
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

HistoNet: Image-based prediction of count
and size distribution histogram of object

instances

Kishan Sharma

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

HistoNet: Image-based prediction of count and size
distribution histogram of object instances

Author: Kishan Sharma
1st examiner: Prof. Dr. Laura Leal-Taixe, TUM
Primary advisor: Dr. Jan Dirk Wegner, ETH Zurich
Submission Date: June 24th, 2019

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

June 24th, 2019 Kishan Sharma

Acknowledgments

I would like to express my gratitude to all the people who supported me in the successful
completion of this Master thesis. I would like to thank, Dr. Jan Dirk Wegner for providing
me with the opportunity and support to pursue this Master thesis at ETH Zurich. I am
grateful to Prof. Dr. Laura Leal Taixe for allowing me to undertake this thesis under her
supervision. Their vast experience and knowledge always steered me in the right direc-
tion. Their constant support and guidance have been pivotal in the pursuit of achieving
the desired results. I would also like to thank, Dr. Christian Zurbrgg and Moritz Gold for
funding this thesis as well as for providing infrastructure for the data acquisition. Last but
foremost, I would like to wholeheartedly thank my family and friends for their unwaver-
ing support and encouragement.

vii

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a
nail.

- Abraham Maslow

ix

Abstract

Pixel-wise segmentation and instance segmentation of objects are the core research topics
in computer vision, which are essential for scene understanding. Solving this non-trivial
problem for less complex tasks such as object counting and size estimation requires train-
ing of large models and complex training pipelines. For those tasks, the size of instance
segmentation models is disproportionate with respect to the complexity of the problem. In
this work, we propose to predict statistical summary of objects in the form of object count
and object size histogram in crowded scenes directly without any explicit object instance
segmentation. What makes this task challenging is the high density of objects (of the same
category), which makes instance identification hard. Instead of explicitly segmenting ob-
ject instances, we show that directly learning object count and histogram of object sizes
improves accuracy while using drastically less parameters. For this, we introduce a novel
deep learning architecture HistoNet. This is very useful for application scenarios where
explicit, pixel-accurate instance segmentation is not needed, but there lies interest in the
overall distribution of instance sizes and object count. We show the applications of our
method in biology, where we estimate the count and size distribution of soldier fly larvae,
and in medicine, where we estimate the count and size distribution of cancer cells as an in-
termediate step to calculate tumor cellularity score. We also provide a new data set for this
task, the Fly Larvae dataset, which consists of 11,000 larvae instances labeled pixel-wise.
Additionally, we propose an extension of our deep learning architecture called HistoNet-
DSN in which deep supervision at hidden layer is incorporated for the refinement of our
method. We simulate crowded scenarios with large variance in object sizes, by generating
synthetic ellipse dataset and thus verifying the robustness of our method. Finally we show
that our method results in an overall improvement in the count and size distribution pre-
diction as compared to state-of-the-art instance segmentation method Mask-RCNN [18

.

]
and is applicable to different image modality and application domain.

xi

Contents

Acknowledgements

.

vii

Abstract

.

xi

1. Introduction

.

1
1.1. Motivation

.

. 1
1.2. Proposal

.

. 3

2. Background Theory

.

5
2.1. Neural Networks

.

. 5
2.1.1. Perceptrons

.

. 5
2.1.2. Convolutional Neural Network

.

. 7
2.2. ResNet

.

. 11
2.3. CountCeption

.

. 14
2.4. Deep Supervised Nets

.

. 16

3. Related Work

.

19
3.1. Object Counting

.

. 19
3.2. Object Size

.

. 20

4. Methodology

.

23
4.1. HistoNet

.

. 23
4.1.1. Network Architecture

.

. 23
4.1.2. Loss Functions

.

. 25
4.2. Deep Supervised HistoNet

.

. 27
4.2.1. Network Architecture

.

. 27
4.2.2. Loss Functions

.

. 28

5. Experiments and Results

.

31
5.1. Datasets

.

. 31
5.1.1. Fly Larvae Dataset

.

. 31
5.1.2. Synthetic Ellipse Dataset

.

. 32
5.1.3. Breast Cancer Cell Dataset

.

. 33
5.2. Evaluation Measures

.

. 35
5.3. Results

.

. 37
5.3.1. Fly Larvae Dataset

.

. 37

xiii

Contents

5.3.2. Synthetic Ellipse dataset

.

. 39
5.3.3. Breast Cancer Cell dataset

.

. 41
5.3.4. Ablation and Parameter Study

.

. 43
5.4. Result Summary

.

. 43

6. Conclusion

.

45

Appendix

.

49

A. Experimental Setup and Hyperparameters

.

49
A.1. Data pre-processing

.

. 49
A.2. Experiment settings

.

. 50

Bibliography

.

53

xiv

1. Introduction

1.1. Motivation

To mimic the most powerful human sense, the human vision and to develop algorithms
that can be run in such a fast and accurate way is still a vast topic of research in com-
puter vision. A variety of vision-based task such as pixel-wise segmentation of objects
(e.g., [46

.

, 17

.

, 42

.

, 53

.

]) and instance segmentation (e.g., [4

.

, 18

.

]) are core research topics in
computer vision and has seen a rapid improvement in over a short period of time. While
these solutions are directly applicable in various scenarios, for many problems, these are
often only an intermediate step which is followed by further post-processing like shape
refinement and vectorization [23

.

, 44

.

, 6

.

] that generate a product amenable to a specific ap-
plication. Learning to predict object count and object sizes for a given image is one such
problem.

Detecting object sizes in images is useful for a broad range of applications as it can be as-
sociated with physical properties like mass, area etc. The size of an object in an image is
directly proportional to the area of the pixel covered by the object assuming constant cam-
era to observation plane distance. In the images depicting crowded scenarios with a large
number of objects of the same category as shown in Fig. 1.1a

.

, the size distribution of object
instances can be of higher interest than the individual object size information. In many
applications, especially in the medical field, one is not interested in segmenting every in-
stance of an object as shown in Fig. 1.1b

.

, but rather finding the distribution of object sizes
in the image. The size distribution histogram gives us the statistical summary of the object
sizes as shown in Fig. 1.1c

.

. Additionally, counting of objects in a crowded environment
is a tiresome and time-consuming task which is susceptible to human error. Counting of
objects is useful in various real-world scenarios such as microscopic cell counts, crowd
monitoring, wildlife census, and tree population estimation of a forest from aerial images.

Typically, the task of object count and size distribution estimation would be approached
via explicit, pixel-accurate instance segmentation with a method like Mask R-CNN [18

.

].
These methods can be used to predict the size of each individual object using the estimated
mask, and the object count by estimating the number of detected instances. While these
methods are conceptually intuitive and robust, they still suffer from the problem of object
overlap, occlusion etc. and need an abundance of data and resources. As the object overlap
and the partial occlusion increases, the performance of these methods for size estimation
decreases because only visible pixels can be classified and thus are responsible for size

1

1. Introduction

(a) (b)
(c)

Figure 1.1.: (a) Fly larvae colony (b) pixel-accurate instance segmentation mask (c) size dis-
tribution histogram

estimation task as shown in Fig. 1.2

.

. Furthermore, it is well known that instance segmen-
tation methods cannot cope with large object overlap, mainly due to the non-maximum
suppression step, missing many objects in the process.

Solving a non-trivial problem of object detection or instance segmentation for slightly less
ambitious problems such as object counting and size distribution histogram, is like using a
sledgehammer to crack a nut. For those tasks, the size of instance segmentation models is
disproportionate with respect to the complexity of the problem. In addition, the number of
model parameters are high, which leads to high computational costs. Intuitively, it seems
a waste of resources to apply sophisticated instance segmentation methods to a rather
simple task, which is estimating the total count and size distribution of object instances.
To deal with the problems stated above, we aim to directly predict object count and size
distribution histogram without any explicit object instance segmentation. In this way, it
reduces the overhead of object detection, per object bounding box and pixel-wise mask
prediction.

Figure 1.2.: Object overlap problem of instance segmentation methods

2

1.2. Proposal

1.2. Proposal

The goal of this thesis is to develop a framework for predicting the summarized infor-
mation of the objects in an input image. In this work, we are proposing to predict size
distribution histogram as well as object count and it’s justification for the prediction in the
form of object spatial localization, in crowded scenes directly without any explicit object
instance segmentation. We target highly challenging tasks, for which all object have ex-
tremely similar appearance, and thus instance segmentation is difficult.

Our proposals are as follows:

• We propose a novel deep learning architecture (HistoNet), which counts and pre-
dicts the size distribution of objects directly from an input image, showing superior
results with respect to state-of-the-art instance based segmentation methods while
having 85% less parameters.

• We present a new data set of 11,000 pixel-wise labeled fly larvae instances, represent-
ing crowded scenario and the challenge of predicting size histogram for these small
similar looking objects.

• We further evaluate HistoNet’s performance on a public cancer cell data set and
demonstrate that it achieves good results for this different image modality and ap-
plication domain.

• We show the robustness of our method on synthetically generated ellipse dataset,
having large variance in object size distribution and using deep supervision at hid-
den layers to further improve our method.

Successful development of such image-based framework for predicting summarized infor-
mation about objects, will have various real-world applications. One such application is
the treatment of municipal organic solid waste by black soldier fly larvae. This is a promis-
ing treatment technology for the management of solid waste and it also produces fertilizer
and protein for animal feeds [10

.

, 16

.

]. However, for the economic feasibility of this process
at an industrial scale, automation is required to calculate the number and size distribution
of black soldier fly larvae. Our second application aims at estimating tumor growth di-
rectly from medical images. In this, we try to predict cellularity score for malignant cells,
by using cell count and size distribution as intermediate results. In this work, we advo-
cate that our approach, while being more accurate, significantly reduces the parameter
overhead needed for explicit pixel-accurate instance segmentation and has various appli-
cations.

