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The accuracy of GNSS measurements depends heavily on the delay its signal experiences on 
its path from the satellite to the receiver. This delay is caused by various influences. One of 
those influences is the refractivity of the troposphere which originates from dry gases and water 
vapour. It can be represented and modeled with three meteorological parameters: pressure, 
temperature and partial water vapour pressure. The applied models are however highly empiric 
and can have problems to accurately determine the path delay in some cases. This is especially 
the case for the part of the delay caused by the water vapour (wet delay). 

An alternative approach of estimating the tropospheric path delay could be with the application 
of machine learning algorithms. During the last two decades machine learning algorithms have 
become widely used in many fields of science and engineering. Such algorithms allow the 
extraction of relations in large datasets without the need of specifically modeling said relations 
in advance.   

Thus in this thesis the application of two vastly different machine learning techniques to 
estimate the tropospheric zenith path delay is examined. Namely these techniques include 
random forest and a fully connected artificial neural network (ANN). Both algorithms use 
meteorological parameters as well as the resulting zenith path delay to create a model that 
should accurately reflect the relation between those variables. It is inspected how well the 
algorithms perform compared to each other and what the biggest influences on the accuracy of 
the resulting predictions are. 

To further assess the quality of their predictions, the results are finally compared to a more 
common approach of modeling the zenith tropospheric delay. 
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1. Introduction 
 

 

1.1. Problem 
 

Global Navigation Satellite Systems (GNSS) base their estimation of a position on microwave 
signals transmitted from different satellites. By measuring the time the signal took to get from 
satellite to receiver the distance it traveled can be derived. With signals from at least four 
satellites the corresponding distances can be used to compute an intersection and therefore 
determine the position. Thus to be able to accurately determine the position, the path of the 
signal needs to be represented as accurately as possible. On the path from the satellite to the 
receiver many factors can influence the travel time and so cause a delay. Such a delay also 
occurs during the path of the signal through the troposphere.  

To determine the distance of the path of the signal, the speed of light in vacuum is used. This 
speed however changes slightly based on the medium the signal propagates through. The delay 
can be expressed by the refractivity index of the particular medium. So to determine the delay 
in the troposphere, the refractivity index along the signal path can be integrated:  

 

∆𝜌 = 10 ∗ 𝑁(𝑠) 𝑑𝑠

 

 

 

In the troposphere is the refractivity caused by dry gases and water vapour. The delay is 
therefore split up into a dry and a wet part. 

 

∆𝜌 =  10−6 𝑁𝑑𝑟𝑦(𝑠) 𝑑𝑠 +  10−6 𝑁𝑤𝑒𝑡(𝑠) 𝑑𝑠

𝑔

𝑆𝑙𝑎𝑛𝑡 𝑃𝑎𝑡ℎ

𝑔

𝑆𝑙𝑎𝑛𝑡 𝑃𝑎𝑡ℎ

 

 

Although the dry delay usually makes up a large part of the total delay – around 90 % - can it 
be modeled quite accurately as the causing dry gases stay relatively constant in time. The water 
vapour in the troposphere however has high temporal and spatial variations. This induces high 
uncertainties when modeling this part of the delay. At sea level the total tropospheric path delay 
amounts up to about 2.3 m.  

The refractivity index can be determined by empirical models based on three meteorological 
parameters. These usually consist of the temperature, pressure and water vapour partial 
pressure. [Troller, GPS based Determination of the Integrated and Spatially Distributed Water 
Vapor in the Troposphere, 2004] 
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1.2. Zenith Path Delay 
 

The path delay described so far corresponds to the direction from the receiver to the satellite 
(slant direction). This delay however depends highly on the position of the satellite. Since it is 
easier to compute the path delay for a more general case, empirical models usually determine 
the zenith path delay (ztd). This value covers the delay in the zenith direction of the receiver 
and is more generally applicable. To get from zenith delay to the slant delay a mapping function 
is applied. The most simple mapping function looks as follows: 

 

𝑚 (𝑧) =  
 ( )

  

 

Where z corresponds to the angle to the satellite. In the course of this thesis however only the 
prediction of the zenith total delay is inspected. 

 

 

1.3. Proposed approach 
 

This thesis investigates the potential of machine learning in general to accurately predict the 
zenith delay based on tropospheric parameters. In a first step the delay from all available GNSS 
stations as well as the data from nearby meteorological stations is split up into two different 
datasets with respect to time. Two different machine learning algorithms then learn the relation 
between tropospheric parameters and zenith total delay from the first of the two datasets and 
make their predictions using the meteorological values of the second dataset. These predictions 
are then compared to the actual delays of the second dataset to evaluate their accuracy. This 
should provide answers how well both approaches can estimate the zenith delay based on 
meteorological data for known locations but at unknown times. 

The first of the two algorithms is called random forest. Random forest is a popular and capable 
machine learning technique widely used for both classification and regression. It is used as 
baseline to evaluate what accuracy is generally possible with powerful machine learning 
approaches. The second one is a fully-connected neural network. For difficult problems where 
a large dataset is available, neural networks in some form or another have become the standard 
approach in the last decade. Both algorithms are trained and make their predictions on the same 
respective datasets. These individual predictions are then compared and it is evaluated if and 
by how much neural networks could improve the accuracy of the predicted delay. To have a 
rough target regarding the accuracy of the predictions, a minimum goal of 2 cm for the overall 
root mean squared error is set. As can later be seen is this easily achieved. 

 

The accuracy of the predictions of the neural network are then further analyzed with respect to 
the elevation of the different stations as well as their dependence on the time of year. 
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Additionally is it tried to evaluate how the results could depend on the distribution of the 
corresponding meteorological stations. 

To further assess the quality of the predictions, a comparison with a standard approach is 
performed. This standard approach uses the empirical Saastamoinen formula which estimates 
the zenith path delay based on the same tropospheric parameters. To get reliable meteorological 
data at the locations of the GNNS stations, a collocation of the corresponding dataset is 
computed. This is followed by an interpolation at the desired locations. By doing so, the exact 
same data as for the machine learning approaches is used.  

Finally the network’s ability to predict at locations which it has never seen before is evaluated. 
This corresponds to not only a temporal but also a spatial decorrelation between the dataset the 
network is trained on and the one it is supposed to make its prediction on. Three GNSS stations 
– all within different distance to their respective nearest GNSS neighbour station – are 
completely excluded from the dataset the network learns from. The predicted results for these 
three stations are then analyzed and compared. As will be seen does this spatial decorrelation 
introduce a systematic error in the predictions. It will finally be analyzed if this systematic error 
can be prevented by only using a very small sample size of the initially excluded stations in the 
dataset the network is trained on.  

 

 

1.4. Motivation 
 

Machine learning algorithms have become widely popular in almost every field of science or 
engineering during the last two decades. This was on the one hand caused by the refinement or 
development of new algorithms and on the other hand by ever more powerful and cheaper 
computational devices. They allow for extracting complex relations in large amounts of data 
and once the underlying models are built usually do so very time efficient. So in general it can 
be said that machine learning techniques can be used to both increase accuracy as well as lower 
the computational time compared to more usual, empirical approaches. This comes however at 
the cost of the “black box problem”. For most techniques – especially the ones based on neural 
networks – it is very hard to retrace how the algorithm has come to its conclusion. This 
retraceability issue is currently a topic of many research projects. See for example [Fan et al., 
On Interpretability of Artificial Neural Networks, 2020] 

In the case of satellite geodesy a few similar approaches have already been tested and have 
shown the successful application of machine learning techniques: 

 [Kitprache et al., MACHINE LEARNING BASED PREDICTION OF 
ATMOSPHERIC ZENITH WET DELAY: A STUDY USING GNSS 
MEASUREMENTS IN WETTZELL AND CO-LOCATED VLBI OBSERVATIONS, 
2019] 
 
The authors use a Long Short Term Memory (LSTM) neural network approach in 
combination with the SSA+Copula method to predict the future zenith wet delay based 
on past time series of temperature, water vapour pressure as well the wet delay itself. 
They achieve a mean absolute error of around 1 cm for a prediction of the next 24 hours.   
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 [Shamshiri et al, A machine learning-based regression technique for prediction of 
tropospheric phase delay on large-scale Sentinel-1 InSAR time-series, 2019] 
 
This project uses a Gaussian Process (GP) regression model based on the zenith total 
delay to predict corrections for the tropospheric phase delay in InSAR time series. An 
improvement of the correction of 81 % as well as a reduction of 50 % of the root mean 
squared error compared to the usual approach was achieved. 

 

Especially for applications in mobile devices such approaches could prove very impactful as 
pre-trained models can make accurate predictions without the need for large computational 
power. Additionally will an increasing amount of data be available from widely distributed low 
cost receivers in the near future. Fast evaluation of this ever growing amount of data is arguably 
the main advantage of machine learning approaches. Although as the mentioned cases have 
shown is there definitely a possibility to increase the accuracy compared to more usual, 
empirical approaches. The near term applications for purely scientific purposes is although 
somewhat debatable as time efficiency in post processing is less of a concern and the lack of 
interpretability of the results can be problematic in certain cases. This discussion is however 
outside of the scope of this thesis and it is left for the reader to decide. 
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2. Dataset 
 

 

2.1. GNSS data 
 

The zenith total delays (ztd) used for this thesis originate from 72 GNSS stations. These stations 
belong to the AGNES and COGEAR networks and can be seen in Figure 3 marked in orange. 
These networks are operated by Swisstopo as well as the Mathematical and Physical Geodesy 
group (MPG) of ETH Zurich respectively. Figure 1 shows the time series of the delay for three 
individual stations. The first one is the very highest station of the network at almost 3’500 m 
elevation and is located in the canton of Valais. The second one resides in Ardez in the canton 
of Grisons at an elevation of 1499 m. Finally the last one is at ETH Zurich at an elevation of 
547 m.  

