
Master Thesis

Supervised by: Author:
Prof. Konrad Schindler François Martin-Monier
Daniel J. Varon

Deep learning methods to
detect methane plumes in
Sentinel-2 satellite imagery:
application to the Permian

oil and gas basin

Atmospheric Chemistry Modeling Group - Harvard

University

Spring Term 2023





Declaration of Originality

I hereby declare that the written work I have submitted entitled

Deep learning methods to detect methane plumes in Sentinel-2 satellite
imagery: application to the Permian oil and gas basin

is original work which I alone have authored and which is written in my own words.1

Author

François Martin-Monier

Student supervisor

Daniel Varon

Committee members

Daniel Varon
Konrad Schindler

Supervising lecturer

Marco Hutter

With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ‘Citation eti-
quette’ (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-
abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf). The
citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

1Co-authored work: The signatures of all authors are required. Each signature attests to the
originality of the entire piece of written work in its final form.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
Martin Monier, Francois
Paris, 12/09/2023



Contents

Acknowledgements vii

Abstract ix

Symbols xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and Literature Review 3
2.1 Methane: A Significant Contributor to Global Warming . . . . . . . 3
2.2 Methane: a Compelling Target for Climate Change Mitigation . . . 3
2.3 Permian Oil and Gas Basin: a Significant

Methane Emissions Hotspot . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Remote Sensing to Tackle Methane Emissions . . . . . . . . . . . . . 5
2.5 Methane Point Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Remote Sensing for Observing Methane Point Sources . . . . 7
2.6 Significance and Innovation . . . . . . . . . . . . . . . . . . . . . . . 8

3 Creating a dataset of synthetic methane plumes 9
3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Selecting a Sensor . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Selecting Sentinel-2 Methane Bands . . . . . . . . . . . . . . 10
3.1.3 Deriving Features . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Selecting Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Querying scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Embedding Synthetic Plumes . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Integrating Large Eddy Simulations . . . . . . . . . . . . . . 18
3.4.2 Plume Placement . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Modifying Radiances . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Testing Embedded Plumes . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Generating Training and Validation Sets . . . . . . . . . . . . . . . . 23
3.7 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Creating Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.1 Masking Plumes . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2 Defining a Standard for Labels . . . . . . . . . . . . . . . . . 28

4 Algorithm Development 31
4.1 Background on Image Segmentation . . . . . . . . . . . . . . . . . . 31

4.1.1 A Brief History of Image Segmentation Algorithms . . . . . . 31
4.2 U-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



4.3.1 Loss Function and Metrics . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Predictor Variables . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.4 Influence of Normalization . . . . . . . . . . . . . . . . . . . . 41
4.4.5 Detectability of Methane Plumes in Real Images . . . . . . . 42

4.5 Discussion and Interpretation . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 51

Bibliography 58

A Figures 59

B Code Snippets 60



List of Figures

2.1 Global methane emissions breakdown by source [44] . . . . . . . . . 4
2.2 Production of shale gas in the United States by basin, Jan 2022-Jan

2023 [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Natural gas prodcution in the Permian basin 2013-2023 [49] . . . . . 5
2.4 Remote sensing instruments for observation of methane from Space

[24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Methane absoprtion spectrum in NIR/SWIR wavelengths [16] . . . . 7
2.6 Summer month observation of scenes in Turkmenistan and Permian

basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Pipeline for embedding synthetic methane plumes in Sentinel-2 imagery 9
3.2 Absorption cross sections between CH4 and Sentinel-2 absorption

spectrums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Spectral response functions for both Sentinel-2 satellites in SWIR

domain [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Normalized di↵erence indices . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Production, compressor and processing OGIM facilities in the con-

tiguous United States. Permian basin outlined in blue [39] . . . . . . 14
3.6 Distribution of CH4 emissions by source type and emission rate,

quantified during a 2019 aerial campaign [8] . . . . . . . . . . . . . . 15
3.7 Sampling production, compressor and processing facilities from the

full OGIM database in the Permian basin . . . . . . . . . . . . . . . 16
3.8 Querying scenes from Google Earth Engine using shifted OGIM co-

ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Scene shift applied when querying a scene from Google Earth Engine 17
3.10 Snapshot of a LES plume . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 Di↵erence between downwelling and upwelling methane columns . . 19
3.12 Light path considered for slanted column integration . . . . . . . . . 19
3.13 Occurence of randomly sampled plume parameters . . . . . . . . . . 20
3.14 Colocation but not superposition of potential emission sources and

OGIM facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15 Plume source bounding box . . . . . . . . . . . . . . . . . . . . . . . 21
3.16 Pipeline for embedding methane plumes in Sentinel-2 imagery . . . . 22
3.17 MBMP retrieval for a synthetic plume embedded in a Permian basin

scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.18 MBMP retrieved plume versus LES plume methane column enhace-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.19 Long tailed distribution of B12 reflantances L1C Sentinel-2 data . . 25
3.20 Illumination variations over a same location . . . . . . . . . . . . . . 26
3.21 Scene and associated plume studied over the course of section 3.8.1 . 27
3.22 Illustrations of various masking methods . . . . . . . . . . . . . . . . 29

4.1 U-Net architecture (inspired from [43]) . . . . . . . . . . . . . . . . . 33

iv



4.2 Impact of Jaccrard smoothing parameter on validation loss . . . . . 34
4.3 Training performances for Adam and AdamW optimizers . . . . . . 35
4.4 Training performances for varying learning rate schedules . . . . . . 35
4.5 Training performances when training with gradient clipping . . . . . 36
4.6 Training performances over training and validation sets . . . . . . . 36
4.7 Predictions from the validation set . . . . . . . . . . . . . . . . . . . 38
4.8 Correlations between scene dependant variables and source detectabil-

ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Channel importance analysis over the validation set . . . . . . . . . 40
4.10 Impact of preprocessing on training performances . . . . . . . . . . . 41
4.11 Iou vs Mean NDMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.12 Ground truth plume and its corresponding prediction . . . . . . . . 43
4.13 True positives and false negatives in real plume dataset . . . . . . . 44
4.14 Predictions from the test set . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Detecting plumes in the Korpezhe oil and gas field (Turkmenistan,

38.4939°N, 54.1977°E) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.16 Detecting plumes in the Hassi Messaoud oil field (Algeria, 31.6585°N,

5.9053°E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Count of wind angle in synthetic plume dataset . . . . . . . . . . . . 59



List of Tables

3.1 Sentinel-2 bands [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 OGIM facility count by type . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Emission contributions by source type [8] . . . . . . . . . . . . . . . 15
3.4 OGIM facility sampling . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Overview of WRF-LES simulations . . . . . . . . . . . . . . . . . . . 18

4.1 Results on the validation set for the trained network . . . . . . . . . 37
4.2 Impact of training features on Recall, Precision and F� metrics . . . 41
4.3 Impact of standardization on Recall, Precision and F� metrics . . . . 42
4.4 Confusion matrix for the test dataset . . . . . . . . . . . . . . . . . . 43
4.5 Performances over test dataset for varying training features . . . . . 44
4.6 Performances over test dataset for varying training features . . . . . 46

vi



Acknowledgements

First and foremost, I am grateful towards Daniel J. Varon, for supervising my work
and o↵ering me the possibility to work with him in the Jacob Group at Harvard
University. I am particularily thankful for the time he dedicated to this project
and the insightful feedback I received during our weekly meetings. Together with
Jack Bruno and Marc Watine, with whom I was also grateful to work with, we
held weekly meetings which where key in advancing this work and completing the
objectives I had set myself.
I would also like to thank Professor Daniel J. Jacob for hosting me in his research
group for 6 months, and allowing me this opportunity. Along with the rest of the
Jacob Group, he always made me feel welcome and included in the lab.
I am also deeply appreciative of Professor Konrad Schindler’s supervision through-
out this project. He has always been available and provided key insights from his
expertise in computer vision and remote sensing.
Furthermore, I would like to thank Professor Marco Hutter for enabling me to work
on the topic I was passionate about.
Finally, I am thankful towards Nick Balasus for allowing me to discover Cambridge
and Boston by bike, Marc Watine and Elfie Roy for being fantastic o�ce compan-
ions and Emma Darniche for supporting me in writing my Master Thesis on the
other side of the Atlantic.
I also place on record, my sense of gratitude to one and all, who directly or indi-
rectly, have lent their hand in this venture.

François Martin-Monier

vii





Abstract

Anthropogenic methane emissions from large industrial facilities can be detected
by remote sensing instruments. In this study, we develop a building block for a
systematic monitoring pipeline of methane point sources. A dataset of Sentinel-2
observations of oil and gas facilities in the Permian basin is created, with simulated
methane plumes embedded in the images. A dataset of over 9000 images, labelled
according to standard computer vision formats is delivered, with capabilities of ex-
tending the methodology to other regions and with a larger variety of synthetic
methane plumes. We also develop a U-Net based methane plume detector oper-
ation from raw radiances with minimal preprocessing. We show that introducing
Normalized Di↵erence Methane Index (NDMI) as an input feature to our network
increases F � 0.5 score on the validation set by 10.1%. Furthermore, preprocessing
the NDMI according to Z-score normalization improves F �0.5 score on the valida-
tion set by 23.4%. When evaluating on real plumes from the Permian basin, 42% of
plumes found by existing physics based methods are detected. This demonstrates
the viability of training on synthetic methane plumes for deployment on real data
but also highlights the need for further optimization of our algorithm and input
data. We also find that training on NDMI as the only methane sensitive feature
leads to a higher detection threshold but no false positives, a promising feature for
a high throughput facility monitoring computer vision pipeline.
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Chapter 1

Introduction

1.1 Motivation

Atmospheric methane accounts for about one third of anthropogenic greenhouse
gas warming since pre-industrial times [19]. Given methane’s short lifetime in the
atmosphere compared to CO2 [41], reducing methane emissions is a strong lever for
e↵ective near-term reduction of climate warming.

Recent approaches to reducing methane emissions have leveraged the gas’ absorp-
tion in the short wave infrared (SWIR) spectrum and the presence of this absorp-
tion band in numerous remote sensing instruments to detect methane emissions
from Space. Given anthropogenic methane emissions can be traced back to individ-
ual point sources from large industrial facilities, improving our ability to monitor
methane point sources with satellite instruments would open new opportunities for
climate change mitigation and targeted policymaking.

Amongst the largest sources of anthropogenic methane emissions, the oil and gas
sector represents a compelling target for methane emissions reduction. In this sec-
tor, emissions could be reduced by over 75% with existing technoloigies [19] with
around 50% of the total emissions abatement coming at no additional cost due to
methane emission mitigation technologies’ ease of access and inherent value of the
gas [37].

The Permian basin, seing some of the largest increases in production in the last
decade [49], provides a unique opportunity to interpret regional emission trends
in terms of facility-level emissions. This region also features moderately complex
ground surfaces that have so far impeded large-scale methane plume detection with
satellite instruments.

1.2 Aim

A compelling aspect of satellite observations of atmospheric methane is the poten-
tial for global spatial and temporal completeness [24]. The Sentinel-2 twin satellites
provide just this capability, with frequent revisit (¡5 days), fine resolution (20m
pixel resolution) and open access [50].

Systematic monitoring of emitting facilities using such instruments would o↵er new
capabilities for targeted emissions reduction. For this, artificial intelligence ap-
proaches to detecting methane point sources are gaining traction, yet still struggle

1



Chapter 1. Introduction 2

with complex backgrounds and require expensive preprocessing.