The rest of the thesis is organized as follows. We will first discuss about the background
theory needed to understand our work in chapter 2

.

. After this, we will discuss the re-
lated work done for counting and size prediction in chapter 3

.

, followed by the developed

3

1. Introduction

methodologies for object size distribution and count prediction in chapter 4

.

. We will dis-
cuss about datasets used, evaluation strategies and experimental results in chapter 5

.

. Fi-
nally, chapter 6

.

provides a summary of our work and presents future work directions.

4

2. Background Theory

In this chapter, the theoretical background needed to understand our thesis work is ex-
plained. We will discuss about Neural networks, ResNet [19

.

], CountCeption [8

.

] which is
the building block of our developed network architecture and Deep Supervised Nets [28

.

].

2.1. Neural Networks

Neural network (NN) is an information processing system, which is primarily inspired by
the way biological neural system processes information. Similar to our brain, the basic
computational unit in NN is a neuron. Billions of these neurons are interconnected and
communicate with each other using synapses. Similarly NN consists of multiple layers
of neurons, each layer accepts the input, processes it and hands it over to the next layer.
For learning, our biological systems adjust the synaptic connections between the neurons.
Similarly, NN adjusts the weights of their neurons to learn from data, extract patterns
and detect trends. In this section, we will talk about perceptrons, convolutional neural
networks (CNN) and different components of CNN.

2.1.1. Perceptrons

The Perceptron [43

.

] is a single layer neural network, which is used for supervised learning
of binary classifiers. Its architecture is shown in Fig. 2.1a

.

. Perceptron unit first linearly
combines its inputs using learnable parameters wi and b. This is further passed through

(a)
(b)

Figure 2.1.: Perceptron (a) mathematical model of a neuron(b) A Multi-layered perceptron
with two hidden layers [22

.

]

5

2. Background Theory

an activation function which introduces non-linearity in the output. Originally, Perceptron
uses step function as non-linearity, which makes it a linear classifier.

f(X) =

{
1, if W.X + b > 0.

0, otherwise.
(2.1)

Where W is a vector of real valued weights, X is input and b is bias. The parameters are
learned using a simple iterative algorithm, which converges only if the training data is
linearly separable. Therefore, it’s impossible for a single layer perceptron to learn the XOR
function. Multi-Layered Perceptrons (MLPs) or Feed-Forward Neural Networks over-
comes this shortcoming in representational capability as shown in Fig. 2.1b

.

. The layers
apart from the input and the output layer are called hidden layers. NNs with at least one
hidden layer are universal function approximators, i.e. they can approximate any con-
tinuous function [9

.

]. Each layer in an MLP is typically fully-connected i.e. every unit is
connected to every unit of the next layer. In each layer, units compute a linear combination
of their inputs, followed by a non-linear activation function.

Activation Functions

Sigmoid: This non-linear monotonic function takes an input and squeezes it in the range
of 0 to 1, thus sometimes it’s used to represent the probability as shown in Fig. 2.2a

.

.

σ(x) =
1

1 + e−x
(2.2)

Since the gradient of this function for very large and small values is almost zero, it van-
ishes the gradient flow during back propagation. This function is not zero centered and
always output positive values, which slows down the learning process of parameters.

Hyperbolic tangent function: As shown in Fig. 2.2b

.

tanh outputs the values in the range
-1 to 1. It is zero centered and thus solves the positive output problem of the sigmoid
function. Similar to the sigmoid function, it also causes vanishing gradient problem in the
network.

tanh(x) =
ex − e−x

ex + e−x
(2.3)

Rectified linear unit: ReLU function solves the vanishing gradient problem. It is computa-
tionally inexpensive as compared to sigmoid and tanh which involve exponential function.
It is the most commonly used activation function. However, ReLU has zero gradient for
negative inputs as shown in Fig. 2.2c

.

and it kills the gradient flow, which is known as ”dy-
ing ReLU”.

ReLU(x) =

{
x, if x ≥ 0.

0, otherwise.
(2.4)

6

2.1. Neural Networks

(a) (b) (c) (d)

Figure 2.2.: Activation Functions (a) Sigmoid function (b) Hyperbolic tangent function (c)
ReLU function (d) Leaky RelU [22

.

]

Leaky rectified linear unit: It addresses the problem of ’dying ReLU’ for negative inputs,
and provides small negative values for negative inputs and thus enables backpropagation
even for negative values as shown in Fig. 2.2d

.

.

LeakyReLU(x) =

{
x, if x ≥ 0.

0.1x, otherwise.
(2.5)

2.1.2. Convolutional Neural Network

Regular NNs don’t scale well with high dimensional data such as images. Owing to the
fully-connected layers in MLP, the number of network parameters increase drastically with
data dimensionality and network depth. This makes the network susceptible to overfitting
the training data. Convolutional Neural Networks (ConvNets or CNNs) are a category
of NNs that have proven very effective in areas such as analyzing visual imagery. The
main difference between CNN and ordinary Neural Network is that they make explicit
assumption that the inputs are images, which allows us to encode certain properties into
the architecture. The connectivity pattern between neurons in CNNs is inspired by the
animal visual cortex. Individual cortical neurons only react to stimuli in a limited area of
the visual field known as the receptive field. Different neurons receptive fields partially
overlap to cover the entire visual field. Similarly, in CNNs connection between layers
are limited to spatially local regions. These convolutional kernels (local parameters) are
shared among neurons in the same layer. The shared-weight architecture and translation
invariance properties of a CNN allows it to achieve better performance on vision problems.
Fig 2.3

.

shows an example of CNN architecture, which is designed for a classification task.
A CNN consists of different types of layers such as Convolutional layer, pooling layer,
fully connected layer, batch normalization and dropout layer. We will discuss about these
layers in upcoming subsections.

7

2. Background Theory

Figure 2.3.: An example of CNN architecture [33

.

]

Convolutional Layer

The core building block of CNN is Convolutional Layer (Conv Layer). Conv Layer’s pa-
rameters consist of learn able filters (kernels), which have a small receptive field (along
width and height) but cover full depth of the input volume. Similar to NNs, Conv Layer
in CNNs compute dot products between the entries of the filter and the input. It con-
volves each filter across the width and height of the input volume and thus produces a
2-dimensional activation map that gives the responses of that filter at every spatial posi-
tion. Therefore, the network will learn filters that activates when it detects some type of
visual feature at different positions in the input volume. Different filters learn different
features in the input volume at every position and by stacking these activation maps along
the depth dimension, the output volume is constructed. Fig 2.4

.

shows the convolutional
layer.

O(Coutt , i, j) = b(Coutt) +

Cin−1∑
s=0

m−1∑
q=0

m−1∑
r=0

w(s, q, r) ∗ I(s, i+ q, j + r) (2.6)

Where I is the input, w is the kernel with width and height m, b is the bias, Cin and Cout
are the number of input and output channels and O is the output. The Conv Layer applies
kernel to a small region of the input volume and thus enforces sparse local connectivity
pattern between neurons of adjacent layers. The size of the kernel controls the extent of
this connectivity and is a hyperparameter called the receptive field of the neuron. The
Conv layer is used as a feature extractor in CNNs. Following are the hyperparameters
which control the size of the output volume:

• Depth of the output volume is a hyperparameter, which corresponds to the number
of filters in the Conv layer. Each filter learns to detect different features in the input
volume.

8

2.1. Neural Networks

Figure 2.4.: Convolutional Layer [5

.

]

• Stride is the number of pixels by which a kernel slides spatially over input volume.
For example, if the stride is one, kernel skips 1 pixel and if the stride is 3, kernel skips
3 pixels. As the stride of the kernel increases the size of the output volume decreases
spatially.

• Padding is used to control the spatial size of the output volume. Convolution op-
eration decreases the size of the output volume as the stride increase. To preserve
the input and output spatial size, the input volume can be padded with zeros at the
boundaries.

When a Conv Layer with receptive field sizem, number of filters (depth)Cout, with a stride
S and padding P is applied on input volume of spatial size W and depth Cin, the spatial
size of output volume with depth Cout is given as follows:

W −m+ 2P

S
+ 1 (2.7)

Pooling Layer

Pooling Layer is also an essential component of CNN. The pooling layer is used for reduc-
ing the size of input volume spatially to reduce the number of parameters and computation
in the network, and hence to also control overfitting. Since the pooling filter is applied at
all input channels of the input volume independently, the depth of output volume is same
as input volume. It is a form of non-linear downsampling. To implement pooling, there are
several non-linear functions, among which max pooling is the most common. A max pool
layer with filter size n ∗ n and stride n, partitions the input image into non-overlapping

9

2. Background Theory

(a)

(b)

Figure 2.5.: (a) Pooling Layer (b) Max Pooling [22

.

]

rectangles and takes the maximum out of these rectangles. A pooling layer with filter size
2x2 applied and stride of 2, reduces the size of every input channel by 2 spatially and
discards 75 percent of the activations. A pooling layer is usually applied in between the
successive Conv Layer in a CNN. Apart from Max pooling, average pooling is also com-
monly used in which the average of the sub region is taken. The pooling layer is used as
a feature selector, it selects the strongest activation in the region. Fig 2.5a

.

shows the exam-
ple of pooling layer, an input volume of size 224 × 224 × 64 pooled with the filter of size
2, stride 2 results into output volume of size 112 × 112 × 64. The volume depth remains
the same as input volume. Fig 2.5b

.

shows the max pooling operation in action on 4 × 4
activation map.

Fully Connected Layer

As seen in MLP, neurons in a fully connected layer have connections to all activation of
the previous layer. It is generally applied at the end of the network after several Conv and
Max pooling layers. Fully connected layer accumulates global information from lower and
mid-level features and provides high-level reasoning in the network.

Batch Normalization Layer

Batch normalization was introduced by Ioffe and Szegedy [20

.

