lr) is set to 0.01.

BS HC HU HL Accuracy (%) F1-score (%) Parameters

512 128 128 1 85.3 86.0 90K
2 84.3 85.5 110K

256 1 85.4 87.0 125K
2 85.2 86.9 190K

256 128 1 75.2 74.0 280K
2 73.3 74.5 300K

256 1 74.6 73.2 350K
2 73.4 74.6 415K

1024 128 128 1 85.4 86.8 90K
2 85.5 86.8 110K

256 1 86.5 88.2 125K
2 85.1 86.9 190K

256 128 1 87.0 88.6 280K
2 86.2 88.3 300K

256 1 86.8 87.7 350K
2 85.8 87.7 415K

Table A.9.: Grid search over batch size (BS), and width (HU) and depth (HL) of the
vector field for NCDE model on Swisscrop dataset. The hidden channels
(HC) are set to 128.

BS HU HL Accuracy (%) F1-score (%) Parameters

512 128 1 85.2 86.2 125K
2 80.6 81.1 140K
3 79.7 80.9 155K

256 1 84.8 86.2 240K
2 85.3 84.2 305K
3 79.8 81.0 370K

1024 128 1 83.9 84.9 125K
2 80.9 82.2 140K
3 81.9 81.9 155K

256 1 86.1 87.8 240K
2 86.1 87.9 305K
3 74.2 75.0 370K
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Table A.10.: Grid search over batch size (BS) and depth (HL) of the vector field for the
S-NCDE model on Swisscrop dataset. The hidden channels (HC) are set to
32 and the hidden units (HU) of the vector field to 128.

BS HL Accuracy (%) F1-score (%) Parameters

512 1 86.1 87.2 170K
2 79.9 81.0 200K

1024 1 83.2 84.2 170K
2 75.6 74.0 200K
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