We aim to build on these previous AI-based methods to develop a methane plume
detector for Sentinel-2 data, requiring no expensive preprocessing and targeted for
the more complex Permian basin. Given the lack of labeled data in this region to
train a machine learning algorithm on, an important first step is to create a dataset
of synthetic, labeled methane plumes that can be shared with other researchers.
Hence, our goal is threefold:

• Creating a dataset of real Sentinel-2 observations of oil and gas facilities in
Permian basin, containing simulated methane plumes

• Developping an algorithm to detect methane plumes from raw radiances in a
heterogeneous environment

• Evaluating the simulation to reality gap by testing the detector on real plumes
from the Permian basin



Chapter 2

Background and Literature
Review

2.1 Methane: A Significant Contributor to Global
Warming

Since pre-industrial times, anthropogenic greenhouse gas warming can be mainly
attributed to methane (CH4) and carbon dioxide (CO2) emissions. Atmospheric
methane accounts for about one third of such warming while CO2 accounts for
over half [19]. The influence of various greenhouse gases on the climate hinges on
two fundamental attributes: their atmospheric persistence and their capacity to
trap energy. Unlike carbon dioxide (CO2), which lingers for centuries, methane
has a significantly shorter atmospheric lifespan, approximately 12 years. Neverthe-
less, during its presence in the atmosphere, methane exhibits far greater energy-
absorbing capability [41]. Reported to short term global warming potential (20
year GWP), methane has approximately 84 times the 20 year GWP of CO2 [19].
Hence, given methane’s short lifetime in the atmosphere and its significant impact
on radiative forcing, reducing methane emissions is a important lever for e↵ective
near-term reduction of climate warming.

2.2 Methane: a Compelling Target for Climate
Change Mitigation

Unlike CO2 emissions, which mainly arise from di↵use urban hotspots and a rela-
tively small number of large point sources (power plants), anthropogenic methane
emissions can be traced back expansive industrial facilities. The crux of e↵ective
mitigation strategies lies in discerning the precise source of these emissions. In fig-
ure 2.1, we observe that methane emissions mostly come from industries such as
oil and gas, waste management, agricultural operations, and other industrial activ-
ities. All of these industries operate large scale facilites/plants whose locations can
be accurately reported.

In this work, we elect to focus on detecting emissions from the oil and gas sector
for several reasons. First of all, those emissions are not a byproduct of this sector’s
operations but the product itself. In this sector, emissions could be reduced by
over 75% with existing technoloigies [19] with around 50% of the total emissions

3



Chapter 2. Background and Literature Review 4

Figure 2.1: Global methane emissions breakdown by source [44]

abatement coming at no additional cost due to methane emission mitigation tech-
nologies’ ease of access and inherent value of the gas [37]. Hency why for this sector,
mitigating methane emissions has an inherent value [19].
In addition, methane emissions from the oil and gas sector are usually large plumes
that can be attributed to a specific location. Compared with agricultural our waste
management sources where emissions are spread over multiple points in a facility,
this makes methane emissions from the oil and gas sector easier to detect. Finally,
the oil and gas sector is well studied and numerous sources of data exist on emis-
sions, actors and production facilities ([39], [2], [49], [8]. This facilitates building a
plume detection pipeline.

2.3 Permian Oil and Gas Basin: a Significant
Methane Emissions Hotspot

As the largest natural gas producing country in the world [1], working on technolo-
gies mitigating methane emissions for the oil and gas sector in the United-States is
key key to reducing emissions worldwide. In the United States, the Permian basin is
the second largest natural gas production basin after the Appalachia basin as shown
in figure 2.2. Its bright desertic terrain and relatively uniform topography make it
an easier basin to study than the Appalachia basin. Indeed, previous studies have
shown the correlation between terrain complexity and methane plume detection
limits from satellites [17].

The 2010s United States Shale Boom is another motivation for focusing on the
Permian basin [49]. As shown in 2.3, the rapid increase in shale gas extraction
in the Permian basin coincides with the launch of the Sentinel-2 constellation [7].
Having the right sensor at the right time motivates us to produces tools that could
provide a better picture of the impact of the natural gas extraction on methane
emissions.
Finally, previous studies and surveys of methane emissions in the Permian basin
provide a complete picture of where methane plumes are emitted from in the region



5 2.4. Remote Sensing to Tackle Methane Emissions

Figure 2.2: Production of shale gas in the United States by basin, Jan 2022-Jan
2023 [47]

Figure 2.3: Natural gas prodcution in the Permian basin 2013-2023 [49]

[8]. Thus, we can target the training of a machine learning algorithm towards such
facilities and the terrain in their surroundings.

2.4 Remote Sensing to Tackle Methane Emissions

National greenhouse gas emission inventories are built using bottom-up estimates in
which emissions are tied to underlying processes. These inventories inform climate
policy but are highly uncertain [24]. Satellite observations of atmospheric methane
can provide top-down estimates of emissions, complementary to the bottom-up ones
[40].

To establish top-down estimates of methane emissions, there exists a myriad of
possible sensors, as shown in figure 2.4.
We can split these instruments in two categories:

• Area flux mappers: To measure methane emissions on a regional to global
scale. Area flux mappers combine satellite measurements of methane concen-
trations with atmospheric modeling to estimate the amount of methane being
emitted from di↵erent regions on the Earth’s surface

• Point source imagers: To measure emissions from specific point sources
by detecting a gas plume. Point source imaging instruments are sensitive to
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Figure 2.4: Remote sensing instruments for observation of methane from Space [24]

methane concentrations and can pinpoint areas where methane emissions are
significantly higher than the surrounding background levels. In the context of
this thesis, these are the instruments of interest

Zooming in on point source imagers, we distinguish two types of instruments:

• Hyperspectral imagers: To capture a very large number of narrow and con-
tiguous spectral bands across a wide range of the electromagnetic spectrum.
This high spectral resolution allows them to provide highly detailed infor-
mation about the spectral signatures of di↵erent gases, including methane.
Each individual band corresponds to a specific wavelength, and by analyzing
the intensity of light at each wavelength, we can identify the unique spectral
”fingerprint” of methane. In the context of methane point source detection,
hyperspectral instruments can help distinguish methane from other gases more
accurately due to their ability to detect specific absorption features associated
with methane. These instruments are often use for targeted observations, to
focus on specific areas with high spectral detail and come with higher costs.
PRISMA is an example of an open-access hyperspectral instrument

• Multispectral imagers: To capture data in a few select and wider spectral
bands rather than the large number of fine bands that hyperspectral instru-
ments record. These instruments are designed to capture data in specific
bands that are known to be sensitive to the absorption or reflection of certain
gases, including methane. Capturing data over a wider spectrum introduces
more noise when trying to capture a unique spectral ”fingerprint”. Multispec-
tral instruments often have global coverage, providing few-days revisit time for
any point in its given latitude band. The Sentinel-2 constellation and Landsat
8 are examples of multispectral sensors with an open-data access policy

Short and consistent revisit time is key in establishing a systematic facility level
monitoring pipeline, which is why we focus on multispectral instruments.
The Sentinel-2 twin satellites provide just this capability, with frequent revisit ( 5
days), fine resolution (20m pixel resolution) and open access [50]. Methane column
enhancements of individual plumes can be derived from the SWIR bands of the
Multi-Spectral Instrument (MSI) onboard both satellites.
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2.5 Methane Point Sources

Methane gas absorbs in the Short Wavelength Infrared spectrum (1.4 µm - 3 µm).
For a sensor equiped with a SWIR instrument, methane rich pixels will exhibit
reduced reflectance in the absorption bands. The specific absoprtion spectrum of
methane can be seen in figure 2.5.

Figure 2.5: Methane absoprtion spectrum in NIR/SWIR wavelengths [16]

2.5.1 Remote Sensing for Observing Methane Point Sources

The first time an orbiting remote sensing instrument measured methane emissions
from a point source was in 2016, with the Aliso Canyon blowout [48]. Since the
feasibility of detecting methane emissions from space was proven, several methane
point source imaging missions have been planned. Further research by Varon et
al. [50] has also developped methods to detect methane plumes in existing satellite
constellation such as Landsat and Sentinel-2. These unintended capabilities from
existing sensors have opened up the field of methane detection from Space based
sensors. Such works on Sentinel-2 data have shown that physics-based retrievals can
empirically detect point sources down to about 2 t/h, with a strong dependency on
surface properties, with vastly better performances over bright, homogeneous scenes
such as deserts [17]. Subsequent works, including by Ehret et al., 2023 [? ] have
improved the accuracy of such physics-based retrievals although they still require
some manual work and may be inaccurate [12].

Artificial intelligence approaches to detecting and quantifying methane point sources
are also gaining traction. In a preprint study, Bruno et al. [4] use a U-Net based
architecture [43] to detect and quantify methane plumes in methane retrieval fields
(L2) extracted from a hyperspctral instrument. In a separate contribution, Joyce
et al. [27], introduce a multi-tiered deep learning approach to detecting methane
plumes and quantifying their concentration and emission rate. Their approach takes
as input raw radiances (L1C) of PRISMA, a hyperspectral sensor. Both of the above
approaches train on real scenes with synthetic methane plumes embedded in the
bands. The synthetic plumes are generated using the WRF-LES model [54].
In the context of multispectral instruments, Vaughan et al. [52] develops a plume
detector operating on Sentinel-2 L1C data (raw radiances). Once again, they use
a U-Net skeleton and train on 925 confirmed methane plumes from Turkmenistan.
This novel approach bypasses the necessity for methane retrieval fields when train-
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(a) Park compressor station, Permian
basin

(b) Korpezhe compressor station, Turk-
menistan

Figure 2.6: Summer month observation of scenes in Turkmenistan and Permian
basin

ing on multispectral data, consequently eliminating the need for potential manual
preprocessing work on the data.

2.6 Significance and Innovation

We develop a deep learning pipeline to indentify synthetic methane plumes from
Sentinel-2’s L1C product over the Permian basin, using the WRF-LES model to
simulate synthetic plumes. The significance of this work is in:

• Training a methane plume detector on multispectral L1C data with embedded
synthetic plumes.
While training on synthetic plumes necessarily introduces a simulation-to-
reality gap, this allows us to train on much larger volumes of data, learn
deeper feature representations. We also establish a methodology for detecting
plumes in under-studied geographies

• Focusing on the Permian oil and gas basin, where the heterogeneous back-
ground tends to produce noisier retrieval fields.
We know from previous studies that the detection threshold for Sentinel-2 is
highly dependant on the background hetorogeneity and reflectivity [17]. Fig-
ure 2.6 displays an example of a natural compressor station for both regions.
While the Turkmensitan facility is located in a homogeneous desertic back-
ground, the Permian basin one is surrounded by fields, roads, other buildings
and di↵erent types of soils. We expect more clutered backgrounds to introduce
challenges with artifacts



Chapter 3

Creating a dataset of
synthetic methane plumes

Training computer vision algorithms to represent features in an image requires large
amounts of labelled data. Due to significant di↵erences between satellite sensors,
this labelled data should come from the satellite of interest of this study - Sentinel-
2. There is no such large open-source dataset of labelled methane plumes. In this
section, we cover the process of creating a dataset of synthetic methane plumes.
This dataset should:

• Cover the variability of scenes in the Permian basin

• Focus on methane emitting infrastructure in the Permian basin

• Include a diverse and realistic representation of methane plumes, including
source rate and shape

• Correspond to a standardized computer vision format to encourage usability
of the dataset by other researchers

The process for building a dataset of synthetic methane plumes is presented in figure
3.16. In this chapter, we cover the various data sources, steps and design choices
outlined in the pipeline. At the end of the chapter, we demonstrate that this method
is successfull at producing synthetic data with a controlled concentration of methane
embedded in Sentinel-2 raw radiances.