 

The same seasonal oscillations can be identified in all three time series. In the winter months 
the delay seems to be much shorter. This can be explained with the much smaller wet delay 
during these time periods. Additionally is the delay for the first time series generally much 
lower than for the other two, which is also reflected by the respective mean values. This 
obviously corresponds to the elevation of the particular station, as the less the signal has to 
propagate through the troposphere, the smaller its effect – and therefore the delay – on it is.  

Figure 1: Time series of zenith total delay for three individual stations 
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2.2. Origin of zenith total delay 
 

All of the positions of the stations are determined highly accurate as they are part of the 
mentioned geodetic networks. These accurate positions can be used to extract particular 
information about the incoming GNSS signals by estimating the desired quantities during the 
position adjustment of the station. Such information can also include the slant path delay of all 
incoming signals. They are mapped individually into the zenith direction and so combined into 
a single parameter. This parameter is then estimated as an unknown during the GNSS 
adjustment. This results in an accurate zenith total delay which can then be used as a target 
value for the applied machine learning approaches. This processing of the zenith delay is done 
with the Bernese software. 

[Troller, GPS based Determination of the Integrated and Spatially Distributed Water Vapor in 
the Troposphere, 2004] 

 

 

2.3. Meteorological data 
 

As mentioned before is there a need for three different parameters to reliably estimate the 
refractivity of the troposphere. One of those parameters covers the effects of the temperature, 
one covers the pressure and the last one the water vapour content. In this case the water vapour 
content is given as the pressure it causes.  

Figure 2: Time series for pressure, temperature and water vapour pressure for ABO 



  2. Dataset 

7 
 

The meteorological stations which provide data are marked blue in figure 3. All stations belong 
to the SwissMetNet network operated by MeteoSwiss. 

Figure 2 shows time series for the three mentioned parameters at the station in Adelboden 
located in the canton of Bern. This station is located at a height of 1324 m. Again can strong 
seasonal oscillations be identified in the respective time series.  

 

 

2.4. Timeframe 
 

Both meteorological data and the ztd time series are available in an hourly interval. The range 
of the timeframes consists in general of eleven years and lies between the beginning of 2008 
and the end of 2018. The delay was available for an even longer time period but was cut to 
match the mentioned timeframe. Its data alone was of no particular use. As can be seen in 
figures 1 and 2 does the available data differ in all time series. Especially for the delay there are 
large periods for some individual stations where no data was available. In the case for the 
meteorological data this is more a case of singular observations for some points in time missing 

 

 

2.5. Distribution of stations 
 

Figure 3 shows the locations of all 72 GNNS stations as well as the SwissMetNet 
meteorological stations. It can be seen that the available meteorological stations are distributed 
quite evenly all over Switzerland. Furthermore does it show that almost all GNSS stations have 
multiple meteorological stations in their somewhat close proximity. This can also be seen in 
table 1. That table shows the average of the distances of each GNSS station to its respective 
four nearest meteorological stations.  

As can be seen are all mean distances for the three nearest stations well below 20 km. Only the 
fourth nearest meteorological station is on average slightly further away. 

 

 

 

Since the goal is to primarily predict the delays on the locations of the GNSS stations, their 
distances relative to each other and their much more inhomogeneous distribution should not 
pose a problem for now. A table listing the distance from every GNSS station to each of its four 
nearest meteorological stations can be found in appendix A. 

 

   

 To first station To second station To third station To fourth station 
Mean distance [km] 8.2 13.2 17.7 21.5 

Table 1: Mean of distances from all GNSS stations to their 4 nearest meteorological stations 
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2.6. Accuracy of the data 
 

MeteoSwiss and Swisstopo as the providers of the data did remove all outliers according to 
their own information. They did however not provide any information on the exact accuracy of 
the data. Following are however some conservative assumptions for one sigma (standard 
deviation). 

 ZTD: ca. 1 cm 
 Pressure: 0.15 hPa 
 Temperature: 0.2 K 
 Water vapour pressure: approx. 0.5 hPa (relative humidity: 3%)  

 

These values originate from [Hurter, GNSS Meteorology in Spatially Dense Networks, 2014], 
where further details can be found. 

 

 

  

Figure 3: Distribution of GNSS and meteorological stations 
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2.7. Feature selection 
 

To make the time series data useable as input for the used machine learning algorithms they 
had to be processed. By doing so the time series were split up into individual samples. Samples 
consist of a certain amount of features describing different values at a particular point in time 
as well as a label – the zenith total delay.  

The samples used in this thesis contain on the one hand the absolute coordinates of the GNSS 
station in the LV95 coordinate system, where the delay should be predicted. And on the other 
hand information of the four closest meteorological stations. These four station are determined 
by simply calculating the 3-dimensional euclidean distance: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑔𝑛𝑠𝑠 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑒𝑜) + (𝑛𝑜𝑟𝑡ℎ 𝑔𝑛𝑠𝑠 − 𝑛𝑜𝑟𝑡ℎ 𝑚𝑒𝑡𝑒𝑜) + (𝑒𝑎𝑠𝑡 𝑔𝑛𝑠𝑠 − 𝑒𝑎𝑠𝑡 𝑚𝑒𝑡𝑒𝑜)  

 

The number of four nearest stations was chosen to make sure that the GNNS stations have 
corresponding meteorological data from multiple directions. Since the distribution of the 
meteorological stations is quite even, this should hold true for most of the GNSS stations . Some 
preliminary tests were performed to see if adding additional stations would have improved the 
performance of the predictions but no evident increase of accuracy was observed. The exact 
influence the number of meteorological stations have on the accuracy of the result was however 
not closely evaluated in the course of this thesis and might be a topic for future work. 

The data from those four meteorological stations contains their absolute coordinates as well as 
the three mentioned tropospheric parameters: Pressure, temperature and water vapour pressure. 
In total each sample then consists of 27 features and the corresponding label. 

 

 

 

 

Other features – derived from the original ones – such as relative distances and weights based 
on those distances have also been tested without any improvement of the results. It might be 
argued however that depending on the task to solve, relative distances could be preferred to 
absolute coordinates.   

 

 

2.8. Handling missing data 
 

As already mentioned are no of the given time series exactly equivalent. So to extract the 
described features of a sample only points in time were suitable where data was available in all 
of the involved 13 time series.  This was done in two separate steps:  

 

Zenith 
path 
delay 

Figure 4: Representation of an individual feature 
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 Filtering of the meteorological data: 
o Iterating through every individual meteorological station and search for the 

points in time that exist for all three different time series for that particular 
station 

o Excluding all other data 
 Filter of the GNSS data: 

o Iterating through every individual GNSS station and obtain the previously 
determined corresponding 4 closest meteorological stations. 

o Computing the intersection of points in time for the GNSS data and the 
meteorological data of the nearest station 

o Exclude all other data 
o Iteratively compute the intersection of the already existing intersected points in 

time and the time series of the next meteorological station and exclude all other 
data points 

This reduced the theoretical amount of samples for an hourly time series of 11 years from  
6’937’920 to 4’215’193. 

 

 

2.9. Creating training, validation and test datasets 
 

Once the samples are generated they are furthermore split up into three different datasets: 

 Training dataset: The training dataset is the part of the data the algorithms are actually 
trained on. The model of the algorithm is iteratively feed with samples of this dataset as 
well as the corresponding labels to extract relations between the input data as well as 
their label. In this case this corresponds to the described features as well as the resulting 
zenith total delay. Once the training period is finished, this dataset is not used any 
further. 

 Validation dataset: The validation dataset is used during the training of the neural 
network to monitor the progress of the training by constantly making predictions on this 
dataset. By doing so it can be checked that the network does not start to overfit on the 
training data and is able to generalize. Additionally can an instance of the model be 
saved when the achieved loss on the validation dataset has improved. This dataset is not 
used when applying the random forest. 

 Test dataset: This dataset is used to evaluate the ability of the trained model to correctly 
assign values to data it has never seen before. The test dataset is fed to the trained model 
and the resulting predictions are then compared with the actual labels of the 
corresponding samples. 

To achieve a certain decorrelation of the datasets, they are split in time. The training dataset 
consist of the years 2008-2016 , the validation dataset of the year 2017 and the test dataset of 
the year 2018. This results in a sample total of 3’069’950, 566’690 and 578’553 respectively. 
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2.10. Standardization of the data 
 

For a neural network application the processed data has furthermore also to be standardized. 
This is performed by subtracting the mean from the data and then dividing it by its standard 
deviation. This is done for each feature separately: 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 − 𝑚𝑒𝑎𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝜎(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
 

 

By doing so the values of each feature get first centered around zero and then scaled to a 
standard deviation of one. This is mainly done for numerical reason. As will be described in the 
next chapter is the training of a neural network based on the gradient descent of a loss function. 
Highly different values in the range of different features – as for example would be the case for 
a temperature value compared to the north value of absolute coordinates – could lead to a very 
steep gradient. This could then prevent the network from finding an optimal solution during the 
training.    

It is important to note that this is applied for training, validation and test dataset but that mean 
and standard deviation of the features always originate from the training dataset. 

Figure xy shows the concept of data standardization. 

 

 

  

Figure 5: Concept of data standardization 
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2.11. Computation of the Saastamoinen model 
 

To create a comparison for the results of the approaches investigated in thesis, a Saastmoinen 
model for the corresponding stations and timeframe was computed. It should however be noted 
that the computation of this model was not a part of this thesis and that the resulting values were 
provided. 

The computation consists of three steps: 

 Firstly a collocation of the meteorological data within a radius of about 50 km in east 
and north direction is performed. The collocation consists of a functional part, 
depending on the particular meteorological parameter, a stochastic term and an noise 
term: 
 

𝑙 = 𝑓(𝑢, 𝑥, 𝑡) + 𝑠(𝐶 , 𝑥, 𝑡) + 𝜀 

 

For instance would the functional part for the pressure look like this: 
 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = (𝑝 + 𝑎(𝑥 − 𝑥 ) + 𝑏(𝑦 − 𝑦 ) + 𝑐(𝑧 − 𝑧 )) ∗ 𝑒  
 
Where a,b,c correspond to the coefficients of horizontal and temporal gradients. H to 
the scale height and p0 to the pressure at the reference point. The stochastic term is based 
on a covariance function, which describes the weighting of the individual sampling 
points to each other.  
   

