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Abstract

Many moving objects are presented when driving in the city. The knowledge of their movement,
e.g. moving vector in the 3D space, provides valuable information for making the next driving
decision. In this thesis, we try to infer the object movement given a video sequence, captured
by a moving camera. A pipeline based on view synthesis is proposed to solve this problem in a
self-supervised manner. Two networks are employed to predict the pixel-wise depth and 3D scene
flow map for the input image. The evaluation on KITTI dataset demonstrates the effectiveness of
our approach to estimate the 3D object movement.
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Chapter 1

Introduction

A good understanding of the surrounding environment is indispensable for the driving safety. Con-
sidering a common road scene in Figure 1.1, basically we can divide this image into two areas.
One is the background structure, like the buildings or the trees. These areas are rigid, which pro-
vide information for people to locate and navigate themselves during driving. The other is area
which contains moving objects. These dynamic objects, like cars or pedestrains, are supposed to
be treated carefully for safety or efficiency consideration.

Figure 1.1: Common driving scene

So it is very important to distinguish the dynamic objects and infer their movement(speed and
moving direction). In the driving context, the drivers can determine their next driving action based
on the movement of the surrounding objects. For example, we need to slow down when some cars
try to change the lane and driving in front of us. Or we can accelerate when the front car moved
into another lane. In SLAM(Simultaneous localization and mapping), the mapping result can also
be further refined by the elimination of the moving object, if we are able to distinguish them from
the scene.

The detection of moving objects from video has been researched for a long time. Normally
the camera used to capture the video is static. In this case, the dynamic area can be determined
by simply comparing two consecutive frames, and finding the area where the difference of pixel
intensity is big. The intuition behind is that, the location of moving objects on the image plane
between two subsequent frames is changing, while those static objects/background won’t. So in
static setup, areas with significant photometric difference are potentially moving objects.

However, the dynamic object detection becomes more difficult in the driving context. Suppose
now the recording camera is moving, then the scene motion resulted from camera motion is entan-
gled with the dynamic object movement. For one hand, the rigid structure is moving in the scene
of two consecutive frame, due to the camera motion. On the other hand, those dynamic object is
moving independently at the same time. In order to detect dynamic objects in the driving context,
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CHAPTER 1. INTRODUCTION

we must disentangle the independent object movement from the camera motion.

One solution to address this motion confusion is to utilize the geometry of the rigid structure.
The scene geometry is fully described by the dense depth map. Provided with the depth maps of
two consecutive frames, their corresponding 3D models of the covered scene can be reconstructed
respectively. Then these two models can be further aligned with each other based on the camera
transformation. After the model alignment, those rigid objects/background is overlapped. While
there will be a discrepancy between the models of moving objects. This discrepancy encapsulates
the object movement, and is of vital importance for the dynamic object detection.

To solve this discrepancy, the geometry of the surrounding structure, in particular the depth
map is needed. Depth estimation from images is a intensively-researched topic in computer vision.
Recently Zhou et al.[32] have proposed to solve this problem in self-supervised manner based on
the idea of view synthesis, without using any depth ground truth. Inspired by his work, together
with the proposal from Cao[4], we try to solve the dynamic object movement in a self-supervised
manner.

1.1 Focus of this Work

In this work, we focus on inferring the movement of dynamic object in the driving context. More
specifically, we want to determine the object movement, given a video or image sequence taken
by a moving camera.

The object movement can be numerically described as a 3D scene flow vector. Suppose now
we have two consecutive frames It and It+1, captured by a moving camera at time t and t+1 re-
spectively. Our purpose is to estimate a pixel-wise 3D scene-flow vector map, aligned with It. The
scene-flow map describes the moving vector between t to t+1 of the point in 3D space. This point
is back-projected from the pixel on It image plane, and the scene-flow vector is within the camera
coordinate system at time t.

As explained before, a good depth map is the prerequisite of object movement estimation. In
this work we also explore the prediction of depth map from image. We try to solve these tasks in
self-supervised manner, without using any ground truth of depth or scene-flow.

1.2 Thesis Organization

This report is organized as following:

In Chapter 2, an introduction of related work is given. We mainly cover the work of supervised
and unsupervised depth estimation from image, as well as solutions to compensate or explain the
object movement in the scene.

In Chapter 3 we detail the theory of View Synthesis. The depth and scene-flow estimation can
be learned in a self-supervised manner with supervised signal provided by the synthesized view.
We introduce the view synthesis under the rigid-scene assumption and for scenes with moving
objects.

In Chapter 4 we give a full description of our methodology. The details of challenges and its
solutions are provided. We will introduce the network architecture and the formulation of loss
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CHAPTER 1. INTRODUCTION

function.

In Chapter 5 the experiments are described and the results are presented. We mainly evaluate
the depth prediction, the End-point error of the predicted 2D optical flow, and the instance-level
scene-flow vector estimation.

The discussion and the conclusion are given in Chapter 6 and 7 respectively. More insights
toward our result are given. The limitation as well as the future work are also presented in this
part.
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Chapter 2

Related Work

The inference of object movement from video is based on a good understanding of the scene
geometry. The geometry is described by a dense depth map of the scene. In this part we first
review works related to monocular depth estimation, where a pixel-wise depth map is estimated
given a single input color image. However, some depth estimation methods, in particular those
take the monocular video as input, assume the covered scene are rigid. Since this assumption is
generally not true in the real scenario, some methods are proposed to compensate for the moving
object. We also review works related to this topic.

2.1 Monocular Depth Estimation

The monocular depth estimation can either be solved in supervised or self-supervised manner.

Supervised monocular depth estimation The depth estimation is formulated as a regression
problem in most supervised approaches. In this setup the difference between the predicted depth
and its ground truth is minimized. The manually defined feature is used in early work. Saxena
et al.[27] propose to estimate the single-view depth by training Markov random field(MRF) with
hand-crafted features. In [20] Liu et al. integrate semantic labels with MRF learning. Ladicky et
al. improve the depth estimation performance by combining the semantic labeling with the depth
estimation.

The deep neural network is powerful tool and inspires many other methods. Eigen et al.[8]
propose a deep convolutional neural network(CNN) architecture to produce dense depth map.
Based on this architecture, many variant structures have been proposed to improve the prediction
performance. Li et al.[19] improve the estimation accuracy by combining the CNNs with the
conditional random filed(CRF), while Laina et al.[18] use the more robust Huber loss as the loss
function. Cao et al.[3] formulate the depth prediction problem as a pixel-wise classification task.
Besides CNNs, Kumar et al.[17] propose a model with recurrent neural network(RNN) to provide
spatio-temporally accurate monocular depth estimation.

