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Abstract

Unmanned aerial vehicles, commonly known as drones, have been developed for

decades and recently have been massively applied in many different areas. An es-

sential subject of drones is precise localization, which is in increasing demand and

has been studied by many researchers. While traditional approaches have their lim-

itations, many recent works attempt to recover drone trajectories with computer

vision-based methods. This thesis aims at exploring the potential of reconstruct-

ing 3D drone trajectories observed from multiple stationary cameras. We take

sequences of 2D drone detections from videos as input. Based on that, we tempo-

rally synchronize our cameras as a first step. A 9-point solver and two algorithms

built upon this solver are implemented to simultaneously estimate time offsets be-

tween two cameras and their relative poses. This camera synchronization acts as

a pre-processing step in our complete pipeline, which follows the incremental ap-

proach of multi-view reconstruction. Moreover, we present a spline representation

for optimizing the reconstruction in bundle adjustment, which helps implicitly con-

strain drone trajectories and reduce large errors. Experiments on synthetic data

and on real videos from outdoor drone flights demonstrate the effectiveness of our

approach. Our reconstructed drone trajectories conform to the RTK ground truth

with deviations under tens of centimeters.
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1 Introduction

This chapter is an introduction to the main ideas covered in this thesis. It gives

a brief overview of the purpose and challenges of the thesis. The structure of the

thesis is introduced at the end of this chapter.

1.1 Motivation

In recent times unmanned aerial vehicles, also commonly known as drones, play

a more and more important role in our society. The history of drones can be

traced back in the early 1900s, where the innovation focused mainly on military

purposes. Nowadays with the continued evolution in technologies, drones have

become a common and powerful tool in many areas of our society. For instance,

drones provide a cost effective alternative to planes and helicopters for aerial sur-

veying and photogrammetry. They are flexible and are able to fly very close to

ground and access to dangerous area with less utilization of human resources. An-

other example of drone application field is agriculture. Agricultural drones enable

farmers to observe their fields from sky, which could help increase crop production

and monitor crop growth. Besides, drones are being deployed in disaster relief,

conservation of biodiversity, movie industry, aerial surveillance and many other

scenarios.

With constantly increasing deployment of drones, techniques of their tracking and

localization are in high demand and present a challenging task. Recent events of

drones flying over airports, city centers, private or restricted territories underscore

the threat of uncontrolled drone flights and the lack of proper surveillance. Other

safety issues include unintentional collisions, malicious use and further security

vulnerabilities. In fact, tracking and localizing drones could be a vital measure to

counter those problems or prevent them from happening. Another reason for drone

localization is navigation and guidance. Although onboard control devices are

available in many situations, an external source for spatial information of drones

can further improve reliability of a smooth flight. Under certain circumstances,

reproducibility of the same trajectory is imperative for surveillance and mapping

purposes, for which most of existing techniques are either expensive or not precise

enough.

1



Chapter 1. Introduction 2

In contrast to the high desirability, few approaches exist that thoroughly handle

drone localization and trajectory recovery. The combination of IMU and GPS is

a conventional solution. Yet IMU devices do not have exceptionally good perfor-

mance characteristics mainly because of bias accumulated in long term. And GPS

signals can be unavailable or limited in terms of accuracy in vertical direction, es-

pecially for tasks such as autonomous landing, low altitude positioning or indoor

applications. Since both IMU device and GPS receiver belong to active sensors, the

potential of passive approaches should be also investigated. Therefore, this thesis

focuses on utilizing a computer vision solution to the problem of drone trajectory

reconstruction, in other words leveraging a multi-camera system

1.2 Problem Formulation

The practical scenario of this work consists of a flying drone and multiple cameras

on the ground. The cameras are stationary and capture the drone from different

views producing video sequences. The input data of this work are detections of

the drone in each frame in form of single pixel coordinates, which can be obtained

by arbitrary object tracking method. Based on these 2D detections, a method

is presented for drone trajectory reconstruction up to a similarity transformation

with the real physical model. This setup can be regarded as a simulation for real

scenarios, e.g. surveillance cameras mounted around a power plant or an airport.

The primary challenges of this work are video synchronization, camera pose

estimation and trajectory reconstruction, which are essentially correlated

problems. Most of todays multi-view tracking algorithms rely on the assumption

that video sequences are temporally synchronized. Normally perfect synchronicity

of video streams can be achieved by hardware synchronization in laboratory or

studio situations. Achieving synchronization in large-scale outdoor environments,

however, can be difficult, expensive or even impossible. In this work, the objective

is to enable setting up simpler and cheaper capture configuration, such as using

smartphone or surveillance cameras in a wild outdoor environment. Recent works

have shown that camera synchronization can be achieved solely by investigating

the 2D trajectory detections from video sequences. Additionally, camera pose esti-

mation is another problematic issue as there is no actual correspondence between

detections in different cameras. A straightforward idea is to exploit backgrounds

of the scene for camera poses, as cameras are static. Nonetheless, our preliminary

experiments show that the traditional feature matching methods fail most of the

time. Because backgrounds usually contain textureless contents or repetitive pat-
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terns, like sky or forest, which do not provide enough features or create difficulties

for feature matching. Therefore in this work the camera pose estimation is ac-

complished also depending on 2D trajectory detections after they are temporally

aligned. Eventually, one potential issue of conventional reconstruction methods is

the assumption that a scene should be reconstructed as a set of independent 3D

points. As the object we want to recover in this work is a trajectory, it should

follow basic physical principles and obey certain geometric rules, e.g. with respect

to smoothness or continuity. Thus a method is presented in this work for repre-

senting the 3D drone trajectory using a spline. This spline representation could

implicitly constrain the shape of the trajectory with only a few control points.

In summary, following assumptions should be fulfilled for a practical application

of the presented approach and will be discussed in detail in the following chapters:

• At least two cameras are deployed, which are stationary. They are preferably

calibrated, but not necessarily.

• The video sequences containing drone flights should have spatial and tem-

porary overlap. Videos can be unsynchronized because of different recording

starts or shutters triggering, which causes a constant time shift. Frame rate

should be known for each camera.

• The 2D detections of drone are allowed to have outliers. For each frame at

most one detection should be given.

• In principle, the drone is allowed to occasionally fly outside the field of view

of one or more cameras. Yet at least parts of video sequences from different

cameras should overlap, e.g. recording same pieces of the drone trajectory.

• The temporal distances between two detections should be constant for each

video sequence. In case of videos with different frame rates, detections could

be rescaled (e.g. downsampling or interpolation).

1.3 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2 summarizes pre-

vious work on the topics of video synchronization, multi-view 3D reconstruction

and bundle adjustment. Chapter 3 provides an overview of general concepts and

principles exploited as foundations of this work. Chapter 4 presents the complete

approach of drone trajectory reconstruction in detail. Experiments and results of
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the proposed methods on both synthetic and real data are presented in Chapter 5

and further discussed in Chapter 6. Finally, the thesis is concluded in Chapter 7.



2 Related Work

Trajectory reconstruction from multiple views has been investigated considerably

in the past. This chapter reviews recent works that are most relevant to the context

of this thesis.

2.1 Video Synchronization

Different strategies exist in terms of solving video synchronization in the computer

vision area. Many approaches are based on image content analysis. For instance,

Caspi et al., 2002 exploited temporal variations between image frames (such as

changes in scene illumination) as cue for alignment. They suggested that folding

spatial and temporal cues into a single alignment framework could deal with sit-

uations which are inherently ambiguous for traditional image-to-image alignment

methods. Yan et al., 2004 detected space-time interest points and described their

variations as a temporal distribution. The temporal shift can then be calculated

through by assuming similar distributions in two video sequences. In Dai et al.,

2006, an iterative algorithm is presented using 3D phase correlation based on a

projective geometry constraint. A simplifying assumption has to be made that the

centres of the cameras have to be relatively close to each other.

Another group of methods leverage epipolar geometry and object trajectory match-

ing. A set of trajectories are detected in each video sequences by 2D tracker. These

trajectories are then matched by seeking a spatial and temporal transformation.

Caspi et al., 2006 applied RANSAC to search for matching trajectory pairs from

a reduced set of all combinations of trajectories. Here the epipolar geometry is

assumed to be provided. The method from Padua et al., 2008 extended the prob-

lem of pairwise synchronization into joint synchronization of N sequences. This

required the estimation of a single N-dimensional line called timeline. Vo et al.,

2016 did an exhaustive search on a discretized set of temporal offsets after a initial

guess. Then the offset with the smallest epipolar geometry error is taken as the

sub-frame alignment.

