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Abstract
Every year, 15 billion trees are lost, 25% of which to deforestation, primarily in Latin America
and Southeast Asia. This has significant impacts on biodiversity loss and the climate crisis, as
tropical forests are home to over half of the world’s species and act as a major carbon sink. Carbon
offsetting, which allows landowners to monetize the carbon stored in their trees and soils, is
currently the main strategy for incentivizing and financing conservation and restoration efforts.
Carbon stocks are derived from above-ground biomass density (AGBD), which raises the question
of how to accurately estimate biomass. Traditional methods, such as manually measuring sample
trees and using allometric equations, are time-consuming, expensive, and prone to human error.
Machine learning (ML) methods, on the other hand, can leverage openly accessible satellite imagery
available globally and frequently. They have the potential to reduce the time and cost needed to
produce biomass maps, and to do so more accurately. This work evaluates the performance of ML
methods to estimate AGBD from optical satellite imagery, leveraging Multi-task learning (MTL),
Bayesian learning, and deep ensembles. Consistent with prior results, this work highlights that
satellite imagery can be leveraged to estimate AGBD globally. It also shows that leveraging MTL
can improve the estimation, at least in low-data regime. We find the quality of the estimates to be
highly dependent on the input data, encouraging further data collection. Both in terms of number
of data samples, and in terms of leveraging additional data sources with different modalities.
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1 Introduction
1.1 Organizational details
This Master thesis was undertaken at ETH Zürich, within the Photogrammetry and Remote Sensing
group and EcoVision Lab, under the supervision of Prof. Dr. Konrad Schindler and Prof. Dr. Jan Dirk
Wegner. It builds on the work of Nico Lang, Yuchang Jiang, and Clémence Lanfranchi.

1.2 Motivation
Fifteen billion trees are lost every year [10], of which one-quarter to deforestation [11]. Ninety-five
percent of that deforestation occurs in the tropics, mainly in Latin America and Southeast Asia (Fig
1). The resulting impact on biodiversity loss and the climate crisis is unspeakable: not only does over
half of the world’s species reside in tropical forests [12] but tropical forests are among the biggest
carbon sinks to exist. As a consequence, when deforestation happens, almost all of the carbon stored in
the trees and vegetation is lost. At a time where carbon emissions must be reduced, the potential of
massive forest conservation and restoration for climate mitigation and the protection of biodiversity is
clear [13].

Figure 1: Annual Deforestation, 2015. Our World in Data [1].

The current strategy to incentivize and finance the needed conservation and restoration is through
carbon offsetting, although it comes with its share of limitations. A discussion of the ethics and
effectiveness of carbon offsetting is out of the scope of this work, however, such a discussion can
be found in [14]. Forest carbon offsets allow landowners to monetize the carbon being stored by
their trees and soils, and sell it. The effectiveness of this financial tool is based on the accurate and
consistent estimation of the additional carbon storage that should be expected under an offset deal.
This estimation thus mainly relies on measuring how much carbon is stored at a given time.
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1.3 Problem statement
The standardized procedure for forest carbon stock inventory consists of manually registering sample
trees of the project site, and measuring tree parameters (e.g., diameter at breast height (DBH), height,
species). Those parameters are then put through regression models called allometric equations which
are tailored to the forest type and region, to estimate the living vegetation above the soil, or Above
Ground Biomass (AGB), of the project site and the corresponding carbon stock (as seen in Figure 2).
Those allometric models are usually constructed using calibration data where the tree parameters are
measured concurrently with the AGB. For the latter, it consists in a destructive measurement process
which relies on harvesting trees, drying them, and weighing the biomass.

Figure 2: Procedure for calculating the amount of Carbon Stock of a forest [2].

Another approach consists of leveraging remote sensing (RS) technologies to estimate the tree parameters
used as input for the allometric equations. Such technologies can be separated into optical (passive)
and radar (active) sensors [15].

• Optical RS imagery gives spectral information on the horizontal forest structure [16]. Such
sensors are commonly used in space-borne platforms such as Landsat [17] or Sentinel satellites.