However, supervised approach requires large amounts of of accurate and pixel aligned depth
ground truth. And ideally various scenes should be covered in the training dataset. This type of
data is difficult to obtain in a large scale in the real world. The lack of ground truth depth map
may hinder the performance of supervised approach. One possible solution is to use syntheic data
with perfect depth ground truth. In recent work [2], synthetic images with highly accurate depth
ground truth are use to train a depth estimation network, and an image style transfer network is
trained to convert a real image into the synthetic domain, then the depth map can be estimated
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from real image.

Another alternative is to utilize those weakly supervised training data. For example, Wu et
al.[29] proposes to predict a coarse depth using sparse label for real-world size of object, and then
refine the depth map based on CPF. Zoran et al.[33] introduce sparse ordinal depth as supervision,
while Kundu et al.[25] use unpaired synthetic depth data. All these approaches requires the col-
lection of extra ground truth annotation.

Unsupervised monocular depth estimation The photometric consistency between nearby frames
makes it possible to predict the depth without the ground truth. Here a set of images are given as
input. The network is trained to minimize the image reconstruction error, where the image is syn-
thesized based on the depth prediction.

One category is to learn depth from synchronized stereo image pairs. In this setup the pose
between the stereo cameras is already known. Grag et al.[9] trains a network to predict the depth
that minimize the photometric difference between the true right view and the synthesized right
view. They use Taylor expansion to approximate the cost function and derive the gradient. As a
result this approximated objective is only sub-optimal. Godard et al.[12] choose the spatial trans-
former network, yielding a cost function which is differentiable without any approximation. They
reconstruct the image using the predicted disparity, and enforce the left-right disparity consistency
to encourage a more accurate prediction.

Another category is to infer from single consecutive temporal image sequence. Zhou et al.
[32] and Vijayanarasimhan [28] show that the learning of depth prediction and ego-motion at the
same time is possible. The depth network and pose network are jointly trained, and the supervision
signal is provided by minimizing the photometric difference between the synthesized view and true
view. The ego-motion estimation from pose network makes it possible to train without the stereo
image pairs. In recent works, several other constraints are introduced during the training. Yang et
al. [30] utilize the consistency between normal and depth. Mahjourian et al. [22] propose a 3D
point cloud alignment loss.

2.2 Compensation for non-rigid scene motion

One significant limitation of the view-synthesis based approach is the rigid scene assumption. In
stereo setup we don’t have this problem, since the stereo paired images have been synchronized
with each other. For approaches which taken monocular video as input, different methods have
been proposed to compensate for the non-rigid scene motion.

Besides the commonly used depth and pose network, Yin et al. [31] proposed to include an-
other network to explain the object movement. This complemented network predicts a residual 2D
optical flow resulted the object motion. Then image is warped by combining the rigid flow from
the camera motion, and the residual flow from non-rigid scene movement. However, they reports
that their proposal can only rectify small errors from rigid flow while not able to compensate big
flow error, due to the gradient locality of warping loss.

Introducing more information regarding the moving objects may potentially to improve the
result. Casser et al. [6] use pre-computed instance segmentation masks to highlight objects in
the scene, and predict a 6 DoF transformation to explicitly explain the movement of each object.
Instead of using segmentation mask, Cao et al. [5] extract objects by using a 2D bounding box.
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In their work they also explicitly model the object motion by predicting the dense 3D scene flow
map for each detected bounding box, which can explain both the camera motion and the object
movement.
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Chapter 3

Theoretical Background

We try to learn the object movement in a self-supervised manner. Without the need of ground
truth, the primary supervision signal comes from photometric difference between the synthesized
view and its corresponding reference view. In this chapter we introduce the theory of view syn-
thesis under rigid-scene assumption first, and then discuss the case with considering the object
movement.

3.1 View Synthesis under Rigid Scene Assumption

The problem of view synthesis can be set up as follows: Suppose a rigid scene is recorded, as
shown in Figure 3.1. Two views are captured for this scene from different viewpoints, say the
reference view Iref at P1, and the source view Isrc at P2. Now we want to synthesize the Iref
from the Isrc. This means for each pixel on the synthesized view Îref , an intensity is chosen or
interpolated from the intensity of Isrc. The ground truth of Îref is actually already provided, as
Iref .

Figure 3.1: Process of view synthesis
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CHAPTER 3. THEORETICAL BACKGROUND

To synthesize a view, a dense optical flow map from Iref to Isrc is required. This flow map
provides the point correspondence of each pixel on the Iref . The process of view synthesis can be
generalized as three steps: pixel projection into the 3D space, camera coordinates system transfor-
mation, and projection onto the image plane of Isrc.

Firstly pixel on the Iref image plane is projected into the 3D space. This process can described
as Equation 3.1:

P ref = Dref (pt)K
−1h(pt) (3.1)

K is the camera intrinsics while Dref (pt) is a scalar which indicates the depth of pixel pt. h(pt)
is the homogeneous pixel coordinate. After this projection the 3D location of pt in the reference
camera coordinate system Cref is determined, denoted as P ref . In order to find its corresponding
pixel ps on Isrc, a coordinate transformation is needed to transform P ref to P src, which is with
respect to the source camera coordinate system Csrc:

P src = Tref→src P
ref (3.2)

Here the Tref→src is the transformation matrix from Cref to Csrc. Tref→src has 6 Degree-of-
freedom, which are corresponding to rotation and translation respectively. After the transforma-
tion, the 3D point is projected onto the source image plane with the camera intrinsics, then point
correspondence between Iref and Isrc is established. The whole synthesized process can be de-
scribed by Equation 3.3 :

h(ps) ∼ KTref→srcDref (pt)K
−1h(pt) (3.3)

Provided with the dense point correspondence between Iref and Isrc, the Iref can be synthesized
by filling the intensity of its corresponding pixel Isrc. Normally the correspondence is a contin-
uous value while pixels are discrete as grids. Then the bi-linear sampling strategy is adopted to
interpolate the intensity from the four neighbouring pixels, as illustrated as Figure 3.2:

Figure 3.2: Bilinear sampling, adapted from Zhou et al. (2017)

The equation to interpolate the intensity of ps is formulated as 3.4, where wij is linearly
proportional to the spatial proximity between ps and pijs .

Îs(pt) = Is(ps) =
∑

i∈{t,b},j∈{l,r}

wijIs(p
ij
s ) (3.4)

In summary, three pieces of information are needed to synthesize Iref from Isrc:

1. The dense depth map of the reference view D(Iref ). The depth scalar can determine the 3D
point location in the Cref coordinate system during the 2D to 3D transformation.

8
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2. The transformation matrix Tref→src.

