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Abstract

Domain adaptive object detection aims to leverage the knowledge learned from a labeled
source domain to improve the performance on an unlabeled target domain. Prior works
typically require access to the source domain data for adaptation, as well as the availability
of sufficient data in the target domain. However, these assumptions may not hold due to
data privacy and rare data collection. In this thesis, we propose and investigate a more
practical and challenging domain adaptive object detection problem under both source-
free and few-shot conditions, named as SF-FSDA. To overcome this problem, we develop
an efficient labeled data factory based approach. Without accessing the source domain, the
data factory renders i) infinite amount of synthesized target-domain-like images, under the
guidance of the few-shot image samples and text description from the target domain; ii)
corresponding bounding box and category annotations, only demanding minimum human
effort, i.e., a few manually labeled examples. On the one hand, the synthesized images
mitigate the knowledge insufficiency brought by the few-shot condition. On the other
hand, compared to the popular pseudo-label technique, the generated annotations from the
data factory not only get rid of the reliance on the source pretrained object detection model,
but also alleviate the unavoidably pseudo-label noise due to domain shift and source-free
condition. The generated dataset is further utilized to adapt the source pretrained object
detection model, realizing robust object detection under SF-FSDA. The experiments under
different settings demonstrate that our proposed approach outperforms other state-of-the-
art methods on the SF-FSDA problem.
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Chapter 1

Introduction

Object detection, which aims at recognizing and localizing the object instances of certain
classes in an image, is a fundamental problem in computer vision. Driven by the rapid
development of deep learning and the availability of large-scale datasets, object detection
has achieved great advancement over the past decade [61, 48, 60, 7]. However, the per-
formance and generalization ability of the detection system is highly dependent on the
availability of manually labeled and diverse datasets, whose labor cost for annotation can
be extremely expensive. When applied to the images of which the distribution is differ-
ent from the training images, the detection models typically exhibit poor generalization,
which is common in real applications due to the difference in weather, illumination, ob-
ject appearance, etc.. Thus, recently, domain adaptive object detection problem has been
studied [9, 66, 27, 36, 73, 59], which aims to transfer the knowledge learned from the la-
beled source domain to the unlabeled target domain to train a robust cross-domain object
detection model, reducing the effort and cost of human annotation for the target domain.

Generally, existing domain adaptive object detection works reduce the domain shift
between the source domain and the target domain, by matching and aligning the source
and target domain representations in some space (input space [25, 30, 4] and/or feature
space [9, 14]) through the typical techniques of adversarial learning [62, 66], pseudo-
label [64, 37, 53], and image translation [28, 30]. They typically assume that, i) the source
domain images are accessible when adapting to the target domain, and/or ii) there are
abundant images available in the target domain. However, both of these assumptions may
not hold in real applications. For example, the data privacy rules and the limited data
transmission capacity can break the assumption i), i.e., inducing the source-free condition,
while the rare species image collection and the special medical applications can hinder
the assumption ii), i.e., causing the few-shot condition. The aforementioned domain adap-
tive object detection techniques can tackle the isolated source-free or few-shot condition,
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CHAPTER 1. INTRODUCTION

but cannot deal with the two conditions at the same time. To be more specific, pseudo-
label based techniques are popularly utilized in source-free conditions [44, 39], but are
not capable of handling few-shot conditions, since it relies on enough samples to reduce
the pseudo-supervision noise brought by the domain gap. In contrast, adversarial learn-
ing [52, 19] and image translation [49, 50] based methods can operate under few-shot
conditions, but require access to the source domain.

In this work, we study the domain adaptive object detection problem under both source-
free and few-shot conditions, named as SF-FSDA, i.e., the source domain images are not
accessible when adapting the object detection model to the target domain, and there are
only a few samples available in the target domain (see Fig. 1.1).

Source Domain Traditional 
DA

Target Domain

SF-FSDA

Minimum Human 
Effort

Text: Comic

D
at

a 
Fa

ct
or

y
E

ff
ic

ie
nt

 L
ab

el
ed

Synthesized Samples,
Synthesized Annotation

(a) SF-FSDA vs Traditional DA (b) Efficient Labeled Data FactoryFigure 1.1: Comparison between traditional domain adaptive object detection (DA) prob-
lem and our proposed SF-FSDA problem

1.1 Focus of this Work
In this thesis, we define the challenging SF-FSDA problem and manage to address this
problem via the efficient labeled data factory based approach (see Fig. 1.2), which can au-
tomatically generate sufficient target-domain-like images and their corresponding object
detection labels, once provided with the text guidance, few-shot image guidance and min-
imum human annotation. In a nutshell, our work makes the following main contributions:

• We discuss the domain adaptive object detection problem under the source-free and
few-shot conditions, named as SF-FSDA, where there are only a few samples avail-
able in the target domain, and only the source pretrained model is accessible for the
adaptation to the target domain.

• We develop the efficient labeled data factory based approach, where infinite training
data could be synthesized in this restricted condition with minimum human annota-
tion effort.
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CHAPTER 1. INTRODUCTION

• We prove the effectiveness of our proposed method for the SF-FSDA problem via
experiments on different benchmarks, serving as a strong baseline for further re-
search.
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(a) SF-FSDA vs Traditional DA (b) Efficient Labeled Data Factory
Figure 1.2: Our proposed efficient labeled data factory

1.2 Thesis Organization
This Thesis is organized as follows:

• In Chapter 2, we introduce works related to our topic. We mainly cover two parts
of correlated research. The first part talks about generative adversarial networks
(GANs) with their applications in image style adaptation and dataset synthesis. The
second part lies in domain adaptation, focusing on domain adaptive object detection
and domain transfer.

• In Chapter 3, we describe our proposed efficient labeled data factory based approach
in detail. The problem statement and challenges are defined. We illustrate our gen-
eral idea for solving the SF-FSDA problem and explain our methodology with the
network design.

• In Chapter 4, we present the results of our experiments. We mainly evaluate the per-
formance of our approach in solving the SF-FSDA problem. Ablations to examine
the synthesis quality of our data factory are also provided.

• In Chapter 5, we explore other possible solutions and discuss the potential applica-
tions and outlooks of our approach.

• In Chapter 6, we draw conclusions of our work.
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Chapter 2

Related Work

Our efficient labeled data factory based approach relies on synthesized training samples
successfully adapted to the target domain and automatically generated annotations for do-
main adaptation of the downstream object detection task. In this chapter, we introduce a
wide range of methods for image style adaptation based on GANs, as well as GAN-based
dataset synthesis approaches. Other domain adaptive object detection works are also dis-
cussed under the setting of the SF-FSDA problem we proposed.

2.1 Generative Models
Recently, GANs [23] have become an active research area and boosted numerous appli-
cations, especially image synthesis. It is demonstrated that, given proper training, GANs
can synthesize semantically meaningful data from standard data distributions. The cur-
rent state-of-the-art GAN models [6, 20, 85, 33] are able to generate high-quality realis-
tic images of diverse categories. The rapid development of GANs powers a wide range
of applications, including image projection and editing [3, 2, 1, 56, 46], image-to-image
translation [88, 55, 29], and domain adaptation [72, 71].

Recent style-based generators [34, 35, 32, 33] produce impressive results and is proven
to allow for flexible style control via mapping noise vectors to a higher-dimensional se-
mantic space, which inspires several extensions such as image manipulation [56, 18, 90],
image editing [46, 2], and dataset synthesis [86].
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CHAPTER 2. RELATED WORK

2.2 Image Style Transfer with GANs
Image style transfer aims to adapt the image in a source domain to a target domain with
a different style while keeping the original content. Style adaptation based on conditional
generative models has been explored in different directions [5, 88, 56, 18]. In this section,
we discuss works focusing on two aspects: image manipulation and image synthesis.