 The collocated meteorological data is then interpolated at the location of the GNSS 
stations. 

 Finally the computation of the delay is performed with the empirical Saastamoinen 
formula. 
 

𝑍𝑇𝐷 = 0.002277𝑓(∅, ℎ)[𝑃 + (
1255

𝑇
+ 0.05)𝑃 ] 

 
Where f is a small correction term based on geographical latitude as well as the height. 
 

𝑓(∅, ℎ) = 1 + 0.0026 cos(2∅) + 0.00028 ℎ 

 

This model has the advantage that it uses the exact same data as provided to the machine 
learning algorithms. Thus a fair comparison in terms of accuracy can be made. Finally should 
it be mentioned that this computation took several hours. Although could this still be optimized, 
does it also indicate a potential advantage of the proposed machine learning approaches. As 
especially already trained models are able to make predictions even for very large datasets in a 
comparatively much shorter amount of time.  

For more detailed information please refer to [GPS based Determination of the Integrated and 
Spatially Distributed Water Vapor in the Troposphere, Troller, 2004].  
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3. Theory 
 

This chapter will describe some of the theoretical aspects of the algorithms used for this thesis. 
In a second step each implementation with regards to the specific parameters is detailed. Both 
applied algorithms belong to the category of supervised learning. Supervised learning 
algorithms use samples of data combined with the corresponding label and try to adapt their 
model in such a way that it can describe the relation between the data and its label with as less 
error as possible. 

 

 

3.1. Random forest 
 

Random forest is a capable machine learning algorithm based on principal of combining 
multiple instances of another approach, the decision tree.  

This theory part is mostly based on the original paper [Ho, Random Decision Forest, 1995] as 
well as on the corresponding chapters from [The Elements of Statistical Learning, 2nd edition, 
2017] which is freely available online. 

 

3.1.1. Concept of a decision tree 
Decision trees are a relatively simply machine learning algorithm that can be used for both 
regression and classification and allow for highly nonlinear solutions. Built for a regression 
problem it is simply called regression tree. Figure 6 shows a very simple example of how a 
regression tree might look representing the given dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Simple example of a regression tree 
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Once the tree is built from the training dataset, the delay for another sample can be predicted 
by simply going through the tree and comparing the value at each node with the value of the 
feature in the sample. As visible in figure 6 have decision trees the advantage of being much 
more easy to interpret compared to other machine learning algorithms – especially neural 
networks. 

A regression tree can be built in the following way: 

 Find the feature and its specific value for the root node that separates samples the best 
way. In figure 6 this would correspond to the elevation of the GNNS station and the 
specific value of 2000m. 
To do so the best possible value for every feature is firstly computed: 

o The values of this particular feature of all samples are ordered numerically and 
the average of each two neighbouring values is built. This list of averages then 
contains the candidates for the numerical values for the split. For each candidate 
all samples are then split accordingly into two groups and the mean of the labels 
for each group is computed. These two means are then compared to the actual 
labels of the two groups by calculating an indicator for the size of the resulting 
error. Such indicators could include the mean squared error (mse) or mean 
absolute error (mae). The candidate value that causes the smallest error value is 
then chosen. 

 The resulting lowest error indicator for every feature are then compared to each other 
and the best feature with the corresponding value are then used for the root node. 

 At every new node it is now checked if this particular branch of the tree is finished or if 
it should be split up even further. There are different criteria to achieve this. A very 
common one is to just set a minimum number of samples that a node should contain – 
e.g. 20. If a split would cause nodes with a smaller sample size, it is not performed and 
this branch of the tree is completed. If it indeed should be split up even further it can be 
done the same way as described above – find the feature that splits up the samples in 
the node the best way and determine the specific value of the split with regard to a 
specific resulting error indicator (e.g. mean squared error). 

 Once no node can be split up further, the tree is finished. The prediction of the tree now 
again corresponds to the average of the labels of the samples that ended up in a particular 
node. 
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3.1.2 From decision tree to random forest 
The biggest problem with singular decision trees is that they tend to overfit rather highly: they 
adapt very strongly to the given dataset and fail to generalize on a weakly correlated dataset. 
Additionally is the capability of the underlying model not that sophisticated. They can fail to 
extract more complex relations in the dataset and tend to be rather noisy. To solve this problem 
[Ho, Random Decision Forest, 1995] introduced a concept called bagging. Bagging uses a 
multitude of individual decision trees and combines them to a random forest. This concept 
applies to both classification and regression trees in the same way. The general process consists 
of the following steps: 

 

 Bootstrapping 
As mentioned in the previous subchapter is an individual regression tree created with 
regards to usually all of the training data. For the trees in a random forest however this 
is done slightly different. For every tree a bootstrapped dataset is generated. To do so a 
certain amount of samples are randomly picked from the complete training dataset. It is 
important to note that samples may be chosen repeatedly. This results in a different 
dataset for every trained tree.  
 Building decision trees 
The trees are built almost the same as already described with only a small difference: 
As opposed to taking all features into consideration when splitting the tree, a randomly 
chosen subset of the features is generated and considered for the split. Note that at every 
step of the tree this subset is regenerated so that each split is based on a slightly different 
selection of features. This further increases the difference between the trees. 
 Aggregating  

To make a prediction with the forest, every decision tree makes an individual prediction. 
By calculating the mean (mode respectively for a classification problem) the complete 
model comes to its conclusion. This process is also called aggregating. 

 

As can be seen is the name bagging also a composite of bootstrapping and aggregating. By 
applying these two steps, the resulting model does overfit much less on the training data and is 
able to capture more complex relations. This is mainly caused by the fact that in theory 
averaging the large individual errors of mostly uncorrelated trees should deliver a zero mean. 

For more details on the creation of decision trees, their combination to random forest as well as 
the underlying statistical assumptions please refer to the stated textbook. 
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3.1.3. Implementation 
The random forest used in the course of this thesis consists of 300 individual trees. Adding 
additional trees did not seem to have any improvement on the accuracy of the result, while 
simultaneously increasing the computational time noticeably. Using significantly less trees did 
let the quality of the predictions decrease however. To determine the suitability of a feature or 
threshold to split up the samples, the mean squared error was used.  

As opposed to the neural network approach, are not all training samples used to train the random 
forest. 500’000 samples are chosen randomly from the training dataset. Although is more data 
generally favourable for every machine learning algorithm, is the random forest algorithm not 
that dependent on a very large number of samples (especially compared to neural networks). 
Increasing the number of training samples did not seem to improve the accuracy of the 
prediction at some point, but did significantly increase the computation time of the training. 

The model used during this thesis was implemented with the Python library Scikit-klearn 
[https://scikit-learn.org/, 2020]. 
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3.2. Neural network 
 

In the past decade artificial neural networks (ANN) have become increasingly popular in the 
field of machine learning. Especially for problems where a large dataset is available they are 
applied widely in some form or another. This breakthrough was largely made possible due to 
much more widely spread powerful hardware such as graphics processing units (GPU) as they 
allow for highly parallelised computing.  

The theoretical part of this subchapter is again based on [The Elements of Statistical Learning, 
2nd edition,2017]  as well as on the Stanford course [CS231n: Convolutional Neural Networks 
for Visual Recognition, 2019]. Most of the shown figures also originate from this course if not 
mentioned otherwise. 

 

3.2.1. Concept of a neural network 

The idea of an ANN is loosely based on the structure of biological neural networks such as 
found in the human brain. Individual neurons receive an input signal and transform it into a 
different output signal. Such a neuron can be seen in figure 7. By combining a multitude of 
different individual neurons, a network is generated that can transform a certain input into a 
vastly different output. ANN also apply this concept in a simplified manner. 

 

The most simple and general applicable conversion of the mentioned principle is called a fully-
connected neural network. Such an architecture is also used as one of the two algorithms in this 
thesis. These networks consist of an input layer, a certain amount of hidden layers and an output 
layer, where each hidden layer contains a certain amount of neurons. The size of the output and 
input layer corresponds to the amount of features of a sample of the data as well as the 
dimension of the output the network is supposed to predict. As can be seen in chapter 2.7. does 
the number of features amount to 27.  

 

Figure 7: An individual biological neuron 
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Each neuron of a layer is then connected with all of the neurons of the previous layer, hence the 
name fully connected. Figure 8 shows this principle for two hidden layers. Often are many of 
such layers combined and so create a deep network. This is where the frequently used term 
“deep learning” originates. 

 

 

 

 

 

 

 

 

 

 

 

The value of an individual neuron can be calculated in the following way: 

 

𝑛𝑒𝑢𝑟𝑜𝑛 =  𝑓( 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑤𝑒𝑖𝑔𝑡ℎ + 𝑏𝑖𝑎𝑠) 

 

Where n corresponds to the amount of neurons in the previous layer. As can be seen does each 
connection of the network get a certain weight. An additional bias for this particular neuron is 
then added. These weights and biases make up all the parameters of a fully connected neural 
network.  

Since neural networks are used for complicated classification or regression tasks, a set of linear 
equations would often prove not to be powerful enough to capture complex relations between 
dataset and label. This is why the activation function f is introduced. That function establishes 
the nonlinearity of the network and allows for much more accurate predictions. 