3. The camera intrinsics K, which is used in the conversion from image plane into 3D space,
or vice versa.

3.2 View Synthesis for Dynamic Scene

View synthesis under rigid-scene assumption presupposes the consistency between P ref and P src.
That is during the capture of Iref and Isrc, no object movement occurs. However, this assumption
is generally not true in the driving scene, where many moving objects like vehicles or pedestrains
are presented.

Figure 3.3: View synthesis for dynamic scene

To explain the dynamic scene, a 3D scene flow map F (Iref ) for the reference view is intro-
duced during synthesis. F (Iref ) records the pixel-wise moving vector during the capture of Iref
and Isrc. The scene flow vector is defined with respect to the reference camera coordinate system
Cref . This synthesis process is illustrated in Figure 3.3 and can be formulated as Equation 3.5:

h(ps) ∼ KTref→src [Dref (pt)K
−1h(pt) + Fref (pt)] (3.5)

Similar with the view synthesis under rigid-scene assumption, the synthesis for dynamic scene
can also be divided into three steps, as explained in the previous section. However, after the pro-
jection of pixel from image plane into the 3D space, the 3D point is further transformed according
to the scene flow vector Fref (pt). This 3D vector describes the object movement between time t
to t+1. The remaining synthesis process is the same with the one for rigid scene.

9



Chapter 4

Methodolodgy

In this chapter the methodolodgy to estimate the object movement from temporal image sequence
is presented. We first set up the problem, then detail those challenges and proposed solutions
during the estimation in the second section. The design of network architecture is explained in the
third section. We conclude this chapter with the formulation of loss function in the fourth section.

4.1 Problem Setup

Our system takes the temporal sequence of calibrated stereo image pairs as input, denoted as
{I lt , Irt } and {I lt+1, I

r
t+1}. The ultimate purpose is to estimate the dense scene-flow map F l

t→t+1

for the left temporal image sequence. The F l
t→t+1 describes the pixel-wise 3D moving vector in

the left camera coordinate system, at time t.

In the previous chapter we mention that besides the dense scene-flow map, another three pieces
of information are required for view synthesis: the dense depth map D[Iref ], the transformation
matrix Tref→src, and the camera intrinsics K. In our proposal the D[Iref ] is predicted by a depth
network. The transformation matrix of camera from t to t+1 is pre-computed using the open-
sourced visual odometry library [11]. The camera intrinsics is also provided in the dataset and
only required to be re-scaled accordingly with the input images. In summary, our system estimates
the depth map as well as the dense scene-flow map from the input.

4.2 Challenges and Proposals

4.2.1 Ambiguity between Depth and Scene Flow

As explained in Chapter 3, during synthesizing a view of a dynamic scene, the pixel depth is re-
quired to project an image point into the 3D space, then the scene-flow vector is required to further
translate this 3D point. The photometric consistency between the synthesized view Î and its ref-
erence view I provides the primary supervision signal.

However, using the photometric difference between Î and I alone is not sufficient to supervise
the depth and scene-flow prediction, due to their innate coupling in the 3D space. This ambiguity
is illustrated in Figure 4.1 and 4.2. In these two figures, the combined depth and scene flow pre-
diction of both d1, F1 and d2, F2 are able to establish the point correspondence between pt and ps.
This indicates that a minimized photometric difference doesn’t necessarily suggests an accurate
depth and scene flow prediction.

10



CHAPTER 4. METHODOLODGY

Figure 4.1: Synthesized with d1 & F1 Figure 4.2: Synthesized with d2 & F2

This ambiguity can either be fixed by introducing extra constraints. In our system the photo-
metric consistency between the calibrated stereo image pairs is introduced, besides the consistency
across the temporal image sequence. The idea behind is, the stereo images pairs have been syn-
chronized with each other, thus there are no object movement during the capture of the left and
right image. In other word, the left-right photometric consistency is free of the above ambiguity
thanks to the exclusion of object movement (also the scene flow vector). The left-right photomet-
ric consistency alone is sufficient to supervise the depth prediction, and can thus correct the bias
caused by the depth and scene flow ambiguity.

Another solution is to learn the scene flow vector based on an accurate depth prediction. As
mentioned in Chapter 2, the unsupervised monocular depth estimation can already provide an ac-
curate depth result. The idea is to fix the model parameters of the depth network and train the
scene-flow network alone. Although with introducing the left-right photometric consistency it’s
possible to jointly optimize the depth and scene-flow network, a good depth network can provide
a good starting point to learn the scene-flow map.

To acquire a good depth estimation, the synchronized stereo image pairs are used to train the
depth network in the first place. We don’t use the depth estimation from the monocular video,
since they are limited for the rigid scene.

4.2.2 Sparsity of Moving Object

Another challenge is the sparsity of the moving object in the scene. As shown in Figure 4.3, those
moving objects only constitute a small proportion, while most part of the scene are actually rigid
background.

The photometric consistency provides the primary supervision in our system. Normally this
loss term is computed by first computing the photometric difference between the synthesized and
its reference view, and average over the whole image plane.

However if the photometric loss is computed in this way, then the difference resulted from
the moving object would be totally overwhelmed by the more dominant rigid background. In this
way, the supervision signal for scene-flow vector is reduced, which makes the training of scene-
flow network rather difficult.

To fix this unbalanced pixel distribution of static and dynamic area, a RCNN-based architec-
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Figure 4.3: Sparsity of Moving Object

ture is adopted for the scene-flow network. In particular, the scene-flow map is only predicted for
specific Region-of-Interest (ROI), instead of for the whole image plane. With the ROI scene-flow
prediction, the constraint of photometric consistency can be directly imposed on this area.

In our system these ROI is extracted by the Single Shot Multibox Detector (SSD) [21], a start-
of-the-art object detection system which extracts object in the form of 2D bounding box. The
object detection is conducted over all images in the training dataset. All extracted ROIs with arbi-
trary size are resized into a fixed size, and feed into the scene-flow network. It is important to note
that the scene covered by the extracted ROI is not necessarily dynamic. The ROIs are selected
only because some objects are contained in these areas.

Figure 4.4: ROI Crop and Resize, from Zhe et al.(2019)

The images of ROI should be synthesized as well in order to impose the photometric consis-
tency. This synthesis process basically follows the steps described in Chapter 3. However due
to the ROI extraction, the camera intrinsics for each ROI is different with the one for the whole
image. The process of cropping and resizing ROI is illustrated in Figure 4.4.

Suppose the location and the original size of the extracted ROI j is [x, y, w, h]. Then the ROI
is resized into [wr, hr]. The transformation of camera intrinsics is formulated as equation 4.1.