2.2.1 Image Manipulation
To transfer images to the desired style, one group of research working on the image-to-
image translation task designs a network to directly learn the mapping from the input
image to the output one [88, 55]. [88] deploys the cycle consistency loss, which enables
training with unpaired images. In [55], they try to further preserve the content when the re-
lationship between the source and target domains is not bijection, and proposes patchwise
contrastive learning.

Another group of work explores the GAN latent space, trying to learn disentangled
latent representations [51, 16, 79] for image editing or manipulation. [29] is based on the
assumption of the latent GAN space to be decomposable. Based on this intuition, they
encode the source image into a style space and a shared content space, recombine the code
with the content encoding of the source image and random style encoding from the target
domain, and then generate the output transferred image with a decoder.

Such GAN inversion idea has been explored more intensively since the recent work
of style-based generators [34, 35, 32, 33]. The semantically meaningful latent code space
of StyleGAN [34] and StyleGAN2 [35] leverages the possibility of additional style con-
trol. Specifically, the general network structure consists of two main components: a map-
ping network that projects the input noise vector z to the intermediate latent code w in
a high-dimensional space W or W+ for the purpose of disentanglement, and a synthe-
sis network, which progressively generates high-quality images deploying the idea of the
previous work [20]. Based on the work of StyleGAN, [1, 68, 63] train an encoder to ef-
ficiently embed images into the latent StyleGAN space. The generated latent codes allow
for high-quality image reconstruction, which empowers semantically meaningful image
manipulation in the latent space. Similar to [29], [63, 90] do style mixing in the latent
space by recombining the embedded codes of the content input and the style input, out-
putting images with higher quality and more detailed control. [81] trains a multi-model
encoder, which, instead of a target style image, encodes a target text into a uniform em-
bedded space with the source image, and does style mixing similar to the aforementioned
image encoding works. Moreover, with a semantically meaningful space, it is also pos-
sible to directly edit and optimize the random latent code to generate desired results. A
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number of works manage to correlate semantic features at different scales e.g.hair color,
pose, to specific editing directions in the latent code space. [24, 67] discover important
editing directions by layer-wise decomposition. [56, 46, 2] optimize the latent code with
extra supervision from text and/or mask labeling to achieve the desired image manipula-
tion/editing. [91, 79] try to explore an even more disentangled StyleGAN feature space to
enable more precise control.

2.2.2 Image Synthesis
Another direction explored in GAN style adaptation is image synthesis. Instead of manipu-
lating or editing real images, the GAN network is adapted to generate infinite synthesized
images in the target style. The typical approach is fine-tuning a pretrained network by
leveraging extra style guidance from the target domain. Various types of training guid-
ance [42, 46, 15, 12, 57] are utilized for controlling the adaptation process, among which
the most relevant to our work are text guidance and few-shot image guidance.

The text guidance is typically introduced by learning an image-text multi-model em-
bedding. Recent work by [58] introduces the Contrastive Language-Image Pre-Training
(CLIP) model, which learns joint vision-language representations from the large-scale
dataset of (image, text) pairs collected from the internet. Based on this powerful pre-
trained model, [56] incorporates the text guidance for the image manipulation task by
mapping the images and the text to the joint embedding space of CLIP. [18] then extends
this idea to the image synthesis task by deploying a dual-generator strategy to utilize the
image-text pair directional loss for fine-tuning the generator.

The few-shot image guided image synthesis works [65, 47, 54] aim to fully exploit
the knowledge from limited training samples, at the same time prevent mode collapse and
overfitting. [75] aims to generate images with poses specified by the provided training
sketches. They deploy a dual-discriminator strategy and introduce two adversarial loss
terms. The cross-domain adversarial loss is to encourage the translated image to look like
the few-shot training samples, while the second adversarial loss encourages the generated
images to still look like the original ones to deal with the degradation in image quality
and diversity. Moreover, they adopt the data augmentation strategy introduced in [32] and
only update the mapping network while freezing the other parts of the generator to further
prevent overfitting. [54] also introduces loss terms for both few-shot guidance and over-
fitting prevention. Instead of directly comparing the generated images with the training
samples, they compute cross-domain distance consistency across intermediate feature lay-
ers. Besides, they deploy the dual-discriminator strategy with discriminators at different
levels. [90] explores the extreme case of one-shot image guidance, utilizing pretrained
GAN inversion encoder and CLIP embedding. They introduce image guidance by keeping
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CHAPTER 2. RELATED WORK

generating images with the inverted latent code of the guidance image and enforce the gen-
erated result to resemble the generated image. In their work, only the synthesis network
is updated. [80] discusses the relationship between the pretrained model and fine-tuned
model, which indicates the possibility of semantic control for image synthesis task as well.

Different from the aforementioned works, our proposed data factory exploits both the
text guidance and the few-shot images guidance together, promoting each other to further
improve image synthesis in the target domain.

2.3 GANs for Dataset Synthesis
Common works which utilize GANs to synthesize datasets mainly explore the direction
of cross-domain adaptation of existing datasets with abundant annotations available. To
be more specific, they translate the existing labeled dataset images to obtain annotated
dataset in the new domain. [86] is the first work to directly generate training images
together with the labels. In this work, they take advantage of the semantically meaningful
intermediate feature maps of StyleGAN [34], and upon those features, train simple multi-
layer perceptrons to generate semantic segmentation annotations. Another co-concurrent
work [43] generates the images and semantic segmentation labels at the same time, and
enables image inference by incorporating a GAN inversion encoder.

These two works only focus on the dense prediction task, e.g., semantic segmentation,
and do not consider the domain adaptation problem. Instead, the label synthesis branch
of our proposed data factory tackles the domain adaptation problem with the few-shot
samples and text guidance, and investigates the synthesis of object detection annotations.

2.4 Domain Adaptive Object Detection
Domain adaptation aims to transfer knowledge between the label-rich source domain
and the unlabeled target domain to train the model that performs well on the target do-
main. In the past decades, it has been explored in different tasks, e.g., image classifica-
tion [72, 22, 19], semantic segmentation [70, 74, 69], and object detection [9, 36, 73].
Among the quite vast scope, the most relevant category to our work is domain adaptive
object detection, where adversarial learning, image translation, and pseudo-label based
methods are typically proposed and studied. Recently, considering more practical scenar-
ios, some works explore the source-free [44] or few-shot [76] domain adaptive object de-
tection problem, respectively. More specifically, [44] tackles the source-free [40, 82, 41]
domain adaptive object detection problem with the pseudo-label based technique. And
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CHAPTER 2. RELATED WORK

[76] studies the few-shot [52] domain adaptive object detection problem through adver-
sarial learning based method. However, none of the aforementioned works investigate
both the source-free and few-shot conditions at the same time. In contrast, our SF-FSDA
problem touches both source-free and few-shot conditions simultaneously, which is more
challenging and practical. From the method aspect, instead of exploiting pseudo-label or
adversarial learning, we synthesize the target domain-like images and the corresponding
bounding box and category annotations together with the efficient labeled data factory,
without accessing the source domain.

2.5 Domain Transfer with Auxiliary Knowledge
In some domain transfer related works, e.g., domain adaptation, domain generalization,
and domain randomization, the auxiliary knowledge from the public dataset is utilized
as the bridge to connect the source domain and the target domain. For example, since
the target domain images are not available for training, [84] randomizes the style of the
source domain images utilizing the images from the public dataset ImageNet [13], to im-
prove the generalization ability of the semantic segmentation model trained on the source
domain. [78] adopts the auxiliary images from ImageNet to regularize the image classi-
fication model training in the adaptation process, to prevent the model from forgetting.
However, these works all require access to the auxiliary images, which might not be prac-
tical due to data privacy regulations and data transmission capacity. Instead, our efficient
labeled data factory takes the publicly available GAN pretrained weights [35] as the auxil-
iary knowledge, which is more flexible and renders unlimited and unified image and label
synthesis.