 

The most common used activation function is called rectified linear unit (ReLU): 

 

𝑓(𝑥) = max (0, 𝑥)  

 

 

 

Figure 8: A fully connected neural network 
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It basically just suppresses neurons with negative values. Figure 9 shows ReLU. 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Training of the network 
Once the architecture or model of the network is set up, the training phase can start. The goal 
of the training phase is to iteratively feed in samples of the training data and adapt all parameters 
of the network in such a way that it can make accurate predictions on data samples it has not 
seen before. To do so the prediction of the network – i.e. the neuron in the output layer – is 
expressed as a function of the values in the previous layer. These values are then again 
expressed as a function of the neurons of the previous layer. If this is continued until the input 
layer, the result is a function describing the desired prediction of the network as a function of 
all the features of a sample.  

 

𝑝𝑟𝑒𝑑 = 𝐹(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , … … 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ) 

 

By comparing this prediction with the label of that particular sample, a loss function of the 
network can be created. In the case of regression problems, the used loss often corresponds to 
the mean squared error. 

 

𝑚𝑠𝑒 =  
1

𝑛
 (𝑝𝑟𝑒𝑑 − 𝑙𝑎𝑏𝑒𝑙 )  

 

The unknown parameters of the loss function are exactly described by the weights and biases 
of the network mentioned in subchapter 3.2.1. Thus is the loss a function in n-dimensional space 
where n corresponds to the amount of parameters of the network. By now searching for local 
minima of this function, a set of parameters can be determined that describe the relation between 
samples and prediction with a minimal loss.  

Figure 9: ReLU activation function 
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This search of a local minimum is performed with an approach called stochastic gradient 
descent. Stochastic gradient descent uses a small subset of all available samples – also known 
as batch size – to determine the direction of largest gradient values of the loss function. Once 
all the samples of the dataset are used, an epoch of the training is finished. Usually a training 
period consists of a multitude of epochs. Figure 10 shows an example of a gradient descent 
around a local minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the step into that direction is called the learning rate and is of vital importance. If it 
is chosen too large local minima might be missed repeatedly and the network would not find an 
optimal solution during the training. If it is too small the descent might get stuck or might just 
not reach an a minimum during the whole training time. This whole problem is illustrated in 
Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Visualisation of a gradient descent 

Figure 11: Different learning rates 
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Learning rate, batch size and number of epochs belong to the what are known as hyperparameter 
of the network. The optimization of the hyperparameter is often done – as also in the course of 
this thesis – by manual search.  

For further theoretical details and the mathematical background please refer to the sources 
stated at the beginning of this subchapter. 
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3.2.3. Implementation  
The architecture of the chosen network consists of four hidden layers and can in detail be seen 
in table 2. 

 

Layer Number of neurons Parameters 
Input layer 27 - 
1. Hidden layer 512 14’336 
2. Hidden layer 128 65’664 
3. Hidden layer 128 16’512 
4. Hidden layer 128 16’512 
5. Hidden layer 128 16’512 
Output layer 1 129 
Total - 129’665 

Table 2: Architecture of used network 

Table 3 summarizes the selection of the three hyperparameters mentioned in the previous 
subchapter. 

 

Hyperparameter Value 
Learning rate 0.0001 
Batch size 1000 
Epochs 250 

Table 3: Hyperparameters 

Many different combination of learning rate and batch size have been tried manually but this 
one seemed to do the best – although only by a very slight margin – for the given particular 
problem. The amount of epochs could in principal have been chosen significantly lower. Both 
training and validation loss decreased very rapidly during the first two epochs and then only 
improved very slightly about once every tenth epoch. This can also be seen in Fig b when for 
example looking at the mean absolute error. 

 

 

 

 

 

 

 

 

 

 

 

The described network was implemented with the Python library Keras [https://keras.io/, 2020].  

Figure 12: Mean absolute error during training 
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4. Results 
 

 

4.1. Comparison between neural network and random forest results 
 

Once the random forest as well as neural network models are trained with the dataset described 
in chapter 2.7. they can predict the zenith path delay for the year 2018 based on the 
corresponding tropospheric parameters. The residuals for their predictions for all stations 
combined can be seen in figures 13 and 14 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Residuals for the random forest prediction 

Figure 14: Residuals for the neural network prediction 
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As can be seen is the achieved root mean squared error as well as the mean absolute error at a 
pretty even level. Although are the predictions from the neural network slightly more accurate, 
is the difference smaller than one millimeter in both error statistics. Fortunately though is the 
achieved rmse in both cases well below the minimum goal of 2 cm. Additionally is it also 
interesting to note that neither algorithm tends to systematically over- or underestimate the 
delay. Both residual distributions are centered at almost exactly zero with a mean value of less 
than a tenth of a millimeter. Because of this distribution the standard deviation of the residuals 
corresponds highly to the determined root mean squared error.  

Since both approaches seem to achieve very similar results and random forest was mainly used 
to establish a baseline only the neural network predictions are analyzed in detail.  

 

 

4.2. Correlation between station height and error 
 

Because of the individual circumstances of each GNSS station it is to be expected that the 
achieved accuracy would vary quite a lot depending on the station. The difference in station 
height as well as the distribution of available meteorological stations are after all quite vast. 
This can be seen in figure 15 where the root mean squared error, mean relative error (mre) and 
station height are displayed for each individual station. 

Figure 15: Root mean squared error, mean relative error and height for every station 
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This figure shows quite a range of individual errors, where the highest (Station: FRIC, rmse: 
1.98 cm) is more than double the size of the lowest (Station: HOGR, rmse: 0.95 cm). It is 
important to note however that no station has an rmse higher than the minimum goal of 2 cm. 
Also is the average residual for no station higher than 0.69 % (Station: FRIC) of the respective 
delays. 

These results also seem to indicate that the predictions for stations above a certain elevation 
generally result in a much lower error. This assumption seems to be confirmed when looking 
at the relation between station height and rmse. 

 

The correlation is quite high at negative 0.75. As already assumed is the error especially for 
very high stations considerably lower. This was somewhat to be expected as the higher the 
stations are, the smaller the influence of the wet part of the troposphere is. And since the wet 
delay is much more difficult to predict, the smaller it is, the generally lower the error of the 
prediction is. Below a station height of 1000 m however the elevation does not seem to have as 
much of an impact anymore. 

As figure 17 shows is the mre – with a correlation of negative 0.54 - less influenced by the 
station height. 

 

 

 

Figure 16: Relation between rmse and station height 
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Especially for the highest stations of the network can a clearly lower correlation be identified 
(marked in red). Compared to the scatter plot of the rmse these stations are shifted considerably 
to the right. This is again not that surprising. The elevation of the station correlates highly to 
the values of the delay as also mentioned in chapter 2.1. It now seems that the influence the 
elevation has on decreasing the overall delay is larger than one it has on decreasing the error of 
the prediction. Therefore the mre increases compared to the rmse in relation to other stations.  

The distribution of the stations below the 1000 m elevation line does however look very similar 
when compared to figure 16. This seems to suggest that below a certain threshold the weight of 
the elevation becomes much less significant compared to other influences. Such influences 
could include the distances to the nearest meteorological stations or the particular distribution 
of these stations around the respective GNSS station.  

 

 

4.3. Feature importances 
 

As already mentioned in chapter 3.1.1. do decision trees, and therefore also random forests to 
some extent, have the advantage of being more interpretable than other approaches. One way 
to do so is to look at the importance of each feature during the creation of the forest. These 
values are in the range of 0 to 1 and add up to 1. They indicate the importance of each feature 
for splitting up the individual trees. The following table shows the 10 most important features 
as well as their weight.  

 

Figure 17: Relation between mre and station height 
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Elev. 
GNSS 

Elev. 
Meteo 1 

Press. 
Meteo 1 

East 
Meteo 1 

Elev. 
Meteo 3 

Elev. 
Meteo 4 

Press. 
Meteo 3 

East 
Meteo 2 

East 
GNSS 

North 
Meteo 3 

0.30 0.10 0.08 0.06 0.05 0.04 0.04 0.03 0.03 0.03 
Table 4: Feature Importances 

 

As can be seen are the elevations – especially the ones of the GNNS stations – of great 
importance to divide the samples of the dataset. This corresponds nicely to the findings of the 
last subchapter and should in general confirm the significance of the station height for both 
models. Additionally are in general a lot of coordinate features in this list. This could suggest 
that the random forest model builds different tree branches for the individual stations.  

 

 

4.4. Comparison with Saastamoinen 
 

To further assess the achieved accuracy of the machine learning predictions, it is now compared 
to the already described Saastamoinen model. These computations incorporate the exact same 
timeframe and can therefore serve as a direct comparison to a more common approach. Table 
5 shows several properties of the residuals of all three methods. 

 

 Random forest Neural network Saastamoinen 
root mean squared error [cm] 1.67 1.61 2.09 
mean absolute error [cm] 1.26 1.21 1.59 
mean relative error [%] 0.58 0.55 0.74 
amount of residuals over 2 cm [%] 20.01 18.57 30.06 
mean of residuals [cm] 0.00 0.00 0.34 

Table 5: Comparison between random forest, neural network and Saastamoinen 

 

As can be seen result both random forest and neural network predictions in a generally lower 
error than the Saastamoinen approach. For rmse and mae the resulting error is roughly 4 mm 
lower, which corresponds to a reduction of the error of about 19 %. The improvement of the 
mre is with a relative reduction of about 27 % - ca. 0.2 % absolute – even higher. Additionally 
is the amount of residuals that lie above the threshold of 2 cm considerably lower for the 
machine learning approaches. This is especially the case for the neural network predictions, 
where the amount of residuals above that threshold – in relative terms – is almost 40 % lower 
compared to Saastamoinen.  