The most closely related previous works to this thesis are Noguchi et al., 2007,

Nischt et al., 2009 and Albl et al., 2017, as they jointly perform video synchro-

5
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nization and estimate the two-view geometry based on image point trajectories.

Noguchi et al., 2007 approximated local 2D image trajectory by a straight line

and then estimated epipolar geometry or homography together with lags in shut-

ter time using non-linear least square optimization. Nischt et al., 2009 extended

this method by allowing estimation of difference in frame rate and approximating

the local trajectory by fitting a spline. Both these approaches, however, formu-

lated the problem as cost minimization, which needs a good initial guess and is

solved using an iterative alternating algorithm. Thus they are only able to deal

with small time shift, e.g. within 0.25s. In contrast, our method does not need a

good initial estimate and is able to process large time offsets of several seconds, but

with computationally lower cost than the exhaustive search. The method applied

in this work is mainly inspired by Albl et al., 2017. In addition to their original

work, a fixed-time algorithm for searching time shift is presented in this thesis as

an alternative in case the iterative algorithm fails to converge or converge in large

number of iterations.

2.2 Dynamic 3D Reconstruction

Synchronized multi-view system has been prevalent for dynamic scene reconstruc-

tion. Unlike conventional 3D reconstruction where sparse static feature points are

recovered, many dynamic reconstruction methods focus on recovering moving ob-

jects at different times. Most of current approaches for trajectory recovery appeal

to motion priors to constrain reconstructions. For instance, Avidan et al., 2000

proposed a method for linear and conical motion, where multiple non-coincidental

projections of a point are reconstructed. Yuan et al., 2006 followed a similar idea

and extended to reconstruction of curved and general planar trajectories. Another

group of methods leveraged geometric constraints implicitly. Valmadre et al., 2012

considered the smoothness of trajectories and defined a novel reconstruction error

by exploiting high-pass filters. Zhu et al., 2013 stressed sparsity priors of trajectory

recovery by focusing on the reduced isometry property condition. They applied

convolutional sparse coding to learn the trajectory basis matrix.

Apart from geometric motion priors, some methods investigated physical motion

priors that could potentially find correct temporal alignment of image trajectories.

Vo et al., 2016 introduced priors that favor trajectory motion with constant velocity

or constant acceleration. They conjectured that the cumulative forces applied by

mechanical systems are sparse and over a small duration of time, the true trajectory

can be approximated by the path that minimizes the costs, defined by their motion
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priors. Rozantsev et al., 2017 included a more realistic motion model for drones

(e.g. yaw, pitch and roll), which enables explicit recovery of parameters such as the

control inputs given by pilot. This physical model is then integrated into bundle

adjustment and favors trajectories that can be well explained by this model in

intermediate steps.

There are also works that do not follow the idea of motion prior constraints. For

instance, Sinha et al., 2010 accomplished dynamic 3D reconstruction using sil-

houettes correspondences. Zheng et al., 2015 addressed the spatial and temporal

aspects independently and recovered the unknown structure without sequencing

information across video sequences. Nonetheless, these approaches are essentially

pose-oriented, especially human poses, which barely work for tiny objects in out-

door scenes.

2.3 Bundle Adjustment

Conventional bundle adjustment (Triggs et al., 1999) often acts as a non-linear

least square optimization step in 3D reconstruction, usually solved by some varia-

tions of Gauss-Newton algorithms such as the Levenberg-Marquardt algorithm. In

the past years, many variants are proposed seeking for improvements in different

aspects. Some approaches aim to reduce the complexity of bundle adjustment.

Lourakis et al., 2009 published a software package for realizing generic bundle

adjustment with high efficiency and flexibility regarding parameterization. They

reduced the factorization time by a large constant factor by means of the Schur

complement method. Agarwal et al., 2010 explored the use of conjugate gradients

for calculating the Newton step and showed that this truncated Newton method

offered state of the art performance for large-scale scenes. Wu, 2013 further uti-

lized preconditioned conjugate gradient and showed that incremental Structure

from Motion (SfM) requires only O(n) time w.r.t the number of cameras including

bundle adjustment.

Another group of works modified the traditional bundle adjustment in case when

regularization is incorporated. Cohen et al., 2012 proposed a method that imposed

a set of structural constraints derived from the symmetry relations. Gong et al.,

2015 exploited inaccurate parameters constrained in a range and presented a bound

constrained bundle adjustment.

In this work, a variant of bundle adjustment is studied where parameters of a
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trajectory do not refer to 3D coordinates of sample points. As a trajectory can

be approximated by a spline in presence of noises, spline coefficients are then

optimized in the bundle adjustment, which can then recover the trajectory easily

by resampling points at arbitrary positions.



3 Theoretical Foundations

This chapter gives an overview of basic concepts and principles outlined in previous

works that are relevant to the subject of drone trajectory reconstruction. Special

attention is paid to the section 3.2, where the standard 3D reconstruction pipeline

is introduced in steps. The book by Hartley et al., 2003 is highly recommended

for readers who want to have a thorough review of the underlying topics.

3.1 Object Tracking

Object tracking is not the main component of this work, as its results (i.e. 2D

image trajectories of drone) are considered as input data in this work. Thus in

this section the applied method is briefly introduced, which consists of background

subtraction and mean-shift algorithm.

Background subtraction is a widely used technique for extracting a foreground

mask, i.e. a binary image containing the pixels belonging to moving objects in

the scene, by using a stationary camera. Here the method by Zivkovic et al.,

2006 is applied, which is based on a non-parametric adaptive density estimation.

After background subtraction only pixels considered as foreground are candidates

containing the desired drone. Here at a first step, the initial location of drone

has to be provided and thus the drone can be represented by a pixel histogram.

Then the mean shift algorithm, which is a common tool for locating the maxima

of a density function proposed by Fukunaga et al., 1975, could locate the updated

histogram by matching with previous one in several steps. Finally by exploiting

mean-shift over a video sequence, the drone in each frame is detected as single

pixel coordinates.

3.2 Reconstruction Pipeline

3.2.1 Camera calibration

Camera calibration is the process of estimating camera parameters, which consist

of intrinsic and extrinsic parameters. Intrinsic parameters deal with camera’s

internal characteristics, while extrinsic parameters describe the camera position

9
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Figure 3.1: Perspective camera model

and orientation in the real world. In case of a perspective camera model (see Fig.

3.1), camera parameters yield the following equations.

λx = PX (3.1)

P = K[R|t] (3.2)

K =

 fx s cx

0 fy cy

0 0 1

 (3.3)

Here X denotes a point in space and x denotes its projection on the image plane. λ

is the perspective depth and P is the camera matrix, which has the form of 3×4, as

X and x are in homogenous coordinates. P can be decomposed into a calibration

matrix K (i.e. intrinsic parameters) and a rotation R and a translation t (i.e.

extrinsic parameters). Among entries in K, fx and fy denote focal length in pixels,

s is the skew coefficient which is non-zero if image axes are not perpendicular, and

cx, cy are the pixel coordinates of the optical center. As many models exist for

correcting radial distortions, the most commonly used one is introduced by Brown

(1966) described in Eq. 3.4, which is a decentering model and radial distortions

are described as coefficients of these polynomial equations.

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.4)

In this work, camera calibration refers to the determination of intrinsic parameters

using standard method proposed by Zhang (2000) with a chessboard. Furthermore,

based on the current manufacturing techniques, it is assumed that skew is zero for

all cameras and the first two coefficients of Eq.3.4 are sufficient for correcting radial

distortions.
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Figure 3.2: Epipolar geometry

3.2.2 Epipolar geometry

Epipolar geometry describes the relation between two camera views observing the

same objects, which enables the determination of the third dimension (i.e. depth

along the ray) and thus the 3D reconstruction. The essence of epipolar geometry

is the coplanarity constraint, which is illustrated by the basic setup in Fig. 3.2.

Here the baseline, which is the line connecting the two camera centers, intersects

each image plane at the epipoles e and e′. Any plane π containing the baseline is

an epipolar plane, and intersects the image planes in corresponding epipolar lines

l and l′ (Hartley et al. (2003)).