] to improve the speed, per-
formance and stability of deep neural networks. During training, the change at early layers
gets amplified at deeper layers as it propagates in the network. This results in covariate
shift in the deeper hidden layers. Batch Normalization reduces such shifts and thus ac-
celerate training of the deep networks. This layer forces the output of the previous layer
to follow unit gaussian distribution, by subtracting the batch mean and diving by batch
standard deviation as shown in Fig. 2.6

.

. It makes the network more robust to different
initialization and high learning rates. It is generally applied after fully connected or Conv

10

2.2. ResNet

Layer and before non-linear activation layer.

Figure 2.6.: Batch Normalization Layer transform [20

.

]

Dropout Layer

Deep neural networks are prone to overfitting the underlying data. Dropout [48

.

] is a sim-
ple and effective regularization technique to overcome overfitting problems in NNs, by
preventing co-adaptation between neurons. During each training step, individual neu-
rons are deactivated or dropped out of the network with the probability p as shown in
Fig. 2.7

.

. It enforces layers to learn the features based on more neurons and hence improves
generalization. It is similar to training a large ensemble of models on a different batch of
training data with shared parameters.
We have used above mentioned layers to build a CNN architecture to predict the statistical
summary of the objects given an image.

2.2. ResNet

As per Universal approximation theorem [9

.

], a NN of single hidden layer having enough
capacity is sufficient to represent any function. But this network is prone to overfitting the
data. Deep networks naturally integrate low, mid and high-level features and these lev-
els of features can be enriched by the depth of the network. Many trivial and non-trivial
vision tasks have benefited from deep networks. Depth is of crucial importance in NN’s
performance. After AlexNet [26

.

], CNN architectures are going deeper and deeper, which
has become a common trend in the research community.

Learning better network by increasing network depth does not work by simply stacking
layers together. In the deep networks, as the gradient is back-propagated to earlier layers,
the gradient may vanish or explode, which makes them hard to train. Therefore, as the

11

2. Background Theory

(a) (b)

Figure 2.7.: (a) Standard neural network (b) After applying dropout [34

.

]

Figure 2.8.: Performance comparison of 56-layer and 20-layer plain network on CIFAR-10
(a) Training error (b) Test error [19

.

]

network depth increases, its performance gets saturated and then degrades rapidly. Un-
expectedly, the degradation in performance is not caused by overfitting. Increasing the
number of layers to a suitably deep model leads to higher training error as evident from
Fig. 2.8

.

. The degradation of training and test accuracy shows that not all networks are
easy to optimize. The author of ResNet [19

.

] contends that a shallower architecture and its
deeper counterpart with additional layers onto it, should not degrade the performance. If
the deeper model is constructed as such, the added layers are identity mapping and the
other layers are copied from the shallower model, this should produce no higher training
error than its shallower counterpart.

In the paper [19

.

], deep residual learning framework was introduced to tackle degrada-
tion problem. They hypothesize that explicitly allowing the stacked layer to fit a resid-

12

2.2. ResNet

ual mapping is an easier task than letting them directly learn a desired underlying map-
ping. We denote the desired mapping as H(x), we let the stacked nonlinear layers fit
F (x) = H(x)− x. Thus the original mapping is reformed into F (x) + x. It is easier to op-
timize residual mapping than to optimize original mapping. If needed, the residuals can
be pushed to zero to learn the identity mapping, which would be easier than to directly
learn identity mapping for a stack of nonlinear layers. As shown in Fig 2.9

.

a Residual block
introduces identity shortcut connections that skips one or more layers. These shortcut con-
nections simply learn identity mapping and add their output with the output of stacked
layers. A simple network with identity shortcut connections can be turned into a resid-
ual network. This neither increases the parameters of the network nor the computational
complexity.

Figure 2.9.: Residual Learning: a building block [19

.

]

Sometimes the dimensions of F (x) and x are different, then a projection shortcut is inserted
which can be easily implemented using 1 × 1 convolution. A residual block of 3 layers is

Figure 2.10.: ResNet 2 Layer and 3 Layer block [19

.

]

called bottleneck architecture as shown in Fig. 2.10

.

right. The two 1 × 1 convolutions de-
creases and increases the dimensions, and the middle 3 × 3 convolution layer is left with
smaller input and output dimensions. The 50, 101 and 152 layered residual networks have
been proposed in the literature. These networks do not suffer from the degradation prob-

13

2. Background Theory

(a)
(b)

Figure 2.11.: (a) CountCeption regression network and redundant count map (b) Gaussian
and square kernel [8

.

]

lem and gain accuracy with an increase in depth. Due to the above-mentioned properties
of ResNet, we have used it in our network architecture.

2.3. CountCeption

There exist numerous methods for object counting. CountCeption [8

.

] is a novel fully con-
volutional architecture adapted from inception [49

.

] family of the networks. Given an im-
age as an input, it returns the object count and provides object localization in the form of
redundant count map. Instead of predicting density map, Countception predicts count
map which consists of redundant object counts on the basis of the receptive field of a small
size regression network.
CountCeption processes an image in a fully convolutional way, so each pixel will be ac-

counted multiple times. For example, if the receptive field of CountCeption network is 32,
each pixel will be included in 1024 windows (32X32 = 1024) i.e. the size of each window.
True count of objects can be calculated as an average of redundant count map predictions.
Fig. 2.11a

.

shows that a single pixel in the predicted count map is based on the object count
in the receptive field of the regression network. Fig. 2.11b

.

shows two different kernels used
for predicting redundant count map. The red line indicates the use of gaussian kernel for
predicting the count map and the green line indicates the use of square kernel of the same
size as the receptive field. The gaussian kernel forces the model to learn how far the object
is from the center of the receptive field of the network which makes the task harder than
just predicting the presence of an object in the receptive field. Redundant count map using
gaussian and square kernels are shown in Fig. 2.12

.

.

14

2.3. CountCeption

(a) (b)

Figure 2.12.: Redundant Count map using (a) Gaussian kernel (b) Square kernel [8

.

]

Although CountCeption network doesn’t use any upsampling or deconvolution layer,
the size of target redundant count map is bigger than the input image size. Countception
network pads the border of the input image and doesn’t bottleneck the representation in
anyway. Since CountCeption network is small and fully convolutional it has fewer param-
eters to learn, therefore it reduces overfitting.

Figure 2.13.: CountCeption Network architecture [8

.

]

Countception network architecture is shown in Fig. 2.13

.

. The first convolution layer zero
pads the input image, in order to deal with objects appearing on the border of the image.
Following the idea of inception networks [49

.

], CountCeption network uses two types of
kernels 1× 1 and 3× 3 at the same level to handle variations in object size. All other 3× 3
convolutions are padded such that the input size is preserved. After each convolution
layer batch normalization layers are inserted. The most common way of annotating object

15

2. Background Theory

for counting is by providing point-annotation, where an object is represented by a single
pixel. The target redundant count map can be constructed from the point-annotated map
as follows:

T (x, y) =
∑

(x′,y′) εR(x,y)

L(x′, y′) (2.8)

Where R(x, y) is the set of pixel locations in the receptive field corresponding to T (x, y).
L is the point annotated map, which is of the same size as input image I . T (x, y) is the
total count of objects inside the region of size r × r receptive field. The network is trained
on pixel-wise L1 loss between target and predicted redundant count map. Since the main
objective is to count objects, the pixel-wise L1 loss is a proxy objective to the real count
which we want. While learning the redundant count map, each object is counted multiple
times, which averages over possible errors. The redundant and true count is recovered
from redundant count map as follows:

redundant counts =
(r
s

)2
(2.9)

true counts =

∑
x,y F (x, y)

redundant counts
(2.10)

Where r is the width/length of the receptive field, s is the stride length and F is the pre-
dicted redundant count map for an input image I . As evident from above equation, with
a stride of 1, each object is counted once for every pixel in its receptive field. The number
of redundant count decreases as the stride length increases. The true count is recovered
by diving the sum of redundant count map with the number of redundant counts. Using
redundant count is beneficial in many ways. The CountCeption network can still learn
even if the annotated label pixel for an object is not at the center or is at outside the object
because the object will appear in the receptive field on an average. Due to the superior per-
formance of CountCeption for object counting, we use it as the backbone of our network
architecture.

2.4. Deep Supervised Nets

Deep supervised nets [28

.

] are motivated by the observation that generally the performance
of a discriminative classifier will be better if it is trained on highly discriminative features.
This signifies that the quality of the hidden layer feature maps of a deep network can be
assessed by evaluating the performance of a discriminative classifier trained on them and
it also ensures the quality of feature maps at later layers. This feature quality feedback at
hidden layers of the network will directly assist in the network parameter update process
to facilitate highly discriminative feature maps. The author contends that instead of rely-
ing only on the gradients of the output layer, the additional supervision at hidden layers

16

2.4. Deep Supervised Nets

Figure 2.14.: Illustration of deeply supervised nets [28

.

]

will help in rapidly approaching the region of good quality discriminative feature maps.

This method addresses the problem of reduced transparency and discriminativeness of
features learned at hidden layers as well as the problem of training difficulty due to ex-
ploding and vanishing gradient. It enforces direct and early supervision at hidden layers.
It improves the convergence rate over the standard methods, assuming optimization func-
tion is strongly convex locally. Additional constraints are applied at the hidden layers as
a companion objective to aid the learning process as shown in Fig. 2.14

.

. In this figure, it
shows that the supervision is provided at early and later stage of the network, along with
the output layer.

The additional output from hidden layers can be thought of as similar to final output that
a truncated network might have produced. The backpropagation in the network not only
uses the gradient from the final layer, but also from additional local companion outputs.
The results from deep supervised nets [28

.

] shows that the additional objectives at hidden
layers act as feature regularization and it also helps in achieving faster convergence using
small training data. We have used the idea of deep supervised network in our developed
methodology to further improve our results.

17

3. Related Work

In recent years, a number of approaches have been developed to tackle the counting of
objects but not so much work has been done for explicit object size distribution estimation.
In this chapter, we will discuss about the developed approaches for object counting and
object size estimation task.