Interestingly enough seems there also to be a bias in the estimation of the delay produced by 
the Saastamoinen approach. As already mentioned is the mean of the residuals for random forest 
and neural network almost equal to zero. The Saastamoinen mean however amounts to over 3 
mm. This indicates that this approach usually tends to overpredict the delay while the machine 
learning algorithms have no bias for the complete set of stations. Since the computation of the 
Saastamoinen delay however was not a part of this thesis and serves only as a comparison, this 
bias is not further investigated here. 
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To analyze the result with respect to separate times of the year does figure 18 show a monthly 
comparison of the rmse for all three approaches. Generally can it be said that – regardless of 
the approach – the error is much lower during the winter and spring months while the highest 
errors occur during August, September and October. This is likely again caused by the increased 
wet delay during that time period. As already mentioned is the wet delay much harder to exactly 
determine compared to the dry part. Thus would increased wet delay also increase the size of 
the error. It seems however though that both machine learning predictions deal better with this 
problem than Saastamoinen as the difference in rmse between them is also larger during the 
summer and autumn months as opposed to the winter period. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The statistical values for all individual stations can be found in appendix B,C and D. 

 

  

Figure 18: Monthly comparison of rmse 



  4. Results 

29 
 

4.5. Comparison of individual stations 
 

To further analyze the properties of the predictions of the neural network a few stations are 
investigated more closely here and also compared to the Saastamoinen result. 

 

 

4.5.1 WEHO station 
This station is the second highest station of the network at 2’916 m elevation. It is located in 
the canton of Bern right next to border to Valais. Figure 19 shows the monthly comparison of 
rmse for this station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen does the monthly distribution of the rmse show very similar properties when 
compared to the error for all stations. Again is the error generally much lower during the winter. 
Especially noticeable is the vast difference during the summer months where in some cases the 
rmse of the neural network predictions is less than half than its Saastamoinen counterpart. This 
is also visible when looking at the time series of the predictions and their corresponding 
residuals. 

Figure 19: Monthly rmse for WEHO 
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As already mentioned does the Saastamoinen model tend to overpredict the delay. This is 
especially visible here during the summer months as can be seen in the residuals. The neural 
network on the other hand seems to fail to capture the extreme spikes of the delay and tends to 
smooth its predictions.  

 

 

4.5.2. BLFT station 
To analyze how the neural network deals with unidirectional distributed meteorological 
stations, this station is shown here. Its location in France near the swiss border as well as the 
distribution of available meteorological stations can be seen in Figure 22. 

 

 

Figure 20: Time series of predictions for WEHO 

Figure 21: Residuals of predictions for WEHO 
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Since this station lies at an elevation of 368 m, should its station height not have any significant 
influence on the quality of the resulting predictions. Figure 23 shows again the monthly rmse. 

 

 

Both approaches seem to cope well with the poor distribution of meteorological stations. It is 
noticeable that during the summer months the neural network predictions are not as vastly more 
accurate compared to Saastamoinen as before. The error range of the Saastamoinen predictions 
resides at pretty much the same level as before with the highest rmse slightly below 3 cm, while 
the neural network predictions are considerably worse compared to the previous highlighted 
station. It is however possible that this increment of the rmse is caused by the lower elevation 
of the station and not by the poorly distributed meteorological stations.  

Figure 22: Location of the BLFT station 

Figure 23: Monthly rmse for BLFT 
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4.5.3. ERDE station 
Finally the ERDE station is highlighted. With an elevation of 730 m, is this station neither at 
an extreme height nor does it rely on poorly distributed meteorological station as can be seen 
in Figure 24. 

 

 

 

 

 

 

 

 

 

 

 

 

When looking at the monthly rmse, a similar pattern as before emerge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Especially at the beginning of the year is the rmse of the neural network predictions extremely 
low. But even during the summer period does it never exceed the level of 2 cm. The 
improvement compared to Saastamoinen – with the exception of May – is again quite large. 
This large improvement is although distributed quite well over the year – unlike in other cases 
–  and not concentrated around the summer period.  

Figure 24: Location of the ERDE station 

Figure 25: Monthly rmse for ERDE 
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When looking at the time series and residuals, the trend of the Saastamoinen model to 
overpredict can again be identified.  

 

So it seems that the improvement of the neural network predictions over the Saastamoinen 
model predictions increases with higher elevation of the station as well as a good distribution 
of corresponding meteorological stations. These results are however more of an indicatory 
nature and further tests would need to be performed to more accurately assess the correlation 
between the distribution of meteorological stations and the resulting accuracy of the predictions. 
Especially the height difference between GNSS station and the surrounding meteorological 
stations should be analyzed further.  

  

Figure 27: Residuals of predictions for ERDE 

Figure 26: Time series of predictions for ERDE 



  4. Results 

34 
 

4.6. Spatial decorrelation of training and test data 
 

So far the networks ability to predict the zenith path delay has only been tested on locations it 
has already seen during the training phase. This corresponds to only a temporal decorrelation 
between the training and test dataset. To analyze the ability of the network to predict the delay 
for unknown locations, three stations have been excluded from the training dataset. These three 
stations include: 

 

 ARD2 station 
o Height: 1499 m 
o Nearest GNSS station: 0.0 km 

 BZBG station 
o Height: 547 m 
o Nearest GNSS station: 4.8 km 

 HGGL station 
o Height: 522 m 
o Nearest GNSS station: 14.5 km 

 

Each of those stations lies at a different distance to its respective nearest GNSS station 
neighbour. The first station – as a twin station – has its nearest neighbour right next to each and 
the other two at a range of 4.8 km and 14.5 km respectively. It is expected that the shorter this 
distance is, the less problems the network should have to accurately predict the delay at that 
location as it has seen very similar locations during the training phase. Additionally are no 
stations at extreme heights excluded. 

 

4.6.1. Excluded station: ARD2 

When looking at the time series as well as the residuals of the predictions for the first station it 
can be seen that it is not really distinguishable from the case where this station was included 
during the training. This is also reflected in the total rmse which changed from 1.05 cm to 1.10 
cm. A difference so small that is much more likely to be caused by slight variations of the 
solutions that the two different networks found than by the fact that this station was not included 
during the training of the second network. These results are not that surprising as was the 
network trained on a station in the immediate vicinity.  

Figures 28 and 29 show the respective time series of predictions and residuals. 
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4.6.2. Excluded station: BZBG  
The time series for the second not included station show a different picture however. While 
the shape of the curve of the predictions seems to reflect the curve of the actual delay quite 
accurately, the network also introduces a clear bias in its prediction. The prediction seems to 
be shifted along the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Time series of predictions for excluded station ARD2 

Figure 29: Residuals for excluded station ARD2 

Figure 30: Time series of predictions for excluded station BZBG 
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This shift can also be identified in the residuals as they are now centered around about 5 cm 
with a mean of 4.87 cm. Otherwise they show very similar properties as before. 

 

 

4.6.3. Excluded station: HGGL 
For the third station this shift in the predictions gets even more extreme as the distance from 
the location of the station to its nearest neighbour station increases.  

Figure 31: Residuals for excluded station BZBG 

Figure 32: Time series of predictions for excluded station HGGL 

Figure 33: Residuals for excluded station HGGL 
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Once again seems the predicted curve of the delay to fit quite nicely to the actual delay. As can 
be seen in the residuals, is the curve now shifted by around 15 cm. The mean of the residuals 
amounts to -14.76 cm. Unlike for the last station, the prediction is now shifted in the negative 
direction of the y-axis. Strangely enough is the factor between distance to the nearest neighbour 
and absolute value of the resulting shift almost identical for both stations. For the BZBG station 
with a distance of 4.8 km to its nearest neighbour the mean value of the residuals consist of 4.87 
cm. While in the case of the HGGL station with a distance of 14.8 km the absolute mean values 
amounts to 14.76 cm. If this is however actually correlated or just a coincidence is difficult to 
assess without performing further tests. 

It generally can be said that the network can predict the shape of the delay curve somewhat 
accurately even for locations it has not seen during the training. Tough it does also introduce 
this mentioned bias, which might depend on the distance of the specific location to the nearest 
station that was included in the training dataset.   

One simple solution for this problem would be to use much more spatially densely distributed 
training data. This could cause the bias to vastly decrease for any possible location as the 
network would have seen a large amount of reference points during the training. It is however 
not easy to obtain large datasets of all the needed features at that many points in space. It might 
be more feasible to obtain the corresponding widely distributed data for a much smaller 
timeframe. Especially could this be the case in the near term future with ever more increasing 
amounts of available data.  

So it would be interesting to know if the network can accurately predict the delay for stations it 
has only seen a couple of times during the training. To analyze this, the same latter two stations 
as in the last subchapters are now not excluded completely, but just highly underrepresented in 
the training dataset. To do so two tests have been performed. For the first one does the training 
dataset include 100 completely randomly chosen samples for each of the two stations. For the 
second one is this sample size increased to 1’000. In the original training dataset these stations 
are represented with 44’652 (HGGL) and 54’210 (BZBG) respectively. 
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4.6.4. Underrepresented station BZBG 
Figures 34 and 35 show the times series for this station with 100 samples included in the training 
data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen did including the 100 samples into the training dataset not help at all. The shift 
of the curve did even increase as the residuals are now centered around approximately 6 cm 
with a mean of 5.91 cm. Including 1’000 samples however improves the result dramatically.  

 

 

 

 

 

 

 

 

 

Figure 34: Time series of predictions for underrepresented station BZBG (100 samples) 

Figure 35: Residuals for underrepresented station BZBG (100 samples) 

Figure 36: Time series of predictions for underrepresented station BZBG (1’000 samples) 
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The curve is now only shifted very slightly with a residual mean of 0.8 cm. A certain bias 
however is still existing and the rmse of the prediction is still higher – although not by a large 
margin – compared to when all of the existing samples for this station where included in the 
training dataset (2.16 cm vs. 1.92 cm). 

 

4.6.5. Underrepresented station: HGGL 
In the case of the second station adding the 100 samples already improved the result 
dramatically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Residuals for underrepresented station BZBG (1'000 samples) 

Figure 38: Time series of predictions for underrepresented station HGGL (100 samples) 

Figure 39: Residuals for underrepresented station HGGL (100 samples) 
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The resulting bias of the prediction is very small. In fact amounts the mean of the residuals only 
up to -0.79 cm. Additionally is the rmse only slightly higher than it was before (1.91 cm). 