Fundamental Matrix The fundamental matrix is a 3 × 3 rank 2 matrix rep-

resenting epipolar geometry algebraically and satisfies the condition in Eq. 3.5 for

any pair of corresponding points x ↔ x′ in two images. This means any point x′

in the second image matching the point x must lie on the epipolar line l′, which

is described by l′ = Fx and valid vice versa. Thus Eq. 3.5 characterizes the

fundamental matrix without reference to the camera parameters, i.e. solely from

corresponding image points.

x′>Fx = 0 (3.5)

[x′ y′ 1]

 f1 f2 f3

f4 f5 f6

f7 f8 f9


 x

y

1

 = 0

⇓
xx′f1 + yx′f2 + x′f3 + xy′f4 + yy′f5 + y′f6 + xf7 + yf8 + 1 = 0

⇓
[xx′ yx′ x′ xy′ yy′ y′ x y 1] f = 0

(3.6)

For the computation of the fundamental matrix, the most commonly used model is

the Eight-point algorithm from Hartley, 1995. Concrete steps of this algorithm are
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not listed in this work, as they can be easily found in the literature. Here the most

essential part of this algorithm is presented, as each point correspondence yields

the linear equation derived in Eq. 3.6, where f is the flattened vector containing

the nine unknown entries of F . For eight point correspondences the resulting eight

equations can be combined to the linear system in Eq. 3.7

Mf = 0 (3.7)

with M being a 8 × 9 matrix. The least-squares solution for f is the singular vector

corresponding to the smallest singular value of M , that is, the last column of V in

the SVD decomposition M = UDV T . An important property of the fundamental

matrix is that it is singular and has rank 2. This singularity of F could be enforced

by decomposing F using SVD into F = UDV T , setting D(3, 3) = 0 and composing

F again as F = UDV T , i.e. letting the smallest singular value of F equals zero.

As we assume that raw input detections include noise and outliers, a better solution

could be incorporating this eight point solution into a RANSAC framework (see

Section 3.3). As for the error measure used within RANSAC, the Sampson error is

often applied as a first-order approximation to the geometric error (Hartley et al.

(2003)).

Sampson error =

(
x′>Fx

)2
(Fx)21 + (Fx)22 + (F>x′)21 + (F>x′)22

(3.8)

Essential Matrix Essential matrix can be seen as the specialization of the fun-

damental matrix to the case of known camera intrinsic parameters. It expresses the

relation between image coordinates in calibrated camera coordinate system that

can be obtained as x̂ = K−1x, with known calibration matrix K. The following

equations define the essential matrix and show its relation with the fundamental

matrix.

x̂′>Ex̂ = 0 (3.9)

E = K ′>FK (3.10)

By definition, essential matrix can be directly estimated using the Eight-point

algorithm. Another solution, proposed by Nistér, 2004, estimates E using only

5 point correspondences (E has 5 degrees of freedom). Similar to F , the rank

deficiency as well as the degrees of freedom constraint has to be enforced, which

is typically done by setting the first two singular values of E identical and letting

the third singular value equals zero. Essential matrix is very useful for calibrated



13 3.2. Reconstruction Pipeline

reconstruction, as the relative camera pose can be extracted from it. Assuming

the first camera P = [I | 0], the rotation and translation of the second camera can

be retrieved from E up to a four-fold ambiguity, i.e. four possible solutions. The

correct solution can be determined by checking that reconstructed points should

be in front of both cameras.

3.2.3 Focal length estimation

The motivation of camera focal length estimation comes from the problem of Eu-

clidean reconstruction (up to a similarity transformation from the true reconstruc-

tion) from two cameras with unknown intrinsic parameters. It has been proved

that Euclidean reconstruction from uncalibrated cameras is not possible (Hartley

et al., 1992), as the best possible result is projective reconstruction. Yet it is the-

oretically possible to retrieve focal length of cameras, assuming square pixels (no

skew and unit aspect ratio) and provided an estimate of the principal point (e.g.

at image center).

A simple implementation following this idea is presented by Bougnoux (1998),

which relies on the fundamental matrix and can be summarized by the following

equation:

f =

√√√√−p′T [e′]× ĨFppTFTp′

p′T [e′]× ĨFĨFTp′
(3.11)

where f is the focal length of the first camera, p and p′ the principal points, e

and e′ the epipoles and Ĩ the diagonal matrix diag(1,1,0). The focal length of the

second camera f ′ is obtained by interchanging the roles of the two cameras.

An improved method is later proposed by Hartley et al., 2002, which formulated the

problem as optimization of a cost function that penalizes unrealistic focal length

estimates and optimized principal points far away from nominal positions. This

method is tested in the preliminary stage of this work and yet verified as unreliable

for our type of data. Because it is quite sensitive to the assumed position of the

principal point as well as the computed fundamental matrix and can not guarantee

a convergence to feasible solutions each time. Thus the focal length estimation

is not applied to our experiments on real datasets. Instead, we presume focal

lengths that deviate 20% from the calibrated values as a practical estimate for the

experiments of reconstruction using uncalibrated cameras.
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3.2.4 Triangulation

The term triangulation is understood as the recovery of a 3D point with known

projections from multiple camera views. In case of two camera views, a mathe-

matical expression of this geometric relation is shown by the following equations:

x = PX

x′ = P ′X
(3.12)

where X denotes an unknown 3D point, P , P ′ are the camera matrices and x, x′

are corresponding 2D projections of this point.

The most common solution is the linear triangulation (see Eq. 3.13). In this

method each camera view gives rise to two equations on the three entries of X.

Combining these four equations, a overdetermined linear equation system is ob-

tained and can be solved in a least square sense, often by SVD.

x =

 u

v

1

 x′ =

 u′

v′

1

 P =

 pT1
pT2
pT3

 P ′ =

 p′T1
p′T2
p′T3


⇓

AX = 0 with A =


upT3 − pT1
vpT3 − pT2
u′p′T3 − p′

T
1

v′p′T3 − p′
T
2


(3.13)

The minimized algebraic error in this method, however, is not geometrically mean-

ingful. A better solution is proposed by Hartley et al., 1997, which is referred to

the optimal method of triangulation. The key idea behind it is to find the correct

correspondence x̂ ↔ x̂′ lying close to the measured correspondence x ↔ x′ and

subject strictly to the epipolar constraint x̂′>Fx̂ = 0. The closeness to the mea-

sured correspondence is expressed as the optimization of the following function:

d(x, x̂)2 + d (x′, x̂′)
2

(3.14)

where d(∗, ∗) denotes Euclidean distance. After the correct correspondence x̂↔ x̂′

is found, the 3D point X is then computed simply using linear triangulation. This

non-linear triangulation method is applied in this work for the initial pair of cam-

eras with fundamental matrix. For each additional camera the linear triangulation

is exploited.
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Figure 3.3: Perspective-n-Point model 1

3.2.5 Perspective-n-Point

Perspective-n-Point (or PnP) is the problem of estimating the pose of a calibrated

camera from a set of n 3D↔2D point correspondences (see Fig. 3.3). The term

camera pose is equivalent to camera extrinsic parameters, which involves rotation

and translation w.r.t the world coordinate system (see Eq. 3.2) and has 6 degrees

of freedom.

As a camera pose has 6 DOF (3 rotation and 3 translation) and each correspon-

dences provides two equations, the minimum set of correspondences required to

this problem is n=3, which is therefore often denoted as P3P. P3P yields up to four

feasible solutions, which leads to the need for a fourth correspondence to remove

ambiguity. In the context of this work, the method proposed by Lepetit et al.,

2009 is applied, which is commonly known as EP3P solution. Built upon this, the

RANSAC algorithm (see Section 3.3) is used to make the approach resistant to

outliers. A global optimization that minimizes sum of reprojection errors is also

imposed on all the inliers.

3.2.6 Bundle adjustment

Bundle adjustment often refers to the process of simultaneous refinement of struc-

ture parameters (e.g. 3D object points) and camera parameters. It is almost

always applied as a last step of feature-based 3D reconstruction and essentially

equivalent to the Maximum Likelihood Estimator assuming zero-mean Gaussian

image errors.

A typical implementation of bundle adjustment is based on minimizing the sum

1Source: OpenCV library

https://docs.opencv.org/3.0-beta/doc/tutorials/calib3d/real_time_pose/real_time_pose.html
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Figure 3.4: A basic workflow of incremental Structure from Motion

of squared reprojection errors as shown in Eq. 3.15

arg min
Pi,Xj

m∑
i=1

n∑
j=1

‖xij − PiXj‖2 (3.15)

where Pi denotes the individual camera matrix, Xj the reconstructed object point

and xij the image projection of point Xj on the camera Pi. The minimization in

Eq. 3.15 is achieved using nonlinear least square algorithms, which require a good

initialization and can be computationally very expensive because of the number

of parameters involved. A general solution is the Levenberg-Marquardt algorithm

(LM) by Marquardt, 1963, which is proved to be very efficient by leveraging the

sparsity character of the Jacobian matrix.

3.2.7 Structure from Motion

Structure from Motion (SfM) is a general approach in computer vision for jointly

estimating 3D scene (structure) and cameras from a set of 2D images (motion).