3.1. Object Counting

Counting objects in images has been a focal point in computer vision research for several
years. Earlier some unsupervised approaches were developed for tackling counting prob-
lem, based on motion similarities [38

.

] and self-similarities [3

.

]. Due to the limited counting
accuracy of these methods, later developed approaches were based on supervised learn-
ing. Various approaches of the pre-deep learning era are designed using bottom-up image
processing workflows to count objects, segmented with edge detectors [45

.

]. These classical
approaches comprise of fine-tuning edge detectors for segmenting objects and count them.
For dealing with overlapping objects these methods required watershed transformation.
A downside of these approaches is their large number of hyper-parameters that has to be
set for each new data set. Approaches for counting of objects can be broadly divided into
two categories.

Counting by Regression: These methods [7

.

, 25

.

, 32

.

] avoid directly solving the hard object
detection problem but instead directly learn a mapping from the input image to the num-
ber of objects. Some method learns mapping to output 1-dimensional statistics i.e. total
count, the object location information is discarded [1

.

, 25

.

]. Training these methods require
a large number of images labeled with total object count. An elegant method to estimate to-
tal object count in images is density estimation. These methods propose to output density
map to provide object localization and justification of object count. Integral over the pre-
dicted density map gives the total count. Lempitsky et. al [29

.

] computed Scale-Invariant
Feature Transform (SIFT) features for the input images and predicted density maps via re-
gression. Fiaschi et. al [11

.

] improved density mapping by using regression forests. Recent
works turn to Deep Learning [41

.

] for joint semantic segmentation and density estimation,
to identify and count particular tree species of sub-pixel size at very large scale from satel-
lite images. Xie et. al [51

.

] used fully convolutional regression network to output a cell
spatial density map across the image to predict total count. Another approach [52

.

] uses
structured regression to predict proximity patch, which has higher value for pixel near cell

19

3. Related Work

center. A very powerful architecture custom-tailored for object counting was introduced
in [8

.

]. It processes the image in a fully convolutional manner and predicts redundant
counting instead of density mapping in order to average over errors. Its main insight is
that predicting the existence or absence of an object within a receptive field is an easier
task than predicting density maps. The latter is harder because in addition to predicting
the existence of an object, it has to estimate how far the object is from the center of the re-
ceptive field. Due to its very redundant convolutions per image location, this architecture
gives good results while being efficient to train.

Counting by detection: These approaches detect the objects and one can count the de-
tected object to retrieve the count. By using visual object detector, individual object in-
stances in the image are localized. Counting becomes trivial after localization of all in-
stances. Some detection methods follow the two-stage propose and verify approach. Meth-
ods such as R-CNN [13

.

] and there improved versions Fast R-CNN [12

.

], Faster R-CNN
[40

.

], and Mask R-CNN [18

.

] has improved the detection quality. But due to the two stage
approach, these methods are slow in inference time. In recent time some one-stage ap-
proaches has been developed such as Single Shot detectors (SSD) [31

.

] and You Only Look
Once (YOLO) [39

.

] networks which have significantly improved the inference time.

For many applications, object counting is not enough, as the size distribution of the objects
in the scene are key to determine, e.g. malignant cell evolution. We propose an architec-
ture that not only counts objects but also predicts their size distribution without explicit
instance segmentation.

3.2. Object Size

Although some methods have taken up size as their secondary task, not so much work
has been done for estimation of direct size distribution of the objects in an image. We can
predict the object size by performing explicit object detection or instance segmentation.
The last few years have seen considerable progress in object detectors [14

.

, 40

.

], as well as
instance segmentation methods based on Deep Neural Networks [18

.

]. An advantage of
these approaches is that they also provide object size as a by-product. This can be approx-
imated by the area of the bounding box enclosing the objects or better estimated if one
extracts instance masks for all objects. These masks that stem from an instance segmen-
tation inside each individual bounding box can readily be used to estimate object sizes
more accurately than merely relying on bounding boxes. To the best of our knowledge,
this strategy is the most accurate and robust today to predict object count and size, thus
we use it as the baseline for this work.

A clear downside of the size and counting-by-detection strategy is that we solve a much
harder problem, i.e. instance segmentation, in order to predict total counts and object

20

3.2. Object Size

size distributions. This means using large models and complex training schemes to obtain
pixel-accurate instance delineation, even though this information is not needed as output.
Additionally, overlapping instances and occluded objects often lead to errors. We pro-
pose to directly learn to predict size distributions without explicit instance segmentation
or object detection. Our method directly predicts global dataset statistics i.e. object size
histograms and object count with much higher accuracy and using a leaner architecture
with 85% less parameters compared to Mask R-CNN [18

.

].

21

4. Methodology

Our goal is to develop a method which will give the abstract statistical summary about
objects in the given image, by estimating the total count of the objects and providing justi-
fication for the count in terms of localization and by estimating size distribution histogram.
In this section, we will discuss about our developed approaches, network architectures and
loss functions.

4.1. HistoNet

Our novel data-driven method HistoNet directly predicts global data statistics of an image,
namely, total object count in cluttered scenes and object size distribution histogram. More
formally, given an input image I , our aim is to predict a redundant count map Pmap and
size histogram Phist. The CountCeption [8

.

] method works really well for object counting
using redundant count map as regression target as discussed in section 2.3

.

. The activa-
tion maps after each layer in CountCeption looks as shown in Fig. 4.1

.

Activation maps of
CountCeption network after the first and second layer activates the objects and nearly seg-
ments them from the background. Building upon this observation, we construct a network
HistoNet, Which have two separate heads as follows:

• Lower branch: We use CountCeption network as our backbone network to predict
total object count using redundant count map.

• Upper branch: Building upon the observation from Fig. 4.1

.

, we take a separate
head from the first layer of CountCeption and pass the activation map with nearly
segmented objects, through ResNet-50 [19

.

] network to predict size distribution his-
togram.

For size distribution histogram prediction head, we experimented with different networks
out of which ResNet-50 produced significantly better results. In the next subsection, we
will discuss about the network architecture and loss functions in detail.

4.1.1. Network Architecture

As shown in Fig. 4.2

.

, HistoNet consists of two branches, one for predicting object count
and the other for histogram prediction which estimates the size distribution of object in-
stances. HistoNet takes an image I of size 256 × 256 pixels as an input and predicts a
redundant count map Pmap of size 288× 288 pixels in a fully convolutional manner (lower

23

4. Methodology

Figure 4.1.: CountCeption - Activation maps after each layer

branch). Note that neither upsampling nor deconvolutions are computed for predicting
a map of larger size than the input image. For this, HistoNet zero-pads the input image
in its first layer having padding width equal to the receptive field of the lower branch of
the network. In the Fig. 4.2

.

, two green boxes at the same level in the lower branch of the
network represents the application of two kernels on the same input and concatenation of
their outputs to handle the variations in object size. For size histogram prediction, the up-
per branch uses ResNet-50 [19

.

] network on top of the first layer of the lower branch of the
network because of its robustness against the vanishing gradients. In the upper branch,
instead of using a standard fully connected layer, we add two convolutional layers with
kernels of size 3× 3× 256 and 1× 1× 16 at the end of ResNet-50 network. These convolu-
tional layers are followed by two fully connected layers interspersed with dropout layers.
Our final output is a histogram of object sizes Phist. We can capture the size distribution at
a finer scale, by increasing the number of bins. In this work, we use 8-bin and 16-bin size
distribution histogram as final output.

24

4.1. HistoNet

Symbol Description
I Input Image

Pmap Predicted Count Map
Tmap Target Count Map
Phist Predicted Histogram
Thist Target Histogram
p(H) Probability Distribution of Histogram H
Lcount Pixel Wise Count Map Loss
LwL weighted L1 Histogram Loss
W Weights assigned for LwL
LKL KL-Div Histogram Loss

Table 4.1.: Notation Summary

Figure 4.2.: HistoNet Architecture

4.1.2. Loss Functions

To train the network for our multi-objective network, we impose losses on count prediction
as well as on histogram distribution prediction. A notation summary for the upcoming
equations is given in Table 4.1

.

.

Count Map Loss

For training the network to predict redundant count map, we impose pixel-wise L1 loss be-
tween predicted and target redundant count map. Since L2 loss was too harsh for training,
L1 loss was selected.

Lcount = ‖Pmap(I)− Tmap(I)‖1 (4.1)

25

4. Methodology

Where Pmap is the predicted count map, Tmap is target count map and ‖.‖1 is L1 norm.
Since one of our objectives is to predict total count, the pixel-wise L1 loss is helping the
network to implicitly learn total object count. If we combine this pixel-wise L1 loss with
loss based on total count prediction, it will cause the network to overfit and will not assist
in training. The network in order to predict the overall count will try to learn artifacts in
each image.

KL-Divergence Loss [27

.

]

For learning to predict size histogram, we impose KL-Divergence loss to capture the un-
derlying probability distribution. The KL-Divergence loss measures the degree of dissim-
ilarity between the predicted and ground truth distributions. By imparting this loss, we
will capture the shape of the histogram. For this, we converted both of our histogram size
distributions i.e. predicted and target histogram, to their probability distributions.

LKL =
∑
bins

p(Thist)log

(
p(Thist)

p(Phist)

)
(4.2)

Where p(Thist) and p(Phist) are the probability distributions of target and predicted size
histogram.

Weighted L1 Histogram Loss

Having imposed the KL-Divergence loss to capture the underlying probability distribu-
tion, we now want to capture the scale of the histogram. For this, we tried various loss
functions and found that L1 Loss performed the best. Moreover, a weighted L1-loss, where
weights W are assigned according to the normalized center values of the respective bins,
further improves the result. Our intuition is that larger objects should incur higher penalty
than smaller ones if missed. For calculating weights, we first compute the centers of the
histogram bins. After this, we calculate weights by normalizing center bin values i.e. by
dividing them with the sum of bin center vector. For example, an 8-bin histogram with ob-
ject size between 0 and 200 pixels, we get CenterBin = [12.5, 37.5, 67.5, 87.5, 112.5, 137.5,
167.5, 187.5] and compute weights and weighted L1 loss as follows:

W =
CenterBin∑
CenterBin

(4.3)

LwL =
∑
bins

W |Phist − Thist| (4.4)

Where Phist is predicted histogram and Thist is target histogram. The object size-weighted
L1-loss in combination with the KL-Divergence loss are mutually reinforcing to capture
shape and scale of the histogram.