Figure 3.1: Pipeline for embedding synthetic methane plumes in Sentinel-2 imagery

9
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3.1 Feature Selection

3.1.1 Selecting a Sensor

Several satellites have proven capabilities of observing methane point sources in the
shortwave infrared. We can divide point sources imagers in two categories: tasked
and global sensors. Tasked sensors cover a specific area at the request of a user.
Global sensors overpass any given site at a given revisit rate. The goal of this thesis
being the development of an automated workflow for detecting methane plumes, we
need to strike a balance between:

• Spectral and spatial resolution: Higher resolutions translate to lower
detection thresholds [24]

• Revisit rate: The greater the frequency of revisits, the increased number of
observations we collect at a specific location, thereby enhancing our likelihood
of detecting emissions

• Open access to data: For the development of a machine learning algorithm,
vast quantities of data are necessary. Using free data is the most realistic
option for this master thesis

The only two point source imagers that have an open access policy and a global
coverage are Landsat-8 and Sentinel-2. While both have similar spatial and spectral
resolutions, Sentinel-2 has a much lower revisit rate than Landsat-8 (5 days versus
16 days) as Sentinel-2 is a 2 satellite constellation. This is why we choose Sentinel-2
for this study.

3.1.2 Selecting Sentinel-2 Methane Bands

Sentinel-2 is a multispectral instrument with a total of 13 bands. We give an
overview of those bands in table 3.1.

Band Resolution [m] Central Wavelength [nm] Description
B1 60 443 Ultra Blue
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Visible and Near Infrared
B6 20 740 Visible and Near Infrared
B7 20 783 Visible and Near Infrared
B8 10 842 Visible and Near Infrared
B8a 20 865 Visible and Near Infrared
B9 60 940 Short Wave Infrared
B10 60 1375 Short Wave Infrared
B11 20 1610 Short Wave Infrared
B12 20 2190 Short Wave Infrared

Table 3.1: Sentinel-2 bands [14]

To embed simulated methane plumes in a given band, we need to calculate the per-
pixel absorption in this band using the Beer-Lambert law and a radiative transfer
model. As this is computationally expensive, we select a subset of the bands where
we can expect a significant methane absorption and only embed plumes in these
bands.
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(a) S2-CH4 absorption spectrum overlap in
infrared

(b) Mean SWIR S2-CH4 absorption cross
section

Figure 3.2: Absorption cross sections between CH4 and Sentinel-2 absorption spec-
trums

To get a first sense of interesting Sentinel-2 bands, we plot the methane and Sentinel-
2 absorption spectrums in the infrared domain. The resulting plot is in figure 3.2 a).
From this figure, we deduct that bands B12 and B11 are good candidates to embed
methane plumes, confirming findings in previous works [50]. There also seems to be
an overlap between Sentinel-2’s band B10 and a portion of the methane absorption
spectrum centered around 1375 nm.
To further investigate this observation, we compute the mean absorption cross sec-
tion between Sentinel-2 bands and the methane absorption spectrum. These results
can be found in figure 3.2 b). These findings confirm the potential of band B10.
While band 12 has the highest absoprtion by a factor of approximately 6 compared
to band B11, band B10’s absorbtion is 60% of band B11. This motivates us to
embed simulated methane plumes in band B10 in addition to bands B11 and B12.
When downloading S2 data, we also select bands B1, B2, B3, B4 and B8. B2, B3
and B4 are selected to get the visible information for a given scene. This should
help to eliminate visible artifacts from a methane enhacement field. B8 is selected
to calculate usefull ratios, covered in section 3.1.3. Data is downloaded using the
Google Earth Engine (GEE) API.

3.1.3 Deriving Features

From the Sentinel-2 bands downloaded through the GEE API, we can compute
useful normalized di↵erence indices (NDI). NDIs are commonly used in remote
sensing studies for several reasons:

• Enhancing feature discrimination: NDIs are designed to enhance the con-
trast between certain features that can be di�cult to distinguish in individual
spectral bands. This can make it easier to identify and di↵erentiate specific
land cover types, vegetation health, and other relevant attributes

• Removing atmospheric and illumination e↵ects: NDIs mitigate e↵ects
of variations in atmospheric or illuminations conditions such as sun angle,
atmospheric haze or aerosols

• Compatibility with various sensors: By computing a relative di↵erence
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between two bands, NDIs reduce the e↵ect of central wavelength shift for a
given band. This helps in comparing scenes across di↵erent sensors. This
can be useful in the event were this study is generalized to other satellite
constellation but key here are di↵erences within a constellation. Sentinel-2 is
a 2 satellite constellations and as shown in figure 3.3, S-2A and S-2B have
slight di↵erences in their instruments.

• Analysis across time: By normalizing di↵erences between bands, NDIs
reduce the overall variation of any given scene which in turn encourages com-
parison of data across time

Figure 3.3: Spectral response functions for both Sentinel-2 satellites in SWIR do-
main [7]

With these benefits in mind, we compute the following NDIs for inclusion in our
dataset:

• Normalized Di↵erence Vegetation Index (NDVI): Indicator for vegeta-
tion content. A high NDVI translates to high absorption in the near-infrared
spectrum which in turn translates to higher vegetation density and health [23]

NDV I =
B8�B4

B8 +B4
(3.1)

• Normalized Di↵erence Built-up Index (NDBI): Indicator used to em-
phasize built up area [55]

NDBI =
B11�B8

B11 +B8
(3.2)

• Bare Soil Index (BSI): Indicator used to characterize soil variations. Bands
B11 and B4 represent soil mineral composition. Bands B8 and B2 indicate
presence of vegetation [10]

BSI =
(B11 +B4)–(B8 +B2)

(B11 +B4) + (B8 +B2)
(3.3)
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• Normalized Di↵erence Methane Index (NDMI): Indicator comparing
Sentinel-2’s 2 SWIR bands and emphasizing methane. A feature appearing
strongly in band 12 but not in band 11 will be brought forward by this ratio.
As both bands have close central wavelengths, they should have similar fea-
tures and the ratio should be close to zero. From figure 3.2 (b), we know that
methane absorbs strongly in band 12 but not as much in band 11. Hence, a
deviation from 0 in this ratio is a prime candidate for a methane plume.
Sentinel-2 does however have coarse spectral resolution. Species such as CO2
and water vapor have similar absorption spectrums to methane and could
therefore be artifacts. Varon et al. [50] shows that this e↵ect is negligible
as CO2 and water vapor are rarely co-emitted with methane point sources.
They demonstrate that these two chemical species can be considered uniform
across a scene.

NDMI =
B12�B11

B11 +B12
(3.4)

NDMI is first introduced in Webber et al. [53] for application to HyTES, a
hyperspectral instrument. NDMI is also applied to multispectral data (Land-
sat) in He et al., (submitted). Unlike NDVI, where high values indicate higher
likelihood of vegetation, low and high values of NDMI can both indicate pres-
ence of methane depending on wether a plume emits more thermal energy
than it absorbs [53].

Figure 3.4: Normalized di↵erence indices

3.2 Selecting Scenes

Anthropogenic methane emissions can be traced back to many individually small
point sources from numerous industrial sectors, including fossil fuel production and
distribution facilities, agricultural operations and waste treatment facilities. Moni-
toring these facilities o↵ers a unique opportunity for methane emissions abatement.
Several studies have assembled databases of methane emitting facilities. METER-
ML [57] consists of close to 90’000 georeferenced images of methane emitting facili-
ties across the United States. These facilities range across various industries such as
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energy, waste water treatment of landfills. The Oil and Gas Infrstructure Mapping
database (OGIM) [39] is a global geospatial database focusing on the oil and gas
sector. OGIM uses data from over 450 publicly available datasets. This dataset is
particularly suited for the study of oil and gas production in North America as ap-
proximately 85% of the data points are in Northern American countries. Moreover,
close to 100% of the data for North America is obtained from government sources,
making for more reliable data. These factors render the OGIM database well suited
for our study of the Permian basin, spanning across Texas and New Mexico.

Figure 3.5: Production, compressor and processing OGIM facilities in the contigu-
ous United States. Permian basin outlined in blue [39]

OGIM covers upstream (production and gathering), midstream (transport and stor-
age) and downstream (product transformation) facilities. For the purpose of nar-
rowing the focus of this study, we decide to exclude pipelines from the training data.
Table 3.2 provides a breakdown of the facilities identified in the Permian basin.

Category Stream Count Fraction of total
Oil and natural gas wells upstream 200363 72.9%

Oil and natural gas production upstream 73973 26.9%
Gathering and processing midstream 100 0.05%

Natural gas compressor stations midstream 261 0.1%
Petroleum terminals midstream 28 0.05%
Crude oil refineries downstream 2 ⇠0%

Table 3.2: OGIM facility count by type

From table 3.2, we observe a strong bias towards upstream facilities1. While we
could sample from the OGIM dataset at random, this would mean most of the
sampled facilities would be upstream facilities. Recent surveys of the Permian

1The OGIM database seperates oil and natural gas wells and production facilities. Upon further
inspection of the data, we find that both categories represent similar facilities with di↵erent naming
across state borders: all facilities falling in the oil and natural gas production category are located
in New Mexico while most of the oil and natural gas wells facilities are located in Texas (for the
Permian basin).
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basin provide information on the sources of large emission events [8]. Results from
a 2019 airborne survey by Cusworth et al. can be found in table 3.3 and figure 3.6.

Source type Stream Contribution to emissions > 500kg/h
Well upstream 20.6%

Compressor midstream 25.6%
Processing midstream 12.4%

Tank midstream 41.4%

Table 3.3: Emission contributions by source type [8]

Figure 3.6: Distribution of CH4 emissions by source type and emission rate, quan-
tified during a 2019 aerial campaign [8]

Table 3.3 and figure 3.6 demonstrate that emissions orginate mainly from midstream
facilities. Tanks are a source type that is not included in the OGIM database but
that are often colocated with well pads, as seen in figure 3.14 a). While this study
does provide insights into the contribution of facility types to the Permian basin
emissions, this is an incomplete picture. This study was done over a subset of the
Permian and for 3 months. Furthermore, the subset of plumes with an emission
rate greater than Sentinel-2’s detection limit is not a representative sample. With
this in mind, we chose to sample facilities from the OGIM database evenly across
categories. This corrects the strong bias towards upstream facilities in OGIM, while
keeping in mind the limits of the 2019 Permian basin airborne campaign. Our
sampling from the OGIM database can be found in table 3.4. We limit ourselves
to 300 locations for the first iteration of the synthetic plume dataset to encourage
rapid development of a detection algorithm.
A spatial breakdown of the selected locations can be found in figure 3.7 b). Sampling
gathering and processing facilities and natural gas compressor stations leaves little
room for randomness due to the high proportion of the sampled facilities toward
the total amount of facilities in each category. On the other hand, sampling from



Chapter 3. Creating a dataset of synthetic methane plumes 16

Category Stream Count
Fraction of
sampled data

Fraction of
category

Oil and natural
gas wells

upstream 67 22% ⇠0%

Oil and natural gas
production

upstream 33 11% ⇠0%

Gathering and
processing

midstream 100 33% 100%

Natural gas compressor
stations

midstream 100 33% 38.3%

Table 3.4: OGIM facility sampling

(a) Total OGIM facilities in the Permian
basin

(b) Sampled OGIM facilities in the Permian
basin

Figure 3.7: Sampling production, compressor and processing facilities from the full
OGIM database in the Permian basin

wells and production facilities is highly variable. We sample randomly from each
upstream category in order to obtain a spatially distributed dataset.