12
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K =

fx 0 cx
0 fy cy
0 0 1

 Kj =

fxwr/w 0 (cx − x)wr/w
0 fyhr/h (cy − y)hr/h
0 0 1

 (4.1)

The scene-flow prediction for the full image is also assembled from each ROI. This is done by
resizing the ROI prediction into its original size, and filling the full scene-flow map with predic-
tion from corresponding location. For ROIs overlapped with each other, only one prediction will
be chosen for filling. Which ROI to be chosen depends on the order in the generated bounding box.

4.2.3 Geometric Constraint: Supervise the Scene-Flow Prediction

When synthesizing an image, the depth of the reference view (where the image is synthesized
to), as well as its scene-flow map are required. The depth of the source view (where the image
is synthesized from) is not needed. However, by utilizing the source depth map together with the
reference depth, a supervision for the scene-flow prediction can be established.

Figure 4.5: Geometric Constraint for Scene-flow Prediction

In our system this supervision is named as geometric constraint. The geometric constraint is
illustrated in Figure 4.5. HereXt andXt+1 are locations of the same point at different time instant
in the 3D space. If the coordinates of Xt and Xt+1 in the reference camera coordinate system are
known, then its scene-flow vector can be formulated as F = Xt−Xt+1. This geometric constraint
provides a direct pixel-wise supervision on the scene-flow prediction.

To impose the geometric constraint, the depth map of both the reference and the source view
are needed. The corresponding image points are projected into the 3D space with the depth infor-
mation. ThenXt+1, which is originally in the source image coordinate system, is transformed into
the reference system. After the transformation the geometric constraint for this scene-flow vector
is available.

When computing the geometric constraint, the point correspondence (the 2D optical-flow map)
between the reference and the source view is also required. That is, for each pixel pt on Iref , its
corresponding pixel ps on Isrc are expected to be known in advance. This is because we have to
make sure the projected 3D point Xt and Xt+1 are exactly the same points. Thus in our system,
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we also include a network to provide the optical-flow map. This network is only used in the early
training stages and is excluded later. The idea is, after training several iterations, the scene-flow
network can provide a relatively accurate prediction. Then the optical-flow map can be synthe-
sized with the reference depth and the scene-flow map. We can use this point correspondence to
supervise the scene-flow prediction.

By imposing the geometric constraint, the information of the source depth map is used. The
integration of source depth fixes the ambiguity of the end vertex of the scene-flow prediction. As
illustrating in Figure 4.5, the starting vertex of scene-flow vectorXt is determined by the reference
depth d1. If the source depth d2 is not used, then the end vertex of scene-flow vector Xt+1 can
be arbitrarily predicted alone the projection ray of ps on Isrc, without violating the photometric
consistency. The introduction of geometric constraint will penalize the inaccurate prediction of
the end vertex, and encourage an accurate scene-flow prediction.

4.3 Pipeline and Network

Our pipeline is illustrated in Figure 4.6. Two components are included: depth and scene-flow
prediction. The upper part of this figure refers to the depth prediction, where a depth map for the
whole input image is predicted. The bottom part refers to the scene-flow prediction, where the
scene-flow map for each ROI is predicted.

Figure 4.6: Pipeline Overview

For both depth and scene-flow network, an encoder-decoder architecture is adopted. In encoder
the network inputs are convoluted to produce feature maps. While in decoder those down-scaled
feature maps are convoluted and scaled into a higher resolution, and finally provide the depth and
scene-flow prediction. To overcome the gradient locality, predictions at multi-scale are provided.
Both photometric and geometric consistency are imposed on these multi-scale depth and scene-
flow predictions. The skip connections are also adopted between the encoder and decoder.
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In our system the standard Resnet-50 [14] structure is used for the encoder. The details of
the encoder is illustrated in Figure 4.7. Each residual block contains several residual units whose
structure is shown in Figure 4.8. There are four residual blocks in the encoder part and containing
3, 4, 6, 3 residual units respectively. The spatial size of feature map is halved after each residual
block. And the skip connections for the decoder are provided from the first convolutional layer
(Conv 1), the first pooling layer (Pool 1), as well as the first three residual blocks.

Figure 4.7: Network encoder Figure 4.8: Residual unit [14]

The depth network takes RGB images as input and predict the multi-scale depth maps (18 ,
1
4 ,

1
2

and the full spatial size) for the whole image. For scene-flow network, multiple maps are concate-
nated alone the channel dimension and used as network input. In our system we concatenate the
reference and source RGB image, the synthesized reference image under rigid-scene assumption
(synthesizing with depth map only), the depth prediction for the reference and the source view,
etc. It is important to note that the input of scene-flow network contains the prediction from depth
network.

The decoder of scene-flow network takes feature maps aligned with ROIs as input. The fea-
ture maps from encoder are cropped and resized into a fixed size according to the normalized
ROI coordinates, then concatenated along the batch dimension. The skip connections from a
higher resolution are also cropped and resized into a fixed size, then concatenated with the up-
convoluted feature maps along the channel dimension. Similar with the depth network, the scene-
flow network also provide multi-scale scene-flow predictions. The scene-flow predictions with
size 128× 128, 64× 64, 32× 32, 16× 16 are provided for each ROI, regardless of their original
size.

4.4 Formulation of Loss Function

In our system multiple losses are employed, including the photometric loss across temporal image
sequence, the left-right photometric loss between the stereo image pairs, the geometric loss of the
scene-flow prediction, and the smoothness of disparity and scene-flow prediction. Their supervi-
sions towards depth and scene-flow network are summarized in Table 4.1.
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Table 4.1: Summary of supervision of different losses

Depth Network Scene-flow Network

Photometric loss X X
Left-right photometric loss X ×

Geometric loss X X
Disparity smoothness X ×

Scene-flow smoothness × X

The scene-flow map is predicted for each ROI and is assembled together to form the full scene-
flow map. Those losses which are related to the ROI scene-flow prediction, is imposed on both
ROI region and on the full image. These relevant losses include the photometric loss, the geometric
loss and the scene-flow smoothness loss. Each of them is separated as ROI-based loss and full loss.

Take the example of photometric loss. The full loss is the average of the photometric difference
between the full synthesized view and its reference view. The full synthesized view is based
on the depth prediction and the fully-assembled scene-flow map. The robust image similarity
measurement is used [12], which is a combination of an L1 and single scale SSIM term:

Lphoto = α
1− SSIM(Iref , Î)

2
+ (1− α)‖Iref − Î‖1 (4.2)

In our implementation the α is set as 0.85. To compute the ROI-based photometric loss, the
ROI depth is first cropped from full depth map prediction, and resized into the same size as its
scene-flow prediction. Then the ROI is synthesized following the common process of the view
synthesis, except the camera intrinsics for the reference view is changed according to the ROI size
and location.