• Radar RS imagery gives information on the vertical forest structure, due to its ability to penetrate
the forest canopy [18]. Common active sensors include SAR (Synthetic Aperture Radar) and
LiDAR (Light Detection and Ranging) [9]. Because SAR sensors saturate at lower biomass levels
than LiDAR sensors [19], LiDAR data is more prevalently used to estimate forest AGB [20,21].
This is done either via space-borne platforms, airborne laser scanning, or terrestrial laser scanning
(TLS).

Such practices, however, are highly sensitive to the choice of allometric equation [22], and recent
research [23] suggests that questioning the underlying assumptions of allometric models is an urgent
priority. Indeed, allometric estimates of biomass are usually biased. Various studies [24, 25] have
experimented with terrestrial laser scanning (TLS) as an alternative to directly estimate AGB, and have
reported that TLS estimates of AGB were less biased and more accurate than those from allometric
models, especially for larger trees.

For those reasons, machine learning (ML) methods are becoming more prevalent for performing biomass
estimation [15]. As openly accessible satellite imagery that offers longer-term global coverage with
high spatial and temporal resolution is becoming increasingly available, it is being widely combined
with ML methods for various applications. Such practices [26, 27] reduce the time and cost needed to
produce biomass maps, and circumvent their reliance on allometric equations. Previous studies [28]
have even shown that LiDAR-derived AGB estimates can provide up to a 15-fold increase in accuracy
over allometric counterparts. However, assessing the quality of the predictions is challenging due a
lack of appropriate reference data and evaluation framework; we elaborate on those limitations in
Section 6. This work focuses on estimating above-ground biomass based on optical satellite imagery,
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and LiDAR-based reference data. We build on previous works [8, 9] with the novelty of attempting to
learn solely from satellite data, by leveraging Multi-Task Learning (MTL). We quantify the uncertainty
linked with the estimation by using Bayesian deep ensembles, to make the predictions more interpretable.

1.4 Outline
The remainder of this work is organized as follows: Section 2 presents the latest literature on the
topics at hand; Section 3 describes the data sources and datasets used throughout this work; Section 4
defines the proposed methods and corresponding experiments; Section 5 presents the results of said
experiments; and finally, in Section 6 we discuss our results’ impact and limitations.
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2 Related Work
In this chapter, we provide an overview of the existing work in terms of biomass mapping using machine
learning methods (Section 2.1), uncertainty estimation in deep learning (Section 2.2), and multi-task
learning (Section 2.3).

2.1 Machine learning and remote sensing for biomass estimation
Forests are very diverse ecological systems that display complex behavior across different temporal and
spatial scales. As discussed in Section 1.2, non-parametric machine learning algorithms make fewer
assumptions on the shape and distribution of the reference data, and tend to outperform parametric
methods. Machine learning models can thus be used to estimate the amount and spatial distribution
of biomass. Furthermore, the increasing availability of high spatial and temporal resolution remote
sensing data has revolutionized the way research is being conducted. RS-based ML methods are applied
to a wide spectrum of thematic categories (Figure 3). We hereby summarize the work most closely
related to ours, and refer the interested readers to the review by [3] for additional background.

Figure 3: Frequency of CNN-based studies in the context of agriculture, forestry, and conservation [3]

In recent years, several maps of AGB have been produced by RS-based ML methods:

• The Global Forest Watch (GFW) Aboveground Live Woody Biomass Density dataset [27] is a
global map of AGBD at 0.00025-degree (approximately 30-meter) resolution for the year 2000.
Its authors first calculated AGB at more than seven hundred thousand points with LiDAR and
regional allometric equations, then used those data points to train a wall-to-wall ML model based
on Landsat imagery. However, such a high-resolution, global map is yet to be produced on a
yearly basis, although there is a clear need to monitor biomass loss globally at a high temporal
resolution.