3.3 Querying scenes

Figure 3.8: Querying scenes from Google Earth Engine using shifted OGIM coor-
dinates
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For each facility, we query all Sentinel-2 observations over a year. Sampling over a
whole year allows us to account for seasonal scene variability. We only download
observations where cloud cover is lower than 1%. When taking into account the
Sentinel-2 constellation revisit rate, this yields an average of 30 observations per
location per year in the Permian basin. As discussed in section 3.2, we sample from
300 locations. Thus, our dataset contains approxiamtely 9000 images. We chose the
number of images first in order to build a dataset small enough to facilitate rapid
iterations while ensuring there is a reasonable amount of data to learn from.
To query observations, we use Google Earth Engine (GEE) and query 4km x 4km
scenes, the maximum image size allowed by the GEE API at 10m resolution2. The
process is summarized in figure 3.8. For each facility, we apply a random shift
within [-1km, 1km] to the queried coordinates. This ensures points of interest are
not systematicaly in the center of an image, removing a potential learnable bias from
the dataset. After shift, we keep a 1km bu↵er zone between the facility location
and the edge of the image. This is to avoid cutting o↵ parts of a facility. Figure 3.9
shows an example of the random shifting.

(a) Centered scene (b) Shifted plume

Figure 3.9: Scene shift applied when querying a scene from Google Earth Engine

3.4 Embedding Synthetic Plumes

To generate a dataset of Sentinel-2 scenes with embedded synthetic methane plumes,
we first need to generate said methane plumes. For this, we use the Weather
Research and Forecast (WRF) model configured with the Large Eddy Simulation
(LES) package. This atmospheric transport model can simulate plumes originating
from a point source. As they are expensive to run, LES simulations are obtained
internally from the Atmospheric Chemistry Modeling Group. Each LES simulation
contains 3 hours of simulation, with snapshots taken every 5 minutes. The first hour
is discarded to account for spin-up of the model. We use a total of 5 simulations,
thus resulting in 600 di↵erent plumes to embed in the remotely sensed scenes. Each
simulation is named after an airport and has varying parameters which are sum-
marised in table 3.5. The airport name specifies the location where the simulation
was done as topographic features have an influence on the simulations. The source
rate of 12 unit/s is equivalent to 693 kg/h. We want to create a dataset of large

2Sentinel-2’s reslution varies by band. SWIR bands have a 20m pixel resolution. The finest
resolution is for the RGB bands and stands at 10m. This is the limiting factor when querying
observatins from GEE
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(a) Side view (b) Top view

Figure 3.10: Snapshot of a LES plume

plumes that can be encountered in the Permian basin. For this, we aim to embed
plumes with a source rate between 10 t/h and 50 t/h. Thus, for every plume, we
scale it by a random factor so that its source rate is in the above interval.

Name Delrio Dodge Oakland Peachtree Reno
U wind [m.s�1] -5 -9 -7 -1 -3
V wind [m.s�1] 0 0 0 0 0

Heat flux [W.m�2] 200 150 100 250 300
Source rate [unit.s�1] 12 12 12 12 12

Horizontal resolution [m] 25 25 25 25 25
Vertical resolution [m] 15 15 15 15 15

Table 3.5: Overview of WRF-LES simulations

3.4.1 Integrating Large Eddy Simulations

LES simulations are atmospheric transport models and therefore produce 3D fields
of methane concentration expressed in unit/m3. A satelite only sees a top of atmo-
sphere (TOA) concentration which is why synthetic LES plumes must be converted
into vertical methane column densities in unit/m2. The side and top view of a LES
plume snapshot is shown in figure 3.10.
While vertical column densities could be obtained by summing along the z-axis,
this doesn’t take into account the viewing configuration and the path taken by light
going through the methane plume. When considering a satellite observation of a
given scene, viewing angles have a strong influence on the reflectance and absorption
in given wavelengths [13].
To illustrate the impact of the viewing configuration, we consider a combination
of zenith and azimuth angles likely to be encountered in a Sentinel-2 observation.
These angles are:

• Solar Zenith Angle (SZA) = 30° ! angle between solar rays and vertical
direction

• Solar Azimuth Angle (SAA) = 105° ! horizontal angle with respect to north
of the Sun’s position

• Viewing Zenith Angle (VZA) = 5° ! angle between light path to satellite and
vertical direction
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• Viewing Azimuth Angle (VAA) = 45° ! horizontal angle with respect to
north of the satellite’s position

In such a configuration, we find non-negligeable di↵erences between the downwelling
and upwelling columns, as illustrated in figure 3.11. In this figure, VCD stands for
Vertical Column Density and is the actual integrated plume concentration.

Figure 3.11: Di↵erence between downwelling and upwelling methane columns

Instead of vertical integration, we perform slanted column integration as illustrated
in figure 3.12.

Figure 3.12: Light path considered for slanted column integration

To correct for the light path, we apply the following formula:

V CD =
Downwelling + Upwelling

AMF
(3.5)

where

AMF =
1

cos(SZA)
+

1

cos(V ZA)
(3.6)

and

• VCD = Vertical Column Density

• AMF = Air Mass Factor

As the viewing configuration di↵ers for each observation, we integrate LES plumes
on the fly when embedding it in an image. For each image, a synthetic plume is
sampled randomly from the WRF-LES simulations, with the following parameters
also randomized:
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• Simulation location: One of the dodge, oakland, peachtree or reno simual-
tions for the train set. The delrio simulation is kept for the validation set

• Simulation file: second or third hour of simulation

• Time step: between 0 and 119 (one snapshot every 30 second of the simula-
tion)

• Source rate: All simulations are run with a 693 kg/h source rate. We scale
this source rate between 14 and 72 to have a range of source rates between 10
t/h and 50 t/h

• Wind direction: All plume are simulated with a constant wind direction
at the source. To simulate varying wind directions, we rotate the plume at
random with an angle between 0°and 360°

An overview of the randomized parameter distribution can be found in figure 3.13.
The randomized wind angle can be found in the appendix, figure A.1

Figure 3.13: Occurence of randomly sampled plume parameters

3.4.2 Plume Placement

Once integrated for a specific viewing configuration, we position a given methane
plume in the corresponding scene. This positioning introduces a bias which we
carefully consider. While we could choose to embed a plume randomly in a scene,
this doesn’t take into account the colocation of the emissions and emitting facility.
On the other hand, positioning a plume directly on the facility ignores the fact
that an emission may emanate from around the facility. A prime example are
storage tanks. From the 2019 Permian basin emissions survey by Cusworth et al.
presented in table 3.3, we know that around 40% of emissions come from storage
tanks. Tanks are usually located on a well pad but not right next to the well itself
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as seen in figure 3.14 a). Similarly, emissions might originate from a pipeline block
station located around an emitting facility or from an unlit flare, usually located
near an emitting facility as illustrated in figure 3.14 b). To take into account the
variability of methane sources in the vicinity of an emitting facility, we choose to
place plumes within a given distance of the point location of the studies facility.
We set this distance to 500 meters. This forms a bounding box around the facility,
in which the plume source is randomly placed.

(a) Colocated tank and well (b) Methane plume from an unlit flare near
a compressor station

Figure 3.14: Colocation but not superposition of potential emission sources and
OGIM facilities

Figure 3.15: Plume source bounding box

3.4.3 Modifying Radiances

With 2D methane column densities, knowledge of which bands we want to embed
methane in and a strategy of where to embed a plume in a given Sentinel-2 obser-
vation, we can proceed to embedding the plumes in scenes. By embedding, we hear
scaling the appropriate Sentinel-2 radiance by an appropriate factor on a pixel by
pixel basis. This pixel by pixel process is outlined in figure 3.16.
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Figure 3.16: Pipeline for embedding methane plumes in Sentinel-2 imagery

To estimate a radiance scaling factor, we must first estimate the quantity of methane
the synthetic plume adds to the background methane concentration. Indeed, methane
is an important trace gas in the Earth’s atmosphere, making up about 0.00019% of
the atmosphere, or 1900ppb [26]. Our goal is to detect a methane plume, not all
the methane gas in a given scene. Hence why we start by computing the ratio of
methane concentration in the plume over the background methane concentration.
To estimate the background methane concentration, we assume that our embedded
methane plume is mainly in the bottom 500m of the atmosphere and compute the
background methane concentration in these first 500m.
With the ratio of plume methane versus background methane, we compute the top of
atmosphere spectral radiance (TOASR) inW.m�2.m�1.sr�1, for the scaled methane
concentration (TOASRplume), for a given band in which we embed methane.
The TOASR is computed using the Beer-Lambert law for the slant column optical
depths of CH4, CO2 and H2O, over the entire atmospheric column (up to satellite
altitude). We only consider optical depths of CO2 and H2O in addition to CH4 as
these are two main species that have strong absoprtion bands in the SWIR spec-
trums we consider and that have significant concentratations in the atmosphere.
We split the CH4 optical depth in a lower layer optical depth and an upper layer
optical depth. The lower layer CH4 optical depth is the one scaled by the plume to
background methane ratio. The equations for TOASR is given by equation 3.7:

TOASRplume = exp(�((1 + ch4 scale) ⇤ odCH4lower + odCH4upper

+ odCO2 + odH20) ⇤ solar spectrum)
(3.7)

where odX is the optical depth of the specie, solar spectrum is the upwelling solar
spectrum and ch4scaleis the methane enhancement as a fraction of background.

The scale factor we use to scale the given band’s radiance is then given by:

scale factor =
TOASRplume � TOASRbackground

TOASRbackground
(3.8)

and the band scaling is given by:

scaled band = band ⇤ (1 + scale factor) (3.9)

In equation 3.8, TOASRbackground is computed using a 100 layer, clear-sky radia-
tive transfer model from Varon et al. [50]. From the same radiative transfer model,
we obtain the optical depths for CH4, CO2 and H2O as well as the upwelling solar
spectrum used to cumpute TOASRplume.

As the radiative transfer model accounts for surface altitude, solar zenith angle and
viewing zenith angle, we repeat the pipeline outlined in figure 3.16 for every scene.
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3.5 Testing Embedded Plumes

Having embedded LES plumes in raw Sentinel-2 radiances, we now want to verify
our methodology is embedding the correct concentrations of methane in said radi-
ances.
To verify our method, we retrieve a methane plume using the Multi Band Multi
Pass (MBMP) method [50]. This method retrieves a methane concentration for
each pixel by considering at the the di↵erence between a scaled B12 and B11 ratio
from two di↵erent observations of the same scene. The results from this method
can be found in figure 3.17.

Figure 3.17: MBMP retrieval for a synthetic plume embedded in a Permian basin
scene

As we know the pixel by pixel concentration of the MBMP retrieval and of the 2D
methane enhancement map, we can compare both as seen in figure 3.18 a).
In this figure, we observe a correlation between the retrieved and embedded plumes
but with large residuals. While this could mean our method is biased, this could
also be due to the noise in heterogenous scenes in the Permian basin. To verify
this, we embed a plume in a homogenous scene and perform the same retrieval.
We choose to embed this plume over a desert scene in Algeria, another methane
emissions hotspot. The results from this retrieval are presented in figure 3.18 b).
In this figure, we observe a strong correlation between the retrieved and embedded
plumes. This confirms the weak correlation in figure 3.18 a) is due to the scene
noise and provides confidence in our embedding methodology.