8



Chapter 3

Methodology

In this chapter, we present our efficient labeled data factory based method to address the
SF-FSDA problem, where abundant target-domain-like images with corresponding labels
are generated with guidance from the few-shot samples, text description, and few-shot
manual annotations. Compared to the existing image translation based approaches [89,
55, 29, 47, 31], our proposed data factory-based method does not require access to the
source domain (source-free condition), and effectively exploits the knowledge from the
few-shot images (few-shot condition), together with the text, for image synthesis. Besides,
our method goes one step further and synthesizes bounding box annotations for the gen-
erated images at the same time, helping improve the downstream domain adaptive object
detection task.

For the structure of this chapter, we first set up the problem, and then introduce our
proposed solutions under the defined condition. The sections are organized as follows:

1. We discuss the challenges under our specific problem setup, and illustrate our moti-
vation.

2. We present the overall pipeline of our proposed efficient labeled data factory based
approach, as shown in Fig. 3.1.

3. We talk about the architecture of the image synthesis branch and the label synthesis
branch of our designed network.

3.1 Problem Statement
For the problem of domain adaptive object detection, we are given the labeled source
domain S = {xi

s,y
i
s}Ns

i=1 and the unlabeled target domain T = {xi
t}Nt

i=1, where xi
s,y

i
s
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Figure 3.1: Method overview of our efficient labeled data factory based approach

represent the i-th image and the corresponding bounding box and category annotations for
object detection in the source domain, and xi

t denotes the i-th unlabeled image in the target
domain. Ns, Nt are the number of images in the source and target domain, respectively.
Different from traditional domain adaptive object detection problem, we tackle the source-
free and few-shot target conditions, i.e., Ns ≫ Nt and {xi

s,y
i
s}Ns

i=1 is not accessible during
the adaptation process to {xi

t}Nt
i=1, named SF-FSDA problem.

Serving as an example, general pipeline of taking ’Comic’ as the target domain is
shown in Fig. 3.1. Under this setting, we take the well-labeled PASCAL VOC dataset as
the source domain, while there are only few-shot unlabeled Comic samples available in the
target domain. The aim is to train the domain adaptive object detection model under the
source-free and few-shot conditions, i.e., only the source pretrained model and few-shot
target domain samples are available for the adaptation to the target domain.

3.1.1 Technical Challenges
Compared to the traditional domain adaptive object detection problem, our proposed SF-
FSDA problem introduces more challenging source-free and few-shot conditions. Previous
techniques for domain adaptive object detection highly rely on adversarial feature learn-
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ing [9], image-to-image translation [30], and pseudo-label-based self-training [64]. On the
one hand, the challenge brought by the source-free condition is that, the previous adver-
sarial feature learning and image-to-image translation-based techniques require access to
source data during the adaptation process to align the distribution between the source and
target domains, making them not equipped to be engaged in our source-free setting. On the
other hand, the challenge induced by the few-shot condition is that, the pseudo-label based
self-training technique always relies on the availability of abundant target domain images
to reduce the prediction noise and improve the prediction confidence on the target domain,
which are difficult to operate in our few-shot setting. Thus, both the source-free and few-
shot conditions hinder the knowledge transfer between the source and target domains for
object detection.

3.1.2 Motivation
As discussed in the aforementioned technical challenges, the source-free and few-shot con-
ditions add on difficulty to address the domain adaptive object detection problem. Thus,
we aim to firstly adapt on the image level, i.e., synthesize the target-domain-like images.
However, different from the previous image translation methods that rely on the access to
both the source domain and the target domain, the adaptation is applied on the publicly
available trained GAN model, with only few-shot image and text guidance from the target
domain. During this process, no access to the source domain training data is required,
which provides more flexibility. Moreover, in order to provide reliable guidance for the
downstream object detection task, the method for synthesizing the corresponding object
detection labels is developed. Inspired by the observation that the trained GAN model
encodes the rich knowledge related to the object category and position implicitly in the la-
tent feature space, we introduce the label synthesis branch to produce the object category
and bounding box annotation automatically, providing only minimum human effort, i.e.,
few-shot manual annotation.

3.2 Efficient Labeled Data Factory for SF-FSDA Problem
In order to deal with the SF-FSDA problem, we propose the efficient labeled data fac-
tory based method, which i) synthesizes abundant target-domain-like images guided by
the few-shot samples and the text description from the target domain, without accessing
the source domain image; and ii) automatically generates the corresponding object bound-
ing box and category annotations, with the help of minimum human effort, i.e., few-shot
manual annotation, as shown in Fig. 3.1.
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Since the SF-FSDA problem touches the source-free setting, the whole training stage
will be divided into, i) source-pretraining stage, ii) image and label synthesis stage and
iii) target-adaptation stage. In the i) source-pretraining stage, we get the source pretrained
object detection model. The model is trained on the source domain, and this would be
the only stage where we leverage the access to the source training data. Then in the ii)
image and label synthesis stage, we produce the domain adaptation training data for the
original object detection model. The efficient labeled data factory is driven by the few-shot
image samples and text guidance from the target domain to synthesize the images with the
image synthesis branch, and at the same time automatically synthesizes the corresponding
object detection labels by only providing the few-shot manual annotations with the label
synthesis branch. In the iii) target-adaptation stage, we adapt the object detection model in
the source domain to the target domain. The synthesized images and corresponding labels
generated in stage ii) are exploited as training data in the target domain to fine-tune the
source pretrained object detection model in stage i).

3.3 Image Synthesis
In this section, we talk about the image synthesis branch, where we adapt the GAN model
to generate target-domain-like images. Given a publicly pretrained GAN model with the
generator G, we aim to learn an adapted generator Gt guided by the few-shot image sam-
ples {xi

t}Nt
i=1 from the target domain T , incorporating text description T simultaneously.

The whole network structure is based on StyleGAN2 [35] with additional dual-generator
and dual-discriminator design to incorporate both few-shot image and text guidance, and
prevent overfitting under the few-shot condition.

The original work in [35] introduces a style-based generator structure, which lever-
ages control of style by introducing a semantically meaningful feature space. As shown
in Fig. 3.2, the generator G consists of two main components: the mapping network,
which maps the original random noise vector input z to w in higher-dimensional latent
code space, and the synthesis network, which follows the previous work [20], progres-
sively generating higher-resolution images during which different levels of styles could be
controlled via the intermediate feature maps. In the following content, we introduce how
the few-shot image guidance and the text guidance are incorporated, respectively, with an
additional freezing strategy for further improvement.

3.3.1 Image Synthesis with Few-Shot Image Guidance
To incorporate few-shot image guidance, we follow the work of [54]. The starting point
is based on the standard solution of fine-tuning the pretrained GAN model, composed of
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Figure 3.2: General Network Architecture of StyleGAN. Figure from [26]

a generator G and a discriminator D, on the few-shot training samples with the common
GAN training procedure, which aims at solving the non-saturating objective:

Ladv(G,D) = D(G(z))−D(x)

G∗
t = Ez∼pz(z),x∼Dt argmin

G
max
D

Ladv(G,D)
(3.1)

To address the few-shot condition, the distance consistency regularization, Ldist, is utilized
to preserve the original content and diversity of the generated images, and the anchor-based
relaxed realism is adopted to further prevent overfitting to the few-shot image samples.