Basically, it includes all the above outlined techniques in Section 3.2, as well as

some additional steps. As there are different paradigms for SfM, a widely applied

scheme is the incremental reconstruction, whose basic workflow is illustrated in

Fig. 3.4. Other strategies include global (e.g. Brand et al., 2004) or hybrid (e.g.

Cui et al., 2017) structure from motion, which could potentially improve efficiency

at the price of robustness and accuracy.

In the initialization step the motion of the first two images is computed using

fundamental matrix or essential matrix. An initial structure is then obtained by

triangulating corresponding points. Then for each additional view, the camera

is registered to the structure by solving the PnP problem using the known 3D

points visible in its image. After the estimation of camera projection matrix,

new 3D points can be added to the structure by triangulation. This is followed

by a bundle adjustment optimizing the current structure and cameras. Bundle

adjustment is also applied in the final step when all images are registered and the

structure is complete, to find the optimal structure and camera parameters that
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Figure 3.5: An example of B-spline 2. Control
points are in red and knot points in blue

minimize the total reprojection error.

3.3 RANSAC Algorithm

Random sample consensus (RANSAC) is a robust model fitting method that esti-

mates a mathematical model from a set of observed data contaminated by outliers.

It assumes that the data consist of inliers, whose distribution can be explained by

model parameters, and outliers that do not fit to this distribution. As RANSAC is

a non-deterministic algorithm, the first step is random sampling of a small subset

of individuals. Then a model can be established based on this subset of data.

Any other data that are close to this model within a threshold are considered as

inliers. This process is then repeated and the finial model is the one with most

inliers. A modification of this basic setup is the local optimized RANSAC (LO-

RANSAC) proposed by Chum et al., 2003, where eventually an optimization (e.g.

least-square) is imposed on the complete set of inliers. The RANSAC algorithm is

widely applied in computer vision, e.g. estimating fundamental matrix and solving

the PnP problem.

3.4 Spline Approximation

By definition, a spline is a piecewise polynomial (parametric) curve. Spline func-

tions are used for interpolation given sample data points and can represent many

different types of curves in space. Spline approximation has been proved to be

a powerful tool for curve fitting as it can approximate complex shapes with high

accuracy and less computation.

In this work, the cubic B-spline representation is applied to approximate drone

trajectories. A B-spline curve is a generalization of Bézier curve and is defined by

2Source: bsplines.org

https://bsplines.org/flavors-and-types-of-b-splines/
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n+ 1 control points, m+ 1 knots and base functions of degree p, where m, n and p

are related by the condition (m+1) = (n+1)+(p+1). A mathematical definition

of B-spline is given in the following equation:

C(t) =
n∑
i=0

Ni,p(t)Pi (3.16)

where T = (0, · · · , 0, tp+1, · · · , tm−p+1, 1, · · · , 1) is the knot vector, Pi’s are the

control points (red points in Fig. 3.5) and Ni,p(t)’s are the B-spline base functions

of degree p (p=3 in case of cubic spline). The point on the curve that corresponds

to a knot tj, C(tj), is referred to as a knot point (blue points in Fig. 3.5). A

cubic B-spline with uniform knot vector can be thus constructed simply given

coordinates of all the control points.



4 Methodology

This chapter provides the underlying methodology of this work in depth. In sec-

tion 4.1 a method is implemented for synchronizing two cameras considering their

relative geometry. In section 4.2 the pipeline of drone trajectory reconstruction is

presented after cameras are globally synchronized.

4.1 Synchronization of Two Cameras

A method for simultaneous estimation of synchronization of two cameras and the

fundamental matrix using only image correspondences from Albl et al., 2017 is

presented in this section. A quasi-minimal solver introduced in section 4.1.2 gives

the time shift estimate between two cameras using a small set of correspondences.

The algorithms in section 4.1.3 are built upon this solver enabling estimation of

large time shifts.

4.1.1 Relation between two unsynchronized cameras

The movement of a drone can be considered as a trajectory of a 3D point in space

representing the drone center. The coordinates of this point can be described as

X(t) = [X1(t), X2(t), X3(t), 1]T (4.1)

where t denotes time. Projecting X(t) into image planes of two distinct cameras

produces two 2D image trajectories. As the camera captures discrete frames of

X(t), two sequences of samples can be obtained from the two cameras:

xi = π(X(ti)), i = 1, 2, . . . n (4.2)

x′j = π′(X(t′j)), j = 1, 2, . . . n′ (4.3)

where i and j are frame indices, xi and x′j are 2D image points of drone and π and

π′ are projection functions of the two cameras, respectively.

Generally, there is no correspondence direct from input detections regarding xi and

x′j that come from the same 3D point X, i.e. for i = j, xi and x′j do not represent

19
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Figure 4.1: A moving point is captured in two cameras, yet there is no correct
correspondence. On the right image, red points are measured and blue points are
the true correspondences

the projection of the same 3D point. Two main sources of this asynchronization can

be assumed. First, cameras may not start capturing video at the same time, which

introduces a constant time shift between video sequences. Second, cameras may

have different frame rates or inaccurate internal clocking, which leads to different

time scales. The result of these two factors is a linear relationship between the

times at which frames are captured

j(i) = αi+ β (4.4)

where α ∈ R denotes the time scaling and β ∈ R denotes the time shift in units of

number of frames. Note that Eq. 4.4 is an integer-to-real mapping. Thus j(i) may

not be an integer but x′(j(i)) can be approximated utilizing interpolation given

image samples x′j, j = 1, 2, . . . n′. In this way, a set of 2D point correspondences

could be established

xi ←→ x′(αi+ β) (4.5)

Solving synchronization between cameras thus reduces to the estimation of these

two parameters (α, β) using correspondences in Eq. 4.5. In practice, the time

scaling α is usually known or can be simply calculated. On the other hand, the time

shift β is hardly known precisely unless in strictly controlled laboratory setups.

Therefore in the rest of this work, it is assumed that α = 1, which should be true

when using same cameras or can be achieved by proper downsampling of video

sequences. The focus of synchronization is then the time shift β.
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4.1.2 A quasi-minimal solver of epipolar geometry

According to the 2D correspondences in Eq. 4.5 and the assumption of α = 1, the

general epipolar constraint of two cameras (see Eq. 3.5) has to be modified into

the following equation:

x′(i+ β)
T
Fxi = 0 (4.6)

In practice, projected image trajectories of drone xi and x′(i+ β) are complicated

curves. Therefore an approximation is exploited to reduce the problem into a

first-order polynomial system, i.e. a linear system. This means that the real point

x′(i+ β) is approximated by leveraging the sample point x′i and a vector v(d) as

v(d) =
x′i+d − x′i

d
(4.7)

x′(i+ β) = x′i + vi(d) · β (4.8)

where v(d) is an approximation of the 2D trajectory over the next d samples, where

d is called interpolation distance. The idea of this approximation is based on a

simple motion model, where x′i is the initial position, vi(d) is the velocity vector

and β is the duration time.

Based on this model the epipolar geometry in Eq. 4.6 can be solved by the following

equation system

[x′ + vxβ y′ + vyβ 1]

 f1 f2 f3

f4 f5 f6

f7 f8 f9


 x

y

1

 = 0

⇓

x(x′ + vxβ)f1 + y(x′ + vxβ)f2 + (x′ + vxβ)f3

+x(y′ + vyβ)f4 + y(y′ + vyβ)f5 + (y′ + vyβ)f6

+xf7 + yf8 + 1

= 0

⇓

[xx′ yx′ x′ xy′ yy′ y′ x y 1] f

+β [xvx yvx vx xvy yvy vy 0 0 0] f
= 0

(4.9)

As an additional parameter β needs to be solved, 9 point correspondences are

necessary to solve the Eq. 4.9, resulting to the following linear system

(M1 + βM2) f = 0 (4.10)
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where M1 and M2 are 9 × 9 matrices from correspondences and approximated

tangent vectors. The Eq. 4.10 is a generalized eigenvalue problem, which can

be solved efficiently using existing numerical algorithms. As three columns of M2

contain only zeros, M2 has a rank of six and three from nine eigenvalues should be

zero. Thus there are up to six possible solutions where eigenvalues correspond to

time shifts and eigenvectors are corresponding fundamental matrices. Similar to

the Eight-point algorithm, the resulting fundamental matrix does not necessarily

has the rank 2, which can be enforced by letting its third singular value be zero

using SVD.

This approach for simultaneous estimation of camera synchronization and epipolar

geometry is originated from Albl et al. (2017). It is referred to a quasi-minimal

solver in this work, as theoretically the actual minimal required number of corre-

spondences is eight (seven for the fundamental matrix because of the constraint

det(F ) = 0 and one for the time shift β).