The left-right photometric loss Llr photo is also computed according to Equation 4.2. However
the left or right image is synthesized according to the disparity map, which is the direct output of
the depth network. The previously mentioned view synthesis is not used in formulating Llr photo.
The used stereo image pairs have already been synchronized and rectified with each other, so the
horizontal offset provided by the disparity map is sufficient to synthesize the left view from the
right one, or vice versa.

The geometric loss is also separated as the ROI-based one and the full one. The geometric
constraint Fgeom is computed first. The Fgeom is computed based on the depth prediction of the
reference and the source view, and the optical-flow map of these two images. Then the absolute
difference Fdiff between the geometric constraint and the scene-flow prediction Fpred is com-
puted as equation 4.3. The geometric loss Lgeom is the average of the Fdiff either over the ROI
or over the whole image plane.

Fdiff = ‖Fgeom − Fpred‖ (4.3)

The smoothness loss for depth and scene-flow prediction are introduced to penalize a fluctu-
ated prediction. They are denoted as Ldisp and Lsf respectively. It is important to note that the
depth smoothness loss is actually imposed on the disparity prediction, and Lsf is also separated
into the ROI and the full loss. We suppose the depth and the scene-flow discontinuities occurs
at areas with high image gradient, which is normally the boundary of objects. When formulating
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the smoothness loss, the depth or scene-flow discontinuities are weighted by image gradient. The
lower the gradient is, the more penalization is given:

Ldisp = |∂xd|e‖−∂xI‖ + |∂yd|e‖−∂yI‖ (4.4)

The computation of Ldisp is formulated in 4.4, where the ∂xd and ∂yd are the discontinuities
of disparity prediction alone x and y dimension respectively, while ∂xI and ∂yI are the image
gradient along the horizontal and vertical direction. The Lsf is computed in a similar manner.

The final loss is a weighted average of all loss mentioned above. The weight is carefully
chosen so that one loss won’t be totally overwhelmed by another.

L = Lphoto + Llr photo + Lgeom + Ldisp + Lsf (4.5)
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Chapter 5

Experiments and Results

We conduct some experiments to demonstrate the effectiveness of our proposed pipeline. In this
chapter the experiment setting and the result is given. We detail the data source as well as data
preprocessing in the first and second section, then display various evaluation results in the third
part. Some result analysis is also given.

5.1 Data Sources

5.1.1 KITTI

We train and evaluate our system on the widely used KITTI dataset [10]. Stereo images pairs in
KITTI have been rectified and synchronized with each other. Relevant camera parameters like the
intrinsics or the baseline length are also available.

Two categories of dataset are used, including the KITTI raw dataset and the scene-flow 2015
dataset. Raw dataset contains various scenes, like the scene of city center which contains many
moving objects, or the residential part which is generally rigid. In contrast, scenes covered by the
scene-flow 2015 dataset are highly dynamic, with many moving objects. In our experiment, the
raw dataset is used to train the depth network and initialize the training of the scene-flow network,
while the scene-flow dataset is used to fine tune the scene-flow network further.

Some preprocessing steps are necessary to feed KITTI images into our system:

• Image Resize: The typical original size of image in KITTI dataset is 1242 × 375. In order
to fit the GPU memory, images are resized into 640×192 in advance. The camera intrinsics
are supposed to be resized accordingly, as shown in Equation 5.1. Here the rx is the ratio
between the width of the resized image and its original width. The same goes for ry.

K =

fx · rx 0 cx · rx
0 fy · ry cy · ry
0 0 1

 (5.1)

• Concatenation: The view synthesis requires a temporal image sequence. In our system the
number of frame inside a sequence is set as three. These three images (after resized) are
concatenated horizontally, and ordered from left to right as t − 1, t and t + 1. Here the t
refers to the capture time of its corresponding frame.
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The scene-flow 2015 dataset is composed of two subsets, training and testing set. Both sets
contains 200 temporal image sequences (the sequence length is 2), while the training set contains
the annotations of disparity, 2D optical flow, etc. Thus the training set is adopted for evaluation,
where the dense 3D scene-flow map can be generated from the ground truth annotation. The multi-
view version of the test set is used for fine tuning the scene-flow network.

To achieve a fair evaluation, all scenes covered by the scene-flow training set is excluded
from the raw dataset when training the scene-flow network. We also exclude scenes where no
object(ROI) is detected. After the concatenation and the removal of relevant frames, there are in
total 7089 sequences for the scene-flow dataset, and 22038 sequences for the raw dataset.

5.1.2 Cityscapes

The Cityscapes dataset [7] is also used for improve the performance of depth-network. Com-
pared with KITTI, scenes in Cityscapes contains more moving objects. As indicated in the work
of Godard [12], the performance of depth network is improved by first training on KITTI raw
dataset,then training on the Cityscapes dataset. The same preprocessing steps are also applied on
images in this dataset.

5.2 Generation of ROI and Camera Pose

5.2.1 Generation of ROI

In Chapter 4 we mention that a R-CNN based architecture is adopted to address the sparsity of
moving objects in the scene. Thus the ROIs of the image which contains the potentially moving
objects are supposed to be extracted in advance. In my thesis the SOTA object detection system
Single Shot Multibox Detector (SSD) [21] is used. SSD takes RGB image as input, and output the
normalized coordinates of a 2D bounding box on the image. The 2D bounding box highlights the
object in the scene.

The published SSD model can detect around 20 different kinds of object. We choose four of
them which are able to move, including bicycle, bus, car and pedestrians. The employed model
has been trained on the Pascal VOC 2007, 2012 and COCO, without fine-tuning on the KITTI
dataset.

However, different images have different number of ROIs. In order to feed those ROIs into the
system, those normalized coordinates, which is originally stored as text file, should be converted
into the image(PNG) file format which always have a fixed spatial size. In particular, an 2D matrix
with the same size of the RGB image is created. The value of elements located in background area
is zero, while value in ROI area is a positive integer, depends on which ROI it belongs to. This 2D
matrix is stored as PNG file.

During the conversion from normalized coordinates into PNG image, the spatial size of each
ROI is enlarged a bit. That is, the width and the height of the ROI is extended by 10% per side.
The enlargement of ROI is aimed to include the moving objects in different frames, e.g: It and
It+1.
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5.2.2 Generation of Camera Pose

The camera pose describes the transformation between the camera coordinate system of different
frames inside a temporal image sequence. The pose can either be represented as a 4× 4 rotation-
translation matrix, or a vector with 6 degree-of-freedom: [x, y, z, φ, ω, κ]. The first three elements
of the vector describe the translation, while φ, ω, κ are rotation angles of X, Y, Z axis respectively.
In our system the rotation order of Z-Y-X is adopted.