Distance Consistency Regularization The distance consistency regularization prevents
collapse to the few-shot training samples via encouraging the adapted images generated
by Gt to still keep the original variety of images generated by G. This regularization is
achieved by preserving the relative pairwise distance of images generated by specific input
vectors. In more detail, we first sample a batch of noise vectors and use their pairwise
similarities in feature space to construct probability distributions for each image, where
similarity denotes the cosine similarity between generator activations at specific layers.
The probability distributions converted from the similarities of the adapted model Gt and
the given publicly pretrained model G are encouraged to be uniform by computing KL-
divergence across the intermediate layers, as shown in Fig 3.3.

The original implementation of [54] computes the cross-domain distance consistency
loss Ldist as shown in Eq. 3.2, on four randomly sampled feature layers at each iteration.
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To prevent early collapse in style, e.g., color and texture pattern, we relax the regularization
during different training phases. Under our relaxed setting, we allow a reasonable extent
of object shape adaptation by computing the distance consistency on layers of different
levels. In the initial training phases, we compute the distance consistency only of the deep
layers (i.e., layers after the 6th) of the generator. After training for certain epochs, we
adapt the training strategy and only compare consistency on the shallow layers (i.e., layers
before the 10th) for detailed style adaptation and to preserve the content. We deploy this
adjustment due to the more significant domain gap to be mapped in our case. Experiment
in the original paper shows that, in most cases, they fail to adapt the source domain to
the target domain when their contents are unrelated (see Fig 3.4). We show successful
adaptation of the original model to the unrelated target domain and observe minor collapse
in style i.e., the same color or pattern before successful adaptation under our setting.

Softmax + KL-Divergence

Source Model Few-shot Adaptation

Figure 3.3: Cross-domain consistency loss and relaxed realism approaches. Figure
from [54, Figure 3]

Relaxed Realism In order to further prevent the synthesized images from overfitting to the
few-shot image samples of the target domain, a dual-discriminator strategy is deployed for
introducing the relaxed realism [54]. The general idea is to only discriminate the fake and
real images on the image level when the input vector is sampled from a limited region
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Figure 3.4: Explanation of related domains and unrelated domains

while allowing other generations to resemble the sample images only on the patch level.
In detail, firstly, an anchor region is defined as a subset of the entire input latent space
Z . When sampled from these regions, we use a full image discriminator Dimg. Outside
of them, we enforce adversarial loss using a patch-level discriminator Dpatch to avoid
overfitting to the few-shot samples.

The image-level discriminator Dimg follows the original design as in [35], while the
second discriminator Dpatch is defined as the subset of the original discriminator Dimg.
In more detail, 4 extra convolutional layers are defined for the Dpatch, which reduce the
channel of the input to 1. When the input vector is sampled outside the anchor region, the
output of the patch-level discriminator Dpatch is acquired by randomly taking one interme-
diate feature map of the original discriminator Dimg and feeding it forward to a random
channel multiplier of the extra layers. The two discriminators are deployed at a designed
frequency for the purpose of preserving image diversity while still leveraging whole-image
guidance. The process is controlled with the sampling frequency hyper-parameter λf ,
which indicates the frequency of sampling from the anchor region and computing the
image-level loss instead of the patch-level loss.

With the aforementioned distance consistency regularization and relaxed realism strate-
gies, the objective of image synthesis with few-shot image guidance is defined as:

G∗
t = argmin

Gt

max
Dimg ,Dpatch

Ladv (Gt, Dimg , Dpatch ) +λ1Ldist (Gt, G) , (3.2)
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where Ladv represents the adversarial loss, and λ1 is the hyper-parameter to balance the
adversarial loss and the distance consistency regularization loss.

3.3.2 Image Synthesis with Text guidance
Besides the few-shot image samples from the target domain, the text description about
the target domain is available with no effort required, e.g.“cartoon” and “watercolor.” In-
corporating text knowledge in our case not only introduces a more flexible way to define
adaptation style, but also helps with escaping early collapse to few-shot samples by lever-
aging extra guidance.

To fully exploit and transfer the knowledge from the target domain to imitate its distri-
bution, text guidance from the target domain can be leveraged to guide the image synthesis
of the data factory with the help of CLIP models [58]. The main idea is to train the GAN
model to make the generated images shift along the direction of the textually-described
path in the CLIP embedding space [18]. Original and target texts are both self-defined to
provide the desired shifting guidance. In order to obtain the image shifting direction dur-
ing the training process, a dual-generator strategy is also deployed. We fix the pretrained
generator G to keep generating original images for comparison while optimizing the tar-
get generator Gt. Then the changing directions of the text guidance and images can be
expressed by,

∆T = Etext (Ttarget )− Etext (T )

∆I = Eimg (Gt(z))− Eimg (G(z)) ,
(3.3)

where Etext and Eimg denote CLIP text and image encoders, respectively. T and Ttarget

represent the text description of the pretrained GAN model and the target domain, e.g.,
“photo” and “comic.” z is the input noise variable, i.e., z ∈ Z . The directional loss
introduced by text guidance can thus be described as,

Ldirection(G,Gt, T, Ttarget) = 1− ∆I ·∆T

|∆I||∆T |
. (3.4)

Combined with the few-shot image guidance training objective in Eq.(3.2), our final train-
ing objective with both the few-shot image guidance and the text guidance can be derived
as,

G∗
t = argmin

Gt

max
Dimg ,Dpatch

Ladv (Gt, Dimg , Dpatch )

+ λ1Ldist (Gt, G)

+ λ2Ldirection (Gt, G, T, Ttarget) ,

(3.5)

where λ2 is the hyper-parameter to balance the text guidance and other terms.
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3.3.3 Image Synthesis Training Strategy.
In order to further prevent the model from overfitting the few-shot image samples, we
adopt the freezing strategy during the training. The shallow layers of the generator are
frozen to preserve the original contents of the pretrained model, while shallow layers of
the discriminator are frozen accordingly to further ensure a stable training process.

To be more specific, we adapt the generator Gt only on the specifically chosen inter-
mediate convolutional feature layers while freezing the rest part of the network. For all
the experiments, we only update the weights of intermediate layers from the third to the
last one. Accordingly, we freeze the image-level and the patch-level discriminators, Dimg

and Dpatch, except the final layer. The training strategy is simple yet proven effective in
preventing overfitting under few-shot conditions.

3.4 Label Synthesis
We can now get unlimited target-like samples with a successfully adapted image synthesis
branch. Previous research has proved that StyleGAN2 [35] learns a well-disentangled se-
mantic latent space, where each channel controls meaningful properties at different scales.
Intuitively, feature maps generated by those channels should be semantically informative
enough to act as extracted features for downstream tasks, e.g., segmentation and detection.

Based on this assumption, we develop our object detection branch by utilizing the
adapted StyleGAN2 [35] generator Gt acquired in the image synthesis step as the back-
bone network for feature extraction, and then incorporating prediction heads on this basis.
The general label synthesis branch archirtecture is shown in Fig. 3.5. We get our training
data with the following procedure: We sample a set of latent codes {zi}Na

i=1 and generate
their corresponding images {Gt(zi)}Na

i=1 with the image synthesis branch. Here Na denotes
the number of manual annotations required to train the object detection branch. Then we
manually annotate these samples as our training data. During the training process, we
deploy the generator Gt as our backbone network and take the intermediate convolutional
feature maps generated by the latent codes as our encoded features for the matching im-
ages. For the detailed implementation, we take the intermediate feature maps with the
resolutions (4, 8, 16, 32, 64) considering the memory consumption. Then we upsample
those feature maps with bilinear interpolation to the resolution of 128, and concatenate
them together to feed forward to the prediction heads.