26

4.2. Deep Supervised HistoNet

Total Loss

We jointly train our network on this multi-task loss and minimize it for learning to predict
count map and size histogram.

Ltotal = Lcount + 0.5LKL + 0.5LwL (4.5)

We empirically found that giving equal weight to KL-loss and weighted L1-loss gives best
results.

4.2. Deep Supervised HistoNet

Directly learning fine-grained 8 or 16 bin histograms can be tricky for the network. In
order to help the network focus the learning on the hard cases near the bin boundaries,
we propose to gradually increase histogram resolution towards the deeper layers. We first
learn a 2-bin and 4-bin histogram and later allow the network to increase the resolution to
8 or 16 bins. Fig. 4.3

.

shows that as we increase the resolution of the histogram from 2-bin to

Figure 4.3.: Task complexity for histogram prediction

8-bin the complexity of the model required to predict them also increases. We use the idea
behind Deeply Supervised Nets (DSN) [28

.

], which is shown to be helpful in calibrating the
model at intermediate stages by enforcing direct and early supervision for both the hidden
layers and the output layer.

4.2.1. Network Architecture

We show the deep supervision modules on the upper branch as trapezoids in Fig. 4.4

.

.
These have an effect on the early hidden layers and serve as an additional constraint to
gradually force the network to split size bins into smaller intervals. Our deep supervision
signal at early and middle stage of the histogram branch enforces first a split of sizes into
two bins and the following one into four bins. Therefore, in addition, to count map and size

27

4. Methodology

Figure 4.4.: HistoNet-DSN architecture

histogram, we predict 2-bin, 4-bin histograms Phist2 and Phist4, respectively. To implement
deep supervision, we add a stack of two convolutions followed by two fully connected
layers to predict the 2-bin histogram from early layers in the histogram branch as shown
in Fig. 4.5

.

. The same block is added at a middle stage for predicting 4-bin histogram. Our
full model architecture of HistoNet-DSN with deep supervision at intermediate stages of
the histogram branch is shown in Fig. 4.4

.

.

Figure 4.5.: DSN Block for 2/4 bin histogram

4.2.2. Loss Functions

For training HistoNet-DSN, we define additional output losses alongside our main objec-
tive function. We add KL-divergence and weighted L1 loss for 2-bin and 4-bin histogram

28

4.2. Deep Supervised HistoNet

predictions.

Ltotal = Lcount + 0.5(LKL + LwL)

+0.2(LKL2 + LwL2)

+0.3(LKL4 + LwL4)

(4.6)

Where LKL, LKL2 and LKL4 is kullback-liebler divergence loss for 2-bin, 4-bin and 8-bin
histogram respectively. Similarly LwL, LwL2 and LwL4 is weighted L1 loss for 2-bin, 4-
bin and 8-bin histogram respectively. We empirically found that giving more weight to
final histogram output loss followed by 4-bin histogram and 2-bin histogram gives better
results.

29

5. Experiments and Results

We evaluate the performance of our developed methods on three different datasets. First,
we compare the performance of our methods with state-of-the-art instance segmentation
method Mask R-CNN [18

.

] on our new Fly Larvae dataset, which contains a high density of
similar looking objects. In addition, we present experiments on a synthetic ellipse dataset,
where we can adjust the density and object size distributions arbitrarily, in order to show
the robustness of our method and its ability to predict diverse histogram shapes. Finally,
we run experiments with a medical image dataset to verify the applicability of our method
to a different image modality as well as for the specific purpose of estimating the tumor
cellularity score. In this section, we will discuss about our datasets, evaluation strategies
and quantitative results.

5.1. Datasets

5.1.1. Fly Larvae Dataset

We create a new dataset of soldier fly larvae, which are bred in massive quantities for sus-
tainable, environment friendly organic waste decomposition [10

.

, 16

.

]. Fly larvae images
were collected using a Sony Cyber shot DSC-WX350 camera with image size 1380 × 925
pixels as shown in Fig. 5.1c

.

. The camera is installed on a professional fixture to guarantee
a fixed distance from camera to observation plane for all image acquisitions as shown in
Fig. 5.1a

.

. This is important to avoid any scale variation between the different image acqui-
sitions. Very large numbers of larvae mingled with a lot of larvae feed lead to high object
overlap and occlusions. These similar looking brown colored fly larvaes have variations
in their sizes and flexible structure. To simplify our tasks, we choose high contrast black
color background. The images were collected by using one spoonful (Fig. 5.1b

.

) of larvaes
weighing approximately 3-6 grams (1000-2000 Larvaes), uniformly scattered over the im-
age area as shown in Fig. 5.1c

.

. All larvae instances are labeled pixel-wise.

For experiments, we sample patches of size 256 × 256 pixels from the original images. A
sample image of this dataset is shown in Fig. 5.2a

.

which exhibits the crowded scenarios
having 137 fly larvaes overlapping and occluding each other. From the pixel-wise labeled
mask as shown in Fig. 5.2b

.

, using the centroid information of each larvae instance we
create the target redundant count map (Fig. 5.2c

.

) for a receptive field of size equal to the
total receptive field of our network i.e. 32 × 32. We also create 8-bin and 16-bin size
histogram (Fig. 5.2d

.

, 5.2e

.

) using the size of masks. It is evident from the Fig. 5.3a

.

, 5.3b

.

, that

31

5. Experiments and Results

(a) (b) (c)

Figure 5.1.: Experimental Setup: (a) Camera setup (b) Spoonful of fly larvaes for image
acquisition (c) Captured sample image

the sizes of larvaes in the dataset approximately follows Gaussian distribution A summary
of the Fly Larvae dataset is given in Tab. 5.1

.

.

5.1.2. Synthetic Ellipse Dataset

In order to check whether our method really predicts different size distributions or sim-
ply learns the Gaussian by heart, we create a synthetic dataset of thin ellipses resembling
fly larvaes with strongly varying size distributions. To have a large variance in size and
shape of ellipse instances, we randomly vary various parameters such as major, minor axis
length, position, full or half arc length of ellipses. These images itself can be used as pixel-
wise labeled masks. We created redundant count map and size distribution histogram
following the similar process as Fly Larvae dataset. Fig. 5.4

.

shows one image sample and
its corresponding ground truths of synthetic ellipse dataset. The size distribution of syn-
thetic ellipse has more variance as apparent from Fig. 5.3c

.

, 5.3d

.

. The standard deviation

(a) (b) (c) (d) (e)

Figure 5.2.: Example of Fly Larvae dataset: (a) input image (b) pixel-accurate mask (c) re-
dundant count map (d) 8-bin size histogram (e) 16-bin size histogram

32

5.1. Datasets

(a) (b) (c) (d)

(e) (f)

Figure 5.3.: Size distribution histogram of datasets: (a) Fly Larvae 8-Bin (b) Fly Larvae 16-
Bin (c) Synthetic ellipse 8-Bin (d) Synthetic ellipse 16-Bin (e) Breast cancer cell
8-bin (f) Breast cancer cell 16-bin

(a) (b) (c) (d)

Figure 5.4.: Example of Synthetic ellipse dataset: (a) input image (c) redundant count map
(d) 8-bin size histogram (e) 16-bin size histogram

of ellipse instance sizes is nearly double that of the Fly Larvae dataset. A summary of this
dataset is shown in Tab. 5.1

.

.

5.1.3. Breast Cancer Cell Dataset

In order to validate the applicability of our methods to a different image modality and
image content, we are using the breast cancer cell data set [2

.

] that was originally recorded
for the BreastPathQ Challenge. Breast Cancer patients with locally advanced disease can
be treated with Neoadjuvant treatment (NAT). In addition to tumor size, NAT may change
the tumor cellularity, which makes it an important factor to access the response of tumor
to the treatment. The cellularity of any given image patch depends on the area covered
by malignant cells. Currently, tumor cellularity is estimated manually by the pathologist.

33

5. Experiments and Results

Larvae data set Synthetic Ellipse Breast Cancer Cell
No. Objects 10844 135318 3783
Size (pixels) 120.2 ± 28.1 94.5 ± 63.2 205.9 ± 108.6

Count 80.4 ± 40.7 44.8 ± 20.8 30.5 ± 22.8
Size range (pixels) 0-200 0-200 0-500

Table 5.1.: Dataset Summary

(a) (b) (c) (d)

Figure 5.5.: Example of Breast cancer cell for training HistoNet: (a) input image (b) pixel-
wise malignant cell mask (c) redundant count map (d) 8-bin size histogram

This might be subjected to inter-observer variability which affects the quality and relia-
bility of results and assessment in NAT trials. Using the tumor size distribution and cell
count as intermediate results, our developed approach HistoNet can help in estimating cel-
lularity score.
The public BreastPathQ Challenge dataset consists of 2579 image patches of size 512×512

pixels, and each patch is assigned a tumor cellularity score between 0 to 1 by one expert
pathologist. We resize the images to size 256 × 256 pixels to make it compatible to the
model input size. Three example images of this data set having different cellularity scores
are shown in Fig 5.6

.

.
The BreastPathQ Challenge also provides an additional dataset which contains 153 im-
ages having variable sizes with annotated lymphocytes, malignant epithelial and normal
epithelial cell nuclei. We add pixel-accurate labels to 18 of these images for training His-
toNet model to predict malignant cell size distribution and count. We use the rest of these
images to create redundant count map to train the lower branch of HistoNet. We sample the
image patches of size 256 × 256 pixels and prepare redundant count map and histogram.
The summary of this manually pixel-wise labeled dataset is provided in Table 5.1

.