By adding another 900 samples into the training dataset, the bias disappears almost completely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rmse is – with a difference of 0.06 cm – now at almost the same level where it was when 
this station was fully included during the training. This is also reflected in the almost inexistent 
bias. The mean of the residuals for this case is only 0.21 cm. Interestingly enough is this even 
lower than for the original prediction for this station where the mean of the residuals adds up to 
0.28 cm. This also shows that the original network can absolutely be biased with respect to 
individual stations. Only the mean of the residuals of the entire network is approximately zero. 

  

Figure 40: Time series of predictions for underrepresented station HGGL (1'000 samples) 

Figure 41: Residuals for underrepresented station HGGL (1'000 samples) 
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 So it seems that at least for the HGGL station, that the bias can be almost prevented by only 
adding 100 samples into the training dataset. With 1’000 samples the accuracy of the prediction 
is almost exactly as good as for the original dataset. Which after all consisted of over 44’000 
samples for this particular station. In the case of the BZBG station however the results do look 
less promising. While adding the 100 samples basically did not improve anything, did adding 
1’000 samples of this station get at least close to the original accuracy. These differences in the 
results maybe could relate to a poor distribution of the samples with respect to for example the 
time of year. It is however strange that the results for the BZBG station are clearly worse for 
both cases. The 100 and 1’000 samples were chosen completely randomly and independent 
from each other after all. This would suggest that problem lies somewhere else and would need 
to be investigated further.  

Finally it should be noted that a reliable prediction would not be possible if every station would 
only be represented in the training dataset with 1’000 samples. These tests should merely 
indicate how many samples the network needs to not include the mentioned bias in its 
prediction. Assuming of course that all the other stations of the network are included with all 
the available samples.  
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5. Conclusion 
 

Both random forest and neural network can predict the zenith path delay for stations they have 
seen during the training with an overall network root mean squared error of slightly above 1.6 
cm. For individual stations however the size of this error varies quite a lot. The mean error for 
some stations is at about double the size compared to lowest ones. For no station in the network 
however amounts the root mean squared error of the predictions up to more than 2 cm. The 
complete underlying causes of these differences in accuracy could not be completely 
determined. Although seems there to be a clear correlation with the height of the particular 
stations. Highly elevated stations tend to perform much better with error values in the range of 
1 cm. This is likely caused by the smaller size of the wet path delay in extreme altitudes. 
Additionally do the results indicate that the accuracy of the predictions benefit from an even 
distribution of the corresponding meteorological stations as well as the distance to those 
stations. Furthermore could a clear dependence of the error of the predictions on the time of 
year be identified. Once again could this likely be linked to the amount of water vapour in the 
troposphere as this factor is influenced by strong seasonal variations. 

When compared to the predictions of the more commonly used Saastamoinen model, a 
relatively high improvement in accuracy can be determined. The overall root mean squared 
error is reduced from slightly above 2 cm to the mentioned 1.6 cm. This corresponds to a relative 
reduction in error of about 20 %. By looking at the monthly resulting error values it can be seen 
that this reduction turns out generally higher during the summer and autumn months. As 
mentioned before, is the amount of water vapour and therefore the resulting wet path delay 
considerably higher during these season. This might suggest that a large part of the reduction 
in error the machine learning approaches show is based on their capability of dealing more 
successful with the wet path delay. Furthermore do both random forest and neural network tend 
to smooth out their predictions. This is somewhat expected as in case of the random forest the 
predictions results from averaging the predictions of many individual trees. The neural network 
on the other hand minimizes the root mean squared error of the predictions which also tends to 
penalize large residuals. Saastamoinen however shows an evident bias of about 0.3 cm and thus 
tends to overpredict the delay. 

The current neural network approach was however not fully capable to make reliable 
predictions at locations it has not seen during its training. While the overall curve of the 
prediction seems to fit quit accurately to the corresponding actual delay, the network also 
introduced a clear bias in its prediction. This bias amounts up to several centimeters, seemingly 
depending on the distance between the location of the prediction and the nearest reference point 
in the training data. By not completely excluding the corresponding locations, but just severely 
underrepresenting them during the training phase, the bias decreased considerably. This would 
suggest that the network learns to predict the actual curve of the delay reliably from the 
tropospheric information in the training data. The shift of this curve however is only learned by 
heart depending on the available locations in the training data.  

All in all can it be concluded that the potential of applying machine learning approaches to 
predict the tropospheric zenith delay has been shown. 
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6. Outlook 
 

There are several possibilities to continue with the results obtained during the course of this 
thesis. The first one would be to fully eliminate the occurring bias when predicting for unknown 
locations. As already addressed would the easiest solution be to simply use a larger dataset 
during the training. This dataset would not necessarily need to consist of as many samples over 
such a long period of time as the dataset used for this thesis since using 1’000 samples during 
the training already reduced the bias drastically. It would however need a much more densely 
distributed set of locations. This solution could also be combined with another machine learning 
model that only learns and predicts the explicit bias depending on the distance to the nearest 
reference point. This resulting prediction of the bias could then be applied to the prediction of 
the original network. Furthermore could a variation of a Convolutional Neural Network (CNN) 
be used to extract information about the spatial correlation that a densely distributed dataset 
could provide. These proposed options could also provide additional insight into the 
dependence of the error of the prediction on the distribution of the meteorological stations as 
well as the corresponding distance. This dependence would need to be analyzed further in any 
case as the results obtained in this thesis could not provide a clear conclusion. 

To extract the temporal correlation in the available time series and use that information to 
increase the accuracy of the prediction recurrent neural networks (RNN) could be used. Such 
an approach could also be used to learn on solely the time series of the delay and then make 
prediction for the following hours when given a time series as input. These advantages come 
however at the cost of drastically increased computational time.  

Another possibility would be to further investigate the application of algorithms not based on 
neural networks such as random forests or gradient boosting machines. As seen in this thesis 
can a large random forest model almost achieve the accuracy of the used neural network. They 
are generally faster to train and need less data to make reliable predictions. Deep learning 
usually is only preferable in cases where very large datasets are available or when the data 
consists of a very specialized format (images, audio, etc.). 

With ever more increasing available data, the application of machine learning approaches 
within the topic of tropospheric delay in particular and the field of satellite geodesy in general 
will certainly become more common in the near term future. Especially in cases where the 
resulting predictions do not need to be retraceable they can provide advantages in terms of both 
accuracy and computational time.  

 

 

  



 

44 
 

7. Acknowledgment 
 

I would like to thank the following people. 

 

 Endrit Shehaj, for the numerous inputs and the continuous help during the course of this 
thesis. 

 Dr. Stefano D’Aronco and Dr. Jan Dirk Wegner, for their helpful input and expertise in 
any machine learning related questions. 

 Prof. Dr. Markus Rothacher and Prof. Dr. Alain Geiger, for making this thesis possible. 

 Marcelina Los, for providing the map of the distribution of GNNS and meteorological 
stations shown in this report. 

 

  

 

  



 

45 
 

8. References 
 

GPS based Determination of the Integrated and Spatially Distributed Water Vapor in the 
Troposphere [Troller, 2004] 

 

On Interpretability of Artificial Neural Networks [Fan et al., 2020] 

 

MACHINE LEARNING BASED PREDICTION OF ATMOSPHERIC ZENITH WET 
DELAY: A STUDY USING GNSS MEASUREMENTS IN WETTZELL AND CO-
LOCATED VLBI OBSERVATIONS [Kitprache et al., 2019] 

 

A machine learning-based regression technique for prediction of tropospheric phase delay on 
large-scale Sentinel-1 InSAR time-series [Shamshiri et al., 2019] 

 

GNSS Meteorology in Spatially Dense Networks [Hurter, 2014] 

 

Random Decision Forest [Ho, 1995] 

 

The Elements of Statistical Learning 2nd edition [Stanford, 2017] 

https://web.stanford.edu/~hastie/ElemStatLearn/ 

 

Scikit-learn documentation [Scikit-learn, 2020] 

https://scikit-learn.org/ 

 

CS231n: Convolutional Neural Networks for Visual Recognition [Stanford, 2019] 

http://cs231n.github.io/ 

 

Keras documentation [Keras, 2020] 

https://keras.io/ 

 

Swisstopo 

https://www.swisstopo.admin.ch/en/home.html 



 

46 
 

MeteoSwiss 

https://www.meteoswiss.admin.ch/home.html?tab=overview 

 

 

 

 



 

   

Appendix A: Distances from each GNSS station to its four 
nearest meteorological stations 
 