A prediction network is built on these extracted features for the object detection task.
Inspired by [87], we use keypoint representations where each object is represented by
its center point and the size of its bounding box. To detect objects presented in a syn-
thesized image x̄t ∈ RW×H×3, our goal is to predict a downsampled keypoint heatmap
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ŷ ∈ [0, 1]
W
r
×H

r
×C . C denotes the number of classes for the prediction task, r represents

the downsampling stride, and W,H are the width and height of the image. A prediction
ŷx,y,c = 1 represents a detected keypoint of class c, while ŷx,y,c = 0 means background.
For loss propagation, ground truth heatmap y is generated by converting each ground truth
keypoint p ∈ R2 to its low-resolution equivalent p̃ =

⌊
p
r

⌋
and splatting those points using

a Gaussian Kernel. The training loss is defined as a variant of focal loss [45],

Lk =
−1

N

∑
xyc

{
(1− ŷxyc)

α log (ŷxyc) if yxyc = 1

(1− yxyc)
β (ŷxyc)

α log (1− ŷxyc) otherwise,
(3.6)

where α and β are hyper-parameters of the focal loss, while N is the number of keypoints
in image x̄t for normalization.

A local offset ô ∈ RW
r
×H

r
×2 is predicted and shared among all classes to recover the

precise center point locations in compensation for the error caused by downsampling. The
sizes of bounding boxes ŝ ∈ RW

r
×H

r
×2 of each class c are regressed around the predicted

center points, using a single shared prediction as well. Offset loss is computed only at
locations of predicted keypoints p̃, while size loss is computed for each detected object k
with its predicted size ŝpk around the center point pk and the ground truth bounding box
size sk. Both keypoint offset and size predictions are trained with L1 loss,

Loff =
1

N

∑
p

∣∣∣ôp̃ −
(p
r
− p̃

)∣∣∣
Lsize =

1

N

N∑
k=1

|ŝpk − sk| .
(3.7)

Three prediction heads are built for predicting ŷ, ô, and ŝ, respectively. Each predic-
tion head is composed of, 3×3 convolutional layer, ReLU, and 1×1 convolutional layer.
The prediction heads are trained with a weighted sum of loss terms for these tasks,

Ldet = Lk + λoffLoff + λsizeLsize, (3.8)

where λoff and λsize represent the hyper-parameters to balance the offset, size and key-
point prediction training loss.
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Figure 3.5: Network structure of the label synthesis branch of our efficient labeled data
factory, taking image generation with resolution of 256 as an example
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Chapter 4

Experiments and Results

In this chapter, we first introduce our experimental setup and data sources. Then in the
results, we present experiments validating the benefit of our proposed efficient labeled
data factory based method in the downstream object detection task, and compare it with
other baseline methods. Next, we conduct the ablation study to discuss the supervision
introduced by both the few-shot image guidance and the text guidance, and talk about the
extra regularization achieved by our freezing strategy. More visual results are provided to
prove the effectiveness of our proposed method for image style adaptation as well as de-
tection results on a dataset with multiple classes to show the potential of the label synthesis
branch. Finally, we compare our proposed efficient labeled data factory based method with
the pseudo-label based one.

4.1 Experimental Setup
In order to prove the effectiveness of our efficient labeled data factory for robust object
detection, the in-domain and cross-domain experiments are conducted.

4.1.1 In-Domain Experiments
In order to verify the validity of our proposed efficient labeled data factory for automat-
ically producing the images and the corresponding object category and bounding box la-
bels, we conduct the in-domain experiments, where our efficient labeled data factory is
used to generate the images and object bounding box and category annotations, without
domain adaptation. Then, the generated images and labels are exploited to train the object
detection model, to recognize the object instances in the same or similar domain, i.e., in-
domain object detection. More specifically, in our experiment, the object detection model
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is trained on the natural images and annotations (see Fig. 4.2(c)) synthesized by our data
factory, and tested on the PASCAL VOC dataset.

4.1.2 SF-FSDA Cross-Domain Experiments
For the purpose of proving the helpfulness of our proposed efficient labeled data factory
for domain adaptation, the SF-FSDA cross-domain experiments are explored, where the
data factory is trained with the guidance of the text and/or the few-shot samples from the
target domain. Furthermore, the synthesized images and labels are utilized to fine-tune the
source domain pretrained object detection model, to adapt the model to the target domain,
i.e., SF-FSDA cross-domain object detection. In our experiments, we aim at realizing
SF-FSDA, under PASCAL VOC (source) → Clipart and Comic (target), respectively.

4.2 Dataset

4.2.1 PASCAL VOC
PASCAL VOC 2007 & 2012 datasets [17] contain natural objects with manual annota-
tions. Each image in PASCAL VOC dataset includes the object class, pixel-level semantic
label, and object bounding box annotations, serving as an important benchmark for the
image classification, semantic segmentation and object detection tasks. Our experiment
is related to the object detection task on PASCAL VOC dataset. In the in-domain ex-
periments, the test set with cat and car objects is utilized to evaluate the performance of
the object detection model. In the SF-FSDA cross-domain experiments, the training set
including labeled car and cat images is taken as the source domain for training.

PASCAL VOC dataset customizes the license, especially the images collected from
the Flickr website, i.e., PASCAL VOC dataset grants the limited, non-transferable, non-
sublicensable, revocable license to access and use the data.

4.2.2 Clipart1k
Clipart1k dataset [30] includes the clipart images collected from the CMPlaces dataset [8]
and two image search engines [30]. It covers clipart images, exhibiting a large domain
shift compared to PASCAL VOC dataset. In the SF-FSDA cross-domain experiments, 12
unlabeled images are exploited as the few-shot target samples for training, and the test set
containing cat and car objects is taken for the model performance evaluation on SF-FSDA.
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4.2.3 Comic2k
Comic2k dataset [30] covers the comic images collected from BAM! [77]. It consists
of comic images, indicating a clear domain gap compared to PASCAL VOC dataset. In
the SF-FSDA cross-domain experiments, 5 unlabeled images are regarded as the few-shot
target domain for training, and the test set containing cat and car objects is adopted for the
model performance evaluation on SF-FSDA.

4.2.4 Watercolor2k
Watercolor2k dataset contains the watercolor images collected from BAM! [77]. In the
additional SF-FSDA cross-domain experiments, we utilize 5 unlabeled images from this
dataset as image style guidance for training.

4.3 Implementation Details

4.3.1 Image Synthesis
The data factory is based on the StyleGAN2 structure and initialized with the publicly
available cat and car image synthesis pretrained weights in [35].

In the SF-FSDA cross-domain experiment, PASCAL→Clipart, we take 12 images
from Clipart1k as few-shot image training samples. The source text is ”Photo”, and the
target text is ”Clipart.” We set the weight of the few-shot image guidance λ1 to 1.0 and
the weight of the text guidance λ2 to 1.0 in Eq. (3.5). In the PASCAL→Comic setting,
we take 5 images from Comic2k for image guidance, and the text guidance is defined as
”Photo”→”Comic.” λ1, λ2 are set as 1.0, 5.0, respectively.

For the freezing training strategy described in Sec. 3.3.3, the weights of all tRGB
layers [35] are fixed along with the convolutional feature layers with the lowest resolution.
All layers except the final layer of the discriminators are frozen.

For the setting of the distance consistency regularization, as described in Sec. 3.3.1,
Ldist is first computed by sampling from intermediate feature layers after 6. After training
for 600 iterations, we adapt the strategy and sample from shallow layers from the first to
the 10th.

Another parameter is the sampling frequency from the anchor region, λf , which de-
cides how often we compute the discriminator loss on the whole image level as introduced
in the relaxed realism in Sec. 3.3.1. Due to the larger domain gap introduced by style im-
ages from unrelated domains in our settings, we set this hyper-parameter to 2, alternatively
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computing the loss on the image level and the patch level. The rest training details fol-
low the StyleGAN2 [35] with the augmentation strategy introduced in [32]. The training
iteration for image synthesis is set as 1000.