3.6 Generating Training and Validation Sets

When training a machine learning algorithm, we usually train on a specific set and
verify how well the algorithm has learned on a held out set, the validation set. The
algorithm is never trained on the validation set. This way, we can check if the
algorithm is learning meaningful and generalizable patterns from the training data
or if its overfitting to the training data. Importantly, we must avoid data leakage.
Data leakage occurs when information from the training set can be found in the
validation set or vice versa. The validation performances would then be overly
optimistic.
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(a) Permian basin (b) Hassi Messaoud

Figure 3.18: MBMP retrieved plume versus LES plume methane column enhace-
ments

In our case, there is a risk of data leakge if we embed the same plumes in the
validation and training sets or if we validate on backgrounds that the algorithm
learns from in the training steps.
To avoid the facility data leakage risk, we split the scenes in a test and validation
set by facility. In other words, all observations of a single facility will always be in a
single set. The split ratio is based on the total number of scenes, not facilities, and
set at 80%. In other, words, 80% of the scenes are in the training set and 20% are in
the validation set. To avoid the LES data leakage risk, we leverage our five distinct
simulations as explained in section 3.4. We embed plumes from four simulations in
the training scenes and keep the fifth simulation to embed in the validation scenes.

3.7 Data Normalization

We create a dataset of synthetic methane plume and train a deep learning algorithm.
Normalizing input data for deep learning applications is crucial as machine learning
algorithms rely on consistent and normalized data [18]. Normalization helps with:

• Avoiding numerical instability: Deep learning models often involve com-
putations that are sensitive to the scale of the input data. If the input features
have vastly di↵erent scales, it can lead to numerical instability during train-
ing. By normalizing the input data, all features are brought to a similar scale,
reducing the chances of numerical instability and ensuring a more stable and
e�cient training

• Improved generalization: Deep learning models aim to learn general pat-
terns from the training data that can be applied to unseen data. Normalizing
the input data helps the model focus on the intrinsic patterns and relation-
ships within the data rather than being biased by di↵erences in feature scales.
It can prevent certain features from dominating the learning process simply
due to their larger scales. In our case, this could be a metallic storage tank
that has much a higher reflectance than the rest of the scene or a water body
that obsorbs strongly in the infrared domain

• Regularization e↵ects: Normalization can have a regularization e↵ect on
the model. By enforcing a constraint on the input data, it reduces the model’s
capacity to fit noise or irrelevant variations in the training data. This regu-
larization can help prevent overfitting
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Our dataset is composed of two types of features. First of all, normalized di↵erence
indices consisting of dimensionless quantities, bounded between -1 and 1. The train-
ing dataset also has Sentinel-2 L1C data which consists of reflectances. Unlike RGB
images that are encoded in 256bit, reflectances are bounded by 0 but unbounded in
the positive direction. They are also long tailed as illustrated in figure 3.19 where
the 98% of the data is in a [0, 0.44] interval but the maximum value is 2.17 .

Figure 3.19: Long tailed distribution of B12 reflantances L1C Sentinel-2 data

To train on these types of data, we need a normalization method that bounds these
quantities and controls their distribution. We focus on the following normalization
methods:

• Min-max scaling: Remapping of a given input range (bounded or un-
bounded) according to the following formula:

xscaled =
x� xmin

xmax � xmin
(3.10)

The result will be bounded by 0 and 1

• Percentile scaling: When the input range contains outliers, such as long
tailed satellite imagery reflectances, min-max scaling may be sensitve to ex-
treme data points. In this case, min-max percentile scaling may be appropriate
and is given by the following formula:

xscaled =
x� x1

x99 � x1
(3.11)

where x1 is the 1st percentile of the input data and x99 is the 99th percentile
of the input data. The result will be bounded but not by 0 and 1

• Z-score normalization (standardization): Transforms the input data so
that it has a mean of 0 and a standard deviation of 1. We refer to this method
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(a) Parks compressor station in Jan-
uary

(b) Parks compressor station in July

Figure 3.20: Illumination variations over a same location

as standardization. This is achieved with the following formula:

xstan =
x� µ

�
(3.12)

Where µ is the mean of the image and � is the standard deviation of the
image.
Because standardization not only rescales but also centers data around 0, it
is particularly useful when dealing with features that have di↵erent scales. In
our case, this can mitigate the e↵ect of illumination changes across seasons or
regions. This issue is illustrated in figure 3.20, where the observation of the
same facility is much brighter in July than in January. In subfigure a), the
mean value for B12 is 0.303 while it’s 0.395 for subfigure b), captured in July.
By standardizing the bands, the reflectance distribution for both observations
would be centered around 0, with 1 standard deviation, mitigating impacts of
illumniations changes.

Di↵erent pre-processing methods can be used for both types of data (radiances and
NDIs). In various tests covered in section 4.4.4, we find that standardizing (Z-score
normalization) both types of data without scaling yields the best results.

3.8 Creating Labels

Training a methane plume detection algorithm requires labelled data. For a binary
segmentation task (plume/no plume segmentation), the labelled data must be in
the form of binary masks. In this section, we cover the process of generating binary
masks for the embedded plumes.

3.8.1 Masking Plumes

In this section, we will study the scene and its associated plume illustrated in figure
3.21
Masking plumes is the first step towards creating labels for our dataset. As shown
in figure 3.22 a), creating näıve masks including the entire embedded plume can
cover a significant portion of the scene, even where the plume is not discernable
from the background noise.
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(a) Studied scene (b) Studied plume

Figure 3.21: Scene and associated plume studied over the course of section 3.8.1

We need a thresholding strategy in order to converge towards a global minimum
when training. When devising a masking strategy, we need to take into account the
following:

• Minimise noise: We aim to minimise the noise included in the masked scene
to increase the network’s performance

• Maximise methane plume: The primary goal of a mask is to encompass
the largest discernable portion of the studied methane plume

• Consistency: A masking strategy must mask the smallest plumes while keep-
ing the larger plume masks to a reasonable fraction of the image

• Physical Sense: The masks must correspond to a physical reality. A mask
for a large plume should be significantly larger then one for a small plume.
Without physical grounding, a network risks being biased towards the mean
source rate of the dataset

To fulfill the above criteria, we introduce masking methods based on vertical column
density (VCD) and signal to noise ratio (SNR). VCD is the integrated methane
column intorduced in section 3.4.1. VCD is measured in mol/cm2 and represents
the ground truth methane plume. SNR is obtained by dividing a given band by
this band’s standard deviation. SNR is dimensionless and represents how easily
interpretable a given pixel is compared to the background. A SNR greater than 1
indicated more signal than noise. The masking strategies used are listed bellow and
illustrated for the scene in figure 3.21.

• VCD percentile masking: We compute a k-th percentile of the VCD bellow
which a given percentage of the methane plume frequency distribution falls.
For example, a 95th percentile mask will reveal the strongest 5% of the VCD
pixels. This should be the pixels neighbouring the source of the plume. This
has the advantage of directing the plume segmentation algorithm on detecting
the source of the plume but lacks physical grounding. The 5% of pixels with
highest methane concentration of a 10t/h plume will have a smaller methane
concentration than for a 50t/h plume. Shown in figure 3.22 c)

• VCD threshold masking: In this method, we only include VCD pixels over
a given threshold in the mask. The threshold becomes a tunable hyperparam-
eter. For example, a natural choice would be the mean methane background
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concentration in the Permian, estimated to be around 0.67 mol/m2 [26]. This
is illustrated in figure 3.22 b)

• NDMI SNR masking: This method doesn’t rely on the ground truth plume
(ie, the VCD) but on the embedded plume. We compute the NDMI for a
given scene and isolate the plume from the NDMI. To do so, a ”no methane”
NDMI is calculated from bands 11 and 12 before the plume is embedded. By
substracting the NDMI without methane from the NDMI with methane, we
obtain the methane plume as it is embedded. Next, we compute the standard
deviation of the NDMI with methane and divide the above di↵erence by the
standard deviation. This highlights wich parts of the plume should be visible
in the NDMI ratio. We include in the mask all pixels above a given threshold
in the SNR map. The natural choice for this threshold is 1 as this indicates the
plume signal is greater than the background. However the threshold remains a
tunable hyperparameter. The python code for this is in listing B.1 (in Annex)
and the result is illustrated in figure 3.22 d)

• NDMI focused SNR masking: The focused SNR method extends the
above described SNR method. Instead of computing the standard deviation
across the whole scene, we compute this standard deviation within the plume.
Here, we define the plume as all the VCD pixels above a given threshold. This
method is more robust to noisy artefacts which could influence the standard
deviation of the scene. However, by definition, the methane plume should
have the highest pixel values in the NDMI. Therefore the focused standard
deviation will usually be higher then the standard deviation calculated over
the entire scene. Hence the SNR could be lower for plume pixels and the
plume mask would cover a smaller amount of the plume

Overall, we elect to mask using SNR masking of the NDMI illustrated in figure 3.22
c). We choose this method as it produced the more robust and accurate results on
the validation set during training.

3.8.2 Defining a Standard for Labels

Without a large, open-source dataset of Sentinel-2 scenes with labeled methane
plumes available for the research community, sharing our dataset is one of our ob-
jectives. To encourage other researchers to build computer vision pipelines to detect
and quantify methane plumes in Sentinel-2 data, we format our data according to
the Common Object in COntext (COCO) format [32]. This format is well docu-
mented and used by several foundation models.
More specifically, we use the format for panoptic segmentation described in listing
3.1.

Listing 3.1: COCO panoptic segmentation label format

1 image{
2 "id": str ,
3 "license": int ,
4 "width": int ,
5 "height": int ,
6 "file_name": str ,
7 "date_captured": str
8 }
9

10 annotation{
11 "image_id": int ,
12 "file_name": str ,
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(a) Threshold mask with threshold = 0 (b) VCD threshold mask with thresh-
old = 0.67

(c) VCD percentile mask with per-
centile = 95%

(d) NDMI SNR mask with threshold =
1

Figure 3.22: Illustrations of various masking methods

13 "segments_info": [segment_info],
14 }
15

16 segment_info{
17 "id": int ,
18 "category_id": int ,
19 "area": int ,
20 "bbox": [x,y,width ,height],
21 "iscrowd": 0 or 1,
22 }
23

24 categories [{
25 "id": int ,
26 "name": str ,
27 "supercategory": str ,
28 "isthing": 0 or 1,
29 "color": [R,G,B],
30 }]

In listing 3.1, segment info is a list of length equal to the number of distinct objects
in an image. In our case, this may be 1 if there is a plume or 0 if the image doesn’t
contain a plume. image[file name] corresponds to the file name of the Sentinel-
2 scene while annotation[file name] corresponds to the file name of the mask. In
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COCO annotations, objects are identified by a unique RGB encoding. In our case,
there are two possible labels which are:

• Plume: represented by red pixels: [R, G, B] = [255, 0, 0]

• No plume: represented by black pixels [R, G, B] = [0, 0, 0]

segment info[id] identifies to which category a given label is. This id is determined
by the RGB code according the following formula:

id = R+G ⇤ 256 +B ⇤ 2562 (3.13)

Furthermore, we set ”iscrowd” and ”isthing” to 0.
image[id] is the same as annotation[image id] and is the concatenation of the OGIM
facility’s unique ID and the date of capture of the Sentinel-2 scene in YYYY-MM-
DD format. For example, the ID for the observation of OGIM facility 2571247 on
the 2019-12-17 is 257134720191217. To convert such a formatted COCO label to a
simple binary mask, we use the code snippet in listing B.2 (in Annex).
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Algorithm Development

4.1 Background on Image Segmentation

Image segmentation consists of splitting an image in distinct segments where each
pixel of the image corresponds to an object we are trying to segment. Image seg-
mentation tasks are usually broken down in instance segmentation, panoptic seg-
mentation and semantic segmentation.