As the solver is computationally efficient relying on a small set of correspondences,

it can be embedded into a RANSAC framework for robustness against noise and

outliers. In terms of synchronization using image trajectories, noise and outliers

mainly come from two sources. First, input data of image trajectories may con-

tain misdetections. In practice, misdetections are inevitable and happen more

frequently when the drone flies with a large velocity or the appearance size of the

drone varies on a large scale. Second, the assumed simple motion model has its

limitations. This model is intended to simulate motion with constant velocity in a

local range. Points with significant changes of velocity or on the non-linear pieces

of trajectory could be possibly considered as outliers. The usage of RANSAC can

avoid these points and select by chance the parts that are straight and linear. An-

other reason for exploiting RANSAC is the ambiguity of results from the solver.

Up to six possible eigenvalues (i.e. non-complex number) could be obtained from

Eq. 4.10. Only one of them could be a feasible estimate of the time shift β, which

could be determined by RANSAC.

This quasi-minimal solver together with RANSAC is tested on synthetic data,

presented in section 5.1.2. Evaluation shows that the interpolation distance d is

an important parameter for estimating different lengths of time shift. This leads

to developing further algorithms that exploit the solver as a kernel and estimate

large time offsets.
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4.1.3 Iterative algorithm and fixed-time algorithm

In this section two algorithms are presented built upon the quasi-minimal solver in-

troduced in section 4.1.2. Both algorithms are aimed at improving the performance

and extending the applicability of the solver, mainly based on the performance of

the solver on synthetic data in section 5.1.2. The common property of both al-

gorithms is the idea of varying interpolation distances d, while they distinguish

themselves from each other by searching over d in different manners. For both

algorithms, once β is estimated, the fundamental matrix between the two cameras

is then also determined according to Eq 4.10.

Algorithm 1 Iterative algorithm

Input:
Image trajectories from two camera s, s′, maximal exponent pmax

Output:
Time shift β, fundamental matrix F

1: Let ratiomax=0, β = 0, p = 0
2: while p <= pmax do
3: Apply quasi-minimal solver with d = 2p, obtain β1, F1, ratio1
4: Apply quasi-minimal solver with d = −2p, obtain β2, F2, ratio2
5: if ratio1 > ratio2 then
6: βtemp = β1, Ftemp = F1, ratiotemp = ratio1
7: else
8: βtemp = β2, Ftemp = F2, ratiotemp = ratio2
9: end if

10: if ratiotemp > ratiomax then
11: Update s′ according to βtemp
12: β = β + βtemp, F = Ftemp
13: ratiomax = ratiotemp, p = 0
14: else
15: p = p+ 1
16: end if
17: end while
18: return β, F ;

Iterative algorithm This iterative algorithm is firstly introduced in the pre-

vious work from Albl et al. (2017). The basic principle is to estimate the time

offset of two cameras step by step. Specifically, after a time offset β is estimated,

the two image sequences will then be updated by shifting the one to the other

with β frames. This process is then repeated until the two sequences from the two

cameras are considered optimally aligned. Evaluation of the quasi-minimal solver

shows that the ratio of inliers obtained from RANSAC gives a good hint of how

close the estimated β to the real-time shift. Thus the problem of estimating β can
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be seen as optimization with the inlier ratio being criteria. One prerequisite of

this iterative method is that the direction of β in each iteration should be correct

resulting in better and not worse synchronization. This condition is fulfilled as

the β computed far away from the optimum, though not precise, often provides

a good indicator of the direction towards final synchronization. Moreover, using

large interpolation distance d yields increasingly better estimates of large β, which

are not larger than the actual time offset. So the possible candidates of d should

be designed properly for different scales of time offsets.

The analysis mentioned above leads to the construction of the iterative algorithm.

In the beginning, the search interval of d should be defined. A feasible choice is the

exponential numbers, i.e. d ∈ {±20,±21, · · · ,±2m}. At each iteration, the β and

the fundamental matrix F are estimated trying different d in the search interval.

Once a model has a higher ratio of inliers than the previous iteration, re-align the

two cameras accordingly and repeat the process until going overall all possible d

the ratio of inliers still won’t increase anymore.

Algorithm 2 Fixed-time algorithm

Input:
Image trajectories from two camera s, s′, step length l, number of steps k,
interpolation distance for the second stage d2

Output:
Time shift β, fundamental matrix F

1: Let ratiomax=0, βstage1 = 0
2: for each d ∈ [−kl,−(k − 1)l, · · · ,−1, 1, · · · , (k − 1)l, kl] do
3: Apply quasi-minimal solver with d, obtain βtemp, Ftemp, ratiotemp
4: if ratiotemp > ratiomax then
5: βstage1 = βtemp
6: ratiomax = ratiotemp
7: end if
8: end for
9: Update s′ according to βstage1

10: Apply quasi-minimal solver with d = d2, obtain β1, F1, ratio1
11: Apply quasi-minimal solver with d = −d2, obtain β2, F2, ratio2
12: if ratio1 > ratio2 then
13: βstage2 = β1, F = F1

14: else
15: βstage2 = β2, F = F2

16: end if
17: β = βstage1 + βstage2
18: return β, F ;
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Fixed-time algorithm One potential drawback of the iterative algorithm is

the large computational burden. In the worst case, all candidates of d in the search

interval must be evaluated once at each iteration. This significantly increases

the necessary computation, especially when the estimated time shift is small at

each iteration resulting in a large number of iterations. This fixed-time algorithm

provides an alternative to synchronize two cameras in a straightforward manner

and consists of two stages. The first stage includes the estimation of β searching

over different d in large and linear intervals defined by step length l and number of

steps k (e.g.[-40,-20,-1,1,20,40] for l = 20,k = 2). The β estimated with the highest

ratio of inliers will be considered as the current time offset and will be applied

to roughly synchronize the two cameras. In the second stage, the interpolation

distance d is set to a small fixed integer (e.g. d = 1). Both positive and negative

values of this d will be applied to the result from the first stage. Again from both

results, the one with a higher inlier ratio will be accepted and helps to refine the

estimated β from the first stage. In this way, the computational cost is reduced

and known in advance.

4.2 Reconstruction using Synchronized Cameras

Camera synchronization is the pre-processing step in our reconstruction pipeline

and the initial estimates of time shifts will be later optimized in bundle adjust-

ment. As many approaches exist for multi-view reconstruction, the reconstruction

pipeline in this work follows the incremental principle with some modifications.

4.2.1 Incremental reconstruction

Currently incremental reconstruction is the standard approach for Structure from

Motion that adds on one camera at a time to grow the scene. In this work, our

reconstruction pipeline is also based on this idea, as shown in Fig 4.2. As most of

these steps are introduced in section 3.2, basically differences and improvements

in our work will be pointed out in this section.

Firstly, given detected image trajectories from videos, cameras need to be tem-

porally synchronized. The aforementioned sections already explain this in detail

and provide algorithms for the case of two cameras. In case of n cameras, where

n ≥ 3, we first compute the time shift between each pair of cameras as βi,j. In

order to verify a global consistency over all cameras, the following equation should

be fulfilled

β1,2 + β2,3 + · · ·+ βn−1,n + βn,1 < βthres (4.11)



Chapter 4. Methodology 26

Figure 4.2: Reconstruction workflow

where βthres is a threshold only allowing a weak inconsistency. In case the condition

in 4.11 is not fulfilled, entries of the summation on the left side will be re-computed

one at a time and each time this condition will be verified until satisfied or until

a maximal number of iterations is reached. Once all cameras are consistently

synchronized, a global timeline could be established. So each drone detection from

each camera will be assigned to a global timestamp so that point correspondences

over cameras are produced straightforwardly. Another modification of our pipeline

is the bundle adjustment optimization, which will be discussed in section 4.2.2 and

4.2.3 in detail.

Eventually, the reconstructed drone trajectory is known to differ from the true

trajectory by a Euclidean (similarity) transformation with uniform scaling when

using calibrated cameras. In this work, we aim to perform geo-referencing by esti-

mating this transformation for real data experiments where ground truth of drone

locations are provided, e.g. RTK data. In order to obtain a transformation as

precise as possible, we densely interpolated points from our reconstructed trajec-

tory resulting in many different alignments with the ground truth. We estimated

transformations for all possible alignments and selected the one with the smallest

mean position error.

As the reconstructed trajectory usually has a higher measurement frequency than

the ground truth data, the alignment to the real trajectory can be ambiguous up

to the temporal resolution of the ground truth. Thus we estimate multiple possible

transformations and choose the one with the smallest mean error.