• The authors of [6] proposed a probabilistic deep learning approach to regress canopy top height
globally (described in Section 3.1.3). Building on this work and leveraging the fact that canopy
height metrics derived from LIDAR data are strongly correlated with AGBD [29], the authors

10



of [9] developed a probabilistic deep learning model to estimate GEDI-derived AGBD [5] from the
canopy top height predictions, and quantify the uncertainty in those estimates. As this approach
is not wall-to-wall, however, it risks accumulating uncertainties.

• Research scientists at Sylvera1 have built their very-own AGB reference dataset. Using multi-scale
LiDAR (MSL) methods, they reconstruct and model tree-scale parameters such as AGB. With this
data, they calibrate GEDI footprints [5] and enhance their reference dataset. They subsequently
rely on ML methods, SAR, and multispectral optical satellite imagery, to upscale their biomass
measurements to other time periods and over large areas. However, as a company, Sylvera does
not make any of this data openly accessible.

Plenty of scientists are working towards creating global biomass maps, each with different assumptions,
goals, and methods. Our approach attempts to do so by relying solely on, and directly from, satellite
imagery; making it as interpretable as possible; and with the goals of producing it on a yearly basis,
and providing it openly to the scientific community.

2.2 Uncertainty Estimation in Deep Learning
Measuring the uncertainty of DL models is crucial, as it allows for a better understanding of the model’s
predictions and its confidence in those predictions. This can help to increase the transparency and
interpretability of models, which can be beneficial for a wide range of applications. For example, in
safety-critical applications such as self-driving cars or medical diagnosis, understanding the model’s
uncertainty can help to ensure that the model only takes actions when it is highly confident in its
predictions, and that it does not take dangerous or harmful actions when it is uncertain. In situations
where the model’s predictions are used to make important decisions, such as financial or legal decisions,
understanding the model’s uncertainty can help to ensure that the right level of caution is exercised
when making decisions based on the model’s predictions. In the context of this work, we want our
global AGBD map to be as accurate and interpretable as possible, to eventual inform decision-making
and serve forest conservation efforts.

In this section, we explain how uncertainty can be estimated in DL models.

Aleatoric uncertainty estimation The first type of uncertainty that can be captured is aleatoric un-
certainty. It refers to the noise inherent to the observations. This type of uncertainty cannot be reduced
by collecting more data or increasing the complexity of the model. For example, in image classification,
there may be aleatoric uncertainty in the output of a model due to variations in lighting or camera angle.

Aleatoric uncertainty can be further divided into two sub-categories: heteroscedastic uncertainty, which
depends on the input data and can be predicted as a model output; and homoscedastic uncertainty,
which is constant regardless of the input data and is not a model output. Homoscedastic regression
assumes constant noise distribution across the dataset, while heteroscedastic regression assumes that
observation noise can vary with the input [30]. This is particularly useful in cases where parts of the
observation space might have higher noise levels than others, for example in a study of climate change,
where the variability of temperature might vary across different regions and over different time periods.
Accounting for this heteroscedasticity would be important to ensure that the model accurately captures
the patterns across different regions and time periods, and avoids underestimating the uncertainty of
the predictions in high-variability areas and periods.

In practice, we model the aleatoric noise by a Gaussian defined by its mean µ̂ and variance �̂2, as an
approximation of the true conditional distribution p(y|x) ⇡ N (µ̂(x), �̂2(x)). Then, for a given input x,

1https://www.sylvera.com/blog/mapping-forest-structure-across-the-landscape?
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we can estimate the aleatoric uncertainty in the prediction by the variance of the model, �̂2(x). This is
done via minimizing the negative log-likelihood:

LNN =
1

N

NX

i=1

1

2�2(xi)
||yi � µ(xi)||2 +

1

2
log �2(xi)

Epistemic uncertainty estimation The second type of uncertainty that can be captured is epis-
temic uncertainty. It captures what our model does not know due to lack of training data. For example,
in image classification, a model may be uncertain about the output of an image if it has not seen
enough examples of that particular class during training.