• Semantic segmentation: Consists of segmenting parts of an image that
belong to the same class, for example a bulding or a road. Image segmentation
can be seen as an image classification task at a pixel level

• Instance segmentation: Extends semantic segmentation to segmenting dis-
tinct instance within a class, for example, building A or building B

• Panoptic segmentation: Combination of both semantic segmentation and
instance segmentation. Panoptic segmentation assigns a pair of semantic and
instance labels to each pixel in the image

In the case of detecting methane plumes, we are dealing with semantic segmenta-
tion. A plume may include several distinct segments but we don’t have an interest
in classifying these segments distinctly. All segments belong to the same source in
our case.

4.1.1 A Brief History of Image Segmentation Algorithms

Since the advent of Convolutional Neural Networks (CNN) in computer vision [29]
[30], traditional image segmentation techniques (edge detectors [5], thresholding
[46], etc) have been replaced by CNN based image segmentation methods. These
have proven successfull in solving common problems faced by traditional methods
such as variations in illumination and texture or translations.
Fully Convolutional Networks [34] (FCN) first adapted CNNs to image segmenta-
tion tasks but lacked precise localization capabilities due to pooling and upsampling
operations loosing the global semantic context of the image.
Deconvnet [36] introduced the concept of an encoder-decoder architecture to at-
tempt to recover spatial information lost during pooling operations. Deconvet did
however struggle with capturing fine details and creating artifacts.
Building on top of the encoder-decoder architecture, the U-Net architecture [43]
added skip connections from matching encoder and decoder bloc. Those connec-
tions were a key factor in helping retain fine spatial information by fusing low level

31
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and high level features. On top of this, U-Nets have proven capable to handle lim-
ited amounts of data. This makes them particularly suitable for the remote sensing
community, where data is scarce and expensive.
There have since been several variations of the U-Net architecture such as U-Net++
(nesting mutiple U-Net architectures within each other) [56], Attention U-Net (in-
corporating attention mechanisms in the network) [38] or Residual U-Net (intro-
ducing residual connections to mitigate the vanishing problem gradient) [9].

Beyond CNNs, image segmentation tasks have also been tackled by more recent
architectures. Generative Adversial Networks (GAN) [15] have been trained to
generate realistic looking segmentation masks. Examples include CycleGAN [58] or
Pix2Pix [22].
Recently, the transformer based approach has been applied to computer vision [11]
and specifically to image segmentation. Swin Transformer [33] or DETR [6] are
examples of vision transformers that have been successfully applied to image seg-
mentation tasks. Their ability to capture long-range dependencies produced com-
petitive results.

We chose to investigate methane plume segmentation using a U-Net architecture.
We set aside GANs as they are not considered state of the art for image segmen-
tation tasks and may be challenging to train and stabilize [45]. As for transformer
based architectures, while they have produced state of the art results in image seg-
mentation challenges [31], they are constrained by requiring large volumes of data
to learn meaningful representations. Many transformer applications build on top of
foundation models by fine-tunning them to a specific task. Open-source pre-trained
foundational models for geospatial data, such as the one provided by NASA [25],
have begun to emerge, though they remain a very new advancement. This is why
we elect to create an initial version of our methane plume detector using the well-
established and proven U-Net architecture.

Focusing on methane plume segmentation, most previous approaches have also used
a U-Net architecture as backbone to their pipeline ([4], [27], [52]).

4.2 U-Net Architecture

U-Net networks are fully convolutional networks characterised by a U-shaped archi-
tecture comprised of an encoder and a decoder [43]. The encoder and decoder both
have 4 blocks and are connected by a bridge. The contracting path (encoder) dou-
bles the filters and halves the spatial dimension while the expansive path (decoder)
halves the filters and doubles the spatial dimension. One of the unique features
of a U-Net are skip connections. Each encoder bloc has a skip connection to the
equivalent decoder bloc. This allows high level features with semantic information
to be combined with low level features which have a detailed spatial representation.
For image segmentation tasks where precise localisation but also contextual under-
standing are key, U-Nets with skip connections are well suited.
While the number of encoder/decoder blocs usually stays the same, the complexity
of the network can be adjusted with the number of filters. In figure 4.1, the first
encoder bloc has 64 filters and each subsequent encoder bloc doubles the number
of filters. The same can be said for the decoder blocs but the other way around.
Choosing this first bloc filter number is a key parameter in defining the network
depth. For example, a 5 channel 512x512 image fed in a U-net with stride of 1,
kernel size of 3x3, padding of 1 and 64 base filters has 31 million parameters. The
same network with 32 base filters has 7.8 million parameters.
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Figure 4.1: U-Net architecture (inspired from [43])

4.3 Training Setup

4.3.1 Loss Function and Metrics

We use the following loss function [20]:

L = E � logJ (4.1)

where E is the binary cross entropy loss and J is the Jaccard index (also called
Intersection over Union or IoU).
We choose cross entropy loss (BCE) as this is the common loss function for classifi-
cation tasks [42]. BCE penalizes the model for misclassifying a label proportionaly
to the deviation in probability. We opt for BCE over the more usual categorical
cross entropy as we face a binary classification problem (plume/no plume). BCE is
defined as follows [20]:

E =
1

N

NX

i=1

�(yi ⇤ log(pi) + (1� yi) ⇤ log(1� pi)) (4.2)

where pi is the probability of class i and (1� pi) the probability of class 0.
In equation 4.1, J is the jaccard index, defined as:

J(P, T ) =
|P \ T |+ smooth

|P [ T |+ smooth
(4.3)

0  J(P, T )  1 (4.4)

where P defines the prediction and T the target labels. We add ”smooth” as
a smooting parameter to ensure di↵erentiability of the Jaccard index. We set
smooth = 1 as we get the best training performances with this hyperparameter
(figure 4.2).
The Jaccard index is critical in our application. Indeed, in the case of imbalanced
datasets, where one class is significantly larger than the other, the Jaccard index
is less influenced by the prevalence of the majority class. Our dataset contains
much more ”plume” pixels than ”no plume” pixels. In fact, plume pixels represent
only 0.6% of the dataset ( 8M plume pixels versus 1465M no plume pixels). By
focusing on the proportion of the intersection of two sets relative to their union, the
IoU measurement inherently accounts for the class distribution. BCE loss doesn’t
account for class imbalance which is why we give a stronger weight to the Jaccard
index through the application of the log function (Jaccard index being bounded by
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0 and 1).

To track model development, we rely on the the Jaccard index evaluated on the
validation set.

Figure 4.2: Impact of Jaccrard smoothing parameter on validation loss

4.3.2 Hyperparameters

We train our U-Net with an AdamW optimizer, learning rate of 10�4 and clip
gradients to 0.1. In this section, we cover the choice of these hyperparameters.

Optimizer

We trained with an AdamW Optimzer [35], during 20 epochs. We also tested
training with an Adam optimizer [28]. Adam is an optimization algorithm for the
backpropagation step through the neural network. It dynamically adjusts the learn-
ing rate for each parameter depending on a moving average of previous gradients
and squared gradients. The goal is to e�ciently converge to the global minimum of
the loss function during training. Adam mitigates overfitting to the training data
by including weight decay as a regularization method. Weight decay adds a penalty
to the loss function based on the magnitude of weights, encouraging smaller weight
values. It a↵ects both the weights and the moving averages of past gradients. With
AdamW, weight decay only a↵ects the weights themselves and not the moving av-
erages of past gradients, stabilizing training. In addition, decoupling the weight
decay strength from learning rate adjustements makes it easier to tune the learning
rate. For both optimizers, the initial decay rates are set to �1 = 0.9 and �2 = 0.999
and weight decay is 0.01
As reported in figure 4.3, AdamW stabilizes the validation loss in our training and
leads to a slightly better final validation loss.

Learning Rate

We trained with a learning rate of 10�4. We also tested di↵erent learning rates and
learning rate schedules. A learning rate schedule modifies the learning rate over
the course of the training. In addition to the 10�4 schedule, we tested a multi-step
learning rate schedule of 10�3 for the first 10 epochs and 10�4 for the last 10 epochs,
a multi-step learning rate schedule of 10�4 for the first 10 epochs and 10�5 for the
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Figure 4.3: Training performances for Adam and AdamW optimizers

last 10 epochs and an exponential learning rate schedule starting at 10�2.
we observe that the performances for each schedule are reported in figure 4.4.

(a) Loss (b) Learning rate schedule

Figure 4.4: Training performances for varying learning rate schedules

Gradient Clipping

Clipping the gradients to a threshold value helps avoid exploding gradient issues.
When training deep neural networks, the gradients of the loss function with respect
to the model’s parameter may become large, causing the updates to the network
weights to also become very large, causing instability in the training. Gradient
clipping limits the magnitude of the gradients to a given threshold during back-
propagation.
Figure 4.5 illustrates the improvement in the training with gradient clipping set to
0.1.

Regularization

During training, we don’t observe an increase in the validation loss as shown in
figure 4.6. This suggests we aren’t overfitting to the training data. Hence, no
dropout is applied in the U-Net architecture.
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Figure 4.5: Training performances when training with gradient clipping

(a) Training loss (b) Validation loss

Figure 4.6: Training performances over training and validation sets

4.4 Results

As mentioned in section 3.6, we train on a given selection of scenes from the Per-
mian (80% of the total scenes) and validate on held out scenes (20% of total scenes).
We also embed LES plumes from 4 disctinct simulations in the training scenes and
validate on a fifth LES simulation. In this section, we present an overview of the
performances of the plume segmentation algorithm on the validation dataset.

4.4.1 Metrics

For the quantitative analysis of the validation results, we use results of the confusion
matrix on a pixel by pixel basis. In other words, we evaluate the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN)
when comparing pixels in the predicted masks and pixels in the ground truth masks.
To analyse the results of the confusion matrix, we introduce the following metrics:

• Recall: Measures how many retrieved plume pixels are indeed methane. This
is an appopriate metric if the consequences of false negatives are high

Recall =
TP

TP + FN
(4.5)

• Precision: Measures how many plume pixels are indeed predicted as methane.
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This is an appopriate metric if the consequences of false positives are high

Precision =
TP

TP + FP
(4.6)

• F� : Is the adjusted harmonic mean of recall and precision. The � parameter
is introduced to weight recall or precision more stronly than the other. �  1
favors precision while � � 1 favors recall

F� =
1 + �2

Precision�1 +Recall�1
(4.7)

We use both � = 1 (precision and recall have the same weight) and � = 0.5
(precision is weighted higher than recall). Indeed, false positives are dangere-
ous for two reasons:

– Hinder automation of a plume detection pipeline

– Damages overall reputation of the field of plume detection from Space

4.4.2 Scores

The trained network has the following scores:

IoU Recall Precision F1 F0.5
0.510 0.682 0.649 0.633 0.634

Table 4.1: Results on the validation set for the trained network

We also include a few predictions made by the network in figure 4.7
In these examples, we observe that the network usually finds the plume correctly.
The predicted mask may not fully cover the ground truth maks, but the most
expressive part of the plume is usually found, with the exception of the 10.39 t/h
plume.
As we can see from the 13.86 t/h plume or the 49.20 t/h plume, the network seems
robust to infrastructure artifacts. These scenes contain many well pads yet none of
them are confused for a plume.
Other plume like features such as the bottom right bright yellow streak in the 49.20
t/h plume don’t appear as plumes. This highlights the importance of using other
bands that can discriminate plume-like features in the NDMI from actual plumes.
From this selection, we observe that artifacts are usually topographic features, for
example in the 32.57 t/h plume. For other artifacts such as the ones in the 10.39 t/h
plume, it is not clear from the NDMI band what is confused as a methane plume.