.

34

5.2. Evaluation Measures

(a) (b) (c)

Figure 5.6.: Example of breast cancer cell data set (a) Cellularity Score 0.0 (b) Cellularity
Score 0.5 (c) Cellularity Score 1.0

5.2. Evaluation Measures

To evaluate object instance count and size histogram prediction performance, we use sev-
eral quantitative measures described as follows:

Mean Absolute Count Error (MAE): For counting, we use the Mean Absolute Count Error
(MAE), which takes the absolute difference between predicted and target count.

MAE =
∑
x,yεI

‖Pmap(x, y)− Tmap(x, y)‖
r2 (5.1)

Where r is the receptive field of the lower branch of the HistoNet network, I is the image,
Pmap and Tmap are predicted and target redundant count map respectively. By dividing
summation of redundant count map with the area of the receptive field, we extract the
total count.

Kullback-Leibler Divergence (kld): To measures the degree of dissimilarity between the
predicted and ground truth size distribution histograms. We compute the Kullback-Leibler
divergence [27

.

] (kld) between predicted and target histogram.

kld =
∑
bins

p(Thist)log

(
p(Thist)

p(Phist)

)
(5.2)

Where p(Phist) and p(Thist) represents the probability distribution of predicted and target
histogram.

Bhattacharyya distance (bhatt): To measure the difference between predicted and target
histogram, we use Bhattacharyya distance [21

.

]. It measures the amount of overlap between

35

5. Experiments and Results

two statistical samples or populations.

dbhatt =

√
1− 1√

PhistThistN2

∑
bins

√
PhistThist (5.3)

Where N is the total number of bins in the histogram, Phist and Thist represents the mean
of predicted and target histogram.

Chi-Square distance [35

.

] (χ2): It is used to determine whether there is a significant dif-
ference between the expected frequencies and the observed frequencies in one or more
histogram bins.

χ2 =
∑
bins

(Phist − Thist)2

(Phist + Thist)
(5.4)

Intersection (isec): It calculates the similarity of two histograms, with possible values of
the intersection ranging between 0-1, where 0 represents dissimilar histograms, and 1 iden-
tical histograms.

isec =

∑
binsmin(Phist, Thist)

max(
∑

bins Phist,
∑

bins Thist)
(5.5)

Correlation (coor): Histogram correlation is another measure to compute the similarity
between two histograms.

corr =

∑
bins(Phist − Phist)(Thist − Thist)√∑

bins(Phist − Phist)2
∑

bins(Thist − Thist)2
(5.6)

Prediction Probability Measure (PK): To assess the performance of methods developed
to predict cellularity score on Breast cancer cell dataset, we follow the challenge rules, and
use the prediction probability measure [47

.

]. This is calculated for each method for each
reference standard (pathologist 1 and pathologist 2), then averaged to determine a final
overall prediction probability value. In case, if the PK values across multiple methods are
same, then the PK with mean reference value lower than 50% is used as a tie breaker. The
PK value is calculated as follows:

PK =
1

2

(
P −Q

P +Q+ T
+ 1

)
(5.7)

Where P is the number of concordant pairs, Q the number of discordant pairs, and T the
number of ties only in the calculated labels.

36

5.3. Results

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.7.: Fly larvae 8-Bin Histogram Prediction: (a) input image (b) Target redundant
count map (c) HistoNet countmap prediction (d) HistoNet-DSN countmap pre-
diction (e) Mask R-CNN instance segmentation mask prediction(f) Target His-
togram (g) HistoNet histogram Prediction, (h) HistoNet-DSN histogram pre-
diction (i) Mask R-CNN histogram prediction

5.3. Results

5.3.1. Fly Larvae Dataset

We evaluate our developed methods i.e. HistoNet and deep supervised version of HistoNet
i.e. HistoNet-DSN for predicting 8-bin histograms and more fine-grained 16-bin histograms
of object sizes. We benchmark our methods against Mask R-CNN [18

.

] as a baseline. Recall
that Mask R-CNN predicts pixel-accurate instance labels instead of directly outputting an
object size distribution. We thus explicitly do instance segmentation and compute sizes by
summing over instance pixels. After this, we compute size distribution histogram from
individual object size information.

Fig. 5.7

.

shows the comparison of object count and 8-bin size histogram prediction for dif-
ferent methods for a test image containing 76 fly larvaes. The redundant count map pre-
diction for both HistoNet and HistoNet-DSN methods are nearly identical to the ground
truth count map as shown in Fig. 5.7b

.

, 5.7c

.

, 5.7d

.

. Our approach predicts histogram which
are close to the ground truth size histograms, it captures the shape and scale of the target
histograms as evident from Fig. 5.7f

.

, 5.7g

.

, 5.7d

.

. Mask R-CNN over and under-predicts the
masks of larvaes as shown in Fig. 5.7e

.

, due to overlaps and occlusion of larvaes, thus it
affects the size distribution histogram predictions as depicted in Fig. 5.7i

.

.

37

5. Experiments and Results

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.8.: Fly larvae 16-Bin Histogram Prediction: (a) input image (b) Target redundant
count map (c) HistoNet countmap prediction (d) HistoNet-DSN countmap pre-
diction (e) Mask R-CNN instance segmentation mask prediction(f) Target His-
togram (g) HistoNet histogram Prediction, (h) HistoNet-DSN histogram pre-
diction (i) Mask R-CNN histogram prediction

We also compare the results for a more fine-grained size histogram prediction in Fig. 5.8

.

.
The input image Fig. 5.8a

.

consists of 142 larvaes. Similar to above results the object count
map are nearly identical to ground truth and the 16-Bin histogram prediction for HistoNet
and HistoNet-DSN is outperforming Mask R-CNN prediction. For this test image, our
approach reduces the χ2-distance between target and predicted histogram by nine to ten
order in magnitude from 19.7 to 2.5 as compared to Mask R-CNN. Similarly the coorela-
tion between the histogram also increases from 0.86 to 0.98 for our approach as opposed
to the baseline.

Fig. 5.9

.

shows the deep supervision of HistoNet in action and demonstrates that HistoNet
DSN further improves over HistoNet method. From early and middle layers of HistoNet-
DSN, we predict 2-bin and 4-bin histogram as shown in Fig. 5.9f

.

, 5.9g

.

, 5.9h

.

, 5.9i

.

. These
additional constraints assists our main objective to better predict 8-bin histogram as evi-
dent from Fig. 5.9d

.

.

Table 5.2

.

summarizes performance comparison of Mask R-CNN [18

.

], our proposed Hi-
stoNet and HistoNet DSN methods on Fly Larvae dataset for counting and 8 and 16 bin
histogram prediction. For the Fly Larvae data set, our approach reduces the χ2-distance
for histogram prediction by more than 50% compared to the Mask R-CNN baseline. In
addition, significant improvement in Kullback-Leibler divergence (kld) and weighted L1
difference between histograms (wtL1) indicate that our method captures scale and shape

38

5.3. Results

(a)
(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.9.: Fly larvae 8-Bin Histogram Prediction: (a) input image (b) Target Histogram
(c) HistoNet histogram Prediction, (d) HistoNet-DSN histogram prediction (e)
Mask R-CNN histogram prediction (f) Target 2-Bin Histogram (g) HistoNet-
DSN 2-Bin histogram prediction (h) Target 4-Bin Histogram (i) HistoNet-DSN
4-Bin histogram prediction

of the histograms much better than Mask R-CNN.

5.3.2. Synthetic Ellipse dataset

We get similar results for experiments on the synthetic ellipse dataset without any back-
ground clutter, but having much higher variance of size distributions, density, and object
overlaps. Fig. 5.10

.

shows the performance comparison for an image consisting of small
size thin ellipse objects as evident from ground truth size histogram in Fig. 5.10f

.

. Similar
to Fly Larvae dataset, our method outperforms explicit instance segmentation method for
8-bin size distribution histogram prediction, which due to object overlap predicts small

Method MAE ↓ kld ↓ wtL1 ↓ isec ↑ χ2 ↓ corr ↑ bhatt ↓

Mask R-CNN 8 7.84 0.64 4.31 0.72 16.37 0.77 0.25
HistoNet 8 2.38 0.25 2.72 0.81 6.57 0.91 0.16
HistoNet-DSN 8 2.06 0.23 2.51 0.83 5.74 0.93 0.15
Mask R-CNN 16 7.84 0.95 2.62 0.69 22.73 0.69 0.32
HistoNet 16 2.28 0.26 1.74 0.76 10.03 0.86 0.21
HistoNet-DSN 16 1.99 0.25 1.70 0.77 9.8 0.86 0.21

Table 5.2.: Result Summary FlyLarvae data set

39

5. Experiments and Results

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.10.: Synthetic Ellipse 8-Bin Histogram Prediction: (a) input image (b) Target re-
dundant count map (c) HistoNet countmap prediction (d) HistoNet-DSN
countmap prediction (e) Mask R-CNN instance segmentation mask predic-
tion (f) Target Histogram (g) HistoNet histogram Prediction, (h) HistoNet-
DSN histogram prediction (i) Mask R-CNN histogram prediction

size masks and thus underpredicts the object sizes.

The next synthetic ellipse test image consists of ellipses of having larger variance in their
sizes, our methods still better captures the shape and scale of the histogram as compared to
Mask R-CNN method as shown in Fig. 5.11

.

. As depicted in the Table 5.3

.

, similar trends are
observed on synthetic ellipse data set for χ2-distance and correlation between histograms.
Our method is able to handle high variance in object sizes and thus showing robustness on
synthetic ellipse data set. We clearly show that even if the histogram is skewed, HistoNet
is able to correctly predict its shape. We generalize to the number of objects as well as the
size distribution.