R = Rx ×Ry ×Rz (5.2)

We use LIBVISO2 [11] to solve the camera motion in our system. LIBVISO2 is a C++ li-
brary for computing the 6 DOF motion of a moving mono- or stereo camera. The stereo version is
adopted due to its better accuracy and flexibility. The camera motion is solved by minimizing the
re-projection error of sparse feature matches, based on the RANSAC algorithm.

LIBVISO2 takes stereo rectified image pairs as input, say {I lt , Irt } and {I lt+1, I
r
t+1}, respec-

tively. Then the rotation-translation matrix of the left camera coordinate system is returned. The
camera intrinsics, as well as the baseline length should also be provided.

5.3 Implementation Details

Our system is implemented using TensorFlow [1] and trained using a single NVIDIA Titan-X
GPU. Both networks in our system, the depth and scene-flow network, are trained end-to-end us-
ing Adam optimizer [16]. The rectified liner units (ReLU) [24] is adopted as the activation func-
tion, except for the prediction layer. The batch normalization is also applied for both two networks.

The color data augmentation is performed on the fly, at a chance of 50%. The random gamma,
brightness and color shifts are performed by randomly sampling from a uniform distributions, in
the ranges [0.8,1.2] for gamma, [0.5,2.0] for brightness, and [0.8,1.2] for each color channel sep-
arately. In early work augmentations like random scaling and cropping are also performed. We
exclude them in our system, because the ROI detection is performed in advance and can not be
changed accordingly with the scaling and cropping of image.

A stage-wise training strategy is adopted for optimizing these two networks separately, with
training the depth network first and then scene-flow network. The training details are explained in
the following part.

5.3.1 Depth Training

Basically the training of depth network is separated into four stages, where different loss func-
tions and training dataset are used. For all stages, the batch size is set as 4. The penalty for the
smoothness of disparity prediction is also imposed across all these four stages. Since a multi-scale
disparity maps are output and typically their value will differ by a factor of two between each scale
(due to the down-scaling of the image size), the weight for the disparity smoothness loss is scaled
accordingly, to get equivalent smoothing at each level.

In the first stage, the photometric loss of the rigid warped image is used. In particular, this
rigid warped image Ît is synthesized from It+1 (or It−1), based on the depth prediction. No pho-
tometric consistency between the stereo images is considered. The employed losses are the rigid
warped photometric loss and the disparity smoothness loss, with their weight setting as 1.0 and
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0.5 respectively. The encoder of depth network is initialized from the a model of Resnet-50, pre-
trained on ImageNet. While the decoder is initialized using the Xavier initializer. The KITTI raw
dataset is used as training dataset. The learning rate for Adam optimizer is 2e-4. Then the network
is trained for 100K iterations, taking around 14 hours.

However, the depth prediction from the first stage is not accurate enough, because the input
image doesn’t satisfy the rigid-scene assumption. In the second stage, the rigid-warped photomet-
ric loss is replaced by the left-right photometric loss Llr photo. Llr photo is the averaged difference
between Îl and Il, Îr and Ir. Here Il and Ir are the rectified stereo image pairs while Îl and Îr are
synthesized images from the disparity prediction. The weight for Llr photo and Ldisp are 1.0 and
20.0 respectively. The learning rate is 1e-4. In the following third and fourth stages the weight
for Ldisp and the learning rate are kept as the same value. Then the network is trained for 200K
iterations.

In the third stage Cityscapes dataset is used for training the depth network, as we aim to
improve the generalization performance of the network. The depth network is trained on the
Cityscapes dataset for 300K iterations with Llr photo and Ldisp, then fine-tuned on the KITTI raw
dataset for another 200K steps in the fourth stage.

5.3.2 3D Scene-flow Training

Three losses are employed for optimizing the scene-flow network, including the dynamic warped
photometric loss Lphoto, the geometric loss Lgeom, and the smoothness loss of the predicted scene-
flow map Lsf . Their corresponding weight are 1.0, 0.5 and 0.5 respectively. Different with the
disparity smoothness in the depth network, the weight for Lsf should not be scaled for different
level. This is because the multi-scale scene-flow predictions are in the unit of meter and is relevant
with its own spatial size.

The non-linearity used in the prediction layer is the sigmoid function. Its output is multiplied
with 10 and then adding a bias of -5. This scaling and bias indicating that we assume the maximum
speed of the moving object is 360 kilometers per hour.

The formulation of geometric constraint requires an optical flow map from the reference to
the source frame. A flow network is introduced to provide a better flow map. In our system the
direct flow network from Geonet [31] is used. This network takes the concatenation of reference
and source view as input, then output their optical flow. The direct flow network only provides the
flow map and won’t be trained in our system. It is also important to note that when the network is
able to provide a reasonable scene-flow prediction, the optical flow can be synthesized based on
the network output. Then the flow network can be excluded.

When training the scene-flow network the batch size is 2, with one of them is the left temporal
image sequence while the other is the right sequence. The learning rate is 1e-4. The network is
directly trained on the KITTI scene-flow 2015 dataset. We first train the scene-flow network for
300K iterations with using the flow network to produce the flow map. Then the flow network is
excluded and the scene-flow network is trained for another 700K iterations.
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5.4 Results

Basically four evaluation metrics are used to display the performance of our approach. We first
evaluate the instance-level moving object speed and direction, which can be directly inferred from
the prediction of scene-flow network. Secondly the depth map is also predicted and compared
with other approaches. We also evaluate the optical flow map from It to It+1, which is synthe-
sized based on the depth and scene-flow prediction.

The scene-flow and optical flow prediction is evaluated on the training subset of KITTI scene-
flow 2015 dataset, where the ground truth annotation for disparity and optical flow map is avail-
able. While for depth evaluation, two different test splits are used to enable a complete comparison
with existing works.

5.4.1 Evaluation on Moving Object Speed and Direction

The output of scene-flow network is the dense 3D scene-flow map from It to It+1. Each pixel
corresponds to one 3D vector which encapsulates its movement between time t to t + 1. The
magnitude of this vector is the moving speed, while its unit vector indicates its direction.

The KTIIT sceneflow 2015 dataset provides the annotation for disparity, optical flow map as
well as the masks which highlight moving objects in the scene. The scene-flow ground truth can
be synthesized from these annotations, followed the procedure explained in 4.

Our network provides the instance level scene-flow prediction in form of ROI. Then the scene-
flow map for the full image is assembled by resizing and filling all ROIs. To evaluate the moving
speed and direction, a single dominant 3D moving vector for each object is computed. Then the
magnitude difference between ground truth and predicted moving vector is the error of moving
speed, while the angle difference is the error of direction.