GNSS Meteo 1 Dist 1 Meteo 2 Dist 2 Meteo 3 Dist 3 Meteo 4 Dist 4 
AIGE GVE 0.06 CGI 18.68 DOL 19.84 BIE 34.93 
ARD2 SCU 6.28 NAS 6.33 BUF 15.04 SMM 25.73 
ARDE SCU 6.28 NAS 6.33 BUF 15.04 SMM 25.74 
BCKL TAE 7.28 HOE 18.46 HAI 21.14 KLO 22.19 
BLFT FAH 23.32 DEM 47.95 COY 52.5 BAS 55.35 
BOU2 DEM 10.16 FAH 22.09 COY 25.96 GRE 27.69 
BOUR DEM 10.16 FAH 22.1 COY 25.97 GRE 27.69 
BZBG PSI 6.07 BEZ 7.73 LEI 10.43 BUS 14.89 
CRDM MVE 9.39 MTE 11.66 EVO 13.15 SIO 15.53 
DAV2 DAV 0.02 WFJ 3.79 ARO 12.78 LAT 21.76 
DAVO DAV 0.01 WFJ 3.79 ARO 12.76 LAT 21.75 
EPFL PUY 7.71 VIT 15.6 BIE 17.31 VEV 19.78 
ERDE SIO 3.6 DIA 12.38 MVE 14.98 ATT 15.32 
ETH2 REH 2.35 SMA 5.28 UEB 6.41 KLO 8.27 
ETHZ REH 2.36 SMA 5.28 UEB 6.4 KLO 8.29 
EXWI BER 4.77 BAN 7.46 MSK 11.86 MUB 12.46 
FALE ILZ 3.52 CMA 5.81 ELM 13.91 VLS 19.9 
FHBB BAS 4.22 STC 5.59 MOE 18.51 RUE 21.24 
FLDK VAD 12.5 OBR 16.33 SAE 18.18 RAG 24.6 
FRI3 PSI 8.96 LEI 9.68 BEZ 9.75 BUS 16.1 
FRIC PSI 8.94 LEI 9.67 BEZ 9.73 BUS 16.1 
HABG MER 2.05 GIH 11.37 TIT 18.85 ENG 19.24 
HCHS LEI 13.01 BEZ 17.54 PSI 19.58 HLL 20.07 
HGGL BUS 13.6 LAE 14.51 MOA 16.49 PSI 16.54 
HOGR ZER 8.46 GOR 8.9 MRP 11.47 MTE 18.99 
HOH2 VIS 6.45 BLA 12.17 GRC 14.94 MTE 21.87 
HOHT VIS 6.45 BLA 12.17 GRC 14.95 MTE 21.87 
HUTT WYN 13.17 EGO 13.57 NAP 17.16 KOP 17.58 
KALT EBK 9.76 LAC 12.14 HOE 17.74 GLA 20.86 
KOPS NAS 20.68 SCU 23.82 DAV 27.38 WFJ 28.28 
KREB SIM 9.68 GRC 11.74 ZER 20.4 VIS 20.63 
KREU GUT 10 HAI 10.29 BIZ 16.96 TAE 26.29 
LECH OBR 43.29 SRS 45.2 NAS 46.19 VAD 48.35 
LFNB LEI 9.92 MOE 13.62 BEZ 13.83 PSI 14.28 
LIND ARH 13.53 OBR 21.5 STG 27.65 GUT 32.6 
LOMO OTL 0.04 CIM 3.37 MAG 11.38 CEV 21.73 
LUCE DEM 11.43 FAH 24.73 BAS 26.37 GRE 30.89 
LUZE LUZ 3.53 PIL 10.71 CHZ 18.25 GES 18.73 
MAR2 MAR 4.22 EVI 7.56 MOB 13.24 ATT 15.67 
MAR3 MAR 4.22 EVI 7.56 MOB 13.24 ATT 15.67 
MRGT WYN 6.35 GOE 12.98 EGO 14.54 RUE 18.19 
MTTI DEM 13.85 FAH 18.21 COY 21.57 CHA 27.62 
NEUC NEU 1.18 CHM 6.84 CRM 10.82 CDF 15.01 
OALP GUE 4.57 GOS 7.1 ANT 7.87 DIS 14.72 
PAYE PAY 0.13 GRA 13.73 MAS 19.79 NEU 20.89 
PFA2 ARH 16.8 OBR 20.16 STG 30.78 GUT 39.23 
PRNY FRE 19.5 BRL 22.13 MAH 25.61 CHB 26.18 



 

 
 

RAND ZER 9.73 GRC 10.27 MTE 11.88 GOR 14.74 
SAA2 CHD 13.04 BOL 13.59 ABO 20.09 CDM 20.81 
SAAN CHD 13.04 BOL 13.59 ABO 20.09 CDM 20.82 
SAM2 SAM 0.01 COV 12.92 SIA 13.77 LAT 14.81 
SANB SBE 0.03 VLS 18.23 COM 19.17 MTR 20.85 
SANE DIA 8.15 MVE 14.45 CDM 15.62 SIO 16.13 
SAR2 RAG 3.85 SRS 12.27 CHU 12.62 VAD 16.13 
SCHA SHA 5.95 HLL 14.61 HAI 29.25 KLO 30.07 
SLTB RUE 12.89 STC 13.06 BAS 13.54 MOE 18.06 
STA2 SBO 1.56 GEN 10.01 LUG 16.52 MAG 33.82 
STAB SBO 1.56 GEN 10.01 LUG 16.51 MAG 33.82 
STCX FRE 6.08 MAH 10.8 BRL 19.31 CHB 22.24 
STDL KLO 7.48 LAE 9.88 REH 12.71 HLL 17.48 
STGA STG 4.36 BIZ 10.42 ARH 17.29 GUT 18.48 
TRLK SHA 8.04 HLL 18.24 KLO 21.67 TAE 23.68 
VARE MVE 11.1 VIS 18.56 MTE 18.65 ABO 19.94 
WAB1 BER 7.45 BAN 7.78 MSK 14.16 MUB 15.19 
WAB2 BER 7.45 BAN 7.77 MSK 14.16 MUB 15.2 
WEHO MVE 9.42 ABO 14.03 SIO 21.37 DIA 21.6 
WLCH HLL 3.35 SHA 10.84 KLO 21.36 LAE 21.58 
ZERM ZER 3.48 GOR 4.78 MRP 8.17 MTE 18.31 
ZIM2 BAN 12.2 BER 12.64 MSK 16.18 THU 16.87 
ZIM3 BAN 12.2 BER 12.64 MSK 16.18 THU 16.87 
ZIMJ BAN 12.19 BER 12.63 MSK 16.19 THU 16.87 
ZIMM BAN 12.19 BER 12.64 MSK 16.2 THU 16.86 

 

  



 

 
 

Appendix B: Statistics of all random forest predictions 

 
GNSS Rmse [cm[ Mae [cm] Mre [%] Res over 2 

cm [%] 
Mean res 

[cm] 
AIGE 1.86 1.45 0.63 25.87 0.12 
ARD2 1.09 0.85 0.42 6.92 0.05 
ARDE 1.13 0.87 0.43 7.67 -0.08 
BCKL 1.91 1.46 0.64 26.68 -0.05 
BLFT 1.98 1.51 0.65 28.26 -0.1 
BOU2 1.85 1.42 0.65 26.12 -0.08 
BOUR 1.89 1.46 0.67 27.01 -0.1 
BZBG 2.01 1.53 0.67 28.43 -0.05 
DAV2 1.14 0.87 0.44 8.61 -0.02 
DAVO 1.14 0.87 0.43 8.7 -0.12 
EPFL 1.9 1.46 0.63 25.27 -0.13 
ERDE 1.31 1.02 0.46 10.85 -0.07 
ETH2 1.93 1.48 0.65 27.31 0.04 
ETHZ 1.94 1.47 0.65 27.07 -0.08 
FALE 1.26 0.95 0.46 10.73 -0.08 
FHBB 1.91 1.48 0.63 26.9 -0.09 
FLDK 1.49 1.12 0.49 15.66 -0.13 
FRI3 2.04 1.56 0.7 29.54 -0.01 
FRIC 2.03 1.57 0.7 29.7 0.2 
HABG 1.28 0.98 0.46 11.1 0.1 
HCHS 1.85 1.43 0.66 24.96 -0.03 
HGGL 1.94 1.49 0.65 27.23 0.06 
HOGR 0.98 0.74 0.48 5.2 -0.02 
HOH2 1.28 0.98 0.45 10.56 0.07 
HOHT 1.28 0.97 0.45 10.75 -0.1 
HUTT 1.85 1.41 0.64 24.89 0.05 
KALT 1.72 1.31 0.57 22.23 -0.14 
KOPS 1.19 0.92 0.48 9.86 0.1 
KREB 1.28 1.01 0.57 11.87 0.25 
KREU 2.04 1.6 0.7 30.58 0.32 
LECH 1.3 0.99 0.51 11.64 -0.06 
LFNB 2.03 1.56 0.68 29.1 -0.1 
LIND 1.94 1.48 0.64 27.07 0.16 
LOMO 1.52 1.19 0.51 16.9 0.08 
LUCE 1.93 1.48 0.66 27.26 -0.13 
LUZE 1.66 1.28 0.56 20.39 0.16 
MAR2 1.37 1.06 0.47 13.38 -0.15 
MAR3 1.37 1.06 0.47 13.22 -0.07 
MRGT 1.9 1.46 0.64 26.13 -0.05 
MTTI 1.92 1.48 0.65 27.49 -0.25 
NEUC 1.78 1.38 0.6 23.66 0.06 
OALP 1.14 0.88 0.47 8.19 0.07 
PAYE 1.85 1.42 0.62 24.6 -0.01 
PFA2 1.83 1.41 0.66 25.1 0.04 
PRNY 1.91 1.48 0.67 27.54 0.14 
RAND 1.02 0.78 0.44 5.45 0 
SAA2 1.51 1.14 0.56 16.6 -0.02 



 

 
 

SAAN 1.53 1.16 0.56 16.68 -0.08 
SAM2 1.21 0.95 0.48 10.13 0.17 
SANB 1.3 1.02 0.52 11.55 0.03 
SANE 1.29 1.02 0.54 11.08 0.18 
SAR2 1.5 1.14 0.54 16.43 -0.17 
SCHA 1.96 1.51 0.67 27.77 -0.05 
SLTB 1.96 1.51 0.66 27.93 -0.03 
STA2 1.58 1.25 0.53 18.92 0.17 
STAB 1.57 1.25 0.53 18.79 0.11 
STCX 1.84 1.41 0.67 25.05 -0.07 
STDL 1.97 1.51 0.66 27.85 -0.06 
STGA 1.88 1.45 0.65 26.24 0.21 
TRLK 1.95 1.48 0.65 26.76 -0.14 
VARE 1.43 1.1 0.49 14.46 -0.1 
WAB1 1.83 1.38 0.61 23.63 -0.11 
WAB2 1.84 1.42 0.62 25.24 0.3 
WEHO 1.19 0.93 0.56 8.6 0.12 
WLCH 1.99 1.53 0.67 28.49 -0.1 
ZERM 1.03 0.79 0.41 5.88 -0.05 
ZIM2 1.73 1.32 0.61 22.3 -0.02 
ZIM3 1.73 1.32 0.61 22.36 -0.01 
ZIMJ 1.73 1.33 0.61 22.45 0.08 
ZIMM 1.73 1.32 0.61 22.37 -0.04 