Method MAE ↓ kld ↓ wtL1 ↓ isec ↑ χ2 ↓ corr ↑ bhatt ↓

Mask R-CNN 8 4.02 0.50 1.67 0.75 6.01 0.75 0.22
HistoNet 8 1.64 0.17 1.22 0.73 3.81 0.82 0.17
HistoNet-DSN 8 1.2 0.13 1.17 0.78 3.36 0.83 0.16
Mask R-CNN 16 4.02 1.12 1.13 0.67 10.81 0.64 0.32
HistoNet 16 1.45 0.47 0.87 0.68 7.19 0.71 0.27
HistoNet-DSN 16 1.09 0.24 0.85 0.69 6.70 0.74 0.25

Table 5.3.: Result Summary Synthetic Ellipse data set

40

5.3. Results

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.11.: Synthetic Ellipse 16-Bin Histogram Prediction: (a) input image (b) Target
redundant count map (c) HistoNet countmap prediction (d) HistoNet-DSN
countmap prediction (e) Mask R-CNN instance segmentation mask predic-
tion(f) Target Histogram (g) HistoNet histogram Prediction, (h) HistoNet-
DSN histogram prediction (i) Mask R-CNN histogram prediction

5.3.3. Breast Cancer Cell dataset

As discussed before, Cellularity score of a patch depends on the area of malignant cells.
For this we first train our HistoNet model to predict the count map and size distribution
histogram of malignant cells and using these as an intermediate result, we will predict
the cellularity score. To directly predict cellularity score from a given image, we have af-
fixed our network architecture with some additional layer as shown in Fig. 5.12

.

. From the
redundant count map prediction branch of HistoNet, we compute the total count and con-
catenate it with the size distribution histogram vector. Using this vector representing the
statistical summary of malignant cells in the image, we pass it through 3 Fully connected
layers, to predict Cellularity score. The whole network is end-to-end trainable. Due to lack
of pixel-wise labeled data, we use a multi-part training schedule to train this network.

• Stage 1: Using the additional dataset in BreastPathQ challenge, for which nuclei
information is provided, we created our target redundant count map. So, we trained
only the lower branch of HistoNet to predict the redundant count map.

• Stage 2: We manually pixel-wise labeled some of the images from the additional
dataset, to train the upper branch of HistoNet, to learn to predict 8-bin size his-
togram. On this small dataset, we train the whole HistoNet.

• Stage 3; We use the main dataset, which have images labeled with their cellualrity

41

5. Experiments and Results

Figure 5.12.: Network Architecture for breast cancer cell dataset training

PK
CountCeption 0.56

HistoNet-[fc 128, fc 128] 0.69
HistoNet-[fc 18, fc 18] 0.76
HistoNet-[fc 32, fc 32] 0.79
HistoNet-[fc 64, fc 64] 0.83

Table 5.4.: Breast cancer cell cellularity score prediction

score, to train the remaining part of this architecture. During this training, we fix the
weights learned from stage-2 for HistoNet.

Parameter number (×106)
Mask R-CNN [18

.

] 237.1
HistoNet 30.2

HistoNet DSN 36.5

Table 5.5.: Total number of parameters

By using the countmap and histogram prediction, we train our model to predict the cel-
lularity score. We compare our method with CountCeption-based cellularity score predic-
tion model. In which we only use count map information to predict the cellularity score.
We also compare our method with different versions of our method having different size
of Fully connected layer. Our method significantly improves cellularity score prediction
over CountCeption-based method, which shows that to predict cellularity score only ma-

42

5.4. Result Summary

Figure 5.13.: Ablation Study: KL-Divergence Error

lignant cell count information is not sufficient, size distribution histogram is also required
(Table 5.4

.

). Among the variants of HistoNet we found that using the two fully connected
layers of size 64 performs best as shown in Table. 5.4

.

.

5.3.4. Ablation and Parameter Study

To evaluate how the performance of the method changes with the amount of training data,
we perform an ablation study. Because of the scarcity of labeled data in biomedical appli-
cations, it is important to design methods that are lightweight and can be trained without
resorting to large number of labeled examples. We increasingly reduce the amount of train-
ing data and evaluate the performance of Mask R-CNN and HistoNet on Fly Larvae dataset.
As the amount of training data is reduced, Mask-RCNN results for kld error increase, while
our approach obtains almost the same error when trained even with only 40% of the train-
ing data as shown in Fig. 5.13

.

. Table 5.5

.

shows that our method requires drastically less
learnable parameters, and hence more computationally efficient. Our approach uses 85%
less parameters than Mask R-CNN [18

.

], while being more accurate for counting and size
distribution histogram prediction.

5.4. Result Summary

The result shows that our developed approaches HistoNet and HistoNet-DSN results in an
overall improvement in the count and size distribution histogram prediction as compared
to explicit instance segmentation method Mask R-CNN [18

.

]. The summary of our results
for fly larvae and synthetic ellipse dataset is shown in Fig. 5.14

.

. As clear from Fig. 5.14a

.

,
5.14d

.

, that our methods HistoNet and HistoNet-DSN better predicts the object count than
counting by detection method Mask R-CNN [18

.

] as well as with the building block of our
network architecture CountCeption [8

.

]. This shows that while predicting size distribution

43

5. Experiments and Results

histogram, the joint training of upper and lower branch of HistoNet also improves redun-
dant count map prediction. Our methods reduces the χ2-square distance by more than 50%
and weighted L1 error wL1 by more than 30%, between predicted and target histogram.
We show that our method is, computationally efficient due to its leaner architecture, and
significantly more accurate than explicit instance segmentation method.

(a) (b) (c)

(d) (e) (f)

Figure 5.14.: Result Summary: (a) Fly larvae Mean absolute Count error (b) Fly larvae
weighted L1 error (c) Fly Larvae chi square distance (d) Synthetic ellipse
Mean absolute Count error (b) Synthetic ellipse weighted L1 error (c) Syn-
thetic ellipse chi square distance

44

6. Conclusion

In this work, we developed two approaches with the aim of directly predicting statistical
summary of objects in the form of object count and size distribution histogram in a given
image. The motivation for our aim stems from its application in various scenarios and
the inadequate nature of the currently available solution for our problem. Such solution
i.e. explicit instance segmentation is indirect, computationally expensive and is prone to
overlapping and occlusion problem.

We have presented HistoNet, a new deep learning approach that predicts object size distri-
butions and total counts in cluttered scenes directly from an input image. We also present
HistoNet-DSN, which improves the result by providing deep supervision at hidden lay-
ers to predict 2-bin and 4-bin histograms and introduces additional constraint along with
the main objective. In HistoNet-DSN, as the complexity of task increases i.e. from 2-bin
histogram to 8-bin histogram, the model complexity also increases. We are providing su-
pervision signals at different stages of our network to calibrate the learned feature maps
without incurring any additional labeling cost since 2-bin and 4-bin histogram can be ex-
tracted using 8-bin histogram.

Experimental evaluation on a new Fly Larvae dataset shows superior performance com-
pared to explicit object instance segmentation method and fully convolutional network
method CountCeption [8

.

] predicting only object count. We verify with synthetic images
having strongly varying object densities and object overlap, that our method can predict
a diverse set of size histogram shapes. We show the application of our method on breast
cancer cell dataset to predict cellularity score of malignant cells. However, our method has
some limitations. Our method is not scale-invariant because it assumes constant distance
from the camera to observation plane. Although count map can localize the objects, it can’t
provide the exact location of the objects.

In conclusion, we show that directly learning and predicting object size distributions, with-
out a detour via explicit pixel-accurate instance segmentation, significantly improves per-
formance. In addition, we save 85% of model parameters, which leads to a much leaner
architecture that can be trained with fewer annotations. We believe that the value of direct
histogram prediction goes beyond our specific use cases. In future work, we will investi-
gate its potential to speed up state-of-the-art object detectors by modelling spatial priors
on anchor box distributions, which is mostly done in a greedy fashion nowadays. We will
also generalize our method for multi-class size histogram and count map prediction.

45

6. Conclusion

46

Appendix

47

A. Experimental Setup and Hyperparameters

This appendix contains information about the pre-processing of datasets and the settings
for different experiments.

A.1. Data pre-processing

Fly larvae dataset: From the images collected during the data acquisition process, we
sampled the image patches of size 256 × 256. Using the pixel-wise labels of images, we
extracted object center, bounding box and mask area using publicly available Scikit-Learn
library [37

.

]. From this, we created redundant count map and size distribution histogram.
The range of larvae instances size is 0-200 pixels. Using this, we created MS-COCO [30

.

]
style dataset for training Mask R-CNN [18

.

]. We randomly distributed the image dataset
in training(60%), validation(20%) and test(20%) set. We augmented our training set by
applying transformations, such as horizontal flip, vertical flip, random noise addition and
random contrast variation.

Synthetic ellipse dataset: We created 3000 thin ellipses of different size and shapes. While
the size range of ellipses is same as Fly Larvae dataset, the variance in ellipse instance sizes
is larger than fly larvaes. The distribution among train, validation and test set is the same
as Fly Larvae dataset. Data augmentation is not applied for this dataset.

Breast cancer cell dataset: For predicting cancer cell cellularity score, three datasets were
used. First dataset (BreastCancer-1) has malignant cell redundant count maps as ground
truth labels which were used for training the lower branch of HistoNet. Second dataset
(BreastCancer-2) has 8-bin size histogram along with redundant count map as ground truth
label which is used for training HistoNet’s upper branch and fine tuning lower branch.
Third dataset (BreastCancer-3) contains cellularity score as ground truth label to train the
remaining part of modified HistoNet architecture (Fig. 5.12

.

). The range of malignant cell
size is 0-500 pixels. We created 8-Bin size histogram and redundant count map from 18
manually pixel-wise labeled images. Table A.1

.

provides the distribution of images for
different datasets, the number of images in training data is after the image augmentation
process.