The dominant moving vector is computed by averaging over an specific area of scene-flow
map. This area is provided by logically overlapping the object mask and ROI area. The object
mask is provided by the KITTI sceneflow 2015 dataset, while the ROI is actually stored as a
normalized coordinates of a 2D bounding box for each image. When computing the moving vector
of different objects inside one single image, we iterate over all available ROIs and conduct the
logical-and operation with the object mask. Finally, the speed and direction error of all available
instances (the overlapping of mask and ROI) are collected and averaged, to provide the evaluation
metrics.

Table 5.1: Evaluation of object motion

Dir E. Mean Dir E. Med Speed E. Mean Speed E. Med

Geonet [31] + Monodepth [12] 33.192 10.465 0.633 0.387
B2F [15] + Monodepth [12] 33.609 6.573 0.845 0.324

Our 3D scene flow 23.803 8.448 0.435 0.291

The average/median prediction error of the object movement is shown in Table 5.1. To enable
a comparison, the 3D scene flow is computed based on the optical flow and depth prediction from
existing works. The employed depth model comes from Godard [12], which is able to provide
depth prediction without scale ambiguity. For optical flow prediction, the models from SOTA un-
supervised approach are choosen, namely Geonet [31] and Back2Future [15]. The mean and the
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median error of the moving direction and speed prediction are displayed. The direction metric is
in the unit of degree.

It can be seen that our approach achieves the best performance in almost all metrics, except for
the median direction prediction. While our mean direction angle prediction is much smaller than
other two approaches, which is only 23.803 degree. We also have a significant better performance
in terms of the mean speed prediction, which halves its counterpart from B2F and Monodepth.
The median error of the speed prediction is also the best.

Table 5.2: Inlier of object motion prediction

Dir E. ≤ 15◦ Dir E. ≤ 30◦ Speed E. ≤ 0.15 Speed E. ≤ 0.3

Geonet + Monodepth 59.2% 71.5% 25.2% 42.6%
B2F + Monodepth 63.1% 70.4% 27.2% 48.5%
Our 3D scene flow 63.3% 75.6% 24.7% 52.2%

Table 5.2 shows the percentage of object movement prediction error which below a certain
threshold. A higher percentage indicates a more accurate estimation. It can be seen that our ap-
proach still achieves the best performance in almost all metrics. More than 75% of the moving
objects have an angular direction error below 30◦, and more than 50% have an speed error below
0.3 meters.

It is important to note that the previous work from Cao [5] also provide some evaluation
results of scene flow prediction. However he doesn’t explain his evaluation procedure nor provide
his prediction. Thus it’s not possible to compare our prediction with his.

5.4.2 Evaluation on depth prediction

Two test splits are used for evaluating the depth prediction in previous work. One is the eigen
split [8], which uses 697 images for evaluation. The ground truth depth map is generated by re-
projecting the 3D Velodyne laser point onto the image plane. To enable comparison with existing
works the generated depth map is cropped in the same manner as in [8], where the sky and the
bottom ground part is excluded from the evaluation. Both the ground truth depth map and its pre-
diction are capped by 80 meters when computing the error.

The other set is called KITTI split. There are 200 images with ground truth disparity available.
These disparity maps are annotated in a semi-automatic process and is theoretically more accurate
than depth map generated from Velodyna laser points. However the Eigen split is more frequently
used in terms of depth evaluation. We provide the evaluation on both splits.

All our depth predictions have the same size as the network input (640×192) and are supposed
to be resized into the same size of the ground truth, which is typically 1242 × 375. The bi-linear
interpolation method is adopted for resizing the depth prediction.

Table 5.3: Depth evaluation over different training stages (Eigen)
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Rigid Lphoto Only 0.1313 1.0652 5.4663 83.36% 94.10% 97.47%
With Llr photo 0.1287 0.9456 5.1016 84.35% 94.75% 97.81%
CS fine-tuned 0.1237 0.9357 5.0358 85.44% 94.96% 97.69%
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We first show the improvement achieved by training through different stages. Table 5.3 shows
the evaluation of models from different stages on the Eigen split. It can be seen that by using
the Llr photo, the performance has been improved a lot, with the RMSE dropped from 5.4663 to
5.1016. It shows that the left-right photometric consistency can provide a more accurate supervi-
sion signal than the rigid view synthesis. The row of ’CS fine-tuned’ shows the evaluation after
trained on the Cityscapes (CS) dataset. Some improvement have been further achieved by training
on the more dynamic CS image, as its performance indicators are almost among the best.

Table 5.4: Depth evaluation over different training stages(KITTI)
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

With Llr photo 0.1209 1.8306 5.963 88.1% 95.7% 98.1%
CS fine-tuned 0.1126 1.8075 5.598 89.2% 96.2% 98.3%

Benefits gained by training on the CS dataset is more obvious by checking the evaluation on
the KITTI split. As shown in Table 5.4, the results of CS fine-tuned model are superior to the
predictions of model which trained only on the KITTI dataset. The RMSE drops from 5.963 to
5.598, and the percentage of accurate depth prediction (the last three columns of the table) are
also higher. This is probably because the scenes covered by Cityscapes dataset are predominant
in city, where more moving objects are presented. While test images in KITTI split are also all
dynamic scenes. The similarity of covered scene improve the model performance as well as it
generalization ability.

Table 5.5: Comparison of depth result with existing works (Eigen)
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

GeoNet 0.153 1.328 5.737 80.2% 93.4% 97.2%
Monodepth 0.124 1.076 5.311 84.7% 94.2% 97.3%

Monodepth2 0.115 0.903 4.863 87.7% 95.9% 98.1%
Ours 0.123 0.935 5.035 85.4% 94.9% 97.6%

The comparison of depth prediction with existing works is shown in Table 5.5. It can be seen
that our depth model has achieved the SOTA accuracy. To enable to fair comparison all these
chosen models have been trained on KITTI raw dataset and then fine-tuned on Cityscapes dataset.
It is important to note that the depth prediction of Geonet [31] and Monodepth2 [13] are only
up-to-scale. In order to evaluate the performance a scaling of depth prediction is needed. This
scaling is done by multiplying with the median ground truth. The scale ambiguity comes from the
fact that their approach use pose network to estimate the camera pose. Without the absolute scale
information, the pose predicted by Pose network is defined only up-to-scale.

By contrast, the depth predicted by our model and Monodepth [12] is free of scale ambiguity.
In our system the camera pose is pre-computed for view synthesizing, while in Monodepth the
left-right photometric consistency is directly imposed, thus its disparity prediction is already the
absolute one.