4.3.2 Label Synthesis
As the minimum human effort, we manually label 10 synthesized images. The interme-
diate features in StyleGAN2 used for the label synthesis branch are obtained by taking
the second convolutional feature layer with the five lowest resolutions (4, 8, 16, 32, 64),
upsampling them, and then concatenating them together, as shown in Fig. 3.5. α, β in
Eq. (3.6) are set as 2, 4. We set hyper-parameters λoff , λsize of the loss in Eq. (3.8) as 1.0,
0.5. We adopt the SGD optimizer for training, with the learning rate as 0.0001 and the
weight decay as 0.0001. Keypoints are predicted on a heatmap with the resolution of 128.
The training iteration for label synthesis is set as 1000.

4.3.3 Source Pretraining and Target Adaptation
The object detection model in the source pretraining and target adaptation stage is based on
the Single Shot MultiBox Detector (SSD) [48] model. For the in-domain experiments, we
deploy the ImageNet pretrained backbone and generate 200 training samples in realistic
style together with annotation with our data factory, incorporating the data augmentation
strategy introduced in [21]. For the SF-FSDA cross-domain experiments, we synthesize
250 samples with annotations in the desired target style for adaptation, utilizing the same
augmentation strategy.

4.3.4 Baseline Setup
In Table 4.1, Table 4.2, and Table 4.3, the “Few-Shot FT” represents that the object detec-
tion model is fine-tuned on a few images with manual annotations, where the images are
generated by the image synthesis branch of our data factory. In Table 4.2 and Table 4.3, the
“CycleGAN”, “MUNIT” and “CUT” conduct the corresponding image translation meth-
ods between the synthesized images from the pretrained StyleGAN2 model and the few-
shot target domain images to generate the target-domain-like images, and adopt the same
annotations generated by our data factory. Oracle performance in Table 4.1 is reached
by training the object detection model on the training set of PASCAL VOC. Oracle per-
formance in Table 4.2-4.3 is obtained by [30] for the traditional domain adaptive object
detection, which is neither few-shot nor source-free.
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4.4 Results
In this section, we present and discuss our experimental results under various settings.
We first prove that our proposed model effectively synthesizes the image samples and the
corresponding object bounding box and category labels by implementing the in-domain
experiment. Then we show that our proposed data factory mitigates the source and target
domain gap through the guidance of text and few-shot target domain image examples via
the quantitative and qualitative SF-FSDA cross-domain experimental results. Ablations
and other extensions are also conducted.

4.4.1 In-Domain Experiments
As shown in Table 4.1 and Fig. 4.2(c), our synthesized images and corresponding bound-
ing box labels can be used to train the model for the object detection on the same/similar
domain, improving the few-shot object detection performance from 50.86%, 41.57% to
64.37%, 52.73% on the “Cat” and “Car” objects detection, respectively. It opens up a new
avenue for the few-shot object detection task, by manually labeling object bounding boxes
in a few images, synthesizing enough image samples and bounding box labels automati-
cally with our proposed efficient labeled data factory, and then training the object detection
model with the synthesized images and labels.

Few-Shot FT Ours Oracle
Cat 50.86 64.37 86.48
Car 41.57 52.73 72.18

Table 4.1: In-domain experiments on PASCAL VOC. The results are reported on average
precision (AP)

In order to further figure out the effect of the number of synthesized images and an-
notations from the efficient labeled data factory, the object detection performance with
different numbers of synthesized images and samples are shown in Fig. 4.1. It is shown
that the object detection performance improves as more images and annotations are syn-
thesized.

4.4.2 SF-FSDA Cross-Domain Experiments
In Table 4.2, and Table 4.3, the quantitative results are shown on the benchmark, PAS-
CAL VOC→ Clipart, Comic, respectively. Compared with the pure source baseline, all of
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Figure 4.1: Object detection performance with different numbers of synthesized images
and annotations, under the setting of Table 4.1

the image style adaptation based methods bring performance improvement, verifying the
benefits of the style adaptation based methods for narrowing the domain gap. Among the
image style adaptation based methods, it is shown that our proposed data factory based
method surpasses other image translation based methods, CycleGAN [89], MUNIT [29],
and CUT [55]. It proves the advantage of our method for synthesizing the target-domain-
like images, with the guidance of both the few-shot samples and the text knowledge.

Source Few-Shot FT CycleGAN MUNIT CUT Ours Oracle
Cat 17.25 30.94 27.01 21.46 24.57 32.50 35.07
Car 43.04 52.97 55.11 54.62 54.72 55.67 57.38

Table 4.2: SF-FSDA cross-domain experiments, PASCAL VOC → Clipart

Source Few-Shot FT CycleGAN MUNIT CUT Ours Oracle
Cat 16.36 33.01 23.51 37.28 36.81 37.74 39.99
Car 39.02 51.05 42.20 41.31 46.68 54.68 52.76

Table 4.3: SF-FSDA cross-domain experiments, PASCAL VOC → Comic

Fig. 4.2 presents the qualitative results of our method compared to the baseline meth-
ods. (a)-(b) are the exemplar images from the Clipart1k and Comic2k datasets. (c) are
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the synthesized images from the publicly available pretrained GAN weights, used in Ta-
ble 4.1 without conducting domain adaptation. It is notable that our data factory does not
have the requirement of on which style images the GAN model is pretrained, and we just
adopt the publicly available pretrained weights provided in [35]. (d) are the synthesized
image and annotations from our proposed data factory in Table 4.2-4.3. (e)-(g) are the
results generated by other image translation methods in Table 4.2-4.3. Although provided
with image guidance with unrelated content, our approach learns the general style of the
exemplar images appropriately without overfitting and outperforms the other methods ob-
viously. Fig. 4.3 shows the FID scores of the style-adapted images synthesized by our data
factory or translated by the other baseline methods, which proves the better image quality
of our approach quantitatively.
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Figure 4.2: SF-FSDA: PASCAL VOC→Clipart & Comic qualitative results

Moreover, as shown in Table 4.2 and Table 4.3, compared with the few-shot manual an-
notations, the automatically synthesized annotations can further improve the performance.
On the PASCAL VOC→ Clipart benchmark, the AP is improved from 30.94%, 52.97%
to 32.50%, 55.67%. On the PASCAL VOC→ Comic benchmark, the performance is
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Figure 4.3: Synthesized images quality comparison between our proposed data factory
and other image translation based methods, measured with FID score (↓)

improved from 33.01%, 51.05% to 37.73%, 54.68%. It verifies the effectiveness of the
automatically generated images and annotations for the SF-FSDA problem.

Besides the two benchmark settings, we conduct the additional SF-FSDA experiments
under the PASCAL VOC→Watercolor setting. Compared to the few-shot fine-tuning
baseline as done in Table 4.2 and Table 4.3, our proposed efficient labeled data factory
based method further improves the object detection performance from 49.03%, 64.47% to
52.06%, 65.56% for the cat and car categories, respectively. In Fig. 4.4, we show the image
and label synthesis results from our data factory, under the PASCAL VOC→Watercolor
setting.

In Fig. 4.5, we show the qualitative object detection results on the target domain, i.e.,
Clipart1k and Comic2k. “Before Adaptation” represents the object detection results when
applying the source-pretrained object detection model to the target domain. “After Adap-
tation” shows the object detection results after fine-tuning the source-pretrained model on
the synthesized images and labels from our proposed data factory. The image without any
detected bounding box indicates that the model cannot detect the objects in the image.
Better detection results are generated after cross-domain adaptation based on our method.