Researchers from Google and DeepMind [31] have found that deep ensembles [32] seem to outperform
other more widespread approaches to measuring epistemic uncertainty, like Monte Carlo dropout [33].
The idea is to construct an ensemble of M Bayesian neural networks: we replace the deterministic
networks’ weights parameters with Gaussian distributions over these parameters, and instead of
optimising the networks’ weights directly we average over all possible weights. More concretely, we
put a prior distribution over each network’s weights [30], e.g., a Gaussian prior: W ⇠ N (0, I). Then,
the M networks are trained independently on the entire dataset using random initialization. Given an
input, we thus obtain {µ̂m}Mm=1 estimates of the mean, and {�̂2

m}Mm=1 estimates of the variance. The
epistemic uncertainty can then be quantified by the variance in the predictions of the mean:

1

M

MX

m=1

(µ̂m � 1

M

MX

m=1

µ̂m)2

Predictive uncertainty estimation Predictive uncertainty is the overall uncertainty in the model’s
predictions. With deep ensembles, it can be quantified as:

�̂2 =
1

M

MX

m=1

(µ̂m � 1

M

MX

m=1

µ̂m)2

| {z }
epistemic uncertainty

+
1

M

MX

m=1

�̂2
m

| {z }
aleatoric uncertainty

2.3 Multi-task Learning
We hereby provide some background knowledge on MTL, and refer the interested readers to [34] for an
exhaustive overview.

Definition Formally, multi-task learning [35] aims to learn m functions {fi(x)}mi=1 for m tasks where
all the tasks (or a subset of them) are related but not identical. The motivation behind this approach
stems from Stein’s paradox [36], which states that it is better to estimate the means of three or more
Gaussian random variables using samples from all of them rather than estimating them separately, even
when the Gaussians are independent. Several works [37, 38] have proved that combining multiple tasks
to form a MTL model is effective for each single task learning and will help the model converge faster.
Additionally, MTL effectively increases the size of the dataset, by combining datasets from each task.
MTL can thus exploit useful information from related learning tasks to help alleviate data sparsity
problems [34].

Parameter sharing More specifically, in the context of Deep Learning, MTL is typically done with
either hard or soft parameter sharing of hidden layers:

• Hard parameter sharing (see Figure 4) consists in learning a common space representation for
all tasks while keeping additional task-specific parameters that are learned independently for

12



each task. Hard parameter sharing acts as regularization and reduces the risk of overfitting,
as the model learns a representation that will (hopefully) generalize well for all tasks. It also
allows to implement simpler solutions to reduce computational cost and inference latency; at the
same time, it potentially improves generalization by implicit bias induction. However, it may
suffer from optimization conflicts caused by task differences because tasks may compete for the
same set of parameters in the shared layers. Hard parameter sharing is the most widely used
approach, and most works in the literature share bottom layers of a deep neural network while
using separate top layers for each task. This is seemingly motivated by the fact that researchers
[41, 39, 24, 29] believe that bottom layers serve as low-level feature extractors (which should be
able to be shared across multiple tasks) while top layers are more sensitive to the input data
(so that different tasks should possess distinct top layers to generate diverse high-level features).
However, a recent publication [39] is questioning this assumption. Its authors found that using
separate bottom-layer parameters for each task and sharing a small proportion of task-specific
top-layer ones could achieve significantly better performance than the common practice.

• In soft parameter sharing (see Figure 5), each task has its own model with its own set of parameters,
while some constraints are applied to the parameters to encourage them to have similar values.
This approach is typically used when the tasks are less related and it is expected that each task
will have its own set of features, by allowing some degree of specialization for each task while still
sharing some information across tasks. It is usually done via the introduction of a regularization
term in the loss function:

L = l + f({W (j)}mj=1)

where l is the original loss function for all tasks, and f is a regularization function on the tasks’
parameters {W (j)}mj=1. This function can be a simple L2 regularization, the squared Frobenius
norm [40], or the nuclear or trace norm [41].