4.2.2 Spline representation for drone trajectory

Unlike many other 3D reconstruction tasks, where the main objective is to recover

the shape of a static scene or object, we aim to reconstruct a drone trajectory which

should be a continuous curve in 3D space. Thus we propose to exploit spline as

an alternative representation of drone trajectory rather than a set of individual

points.
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Figure 4.3: An example of B-spline in presence of noise

More specifically, we leverage cubic B-splines in this work which are commonly

used for curve fitting. Given a set of 3D points in space, a B-spline can be fitted

which is smooth and close to the given points with only a few control points. One

main advantage of this spline representation is the resulting implicit geometric con-

straint. Without spline, drone detections in each frame are considered independent

from each other and theoretically can be anywhere in space. The geometric con-

straint behind a spline follows the assumption that the sampled data should form

a smooth continuous curve, which can be generally applied to drone trajectories.

In this way, noises and local discontinuities could be filtered or reduced while the

main structure of the trajectory remains unaffected.

Another important feature of B-spline is the local support. As a B-spline is de-

fined as piecewise polynomial functions, change of curve in one location (e.g. via

change of control point or coefficient) will not affect the whole curve. Thus any

detection on a drone trajectory is dependent only on the local control points and

coefficients. This property helps keep the sparsity character of Jacobian matrix

in bundle adjustment. For the implementation in this work, a B-spline is fitted

with a proper smooth factor using all these 3D points, when the initial trajectory

is reconstructed or each time more points are triangulated. This smooth factor is

manually selected such that the spline is defined by very few control points while it

visually conforms closely to the 3D trajectory reconstructed as independent points.

After coordinates of control points of a spline is optimized in bundle adjustment,

the 3D points are obtained by resampling from the spline.

4.2.3 Spatiotemporal bundle adjustment

Bundle adjustment is an optimization step that simultaneously refines recon-

structed 3D points, relative camera poses and camera optical parameters. In this

work, we denote this process as spatiotemporal bundle adjustment as parameters
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Figure 4.4: Sparse Jacobian matrix with spline coefficients

of camera synchronization will also be optimized. Thus the standard optimization

minimizing reprojection error is modified as follows

arg min
P,X,β

T∑
t=1

C∑
c=1

V t
c ‖π(Pc, X(t))− xc(tc + βc)‖2 (4.12)

where Pc denotes camera parameters, X(t) the 3D location of drone at time t, V t
c

the binary indicator of point-camera visibility. tc is the local time of camera c at

which the drone is projected and βc is the time shift of camera c w.r.t. the global

timeline, such that t = tc +βc. Thus xc(tc) is the original detection and xc(tc +βc)

is the actual projection of the drone at time t. This optimization is referred to as

SPoints as the drone trajectory is considered as a set of independent 3D points.

In section 4.2.2 a spline representation for drone trajectory is introduced. In this

case, the cost function of the spatiotemporal bundle adjustment is revised as

arg min
P,S,β

T∑
t=1

C∑
c=1

V t
c ‖π(Pc, S(kt))− xc(tc + βc)‖2 (4.13)

where S(kt) denotes the 3D point sampled from the spline S at the global time

t, which is affected by spline coefficients kt. This equation shows that only the

spline coefficients will be optimized, while the knot vector of the spline remains

unchanged. Because otherwise the number of spline parameters is not fixed, which

increases the complexity of the optimization. As mentioned in section 4.2.2 the Ja-

cobian matrix of the spatiotemporal bundle adjustment with spline will be kept as

a sparse matrix, as the reprojection error of one single point will not be determined

by the entire spline coefficients (see Fig 4.4 ).



5 Experiments

This chapter presents various experiments of methods implemented in this work.

It is divided into two sections. The first section evaluates the performance of

camera synchronization on a synthetic dataset. The second section presents the

final results of drone trajectory reconstruction on real datasets.

5.1 Camera Synchronization on Synthetic Data

In this section, experiments of methods for camera synchronization in section

4.1 are presented. These experiments are based on a synthetic dataset, as the

accessible real datasets do not have the ground truth, i.e. not strictly hardware

synchronized.

5.1.1 Synthetic Data

Although theoretically a synthetic trajectory can be easily generated randomly,

we exploit a real drone trajectory that is reconstructed from two camera views.

This trajectory is then projected onto the two known cameras resulting in two

synchronized image detections. By doing so, this drone trajectory does not have

strong violations of the underlying physical rules and any computed time shifts

have a real physical reference (i.e. unit second) rather than only in numbers of

frames. Fig 5.1 shows the synthetic 3D trajectory and Fig 5.2 shows the detections

Figure 5.1: Synthetic trajectory

29
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of this trajectory in two known cameras. Both cameras have the same frame rates

of 30fps.

(a) Left camera (b) Right camera

Figure 5.2: 2D detections of the synthetic drone trajectory from two cameras

5.1.2 Performance of the quasi-minimal solver

The performance of the quasi-minimal solver originated from Albl et al. (2017) is

investigated on this synthetic data. The two image detections are shifted towards

each other with different numbers of frames resulting in ground truth time shift

βgt, where βgt ∈ [−50, 50] frames. We tested the solver with different interpolation

distances d in powers of 2 and compared them also with the standard 8-point

algorithm without synchronization. Image noises are added to both detections

from a normal distribution with σ = 1 pixel. For each ground truth βgt and

interpolation distance d, the solver is tested 20 times and the average results are

presented.

Fig 5.3 shows the results of our experiments. In general the solver performs well

in terms of estimating the time shift β. The interpolation distance d has a strong

impact on the range in which β can be correctly estimated. For a given d, the

solver can estimate correct β at least up to d. For βgt larger than d, the estimated

time shifts are smaller than βgt, but not higher. This suggests that d can be safely

increased for better estimates.

The ratio of inliers is a good indicator of whether βgt is correctly estimated. For

d = 1 and d = 2, even though the ratio of inliers decreases with large shifts, β

can still be correctly estimated, up to about 10 frames. From Fig 5.3 we can see

that there are two peaks with respect to ratio of inliers, one at βgt = 0 and the

other at βgt = d. This makes sense as the tangent vector v will pass through this
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Figure 5.3: Performance of the quasi-minimal solver in terms of ratio of inliers
(left) and estimated time shift (right). Results with various ground truth βgt and
interpolation distance d, averaged from 20 runs.

next dth point. Another issue worth to be mentioned is the inferior performance

when βgt < 0. This means the estimation of β would fail when d is in the wrong

direction w.r.t βgt, which can be solved by searching over d in both directions.

5.1.3 Performance of iterative algorithm and fixed-time al-

gorithm

The iterative and the fixed-time algorithm are also experimented on this syn-

thetic dataset. As both algorithms are intended to estimate large time shifts,

the extent of ground truth time shifts is set up to βgt ∈ [−200, 200] frames,

which corresponds to βgt ∈ [−6.7, 6.7] seconds. For the iterative algorithm, the

maximal exponent of powers of 2 for the interpolation distance is set to 8 such

that d ∈ {±20,±21, · · · ,±28}. For the first stage of the fixed-time algorithm,

the step length for d is set to 20 frames and the resulting search vector is d ∈
{−200,−180, · · · ,−1, 1, · · · , 180, 200}. For the second stage d = ±1 is applied.

For each ground truth time shift βgt we ran both algorithms 10 times and recorded

the rates with which the two cameras are successfully synchronized up to single

frame accuracy. Results can be seen in Fig 5.4. It is apparent that the fixed-time

algorithm is very robust for βgt in a range of around -4 to 4 seconds, but starts to

be unstable rapidly for larger time shifts. On the other hand, the iterative algo-

rithm generally outperforms the fixed-time algorithm for these larger time shifts,

but can not ensure correct estimates at each run time. So a feasible strategy is

applying the fixed-time algorithm when two cameras are closely pre-synchronized

and the remainder β is relatively small. One can benefit from the iterative algo-
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Figure 5.4: Success rates of the iterative algorithm and the fixed-time algorithm.
For each ground truth time shift βgt the rates are presented from 10 runs with
which βgt is correctly estimated up to one frame.

rithm when the manual pre-synchronization is not accurate and the remainder β

still has a couple of seconds.

5.2 Trajectory Reconstruction on Real Data

In this section, experiments of our trajectory reconstruction pipeline, which are

conducted in different configurations on real datasets, are presented. The ground

truth positions of the real drone trajectories are available, which enables quanti-

tative comparisons and statistical analysis.

5.2.1 Real Data

Our real datasets contain two drone flights both in a wild outdoor environment.