4.4.3 Ablation Study
Text and Few-shot Image Guidance In our proposed efficient labeled data factory for SF-
FSDA, the style of the generated samples is guided by the few-shot image samples and/or
the text guidance. In order to explore the effect of the two different types of guidance, we
compare the performance of different ablations of the full model. From the quantitative
comparison in Table 4.4, it is shown that both the few-shot samples and text guidance con-
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Figure 4.4: SF-FSDA: PASCAL VOC→Watercolor qualitative results

tribute to the final image synthesis results. From the qualitative results shown in Fig. 4.6,
taking the “clipart” style as the example, the text guidance provides the general knowl-
edge on what the “clipart” images look like, while the few-shot image guidance indicates
how the “clipart” images are on the target domain. Moreover, the text knowledge from the
target domain prevents overfitting to the few-shot samples. On the other hand, it is proven
that our model is flexible, still reaching effective synthesis results even when one of the
text and few-shot samples guidance is not available.

Source Only Few-Shot Only Text Few-shot+Text
17.25 28.24 18.60 32.50

Table 4.4: Ablation study for the text and few-shot image guidance from the target domain,
measured with AP performance on Clipart

Freezing Strategy The ablation study on the freezing strategy during training is con-
ducted, which is shown in Fig. 4.7 and Table 4.5. It is shown that the freezing strategy
for the image synthesis training can help prevent overfitting to the few-shot samples in the
target domain and preserve the diversity of the image synthesis results.
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Figure 4.5: Qualitative object detection results on the target domain, Clipart and Comic

In order to further prove the validity of the freezing strategy under the extreme case,
we here provide the qualitative comparison in Fig. 4.8 under the one-shot target domain
condition, i.e., there is only one image available on the target domain. From Fig. 4.8, it is
shown that the freezing strategy is especially important for improving the image generation
diversity and preventing overfitting to the one-shot image samples under the challenging
one-shot condition.

w/o freezing w freezing
0.64 0.68

Table 4.5: Ablation study for freezing strategy during image synthesis training, measured
with the LPIPS distance [54](↑)
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Figure 4.6: Qualitative results comparison, with/without text/few-shot image guidance for
image synthesis training

Figure 4.7: Qualitative results comparison, with/without freezing strategy for image syn-
thesis training

One-Shot Target With Freezing Strategy Without Freezing Strategy

Figure 4.8: Qualitative results comparison, with/without freezing strategy for image syn-
thesis training, under the one-shot target domain condition

30



CHAPTER 4. EXPERIMENTS AND RESULTS

Clipart ( Guided by Few-shot Keith Haring Style Images) Clipart (Guided by Few-Shot Joan Miro Style Images)

Figure 4.9: Image synthesis results on human face

4.4.4 Additional Image Synthesis Results
In order to further explore the effect of the few-shot image guidance, we utilize our pro-
posed data factory to synthesize other objects, human face, adapted by the text guidance
“clipart” in combination with few-shot images of different artistic styles. The qualitative
results are shown in Fig. 4.9. The image synthesis is guided by the text “clipart” and the
few-shot image samples from “Keith Harring” and “Joan Miro” style paintings. The first
column of the left part and the right part are examples of the “Keith Harring” and “Joan
Miro” painting styles. It proves that our proposed data factory effectively synthesizes the
target-domain-like images under the text and the few-shot image guidance, and effectively
reflects the difference under one general style category. Pre-acquired text knowledge can
be ambiguous and general under a lot of application scenarios. Compared to previous
works based purely on text guidance, our approach enables more detailed and explicit
control by combining extra guidance images.

Moreover, to show the possible application of our method to real scenes, we conduct
experiments adapting original images of the car category to reflect different weathers,
i.e.foggy, rainy and snowy. Fig 4.10 shows the adapted synthesized images under different
weather conditions. For the adaptation of each setting, text description from ”Sunny” to
the specific weather together with 5 style images of street scenes under such weather con-
dition are provided for guidance. As shown in the figure, our image synthesis adaptation
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approach resembles natural scenes for all three settings.

Figure 4.10: Image synthesis results on car, with few-shot image and text guidance of
”foggy”, ”rainy”, and ”snowy”

4.4.5 Label Synthesis for Multiple Classes
In order to prove the effectiveness of our label synthesis branch to be extended to multi-
class scenarios, we implement an additional experiment on an indoor scene with multiple
objects to be detected in one image. We take the pretrained StyleGAN2 model on the
bedroom dataset [35], and manually annotate 25 training samples with 4 categories: bed,
lamp, table, and window. The label synthesis branch is trained under the same settings as
the benchmark experiments. Visualized detection results are shown in Fig. 4.11. Although
we have not fine-tuned the training process to optimize the model performance, it gener-
ates valid predictions, indicating our approach’s possibility to generalize to multi-category
applications.

4.4.6 Pseudo Label vs. Our Label Synthesis
Under the cross-domain experiments setting, an alternative way to our label synthesis
through the efficient labeled data factory is to apply the source domain pretrained object
detection model on our synthesized images to generate the pseudo-label. In Table 4.6,
the pseudo-label and the label synthesis with our efficient labeled data factory ways for
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Figure 4.11: Qualitative results of synthesized labeled data of bedroom with four classes:
bed, lamp, table, window

label generation are compared. It is shown that our synthesized label with the data factory
performs better than the pseudo-label for the SF-FSDA problem. It is because the pseudo-
label is noisy and of low quality, resulting from the difference between the source domain
and the synthesized images, and the source-free condition. In contrast, our efficient labeled
data factory synthesizes the annotation with the help of the image synthesis and few-shot
manual annotations, bringing high-quality automatic annotations.

Pseudo-Label Our Label Synthesis
Cat 25.75 32.50
Car 53.52 55.67

Table 4.6: Comparison of label generation ways, pseudo label vs. our data factory, PAS-
CAL VOC→ Clipart
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Chapter 5

Discussion

In this chapter, we explore other image style adaptation approaches as prospective alterna-
tive solutions for the image synthesis branch. The possible future work is also discussed.

5.1 Image Style Adaptation with GAN Inversion
In this section, we present other works we explore during this thesis, which leverage fur-
ther possibilities of image style adaptation. In our work, we focus on the direction of
fine-tuning a pretrained GAN model with style supervision. As discussed in Sec. 2.2, a
lot of works take advantage of encoding in the latent space via GAN inversion. The gen-
eral drawback in this field lies in the requisition of an extra encoder that also requires
considerable training effort as the GAN model. An encoder for GAN inversion takes an
image and encodes it into the GAN latent space. The generated latent code should allow
for high-quality reconstruction of the original image when passed to the generator of the
GAN model. Thus, given a pretrained encoder for image inversion, image manipulation
could be done by first generating the encoded latent vector of this image, then manipu-
lating the content/style by editing the latent code. Here we present our trials in this field
and discuss the potentials as well as their own limitations under our proposed SF-FSDA
problem.