Figure 4: Example of hard
parameter sharing architecture [4]

Figure 5: Example of soft parameter sharing architecture [4]

Multi-objective optimization In most of the literature, MTL models are optimized using a weighted
linear combination of per-task losses. The main challenge of this approach is to define how the gradients
of different tasks should be combined. We can formally formulate this problem as:

L =
mX

i=1

wi Li,
mX

i=1

wi = 1

where wi is the weight assigned to the i � th task, and Li is the loss of the i � th task. Most
approaches rely on a naïve weighted sum of losses, some by fixing wi = wj 8i, j [42–46], and others
by setting differentiated weights through ”trials and experiments” or by leveraging prior knowledge
on the tasks [47–49]. However, the authors of [50] show that performance is highly dependent on an
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appropriate choice of weighting between each task’s loss. They propose a different approach: to use
homoscedastic uncertainty (described in Section 2.2) to weight the losses. The overall loss thus becomes:

L =
mX

i=1

1

hi�2
i

Li + log(�i)

At this point, one has to distinguish between regression tasks and classification tasks. In the case
of a regression task, p(y|µ(x)) = N (µ(x),�i(x)) where µ(x) is the mean variable predicted by the
i � th task, �i(x) is the variance for the variable predicted by the i � th task, and hi = 2. In this
case, Li = ||y � µ(x)||2, with y the target variable. In the case of a classification task, p(y|µ(x),�i) =
Softmax( 1

�2
i
µ(x)) where µ(x) is the mean variable predicted by the i� th task, �i is a positive scalar

(the temperature) that determines how flat the discrete distribution for the variable predicted by the
i� th task is, and hi = 1. In this case, Li = ||y � µ(x)||2, with y the target variable.

Applications Many real-world applications have successfully applied MTL: the authors of [42]
developed a deep multi-task encoder-transformer-decoder architecture for semantic change detection;
the authors of [48] mapped greenhouses across China from high resolution remote sensing imagery using
a dual-task DL framework; the authors of [47] performed relative height estimation and segmantic seg-
mentation from single airborne RGB images using MTL; the authors of [45] leveraged physics-informed
MTL to simultaneously estimate multiple air pollutants from satellite imagery; the authors of [46]
simultaneously detected plant species and predicted plant disease with a DL-based MTL model; the
authors of [43] leveraged MTL for remote sensing scene classification when annotated data is limited by
using related tasks as a regularizer; the authors of [49] used DL-based MTL to predict ship emissions
and fuel sulfur content based on imaging; and the authors of [44] simultaneously tackled land use land
cover classification and wastewater treatment plants detection using a dual-task DL framework and
remote sensing data.

To the best of our knowledge, MTL has not yet been applied to the high-resolution estimation of
AGBD.
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3 Data
3.1 Data sources
In the present section, we describe the various data sources used throughout this work.

3.1.1 GEDI data products
The Global Ecosystem Dynamics Investigation (GEDI) produces high resolution laser ranging ob-
servations of the 3D structure of the Earth. It is the first satellite-based LiDAR system specifically
designed to study vegetation structure. The GEDI instrument is comprised of 3 lasers: one coverage
laser optically split into two beams (“coverage” beams) and two lasers operating at full power (“power”
beams). Each laser fires 242 times per second and illuminates a 25m spot (a footprint) on the surface
over which 3D structure is measured. The coverage laser produces four tracks of footprints, and each
power laser produces two tracks of footprints; resulting in 8 parallel tracks of observations. Each
footprint is separated by 60 m along track, with an across-track distance of about 600 m between each
of the 8 tracks. An example can be found in Fig 6. GEDI produced billions of cloud-free observations
during its mission length (Dec. 2018 - Jan. 2023), spanning the Earth’s surface between 51.6° N and
51.6° S. It is now heading into storage on the International Space Station, where it will remain in
hibernation for approximately 13-18 months. GEDI will be back at its original location in the fall of
2024 and collecting data again, potentially through 2030.