4.4.3 Predictor Variables

With a trained network yielding satisfactory predictions on the validation set, we
want to understand which variables have an influence of the plume prediction abil-
ity of the network. For this, we consider two types of variables: scene dependant
parameters and input features. Scene dependant parameters are intrinsic charc-
teristics of the plume/observation at hand such as solar zenith angle, source rate,
source altitude, etc. Input features are the channels on which we train the neural
network (NDMI, B12, B4, etc).
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Figure 4.7: Predictions from the validation set
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Scene dependant parameters

In figure 4.8, the IoU between predicted and ground truth masks are binned in equal
length bins and the bin’s average source rate and IoU are reported on the x and y
axis respectively.

As is apparent from figure 4.8 (a), source rate is a strong predictor of the de-
tectability of a source. This is to be expected as the source rate dictates how much
methane is present in the scene. The relationship between source rate and IoU
seems to plateau towards 0.5, which suggests there is a maximum IoU reached by
the network.
We also notice a relationship between wind speed and detectability, as suggested by
figure 4.8 (b). This is also to be expected as the stronger the wind, the more likely
the plume will be dissipated in the atmosphere, rendering the plume indistinguish-
able from the background methane concentration.
We also notice a suprising correlation between source altitude and detectability
in figure 4.8 (c). While we didn’t investigate this dependancy further, we believe
this could be the subject of further research and could help correct for biases in
quantification of methane point sources across regions.

(a) IoU vs Source Rate (b) IoU vs Wind Speed

(c) IoU vs Elevation (d) IoU vs Solar Zenith Angle

Figure 4.8: Correlations between scene dependant variables and source detectability

Input features

To evaluate the importance towards detecting a plume of the features we feed in
our network, we perform a channel importance analysis through channel ablation.
In our chosen configuration, a scene has 11 channels (B2, B3, B4, B8, B10, B11,
B12, NDMI, NDBI, BSI, NDVI). To measure the importance of each channel, we
set all the pixel values for a single channel to 0 over the entire validation set, run
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a pass over the validation set and calculate the average IoU. We do this iteratively
over all channels and produce the results presented in figure 4.9.

Figure 4.9: Channel importance analysis over the validation set

The results from this study demonstrate the importance of NDMI towards detecting
methane plumes in Sentinel-2 imagery and B4’s role (red channel) in filtering out
false positives.
We also observe that the 3 SWIR bands in which we embedded methane (B10, B11,
B12) aren’t being considered much by the network for predicting plume locations.
This can be expected for B12 and B11 as they are already taken into account in
the NDMI. B10’s lack of influence on the results rejects the hypothesis we made in
section 3.1.2. We observed that B10 had a significant mean absorption cross section
with methane’s absorption cross spectrum and hypothesised that this band could
be useful for detecting methane plumes. Its lack of influence could be linked to its
greater spatial resolution. At 60m per pixel, it is significantly greater than all other
bands (10m or 20m) and could lack the details necessary to di↵erentiate a point
source. In fact, a satellite spatial resolution of less than 60 is usually required to
observe a plume [3].

The channel importance analysis o↵ers an incomplete look at the significance of
input features on the detectability of methane plumes. We check which band has the
most impact on the predicition from the subset of bands we trained on. However,
we don’t check the changes in performances when training on di↵erent subset of
bands. For this, we run three di↵erent trainings:

• A training on all bands: NDI, RGB, NIR and SWIR bands

• A training without the SWIR bands (train on NDI, RGB, NIR)

• A training without NDMI (train on all NDIs but NDMI, RGB, NIR, SWIR)

The goal here is to understand which role the di↵erent methane signals (SWIR
bands or NDMI) have in the detection of synthetic methane plumes. The results
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from these three trainings can be found in table 4.2.
From these results, we confirm the importance of NDMI towards detecting methane
plumes. We also observe that the SWIR bands have a negative impact on perfor-
mances on the validation set, across all metrics. While it could be surprising that
adding more data has a negative impact on performances, we need to circle back to
the training labels. Those are generated on the basis of what methane signal is dis-
tinguishable from the background in the NDMI signal. This means that the labels
are tailored to the NDMI. As we can expect the methane signal in B12 to be weaker
than NDMI, this means a label covers the distinguishable B12 methane plume but
also artifacts that may be around the plume, adding noise to the detections. Rather
than highlighting the negative impact of the SWIR bands on training, we believe
this highlights the limits of our labelling strategy presented in section 3.8.1.

Training Features IoU Recall Precision F1 F0.5
All bands 0.510 0.682 0.649 0.633 0.634

All but B10, B11, B12 0.571 0.738 0.703 0.693 0.693
All but ndmi 0.448 0.646 0.594 0.575 0.576

Table 4.2: Impact of training features on Recall, Precision and F� metrics

4.4.4 Influence of Normalization

In section 3.7, we outlined several normalization methods for both Sentinel-2 ra-
diances and NDIs. We observe that choosing the right normalalization is key to
achieving optimal training performances. Both NDIs and Sentinel-2 bands having
di↵erent bounds and distributions, we study normalization for both seperately.
First, we fix preprocessing for the Sentinel-2 bands to min-max scaling and vary the
preprocessing for the NDIs. From the results, presented in figure 4.10 a), we observe
that standardizing the NDIs yields the best results. The di↵erences in performances
here are significant, with a 61% decrease in validation loss when standardizing NDIs
compared to keeping the raw form.
With these results in mind, we fix preprocessing for the NDIs to standardization
and vary the preprocessing for the Sentinel-2 bands. From the results, presented
in figure 4.10 b), we don’t notice significant di↵erences between the three di↵erent
preprocessing methods. While the path to convergence varies, final validation losses
are almost identical. To mitigate potential impacts of illumination variations and
help our model generalize to di↵erent regions, we decide to also standardize the
Sentinel-2 bands.

(a) Varying NDIs preprocessing methods (b) Varying Sentinel-2 bands preprocessing
methods

Figure 4.10: Impact of preprocessing on training performances

In figure 4.11, we plot the mean NDMI and their average IoU in bins (the values
are binned in bins of unequal sizes, hence the outliers). We observe that the greater
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the deviation of the mean NDMI from 0, the poorer the performance becomes. This
confirms the importance of standardizing the NDIs. This performance gap is also
visible in the confusion matrix metrics, displayed in table 4.3.

Figure 4.11: Iou vs Mean NDMI

Network IoU Recall Precision F1 F0.5
No standardization of NDIs 0.389 0.518 0.624 0.513 0.557

Standardized NDIs 0.510 0.682 0.649 0.633 0.634

Table 4.3: Impact of standardization on Recall, Precision and F� metrics

4.4.5 Detectability of Methane Plumes in Real Images

This work’s overarching goal is to train a computer vision alogorithm to detect
synthetic methane plumes and deploy it on real Sentinel-2 data. Thus, evaluating
our algorithms’s performances on real plumes is key to understanding its actual
performances.

Test dataset

We build a test dataset of known plumes from public records of methane plume
detections in Sentinel-2 imagery.
To build this dataset, we first collect a record of open sourced methane plumes in the
Permian basin. The plume locations and source rates are obtained from Varon et
al. [51], Irakulis-Loitxate et al. [21] and PermianMAP [49], a database of methane
plumes in the Permian basin published by EDF (Data from U. Arizona, NASA-
JPL, and EDF). Next, we filter out methane plumes that do not have a Sentinel-2
overpass on the detection date. Finally, we filter out plumes with a source rate
inferior to 4 t/h. Although the demonstrated detection limit for Sentinel-2 is 2
t/h, we trained our algorithm on plumes with source rates between 10 t/h and 50
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t/h. Thus, we filter out plumes which we don’t expect to detect and would make
di↵erentiating performance variations more challenging. With all these filters, we
obtain 19 observations of scenes with known methane plumes. We also include 6
scenes with no known methane plumes to test for false positives. Of these 19 scenes,
18 are observations of the same facility, further limiting the statistical significance
of the test data.
For the labels to evaluate detections, we use the MBMP method from Varon et
al. [50] to create plume masks. Due to the methodology employed in constructing
the test dataset, the failure to detect any plume within it using our detector would
indicate that our algorithm does not match the current state-of-the-art physics bases
approaches.

Method

Due to the small sample size of the test dataset, we don’t use the metrics introduced
in 4.4.1 but the confusion matrix itself (TP, FP, TN, FN). Furthermore, we establish
the confusion matrix on a distinct plume by plume basis instead of a pixel by pixel
basis.
To illustrate the di↵erence between both methods, we base ourselves on figure 4.12.
With the pixel by pixel method, we find 572 true positives, 210 false positives and
1555 false negatives. On the plume by plume method, we find 1 true positive, 1 false
positive and 0 false negatives. This method encourages a more qualitative approach
to avoid drawing false conclusions from a non statistically significant dataset.

(a) Ground truth plume (b) Predicted plume

Figure 4.12: Ground truth plume and its corresponding prediction

Results

The confusion matrix obtained from running our detector on the test dataset can
be found in table 4.4. A selection of predictions can be found in figure 4.14.

Predicted Value
Positive Negative

Actual Value
Positive 8 14
Negative 11 5

Table 4.4: Confusion matrix for the test dataset
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From these results, we observe that our network correctly detected 8 of the 19
plumes and correctly predicted negatives for 5 out of the 6 scenes without plumes.
Furthermore, figure 4.13 doesn’t highlight the relationship between detectability
and source rate highlighted in section 4.4.3, suggesting source rate cannot be the
only predictor of detectability.
Furthermore, we fail to detect over half of the test dataset’s plumes, indicating
subpar performances when compared to state of the art MBMP methods [50].

Figure 4.13: True positives and false negatives in real plume dataset

Influence of training data

As with performances during training, we observe varying performances depend-
ing on the channels we train on. When testing the three variants of our network
presented in section 4.4.3, we get the results in table 4.5:

All bands No SWIR bands No NDI bands
True positives 8 4 11
False positives 14 0 26
True negatives 5 6 4
False negatives 11 16 8

Table 4.5: Performances over test dataset for varying training features

These results suggest only training on NDIs (NDMI, NDVI, NDBI, BSI) leads to
highly confident real plume detections. There are no false positives and all scenes
without plumes are correctly identified as such. Introducing SWIR bands in the
training data, whether with or without NDIs, leads to more plume detected but
also much more false positives. While we remain cautious when drawing conclusions
from this test data, we can envision two versions of this network designed for two
di↵erent purposes:
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Figure 4.14: Predictions from the test set

• No SWIR bands: A version trained without SWIR bands when deploying
the detection algorithm on large amounts of data. For example if we deploy
this algorithm on all Sentinel-2 observation of OGIM facilities in the Permian
basin. This would produce hundreds of thousands of observations per week.
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Any percentage of false positives, even small, would call into question the
automated nature of this pipeline

• No NDIs: A version trained without the normalized di↵erence indices when
searching for plumes in scenes where we have an a priori knowledge of the
presence of a plume or not. For example if we use this algorithm to find
the exact source of a TROPOMI detection (area flux mapper whith daily
revisit, with proven capabilities of detecting large methane plumes [24]. Dur-
ing TROPOMI overpass, plumes may have already travelled downwind and
locating the exact source is not trivial)

Extension to other oil and gas basins

While we trained a methane plume detector on scenes from the Permian basin,
we want to study if such a targeted training can generalize to detecting methane
plumes in other oil and gas basins. For this, we collect dates and coordinates of
proven methane plumes in other regions. We focus on the Hassi Messaoud oil field
in Algeria, and the Korpezhe oil and gas field in Turkmenistan. These two regions
are extensively studied by the research community [50], o↵ering a priori information
on methane plumes. For the Korpezhe location, we select all observations between
2018-12-01 and 2019-03-31. According to Varon et al. 2021, there are 8 plume
scenes and 2 no plume scenes in the period. For the Hassi Massaoud point source,
we select all proven plumes between 2019-12-01 and 2019-12-30. According to Varon
et al. 2021, there are 11 plume scenes and 1 no plume scenes in the period. The
results, computed in the same manner as in 4.4.5, can be found in table 4.6.