5.1.1 Latent Code Editing
One way of achieving the desired manipulation is to explore significant editing directions
for different properties, based on experimentally examined results [79], or decomposition
methods [24, 67]. Instead, it is also possible to directly optimize the inverted latent code
by providing extra training guidance. [56], as the very initial work of incorporating CLIP
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with StyleGAN for image style manipulation, changes the style of an image by optimizing
its inverted latent code. In this work, they propose three ways for image manipulation. The
first is to directly optimize the inverted latent code of the image to be modified, to resemble
the guidance text in the embedded CLIP space. The second is to train a latent mapper to
learn the edit vector that could to applied to inverted latent codes of all images under the
same category, e.g.learning a smiling face for human portraits. The third method is to learn
a global editing direction in the latent code space, in which the image changes the same
with the text guidance. In our efficient labeled data factory based approach, we introduce
the text guidance by enforcing the generated image to change along the text guidance
direction in the CLIP embedded space, similar to the first approach. We also explore
the second and the third approach, training a model to find meaningful optimization in the
latent feature space instead of fine-tuning the GAN network. The global direction approach
requires training image pairs indicating the same changing direction as the text guidance
to find the layer-wise image editing vector in the GAN style space, which are hard to be
acquired, thus does not fit under our problem setting. For the latent mapper approach,
as for our SF-FSDA setting with no access to the source images, we take synthesized
images generated by the pretrained GAN model as our training images, and therefore, no
additional encoder is required here. According to our experiment results, training without
real images highly defects the performance due to poor representation in the low-density
latent space area, which makes this approach not an optimal solution for our problem.

5.1.2 Style Mixing
Instead of traversing latent code editing directions or editing vectors, style mixing [63]
could be achieved by inverting the style image and mixing its latent code with the in-
verted vector of a real image or a randomly sampled latent code to generate the image in
desired style or content. Fig 5.1 shows our experiments on the cat category, with a pSp
encoder [63] pretrained on the AFHQ cat dataset [11] and StyleGAN2 model pretrained
on the cat category. Fig 5.1(a) shows the style image for guidance and its reconstruction
result with the inverted latent code obtained by the pSp encoder. (b) shows the original
images generated by specific sampled latent codes. (c)-(f) present the images generated
by replacing certain layers of the randomly sampled latent codes with the inverted style
vector of the guidance image in the W+ space. As shown from the figure, different lev-
els of style, e.g.pose, color, facial features could be controlled to resemble the provided
style image by swapping certain layers due to the well-disentangled nature in the Style-
GAN W+ latent space. Moreover, this could be extended to the multi-modal scenario as
shown in Fig 5.2 where the same swapping is applied to the same sampled latent vectors
and then forwarded to the adapted generator with style in another domain (clipart in this
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case). Although it could be applied to some simple multi-modal conditions, e.g.moderate
color and/or pattern variation in artistic styles, such approach still does not provide a valid
solution to the SF-FSDA problem under our setting, due to the bias of unrelated content
of the source and target domains (see Fig 3.4 in Sec. 3.3.1). The reconstruction results of
latent codes inverted by e4e [68] and pSp [63] encoders pretrained on the FFHQ dataset
are shown in Fig. 5.3. (a) is a human portrait within the pretrained domain. (b) and (c) are
cartoon portraits that share similar contents with the original domain. (d) shows an im-
age from a more distant domain, while the content of (e) is fully unrelated to the original
domain. The encoder is only capable of inverting images within the pretrained category.
Passing style images of unrelated content does not generate meaningful latent codes, thus
not being able to be mixed for style adaptation. Still, it leverages the possibility of further
controlling the synthesized images of our data factory, as shown in Fig 5.2.

Figure 5.1: Style mixing of the pretrained generator in the real cat domain with a real cat
image

5.2 Future Work
In this section, we present possible future works to improve and extend our current ap-
proach.
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Figure 5.2: Style mixing of the pretrained generator in the clipart style cat domain with a
real cat image

More Controllable Image Synthesis Adaptation As discussed in Sec. 5.1, more control
of both content and style of the synthesized images could be achieved via incorporating
guidance style vectors. Introducing such style vectors not only leverages a more control-
lable process, but also helps generate higher-quality images with better represented latent
code inverted from real images. Besides, we control our training process by introducing
the freezing strategy, as discussed in Sec.3.3.3. We intuitively freeze the shallow layers
for overfitting prevention. As discussed in [80], layer-wise control and semantic relevance
of StyleGAN still remain valid under the standard fine-tuning procedure of GANs. Such
nature could be further explored under our condition with limited guidance and help better
regularize the adaptation process.
Improving Label Synthesis Network Currently, we follow most default settings in the
original work [87]. Theoretically, our model could still benefit from further fine-tuning,
both for our benchmarks settings and the multi-class detection case discussed in Sec. 4.4.5.
Besides, [86] demonstrates promising pixel-wise prediction for the semantic segmenta-
tion task. While in our case, we obtain valid results in object detection tasks localizing
object instances. We see the potential of extending the prediction task utilizing Style-
GAN semantic feature maps to panoptic segmentation [38], which unifies the semantic
segmentation and instance segmentation problems to generate object-wise segmentation
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Figure 5.3: Reconstruction results of e4e and pSp encoder with images within/outside the
pretrained domain

with categories on the pixel level. Some recent works [83, 10] solve this problem via
bottom-up approaches, starting with semantic segmentation predictions and then grouping
the segmentation results into clusters to get the instance masks. The grouping operation is
typically done by predicting object centers and then regressing around the centers to get
the instance segmentation for each object. Combining the work of [86] and ours lever-
ages it as a possible future work to achieve panoptic segmentation for our label synthesis
branch, and thus to benefit a wider range of cross-domain downstream tasks.
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Chapter 6

Conclusion

We propose and tackle the SF-FSDA problem, which studies the domain adaptive object
detection problem under source-free and few-shot conditions. In order to overcome the
problem, we present a new efficient labeled data factory based method, which can synthe-
size the infinite target-domain-like images and corresponding annotations without relying
on the source domain. The image synthesis branch is guided by the few-shot image sam-
ples and text from the target domain, and the image annotation branch only requires the
minimum human effort (i.e., few-shot manual labels) to generalize the label to the rest of
the synthesized images. The synthesized target-domain-like images and annotations are
further utilized to fine-tune the source domain pretrained object detection model, realiz-
ing robust object detection. The proposed approach is validated in various settings and
surpasses other state-of-the-art methods, demonstrating its effectiveness for the SF-FSDA
problem.
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Advent: Adversarial entropy minimization for domain adaptation in semantic seg-
mentation. In CVPR, 2019.

[75] Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Sketch your own gan. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 14050–14060,
2021.

[76] Tao Wang, Xiaopeng Zhang, Li Yuan, and Jiashi Feng. Few-shot adaptive faster
r-cnn. In CVPR, 2019.

[77] Michael J Wilber, Chen Fang, Hailin Jin, Aaron Hertzmann, John Collomosse, and
Serge Belongie. Bam! the behance artistic media dataset for recognition beyond
photography. In ICCV, 2017.

[78] Qilong Wu, Xiangyu Yue, and Alberto Sangiovanni-Vincentelli. Domain-agnostic
test-time adaptation by prototypical training with auxiliary data. In NeurIPS Work-
shop, 2021.

[79] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled
controls for stylegan image generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12863–12872, 2021.

46



BIBLIOGRAPHY

[80] Zongze Wu, Yotam Nitzan, Eli Shechtman, and Dani Lischinski. Stylealign: Anal-
ysis and applications of aligned stylegan models. arXiv preprint arXiv:2110.11323,
2021.

[81] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. Tedigan: Text-guided
diverse face image generation and manipulation. In CVPR, 2021.

[82] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui.
Generalized source-free domain adaptation. In ICCV, 2021.

[83] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao
Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen. Deeperlab:
Single-shot image parser. arXiv preprint arXiv:1902.05093, 2019.

[84] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt
Keutzer, and Boqing Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target domain data. In ICCV,
2019.

[85] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, and Dimitris N Metaxas. Stackgan++: Realistic image synthesis with stacked
generative adversarial networks. TPAMI, 41(8):1947–1962, 2018.

[86] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela
Barriuso, Antonio Torralba, and Sanja Fidler. Datasetgan: Efficient labeled data
factory with minimal human effort. In CVPR, 2021.

[87] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points, 2019.
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