Figure 6: Example subset of aboveground biomass density predictions from the GEDI Level-4A footprint
product over Northern California, U.S., spanning April to July 2019 [5]

GEDI data products include footprint and gridded datasets that describe the 3D features of the Earth.
These data products are assigned different levels, which indicate the amount of processing that the data
has undergone after collection. In the following paragraphs, a waveform designates a digitally-recorded
return laser pulse that represents the time history of the laser pulse as it interacts with the reflecting
surfaces.

L1 - Waveforms The GEDI Level 1 data products are developed in two separate products,
a Level 1A (L1A) and a Level 1B (L1B) product. The L1A data product contains the raw
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waveform and geolocation information used to compute higher level data products. The L1B
data product includes the corrected receive waveform, as well as the receive waveform geolocation
information.

L2 - Footprint level canopy height and profile metrics The waveforms are processed
to provide canopy height (L2A) and profile (L2B) metrics. These values are calculated directly
from the waveform return for each footprint and provide easy-to-use and interpret information
about the vertical distribution of the canopy material.

L3 - Gridded canopy height metrics and variabilities Level 3 products are gridded by
spatially interpolating the Level 2 footprint estimates of canopy height and profile metrics, and
their uncertainties.

L4 - Aboveground carbon estimates Footprint metrics derived from the L2 data products
are converted to footprint estimates of aboveground biomass density (L4A) using calibration
equations. Subsequently, these footprints are used to produce mean biomass and its uncertainty
in cells of 1 km (L4B) using statistical theory.

Calibration and Validation GEDI relies on world-wide crowd-sourced in situ and airborne
datasets to develop representative pre-launch calibration equations for predicting AGB across the
GEDI observation domain. These LiDAR data, collected with an airborne/drone LiDAR system
or a terrestrial laser scanning (TLS) instrument, are used to simulate GEDI-like waveforms
and derived metrics. These simulated waveform metrics are then used to calibrate the biomass
equations with the field biomass values as reference data (see Figure 7 for an overview of the
available calibration datasets). Such forest inventory plots are usually measured over long periods
of time, using different methodologies, sampling designs, sizes, and shapes. This can lead to
large discrepancies when assessing different projects and regions. Additionally, we generally lack
reference data from many areas of the world’s forests due to inaccessibility and/or very high cost.
This makes access to good-quality reference data one of the main challenges when monitoring
biomass stocks. Therefore we avoid the term ground truth data and prefer instead the term
reference data.

Figure 7: Locations at which LiDAR and field data are available for calibration of GEDI biomass
equation. Blue indicates publicly available datasets, orange indicates private datasets. The size of
each marker (circle) indicates the number of GEDI footprint size field plots that are available at the
calibration location [5].
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Figure 8: Sample Sentinel-2 UTM Tiling Grid,
ESA3

Figure 9: RGB bands from a Sentinel-2 tile
(59GLL)

Band Resolution Description
B1 60 m Aerosols
B2 10 m Blue
B3 10 m Green
B4 10 m Red
B5 20 m Red Edge 1
B6 20 m Red Edge 2
B7 20 m Red Edge 3
B8 10 m Near Infrared (NIR)
B8a 20 m Red Edge 4
B9 60 m Water vapor
B11 20 m Short Wave Infrared (SWIR) 1
B12 20 m SWIR 2

Table 1: Sentinel-2 Level-2A Bands, Google Earth Engine4

3.1.2 Sentinel-2 imagery
Sentinel-2 is a European, high-resolution, multi-spectral imaging mission with a revisit frequency of 5
days at the Equator. The resulting tiles are 100⇥ 100 km2 orthoimages2 in UTM/WGS84 projection, a
sample of which can be found in Figure 8. Sentinel-2 provides users with two products: Level-1C (Top-
of-atmosphere reflectances in cartographic geometry) and Level-2A (Bottom-of-atmosphere reflectance
in cartographic geometry). The latter comprises 12 spectral bands ranging from the visible to the
shortwave infrared spectrum, with a spatial resolution of up to 10 meters per pixel, as described in
Table 1. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV)
map and a Scene Classification (SCL) map together with Quality Indicators (QI) for cloud and snow
probabilities at 60 m resolution. With its frequent revisit time, Sentinel-2 data enables the monitoring
of environmental changes on a global scale, and has become a valuable resource for the remote sensing
community.