Acknowledgment: The BreastPathQ Challenge data used in this research was acquired
from Sunnybrook Health Sciences Centre with funding from the Canadian Cancer Society

49

A. Experimental Setup and Hyperparameters

and was made available for the BreastPathQ challenge, sponsored by the SPIE, NCI/NIH,
AAPM, Sunnybrook Research Institute.

Dataset Train Set Val Set Test Set
Fly Larvae 1152 96 96
Synthetic Ellipse 1800 600 600
BreastCancer-1 655 195 216
BreastCancer-2 396 26 32
BreastCancer-3 1455 479 479

Table A.1.: Number of images in datasets

A.2. Experiment settings

We implemented our method HistoNet and HistoNet-DSN using Lasagne-Theano frame-
work [50

.

]. For implementing state-of-the-art instance segmenetation method Mask R-
CNN [18

.

] we used Pytorch framework [36

.

]. We use the Adam optimizer [24

.

] for train-
ing our model and a batch size of four images. Our network weights are initialized using
Xavier initialization [15

.

] and we trained our network for 100 epochs on Nvidia GeForce
GTX 1080 Ti GPU. Table A.2

.

, A.3

.

summarizes the hyperparameters used for experiments
on Fly Larvae and synthetic ellipse dataset. As mentioned earlier for training modified
HistoNet model for predicting cancer cell cellularity score, 3 types of datasets are used.
Hyperparameters for these experiments on breast cancer cell datasets are summarzied in
Table A.4

.

. Additional hyperparameters for Mask R-CNN experiments are given in Ta-
ble A.5

.

.

Method Learning rate Weight decay
Mask R-CNN 1e-3 1e-4
CountCeption 5e-3 1e-5
HistoNet-8 8e-4 1e-4
HistoNet-DSN 8 1e-3 1e-5
HistoNet-16 8e-4 1e-5
HistoNet-DSN 16 3e-3 1e-4

Table A.2.: Hyperparameters for experiments on Fly larvae dataset

50

Method Learning rate Weight decay
Mask R-CNN 1e-3 1e-4
CountCeption 5e-5 1e-6
HistoNet-8 3e-4 1e-5
HistoNet-DSN 8 8e-4 1e-4
HistoNet-16 5e-3 1e-4
HistoNet-DSN 16 3e-3 1e-5

Table A.3.: Hyperparameters For experiments on Synthetic Ellipse dataset

Method Learning rate Weight decay
BreastCancer-1 5e-5 1e-5
BreastCancer-2 1e-4 1e-5
BreastCancer-3 5e-4 1e-5

Table A.4.: Hyperparameters For experiments on Breast cancer cell dataset

Hyperparameter Value
Backbone strides FPN Pyramid [4, 8, 16, 32, 64]
RPN anchor scales [4,8, 16, 24, 32]
RPN anchor ratios [0.2, 0.5, 1, 2, 5]
RPN anchor stride 1
RPN NMS threshold 0.6
ROI align pool size 7×7
Mask Shape 28×28
Minimum confidence for ROI 0.7
NMS threshold for detection 0.3
Maximum detected instances 200
Learning momentum 0.9

Table A.5.: Hyperparameters settings for Mask R-CNN

A.2. Experiment settings

53

Bibliography

[1] A neural-based crowd estimation by hybrid global learning algorithm.

[2] Automatic cellularity assessment from post-treated breast surgical specimens. Cytom-
etry. Part A, 91(11):1078–1087, 2017.

[3] Narendra Ahuja and Sinisa Todorovic. Extracting texels in 2.1d natural textures.
pages 1–8, 11 2007.

[4] M. Bai and R. Urtasun. Deep Watershed Transform for Instance Segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 5221–5229, 2017.

[5] Brilliant. Convolutional neural network. brilliant.org. retrieved 18:50, june 13, 2019,.
https://brilliant.org/wiki/convolutional-neural-network/, 2019.

[6] M. Butenuth and C. Heipke. Network snakes: graph-based object delineation with
active contour models. Machine Vision and Applications, 23(1):91–109, 2012.

[7] S.-Y. Cho and T.W.S. Chow. A neural-based crowd estimation by hybrid global learn-
ing algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
29(4):535–541, 1999.

[8] Joseph Paul Cohen, Henry Z. Lo, and Yoshua Bengio. Count-ception: Counting by
fully convolutional redundant counting. ICCV Workshops, abs/1703.08710, 2017.

[9] George Cybenko. Approximation by superpositions of a sigmoidal function. MCSS,
2:303–314, 1989.

[10] S. Diener, N.M.S. Solano, F.R. Gutiérrez, C. Zurbrügg, and K. Tockner. Biological
treatment of municipal organic waste using black soldier fly larvae. Waste and Biomass
Valorization, 2(4):357–363, 2011.

[11] L. Fiaschi, U. Koethe, R. Nair, and F. A. Hamprecht. Learning to count with regression
forest and structured labels. In Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pages 2685–2688, Nov 2012.

[12] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[13] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524,
2013.

55

Bibliography

[14] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524,
2013.

[15] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256, 2010.

[16] M. Gold, J.K. Tomberlin, S. Diener S., C. Zurbrügg, and A. Mathys. Decomposition
of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treat-
ment: A review. Waste and Biomass Valorization, 82:302–318, 2018.

[17] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class segmentation
with relative location prior. International Journal of Computer Vision, 80(3):300–316,
2008.

[18] K. He, G. Gkioxari, P. Dollár, and R.B. Girshick. Mask R-CNN. In IEEE International
Conference on Computer Vision, pages 2980–2988, 2017.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[21] T. Kailath. The divergence and bhattacharyya distance measures in signal selection.
IEEE Transactions on Communication Technology, 15(1):52–60, 1967.

[22] A. Karpathy. Cs231n convolutional neural networks for visual recognition.
http://cs231n.github.io/neural-networks-1/, 2017.

[23] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International
Journal of Computer Vision, 1(4):321–331, 1988.

[24] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proceedings
of the 3rd International Conference on Learning Representations, 2014.

[25] Dan Kong, Doug Gray, and Hai Tao. A viewpoint invariant approach for crowd
counting. In 18th International Conference on Pattern Recognition, volume 3, pages 1187–
1190, 2006.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA,
2012. Curran Associates Inc.

56

Bibliography

[27] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[28] Chen-Yu Lee, Saining Xie, Patrick W. Gallagher, Zhengyou Zhang, and Zhuowen Tu.
Deeply-supervised nets. In Proceedings of the Eighteenth International Conference on Ar-
tificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12,
2015, 2015.

[29] Victor Lempitsky and Andrew Zisserman. Learning to count objects in images. In
J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23, pages 1324–1332. Curran Asso-
ciates, Inc., 2010.

[30] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick.
Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015.

[32] Aparecido Marana, Sergio Velastin, Luciano da F. Costa, and Roberto Lotufo. Estima-
tion of crowd density using image processing. pages 11/1 – 11/8, 04 1997.

[33] mathworks. https://www.mathworks.com/solutions/deep-
learning/convolutional-neural-network.html. 2019.

[34] medium.com. https://medium.com/@amarbudhiraja/https-medium-com-
amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-
74334da4bfc5. 2019.

[35] F. Nielsen and R. Nock. On the chi square and higher-order chi distances for approx-
imating f-divergences. IEEE Signal Processing Letters, 21(1):10–13, 2014.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. 2017.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[38] Vincent Rabaud and Serge Belongie. Counting crowded moving objects. In Pro-
ceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Volume 1, CVPR ’06, pages 705–711, Washington, DC, USA, 2006. IEEE
Computer Society.

57

Bibliography

[39] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[40] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. CoRR, abs/1506.01497,
2015.

[41] A. Rodriguez and J.D. Wegner. Counting the uncountable: deep semantic density es-
timation from Space. In German Conference on Pattern Recognition, LNCS 11269, pages
351–362, 2018.

[42] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Interven-
tion - MICCAI, Lecture Notes in Computer Science, volume 9351, pages 234–241. Springer
International Publishing, 2015.

[43] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.

[44] J.A. Sethian. Level Set Methods. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, 1 edition, 1996.

[45] M. Sezgin and B. Sankur. Survey over image thresholding techniques and quantita-
tive performance evaluation. Journal of Electronic Imaging, 13(1):146 – 165 – 20, 2004.

[46] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape
and Context Modeling for Multi-class Object Recognition and Segmentation. In Euro-
pean Conference on Computer Vision, pages 1–15, 2006.

[47] WARREN D. SMITH, ROBERT C. DUTTON, and N. TY SMITH. A measure of associ-
ation for assessing prediction accuracy that is a generalization of non-parametric roc
area. Statistics in Medicine, 15(11):1199–1215.

[48] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. CoRR, abs/1409.4842, 2014.

[50] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[51] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell counting with fully convolu-
tional regression networks. In MICCAI 1st Workshop on Deep Learning in Medical Image
Analysis, 2015.

58

Bibliography

[52] Yuanpu Xie, Fuyong Xing, Xiangfei Kong, Hai Su, and Lin Yang. Beyond classi-
fication: Structured regression for robust cell detection using convolutional neural
network. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pages 358–365, Cham, 2015. Springer International Publishing.

[53] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2881–2890, 2017.

59

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Proposal

	Background Theory
	Neural Networks
	Perceptrons
	Convolutional Neural Network

	ResNet
	CountCeption
	Deep Supervised Nets

	Related Work
	Object Counting
	Object Size

	Methodology
	HistoNet
	Network Architecture
	Loss Functions

	Deep Supervised HistoNet
	Network Architecture
	Loss Functions

	Experiments and Results
	Datasets
	Fly Larvae Dataset
	Synthetic Ellipse Dataset
	Breast Cancer Cell Dataset

	Evaluation Measures
	Results
	Fly Larvae Dataset
	Synthetic Ellipse dataset
	Breast Cancer Cell dataset
	Ablation and Parameter Study

	Result Summary

	Conclusion
	Appendix
	Experimental Setup and Hyperparameters
	Data pre-processing
	Experiment settings

	Bibliography