Durations of both flights, in which the drone is captured by cameras, are around

2 minutes. The Real-time Kinematic (RTK) positioning data of both flights are

available, provided by the company Fixposition 1. The raw RTK data are in form

of geodetic datum, i.e. longitude, latitude and height. These are then transformed

into local ENU (East, North, up) coordinates with an arbitrarily selected local

reference point. These RTK data are regarded as ground truth in the rest of this

work, as they have very high accuracy in centimeter level, based on information

on the official website of Fixposition (see Table 5.1).

Our multi-view system contains four static cameras on the ground. Fig 5.5 shows

1Official website: www.fixposition.ch

https://www.fixposition.ch/
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Horizontal accuracy Vertical accuracy Measurements rate
1cm + ppm 1.5cm + ppm 5Hz

Table 5.1: Specifications of RTK data according to Fixposition

Figure 5.5: Camera configuration roughly displayed from vertical view

a rough configuration of the cameras, which is valid for both flights. The distance

of each camera to the center of drone flight is less than 100m. Although our four

cameras captured the drone with different frame rates, these frame rates are known

(30, 30, 50, 25) and the resulting 2D detections from each camera are interpolated

such that they correspond to a frame rate of 30fps. On the other hand, cameras

are triggered at different times on purpose and the time shifts between them are

unknown, i.e. no ground truth for camera synchronization.

As object detection from videos is not a part of this work, the 2D drone detections

from each camera are provided as input data (see Fig 5.6). The number of detec-

tions from each camera varies roughly from 2000 to 4000 points depending on how

long the drone flew inside the field of view of each camera. The appearance of the

drone has different scales due to different distances to each camera and it makes

detection and tracking more difficult. Therefore noise can be expected from input

detections, which is a good challenging situation for our reconstruction.

Figure 5.6: Example of input drone detections
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5.2.2 Experimental configuration

As two drone flights are available, we denote them simply as 1st Flight and 2nd

Flight. For both flights, the input drone detections are roughly pre-synchronized by

means of manual alignment, such that relative time shift between each pair is less

than 10s. Because manual synchronization of cameras in a range of 10s is feasible,

either based on visual or acoustic contents of videos. And a time shift large than

10s is considered out of the capability of our algorithms. After cameras are globally

synchronized either with the iterative or the fixed-time algorithm, we started the

incremental reconstruction with two views that have most corresponding detections

and sequentially add another view that has most correspondences to the current

triangulated trajectory. For the bundle adjustment, we used the least squares

function from the Scipy Python library with maximum number of 20 iterations.

As a spline representation for drone trajectory is proposed in section 4.2.2, this

is experimented together with the standard approach. We denote reconstruction

based on spline as Spline and reconstruction as a set of independent 3D points as

Points. Our reconstructed drone trajectories are eventually transformed through

a similarity transformation, which enables a comparison with the ground truth

RTK data in the ENU coordinate system. As the measurement rate of our recon-

struction (30fps) is higher than that of the RTK data (5Hz), different alignments

between both data sources are possible, i.e. one RTK measurement has six possi-

ble corresponding points from the reconstructed trajectory. Thus we estimate all

possible transformations and choose the one that gives the smallest mean error of

drone locations.

In this work, the four cameras capturing the drone are calibrated using the stan-

dard method with a chessboard (Zhang, 2000). Additionally we also did recon-

struction from partial-calibrated cameras, i.e. assuming square pixels, principle

points in image center and no radial distortions. Theoretically focal lengths of

cameras can be estimated by the Eq. 3.11, yet this has been proved as very sensi-

tive and not robust. Thus we applied approximated values for focal lengths that

deviate 20% from the calibrated values as a simulation of uncalibrated cameras.

5.2.3 Qualitative and quantitative results

In this section, results of camera synchronization and drone trajectory reconstruc-

tion are presented for 1st Flight and 2nd Flight separately. Also results of recon-

struction using uncalibrated cameras are presented.
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Cam1 Cam2 Cam3 Cam4
Manual 0 46 -8 109

Manual (optimized) 0 46.53 -11.27 110.93
Iterative 0 33.63 -18.25 121.89

Iterative (optimized) 0 33.58 -17.93 122.06
Fixed-time 0 32.55 -17.68 124.12

Fixed-time (optimized) 0 33.26 -17.56 122.54

Table 5.2: Camera synchronization of 1st Flight. All time shifts are in unit frame
and relative to the first camera. Both initial and optimized estimates are listed for
all methods. The iterative algorithm and the fixed-time algorithm give very close
estimates of time shifts, while manual synchronization differs significantly.

(a) Points (b) Spline

Figure 5.7: Reconstruction of 1st Flight compared with RTK ground truth without
(left) and with (right) spline representation.

Results of 1st Flight The relative time offsets (frames) between cameras are

presented in Table 5.2. Raw estimates from all methods as well as optimized

estimates after bundle adjustment (without spline representation) are provided.

The starting time of the first camera is regarded as the reference for all computed

time shifts. Manual synchronization of two cameras is based on visual contents

and acoustic information from videos, which is not precise enough and does not

converge to actual time shifts after optimization. On the other hand, it is apparent

that both the iterative and the fixed-time algorithm give very close estimates of

time shifts, with differences less than about 1 frame. As there is no ground truth for

these time shifts, we compared the raw estimates with those after optimization.

The changes of time shifts caused by optimization are small, i.e. less than 1.5

frames. This could infer that the initial estimates are close enough to the optimal

values, but it is not a certain conclusion. To confirm the correctness of our results,
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Figure 5.8: Error histogram of the 1st Flight

Mean (cm) RMSE (cm) Max (cm) Min (cm)
Points 6.7 5.0 26.2 0.5
Spline 7.3 4.6 26.0 0.5

Table 5.3: Mean, RMSE and max errors of the 1st Flight reconstruction

we will present the drone reconstructions following camera synchronization with

the iterative algorithm.

Fig. 5.7 shows qualitative results of reconstruction of the 1st Flight. We can see

that our reconstructed trajectory conforms well to the ground truth such that they

nearly overlap each other. This is valid for both reconstruction methods without

and with spline representation. Table 5.3 and Fig 5.8 present statistic analysis of

the 1st Flight. The majority of the reconstructed points has error less than 10cm.

Although the mean position error of reconstruction using spline is larger than that

of normal reconstruction, the RMSE and the maximum error are lowered with

spline representation.

Results of 2nd Flight The results of the 2nd Flight are presented in an analo-

gous manner as the 1st Flight. Table 5.4 shows the estimated time shifts between

the cameras. Though carried out carefully, manual synchronization still has in-

evitable distinct deviations from the actual time shifts. Differences of the initial

estimates provided by the iterative and the fixed-time algorithm are smaller than

1 frame, which is an expected behavior similar to the 1st Flight. Yet the initial

estimates are changed around 2 frames or more after optimization (without spline

representation). One possible reason could be the noise in the input detections. As

the time shift optimization of each camera is affected by all the reprojection errors

from that camera, the modification of time shift could act as a compensation to
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Cam1 Cam2 Cam3 Cam4
Manual 0 -54 30 97

Manual (optimized) 0 -52.16 27.49 102.28
Iterative 0 -71.54 14.29 105.42

Iterative (optimized) 0 -73.66 12.47 104.36
Fixed-time 0 -71.48 14.26 106.12

Fixed-time (optimized) 0 -73.97 12.39 104.31

Table 5.4: Camera synchronization of 2nd Flight. All time shifts are in unit frame
and relative to the first camera. Both initial and optimized estimates are listed
for both all methods. Similar to the 1st Flight, manual alignment shows relatively
large deviations from the actual time shifts, wherears both the iterative algorithm
and the fixed-time algorithm provide similar initial estimates of time shifts. Bundle
adjustment leads to changes of time shift estimates around 2 frames.

(a) Points (b) Spline

Figure 5.9: Reconstruction of 2nd Flight compared with RTK ground truth with-
out (left) and with (right) spline representation.

noise in other parameters to reduce the total reprojection error.

Fig. 5.9 shows qualitative results of reconstruction of the 2nd Flight. Once again

our reconstructed trajectories coincide with the ground truth barely with distinct

margins. The trajectory optimized as a spline appears very similar to the trajec-

tory optimized as a set of independent points. Table 5.5 and Fig. 5.10 present

quantitative results of the 2nd Flight. The majority of the reconstructed points

has error between 5 to 15cm, which is slightly larger than the 1st Flight. This

time the spline representation benefits the trajectory reconstruction in all three

criteria of mean, RMSE and maximum errors. Especially the spline representation

contributes to a reduction of the maximum error about 6cm. Visualizations of

position errors along the trajectory for both flights can be found in Appendix A
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Figure 5.10: Error histogram of the 2nd Flight

Mean (cm) RMSE (cm) Max (cm) Min (cm)
Points 13.2 7.4 40.0 1.6
Spline 12.9 6.7 34.4 1.4

Table 5.5: Mean, RMSE and max errors of the 2nd Flight reconstruction

Results of uncalibrated cameras As mentioned in section 5.2.2, we also ex-

perimented trajectory reconstructions using uncalibrated cameras with several

prior assumptions. Table 5.6 shows the results in form of the mean position

errors in centimeters. It is expected that the reconstructions with uncalibrated

cameras are inferior, which means larger errors in tens of centimeters. Trajectories

optimized as spline present slightly better reconstructions with smaller errors by

around 3cm.