 

 

  



 

 
 

Appendix C: Statistics of all neural network predictions 

 
GNSS Rmse [cm[ Mae [cm] Mre [%] Res over 2 

cm [%] 
Mean res 

[cm] 
AIGE 1.8 1.37 0.59 23.36 0.03 
ARD2 1.05 0.82 0.4 6.05 0.15 
ARDE 1.08 0.81 0.4 7.33 -0.17 
BCKL 1.85 1.4 0.61 24.33 -0.04 
BLFT 1.96 1.5 0.64 27.26 -0.46 
BOU2 1.82 1.39 0.63 24.28 -0.16 
BOUR 1.83 1.41 0.65 25.04 -0.08 
BZBG 1.92 1.45 0.64 25.77 0.03 
DAV2 1.1 0.83 0.42 7.21 0.09 
DAVO 1.09 0.82 0.41 7.35 -0.08 
EPFL 1.86 1.43 0.61 25.09 -0.16 
ERDE 1.3 0.98 0.44 12 -0.48 
ETH2 1.88 1.43 0.63 25.99 0.05 
ETHZ 1.88 1.43 0.63 25.75 0 
FALE 1.19 0.9 0.43 9.46 -0.11 
FHBB 1.82 1.41 0.6 25.67 -0.04 
FLDK 1.35 1.02 0.45 13.28 0 
FRI3 1.94 1.48 0.66 26.91 0.12 
FRIC 1.98 1.54 0.69 28.68 0.41 
HABG 1.19 0.9 0.43 9.24 0.13 
HCHS 1.81 1.38 0.64 23.56 0.1 
HGGL 1.91 1.48 0.65 26.8 0.28 
HOGR 0.95 0.71 0.46 4.73 -0.07 
HOH2 1.19 0.89 0.41 9.37 0.03 
HOHT 1.21 0.91 0.42 9.45 -0.15 
HUTT 1.82 1.38 0.62 24.1 0 
KALT 1.7 1.3 0.56 21.15 -0.08 
KOPS 1.14 0.87 0.45 8.45 0.06 
KREB 1.13 0.89 0.5 7.28 0.28 
KREU 1.95 1.53 0.67 28.27 0.33 
LECH 1.26 0.96 0.5 11.42 0.18 
LFNB 1.94 1.47 0.64 26.61 -0.07 
LIND 1.84 1.41 0.61 25.48 0.14 
LOMO 1.45 1.14 0.49 15.46 0.21 
LUCE 1.84 1.41 0.63 24.97 -0.18 
LUZE 1.58 1.21 0.53 18.05 0.19 
MAR2 1.28 0.98 0.43 11.08 -0.32 
MAR3 1.27 0.97 0.43 10.86 -0.28 
MRGT 1.85 1.41 0.62 24.46 0.11 
MTTI 1.88 1.44 0.63 25.5 -0.38 
NEUC 1.74 1.34 0.58 22.58 -0.01 
OALP 1.12 0.87 0.47 7.34 0.3 
PAYE 1.8 1.37 0.6 23.5 -0.07 
PFA2 1.75 1.34 0.63 23.36 0.06 
PRNY 1.84 1.41 0.64 24.25 0.05 
RAND 1 0.75 0.42 5.58 0.13 
SAA2 1.51 1.14 0.55 16.66 -0.19 



 

 
 

SAAN 1.55 1.17 0.57 17.46 -0.39 
SAM2 1.1 0.85 0.43 7.46 0.11 
SANB 1.25 0.97 0.49 10.52 0.12 
SANE 1.21 0.93 0.5 9.24 0.07 
SAR2 1.42 1.07 0.51 14.49 -0.12 
SCHA 1.93 1.47 0.65 25.9 -0.18 
SLTB 1.9 1.46 0.64 26.23 0.03 
STA2 1.54 1.22 0.52 18.17 0.28 
STAB 1.54 1.22 0.52 18.17 0.28 
STCX 1.8 1.37 0.65 23.33 -0.13 
STDL 1.91 1.45 0.63 25.96 -0.05 
STGA 1.81 1.39 0.62 24.93 0.17 
TRLK 1.9 1.44 0.63 25.21 -0.13 
VARE 1.34 1.02 0.45 12.69 -0.17 
WAB1 1.8 1.36 0.6 23.67 0.08 
WAB2 1.78 1.35 0.59 23.09 0.13 
WEHO 1.14 0.86 0.51 8.06 -0.13 
WLCH 1.92 1.46 0.64 26.34 -0.06 
ZERM 0.99 0.76 0.4 5.19 0.15 
ZIM2 1.7 1.28 0.59 21.04 -0.03 
ZIM3 1.69 1.28 0.59 20.94 -0.02 
ZIMJ 1.69 1.28 0.59 20.98 0.04 
ZIMM 1.69 1.27 0.59 20.96 -0.1 
WEHO 1.14 0.86 0.51 8.06 -0.13 

 

  



 

 
 

Appendix D: Statistics of all Saastamoinen predictions 

 
GNSS Rmse [cm[ Mae [cm] Mre [%] Res over 2 

cm [%] 
Mean res 

[cm] 
AIGE 1.98 1.55 0.67 29.32 0.11 
ARD2 1.27 0.97 0.48 11.95 -0.17 
ARDE 1.37 1.04 0.52 14.46 -0.49 
BCKL 2.01 1.55 0.68 29.64 -0.01 
BLFT 2.43 1.93 0.83 40.01 0.46 
BOU2 2.89 2.17 1 42.55 0.63 
BOUR 2.95 2.23 1.02 43.68 0.75 
BZBG 2.06 1.6 0.7 30.74 0.15 
DAV2 1.27 0.99 0.5 11.87 0.19 
DAVO 1.26 0.97 0.49 11.72 0.02 
EPFL 2.2 1.71 0.74 33.89 0.61 
ERDE 2.01 1.56 0.7 28.68 0.13 
ETH2 2.01 1.55 0.68 29.81 0.16 
ETHZ 2 1.55 0.68 29.59 0.1 
FALE 1.97 1.57 0.76 30.17 0.57 
FHBB 1.94 1.51 0.64 27.57 -0.29 
FLDK 2.04 1.6 0.7 30.78 0.32 
FRI3 2.31 1.79 0.8 35.08 -0.34 
FRIC 2.28 1.77 0.79 34.97 -0.06 
HABG 1.65 1.3 0.61 22.05 0.14 
HCHS 3.21 2.57 1.18 54.7 1.62 
HGGL 2.07 1.61 0.7 30.71 0.31 
HOGR 1.83 1.43 0.92 27.01 1.2 
HOH2 1.96 1.54 0.71 29.14 0.7 
HOHT 1.91 1.49 0.69 27.42 0.51 
HUTT 2.24 1.77 0.8 36.5 0.89 
KALT 2 1.55 0.67 29.71 -0.27 
KOPS 1.44 1.09 0.57 15.54 -0.16 
KREB 1.92 1.45 0.81 25.41 0.93 
KREU 2.56 2.06 0.9 44.34 1.3 
LECH 2.04 1.54 0.79 28.25 -0.03 
LFNB 2.23 1.75 0.77 35.44 0.57 
LIND 2.15 1.67 0.72 33.21 0.13 
LOMO 1.78 1.38 0.59 24.1 -0.43 
LUCE 2.47 1.91 0.85 38.75 0 
LUZE 1.92 1.5 0.65 27.67 0.31 
MAR2 2.63 2.06 0.91 42.76 0.4 
MAR3 2.63 2.06 0.91 42.81 0.43 
MRGT 2.05 1.61 0.7 31.42 0.5 
MTTI 2.22 1.7 0.74 33.29 -0.02 
NEUC 2 1.57 0.68 29.84 0.15 
OALP 2.01 1.66 0.9 32.6 1.48 
PAYE 1.9 1.47 0.64 27.15 0.11 
PFA2 3.43 2.61 1.22 49.91 0.46 
PRNY 2.49 1.92 0.87 39.26 0.29 
RAND 2.25 1.78 1 34.74 1.48 
SAA2 1.95 1.52 0.74 28.23 0.69 



 

 
 

SAAN 1.89 1.47 0.72 26.94 0.51 
SAM2 1.22 0.95 0.48 10.26 0.21 
SANB 1.35 1.05 0.53 13.95 -0.08 
SANE 2.07 1.56 0.83 28.99 0.83 
SAR2 1.61 1.23 0.59 19.39 -0.13 
SCHA 2.25 1.78 0.78 34.91 -0.23 
SLTB 2.15 1.7 0.74 34.76 0.66 
STA2 1.75 1.37 0.59 24.16 0.16 
STAB 1.75 1.37 0.59 24.09 0.15 
STCX 2.06 1.61 0.76 31.24 0.34 
STDL 2.02 1.56 0.67 29.76 -0.22 
STGA 2.01 1.57 0.71 29.89 0.56 
TRLK 2.04 1.58 0.69 30.23 -0.29 
VARE 1.72 1.33 0.59 22.1 -0.27 
WAB1 1.96 1.51 0.67 29.02 0.28 
WAB2 1.94 1.5 0.66 28.42 0.34 
WEHO 2.07 1.66 1 32.76 1.48 
WLCH 2.06 1.61 0.7 31.06 -0.29 
ZERM 1.38 1.06 0.55 14.51 -0.12 
ZIM2 2.16 1.7 0.78 33.98 0.96 
ZIM3 2.16 1.7 0.78 33.84 0.97 
ZIMJ 2.22 1.76 0.81 35.6 1.08 
ZIMM 2.14 1.67 0.77 33.4 0.89 

 