Table 5.6: Comparison of depth result with existing works (KITTI)
Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Monodepth 0.1042 0.9501 5.191 87.3% 95.9% 98.5%
Ours 0.1126 1.8075 5.598 89.2% 96.2% 98.3%

Table 5.6 shows the comparison of evaluation on KITTI split. It can be seen that our result has
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achieved a similar accuracy.

The following pages show some visual results of our depth prediction.

Figure 5.1: Visual result of depth prediction

5.4.3 Evaluation of Optical Flow

Although we don’t provide a direct optical flow prediction, the flow map can be generated based
on the depth and scene flow prediction. We provide the evaluation of these generated flow maps in
this section. The employed evaluation metric is the averaged end-point error. The end-point error
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is the L2 norm of the difference between the flow ground truth and prediction. The evaluation
is conducted on the KITTI scene-flow 2015 dataset, where 200 images with ground truth flow
annotation is used for testing.

Table 5.7: Comparison of optical flow result with existing works
Method Noc All

GeoNet (Direct) [31] 6.77 12.21
UnflowC [23] - 8.80

Geonet [31] 8.05 10.81
Ours 8.57 12.14

Table 5.7 compares our flow prediction results with existing works. It can be seen that our
flow prediction is not perfect compared with other works. More analysis will be given in the next
chapter.
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Discussion

In this part we explore more details of the results. As shown in Chapter 5 the evaluation on optical
flow is not perfect. We visualize the error of optical flow prediction and analyze these results in
the first section. We also jointly optimize the depth and scene flow network but don’t manage to
achieve an improvement. Details regarding the joint optimization is given in the second section.
Some future works are proposed in the third section.

6.1 Exploration of Optical Flow Prediction

To explore the performance gap between our optical flow prediction and previous work, we visual-
ize the error of flow map. The map is visualized by first cropped the end-point error value between
0 to 10. Then the map is normalized by dividing 10 and re-scaled by multiplying with 255. After
this scaling pixel with a end-point error ≥ 10 has a intensity of 255.

Figure 6.1: Visualization of end-point error 1

Figure 6.1 and 6.2 shows some examples of end-point error visualization. Pixel in brighter
area has a higher end-point error. It can be observed that the optical flow generated from the depth
and scene-flow prediction could explain the object movement to some extent. However, this is not
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CHAPTER 6. DISCUSSION

true for all scenes. For example, the predicted scene flow can not compensate for the scene of the
last row in Figure 6.2.

Figure 6.2: Visualization of end-point error 2

One reason for this is probably due to the network (direct version of Geonet [31], short for
DirFlow-net) employed for providing optical flow is not accurate enough. Figure 6.3 is the visu-
alization of flow prediction error from DirFlow-net. It can be seen that this prediction is not that
good. This means the geometric constraint computed from this flow map is not accurate, which
may provide the wrong supervision signal for our scene-flow network.

Figure 6.3: Flow prediction from DirFlow-net

6.2 Exploration of Joint optimization

The introduction of left-right photometric consistency makes it possible to jointly optimize the
depth and scene-flow network. Theoretically the joint optimization can not only improve the
scene-flow prediction, but also further improve the depth network performance.

However we don’t gain an improvement by jointly optimizing depth and scene-flow network.
Instead, both the depth and scene-flow network start to provide bad results when they are trained
at the same time. One possible reason is that the depth prediction result is part of the input of
scene-flow network. During the joint optimization, the output of depth network will be changed,
while the scene-flow network can not adjust itself accordingly with this change. Thus the scene-
flow network starts to fail. As a result, a wrong supervision signal is provided to depth network as
well, since the photometric loss is computed from both depth and scene-flow prediction.
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6.3 Future Work

To further improve the performance of optical flow prediction, the following works can be tried:

• Supervise the scene-flow network with a better optical flow prediction. Currently the em-
ployed geometric constraint is computed from the flow which is predicted by the direct flow
version of Geonet [31]. The optical flow evaluation result of this model is not perfect as
shown in previous chapter. By supervising with a better optical flow map, potentially the
result will be improved.

• Training on Other dataset. The bad generalization ability is the other reason for the bad
optical flow prediction. Some improvement may be gained by training on other dataset. One
alternative is to train on the Cityscapes dataset, where more dynamic scenes are available.

As for joint optimization, the following methods may potentially improve the result:

• Normalization of depth input of the scene-flow network. Currently the depth prediction is
directly feed into the scene-flow network, without any pre-processing. The depth prediction
ranges from 0.2 to 100 in our system. However when convoluting the RGB image, it’s a
routine to re-scale the unsigned 8 bit input into float value between 0 and 1. We can try to
normalize the depth map before feeding into the network.

• Recent work from Ranjan [26] using the competitive collaboration framework to jointly
train the depth, pose, optical flow and moving object segmentation. This framework works
in a similar way of Expectation Maximization and achieved a good result. This framework
can be introduced into our system to jointly optimize depth and scene-flow network.
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Chapter 7

Conclusion

In this work, we try to infer the object movement from video. Based on the idea of view synthesis,
our system is able to learn the dense scene flow map of two consecutive frames in a self-supervised
manner. Two networks have been designed to provide the depth and scene flow prediction respec-
tively. A R-CNN architecture is adopted to compensate for the sparsity of the moving objects in
the scene. The geometric constraint computed from 2D optical flow and depth is utilized to solve
the scene flow ambiguity.

The experiment results on KITTI dataset shows the effectiveness of our system. The accuracy
of our scene-flow prediction is better than the results generated from depth and optical flow from
previous work. Moreover our depth prediction also achieves the SOTA performance.

In the future some more constraints can be introduced to get a better result, in particular to
improve the performance of optical flow generated from the scene flow prediction. A network
which predicts a better optical flow map can be introduced, to provide a better supervision on the
scene flow map.
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Appendix A

Depth Performance Indicator

In Chapter 5 6 numerical indicators are used to evaluate the depth prediction performance. These
indicators are formulated as following. We use Dpred and Dgt to denote the ground truth and
prediction of depth map. All computations are pixel-wise.

Abs Rel: short for absolute relative error, formulated as 1
N

∑
|Dpred −Dgt| / Dgt.

Sq Rel: short for squared relative error, formulated as 1
N

∑
(Dpred −Dgt)

2 / Dgt.

RMSE: short for root mean squared error, formulated as
√

1
N

∑
(Dpred −Dgt)2.

δ refers to the relative difference between Dpred and Dgt. This indicator can be formulated
as δ = max(Dpred/Dgt, Dgt/Dpred). So the value in table for columns of δ < 1.25, δ < 1.252

and δ < 1.253 are actually the percentage of δ whose magnitude is below 1.25, 1.252 and 1.253

respectively.
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