Korpezhe oil/gas field Hassi Messaoud oil field
True positives 6 7
False positives 3 9
True negatives 2 1
False negatives 2 4

Table 4.6: Performances over test dataset for varying training features

Figure 4.15 and 4.16 present a selection of detected and missed plumes from these
two regions.
From these results, we can see our methodology of training solely on Permian scenes
can generalize to other regions although some fine tuning could improve perfor-
mances.

4.5 Discussion and Interpretation

The goal of this thesis is to train a plume detection algorithm on synthetic plumes
embedded in multispectral satellite imagery of the Permian oil and gas basin and
use this algorithm to detect real plumes in the Permian basin. A key challenge here
is to learn meaningful representations of synthetic plumes that port well to real
plumes. In other words, reducing the simulation to reality gap as much as possible.

A challenge when searching for methane plumes in the Permian basin is the het-
erogeneity of the background. Roads, buildings, fields and topography create many
potentiel artifacts that can be confused with methane plumes. To improve plume-
artifact discrimination, we use the Normalized Di↵erence Methane Index as an input
feature to our network. By looking at the normalized di↵erence between two neig-
boring bands we aim to enhance the contrasts between features that can be di�cult
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Figure 4.15: Detecting plumes in the Korpezhe oil and gas field (Turkmenistan,
38.4939°N, 54.1977°E)

to distinguish in one of the spectral bands. This is specifically the case of methane,
which absorbs strongly in Sentinel-2’s B12 and less in B11, two neighboring bands.
With NDMI, we want to increase the contrast between the methane plume and its
background to better distinguish it and filter out above mentionned artifacts.
Our results indeed show inclusion of NDMI as a feature plays an important role
towards lowering the number of false positives and increasing the number of true
positives. From the results in table 4.2, we see that including NDMI in the training
data increases recall (an indicator of how few false negatives are produced) by 5.6%
and increases precision (an indicator of how few false positives are produced) by
9.3%.
Furthermore, key to NDMI’s ability to produce more true positives is its stan-
dardization. Standardizing individual NDMI bands to have 0 mean and standard
deviation of 1 leads to a 31.7% increase in recall and 4% increase in precision.
Finding the right preprocessing was a long process of trial and error where we tried
various combinations of standardization and normalization of NDIs and Sentinel-2
raw radiances.

We initially set the objective of detecting methane plumes from raw radiances in-
stead of methane retrieval fields. The reasoning behind this objective is the price
of obtaining such retrieval fields (computational cost and need of occasional man-
ual intervention). Although the significant feature in predicting the presence of
methane plumes is not a raw radiance, we still manage to detect such plumes using
an indicator that can be computed on the fly, at cheap computational cost and
without the need for selecting a reference scene.

For training our network, we observed good performances from the loss function
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Figure 4.16: Detecting plumes in the Hassi Messaoud oil field (Algeria, 31.6585°N,
5.9053°E)

presented in equation 4.1. This loss function enabled us to deal with a strongly
imbalanced dataset (0.5% of ”plume” pixels) and avoid overfitting to the training
dataset.

With the plume detector having reached satisfactory performances on the synthetic
data, we probed the simulation to reality gap by evaluating it on knowm occurences
of large plumes (greater than 4 t/h) in the Permian basin. Here, we were able to
demonstrate detection capabilities on real plumes. This proves the viability of the
method and opens up possibilities of training algorithms to detect plumes in regions
where we have low numbers of real plumes.
Moreover, we observed that training on NDMI without SWIR bands had a positive
impact on false positives. A high number of false positives is the most significant
hurdle in deploying a plume detector to survey methane point sources. The reduced
occurrence of false positives suggests a robust ability to filter out artifacts. However,
there remains a significant gap between performances on simulated data and on real
data. Our model only finds 42% of plumes from the dataset. We identify a few
factors with potential influence on the simulation to reality gap:

• Source rate interval: We embedded plumes with a source rate between 10
t/h and 50 t/h. The goal was to target the ultra large emitters in the Permian
basin. However, empirical data from figure 3.6 and source rates in the test
dataset suggest we could lower the minimum source rate to 2 t/h. This is
the empirical detection treshold of Sentinel-2 for methane plumes and would
cover a more realistic interval of source rates

• Variability of LES methane plumes: We create a dataset of synthetic
plumes from over 600 di↵erent plumes that are scaled up to the desired source
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rate. However, the plumes come from only five simulations and snapshots of
simulations are temporally correlated. A plume at time=t is correlated with
a plume at time=t+5. Moreover, there is only one simulation topography
per wind speed, meaning both are correlated in our training data. Increasing
the overall variability of the embedded plumes could help bridge the observed
simulation to reality gap
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Chapter 5

Conclusion

For this thesis, we worked towards a high frequency monitoring of methane point
sources in the Permian basin. For this, we set out to produce three final products:
a dataset, an algorithm and an application to real plumes.

Contributions

First of all, we produced a dataset of close to 9000 Sentinel-2 observations of oil and
gas facilities with synthetic plumes embedded in Sentinel-2’s SWIR bands (B10,
B11, B12). We envisioned a pipeline fetching data from WRF-LES simulations,
the OGIM database and Google Earth Engine to produce this synthetic data. To
increase the variability of the plumes, we randomized plume placement, wind di-
rection, plume shape and source rate. Furthermore, we embedded plumes in scenes
with less than 1% cloud coverage, selected over a whole year. We selected the facil-
ities for which we embed methane plumes according to prior knowledge of emission
source in the Permian basin. The dataset is produced using standardized COCO
labels and common file types to encourage reusability by other researchers. The
pipeline itself can be reproduced in other geographies, with more LES data and
more Sentinel-2 scenes.

With a large dataset of synthetic methane plumes, we trained a deep learning im-
age segmentation algorithm based on the U-Net architecture. For high frequency
monitoring of emitting facilities, we want to operate on data that can be streamed
from the Sentinel-2 API with minimal preprocessing an especially, without costly
reference scene selection. For this, we leverage NDMI, a normalized di↵erence index
between Sentinel-2’s methane sensitive SWIR bands that can be computed on the
fly. On the synthetic data, we show that NDMI improves detectability of methane
plumes in the heterogeneous Permian basin by 10.1% and is particularily e↵ective
at filtering out false positives. Furthermore, we find that Z-score normalization of
NDMI increases the F0.5 score by 23.4% compared to using raw NDMI. Overall, we
successfully train a plume detection algorithm that can detect synthetic methane
plumes from the above dataset.

Finally, we evaluate the simulation to reality gap when training on synthetic methane
plumes. For this, we assemble a dataset of proven plumes in the Permian basin
and run our plume detector on these scenes. We manage to detect 42% of the
real plumes, showing the feasibility of training an algorithm on synthetic methane
plumes to detect real plumes, without the need of costly preprocessing. We also
find that training with NDMI but excluding SWIR bands leads to a higher detec-
tion threshold but no false positives. This is a promising characteristic for a high
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troughput computer vision pipeline.
We stop short of making definite claims on the simulation to reality gap due to the
low statistical significance of our test data.

Limitations

While we indicate transferability of an algorithm trained on synthetic plumes to real
plumes, a gap in performances remains. The detection threshold of our algorithm
is higher than non machine learning methods and reducing it remains an important
barrier to deployment.

Our plume detector has also been trained on a low variability of plume shapes.
Increasing the variability of embedded plumes through using more LES simulations
could help bridge the simulation to reality gap.

We also fail to reliably measure performances on real plumes due to a small num-
ber of such publicly known real plumes. Building a larger test dataset would be
necessary to validate the e↵ectiveness of the method.

Outlook

Overall, our method demonstrates the possibility of training a plume detector for a
specific region, without the need for collecting true labelled data. Deployed, such a
dataset would then be reinforced by actual detections of real methane plumes. This
opens the possibility of observing methane emissions in understudied regions.

Through training on observations of facilities catalogued in the OGIM database,
we explore systematic surveying of methane emitting facilities. A next step for this
project would be to stream Sentinel-2 observations of OGIM facilities and run our
plume detector on them.
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Guanter, and Itziar Irakulis-Loitxate. CH4Net: a deep learning model for
monitoring methane super-emitters with Sentinel-2 imagery. EGUsphere, pages
1–17, May 2023. Publisher: Copernicus GmbH.

[53] Cody M. Webber and John P. Kerekes. An Examination of Enhanced At-
mospheric Methane Detection Methods for Predicting Performance of a Novel
Multiband Uncooled Radiometer Imager. preprint, Gases/Remote Sensing/-
Data Processing and Information Retrieval, April 2020.



Bibliography 58

[54] Takanobu Yamaguchi and Graham Feingold. Technical note: Large-eddy
simulation of cloudy boundary layer with the Advanced Research WRF
model. Journal of Advances in Modeling Earth Systems, 4(3), 2012. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012MS000164.

[55] Y. Zha, J. Gao, and S. Ni. Use of normalized di↵erence built-up index in
automatically mapping urban areas from TM imagery. International Journal
of Remote Sensing, 24(3):583–594, January 2003. Publisher: Taylor & Francis
eprint: https://doi.org/10.1080/01431160304987.

[56] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jian-
ming Liang. UNet++: A Nested U-Net Architecture for Medical Image Seg-
mentation, July 2018. arXiv:1807.10165 [cs, eess, stat].

[57] Bryan Zhu, Nicholas Lui, Jeremy Irvin, Jimmy Le, Sahil Tadwalkar, Chenghao
Wang, Zutao Ouyang, Frankie Y. Liu, Andrew Y. Ng, and Robert B. Jackson.
METER-ML: A Multi-Sensor Earth Observation Benchmark for Automated
Methane Source Mapping, August 2022. arXiv:2207.11166 [cs].

[58] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Au-
gust 2020. arXiv:1703.10593 [cs].



Appendix A

Figures

Figure A.1: Count of wind angle in synthetic plume dataset
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Appendix B

Code Snippets

Listing B.1: NDMI SNR code

1 import numpy as np
2

3 ndmi_methane = (b12_synthetic - b11_synthetic) / (b12_synthetic
+ b11_synthetic)

4 ndmi_no_methane = (b12 - b11) / (b12 + b11)
5 ndmi_plume = ndmi_methane - ndmi_no_methane
6

7 threshold = 1
8 snr = ndmi_methane / np.nanstd(ndmi_methane)
9 mask = np.where(snr >= threshold , 1, 0)

Listing B.2: COCO label to binary mask code

1 import torch
2 import numpy as np
3 from PIL import Image
4 catid2color = {
5 1: [255, 0, 0],
6 }
7 binary_mask = np.zeros (( image_width , image_height), dtype=np.

uint8)
8 mask_filename = annotation["file_name"]
9 mask_filepath = f"{mask_directory }/{ mask_filename}"

10 category_id = 1
11

12 mask_image = Image.open(mask_filepath)
13 mask_array = np.array(mask_image)
14

15 mask_check = np.all(mask_array == catid2color[category_id],
axis=-1)

16 binary_mask[mask_check] = category_id
17 binary_mask = torch.tensor(binary_mask).to(torch.float32)
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