1st Flight (points) 1st Flight (spline) 2nd Flight (points) 2nd Flight (spline)
Calibrated 6.7 7.3 13.2 12.9

Uncalibrated 25.2 22.4 79.1 76.8

Table 5.6: Error of reconstruction with uncalibrated cameras. The mean position
errors (cm) to the ground truth RTK data in centimeters for both flights are
reported.



6 Discussion

In this work, the first main task is temporal synchronization between two cameras.

The implemented quasi-minimal solver is an extension of the popular Eight-point

algorithm. The estimation of time shift β is based on the generalized eigenvalue

solution. Theoretically, once the time shift β is estimated, the sequences of input

drone detections can be aligned and thus the fundamental matrix can be estimated

separately. So the time shift and the fundamental matrix can be computed simul-

taneously, but not necessarily. One advantage of this effect is the possibility of

using different thresholds for β and the fundamental matrix. For the fixed-time

algorithm for large time shifts, results have shown that its performance declines

rapidly for large interpolation distances d. One possible reason is that the effec-

tive ranges for different d are not identical. So the search interval for d is not

necessarily uniform. For large time shifts, a denser search for d can potentially

give better estimates, yet will clearly increase the computational burden. For the

iterative algorithm, the maximal exponent of powers of 2 applied to d affects the

computational cost of this algorithm in a great part. So it should be chosen care-

fully, e,g. according to the initial guess of β, not just as large as possible. During

experiments, two cameras capturing real drone trajectories have frame rates very

close to 30fps according to display on hardware, e.g. 29.94fps. We have found

that this deviation is not negligible because the error in time scale will accumulate

through time potentially resulting in large time differences afterward. Future work

of estimating the relative time scale is desired.

A contribution of this work is the spline representation of drone trajectory. The

spline smoothing acts as a regularizer that implicitly enforces geometric constraints

to individual samples from trajectories. The results of our experiments indicate

that the spline representation mitigates noise and helps reduce large errors. In most

experiments, trajectories optimized as spline have smaller RMSE and maximum

errors. Yet for the 1st Flight the trajectory optimized as spline has a slightly

larger mean position error compared with the standard reconstruction without

spline. One possible reason is that the standard method can already recover the

trajectory very closely given good initial drone detections. As there is a trade-off

between smoothness and closeness when creating a spline, using spline might cause

larger errors if given samples are highly accurate and/or the smoothing factor is

39
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Noise σ = 0 Noise σ = 3
Points 6.7 10.4
Spline 7.3 9.6

Table 6.1: Mean position error (cm) of the 1st Flight with noise. A noise with
σ = 3 is added to raw detections and the averaged results of 5 runs of our method
are listed

too large to preserve local geometric features. Another source of position errors is

the imperfection of the RTK data. As our reconstructions reach a high accuracy

of several centimeters, the placement of the RTK onboard sensor should be taken

into account. Because the center point of the drone is tracked in our 2D detections,

which might not coincide with the location of the RTK sensor and thus leads to

errors in centimeter level.

In this work, only coordinates of control points are optimized as spline parameters.

The number of control points is fixed and is determined by the initial smoothing

factor. So one can set up the initial spline by tuning the smoothing factor for a

balance between smoothness and closeness. The number of control points will be

increased until the smoothing condition is satisfied:∑
‖yi − spline(xi)‖2 < s (6.1)

where s is the smoothing factor, xi are input points and yi are approximated

points from the spline at the same frames as xi. In our experiments, we chose

the smoothing factor s such that the spline visually coincides well to the original

points while control points are much less than the original points, i.e. more than

3000 points can be represented by a spline with less than 100 control points. As

this s is empirically tuned in this work, the impact of s deserves a detailed statistic

analysis in the future.

In section 5.2.3 trajectories are reconstructed from raw image detections. To test

the robustness of our reconstruction pipeline, especially the spline representation,

experiments should have been done where noise is added to input detections. Un-

fortunately, a thorough analysis with different levels of noise has not been accom-

plished in this work due to the limitation of time and workload for this thesis. We

tested a configuration for the 1st Flight where image noise is added to detections

from a normal distribution with σ = 3 pixels and ran it 5 times (see Table 6.1).

The trajectory optimized as a spline has a mean position error of 9.6cm and is

closer to the ground truth RTK data than the normal reconstruction, which has a
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mean error of 10.4cm. Due to the reconstructed trajectories, the extent of camera

distances to the drone is between 10m to 60m. For the entire setup on this scale,

our experiments show that our reconstruction pipeline, especially with spline rep-

resentation, does not require input detections to be extremely accurate. Yet as

mentioned above, further experiments w.r.t robustness are anticipated.

Another interesting aspect of the reconstruction is the better result of the 1st Flight

compared to the 2nd Flight. One possible factor for that is visibility. A point from

the 1st Flight ist captured by 3.1 cameras on average, whereas this number is 2.8

for the 2nd Flight. A trajectory can be better recovered if it is recorded by more

cameras, which provides useful redundancies. Other relevant factors include the

physical motion of the drone, distances of the drone to the cameras, etc. Further

experiments could be made for in-depth investigation.





7 Conclusion & Outlook

The main objective of this thesis is to explore the potential of reconstructing

drone trajectories observed from multiple stationary cameras. Sequences of drone

detections from each camera are provided as the only input. A Euclidean recon-

struction is computed and compared with the ground truth trajectory from RTK

data. We have shown that our reconstructions can achieve high accuracy in tens

of centimeters.

The first contribution of this work involves camera synchronization. A solver from

Albl et al. (2017) is implemented that can simultaneously estimate the time shifts

between two cameras and their relative camera pose. The solver relies purely

on image correspondences and is robust to noise and outliers exploiting RANSAC.

Based on this solver, two algorithms are implemented to estimate large time offsets

(tens to hundreds of frames, up to about 7s). The iterative method is capable of

synchronizing two sequences step by step and is thus suitable for large time shifts.

The fixed-time algorithm is more efficient and robust for estimating time shifts

in a certain range. Both algorithms are experimented on a synthetic dataset and

show high success rates to synchronize two cameras with single frame accuracy.

The camera synchronization is regarded as a pre-processing step of our reconstruc-

tion pipeline. We followed the incremental principle of multi-view reconstruction

and proposed a spline representation of drone trajectory for bundle adjustment.

The underlying idea is to consider a drone trajectory as a smooth curve rather

than independent points, which can be well approximated by a spline with few

parameters. We compared our spline representation with the standard recon-

struction on real datasets with ground truth. Experiments have indicated that

a smoothing spline contributes to mitigating the variance of position errors and

reduction of extreme errors, while the efficiency of sparse bundle adjustment is not

affected much. We showed that our reconstructions, either with or without spline

representation, conform to the RTK ground truth with deviations within tens of

centimeters. Reconstructions from uncalibrated cameras have also been proved

possible albeit with inferior results.

In general, this work is an attempt with decent results towards the promising
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direction of drone trajectory reconstruction with vision-based approaches. Fur-

ther investigations should be conducted to refine or extend the methods from this

thesis. For instance, a method of camera synchronization allowing estimation of

relative time scale could improve the temporal alignment of drone detections. Be-

cause even the displayed frame rates from hardware are only precise up to few

decimal places. To improve the robustness of reconstructions, experiments with

different amounts of noise for input detections, camera poses or camera synchro-

nizations could be performed. An important aspect is studying the behavior of

reconstruction accuracies when drones fly in different spatial scales and with var-

ious distances to cameras. For better applicabilities, the potential of uncalibrated

cameras could be further explored. In the best scenario, reconstruction could be

possibly accomplished in real-time or online applications.
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Appendix A

Reconstruction errors along trajectory

(a) Points

(b) Spline

Figure A.1: Reconstruction error of 1st Flight along the trajectory compared with
RTK ground truth without (top) and with (down) spline representation.
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(a) Points

(b) Spline

Figure A.2: Reconstruction error of 2nd Flight along the trajectory compared with
RTK ground truth without (top) and with (down) spline representation.
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