2computer-generated images of an aerial photograph in which displacements (distortions) caused by terrain relief and
camera tilts have been removed, https://www.usgs.gov/faqs/what-digital-orthophoto-quadrangle-doq-or-orthoimage

3https://eatlas.org.au/data/uuid/f7468d15-12be-4e3f-a246-b2882a324f59
4https://developers.google.com/earth-engine/datasets/catalog/COPERNICUSS2SR
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Figure 10: Global canopy top height map for the year 2020, visualized in Equal-Earth projection [6]

3.1.3 Canopy height map
The authors of [6] used a probabilistic deep-learning approach to leverage the geolocated GEDI
waveforms (L1B) and regress canopy top height (the relative canopy height at which 98% of the
energy has been returned, i.e., rh98) at the footprint-level. They subsequently used the canopy height
footprints as sparse reference data to train an ensemble of neural networks, each taking Sentinel-2
imagery as input and regressing canopy height values. They thus provide a global canopy height map
(with well-calibrated uncertainties) at a 10m resolution for the year 2020 (see Figure 10). An interactive
version of the map can be found here.

3.1.4 ESA CCI
The Climate Change Initiative (CCI) Biomass project provides global maps of above-ground biomass
for four epochs (mid 1990s, 2010, 2017 and 2018), at a 100m per pixel resolution. They are derived
from a combination of Earth observation data, depending on the year, from the Copernicus Sentinel-1
mission, Envisat’s ASAR instrument and JAXA’s Advanced Land Observing Satellite (ALOS-1 and
ALOS-2), along with additional information from Earth observation sources.

3.1.5 CMS FIA
The NASA Carbon Monitoring System (CMS) program used field data obtained through the USDA
Forest Service’s Forest Inventory and Analysis (FIA) program to derive biomass estimates across the
Conterminous USA, at a spatial resolution of 640km2 hexagonal cells. The data is derived from field
surveys conducted from 2009 to 2019.

3.2 Datasets
We now describe an additional two datasets that will be referenced throughout this work.

3.2.1 Clemence
The authors of [9] downloaded a random subset (approximatively 25%, at the file level) of the L4A
GEDI footprints for the year 2020 (January - December). They processed the data by applying a
beam sensitivity threshold of 0.95, which is an estimate of the maximum canopy cover that can be
penetrated considering the signal-to-noise ratio of the waveform. They then extracted patches of 15⇥15
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pixels (corresponding to 150⇥ 150 m2 on the ground) from the canopy height map (described in 3.1.3),
centered around those footprints.

3.2.2 Yuchang
The authors of [8] first created a world-wide mosaic made of the least cloudy Sentinel-2 L1C tile during
what they defined as the leaf-on season (May - September) for the year 2020, before processing the
mosaic into the L2A data product. Subsequently, they downloaded a random subset (approximatively
25%, at the file level) of the L4A GEDI footprints for the year 2020 (January - December).
On the one hand, they applied a beam sensitivity threshold of 0.95 to the GEDI footprints. They
further ignored non-vegetated areas: locations where the canopy height map indicated 0 height, and
where the Sentinel-2 SCL map indicated Bare Soils, Water, or Snow / Ice. They then extracted patches
of 15 ⇥ 15 pixels (corresponding to 150 ⇥ 150 m2 on the ground) both from the Sentinel-2 mosaic
and the canopy height map, centered around those footprints. We call this version of the dataset, no
vegetation.
On the other hand, they applied a beam sensitivity threshold of 0.98 to the GEDI footprints. They
then also extracted patches of 15⇥ 15 pixels both from the Sentinel-2 mosaic and the canopy height
map, centered around those footprints. We call this version of the dataset, sensitive.

3.3 Variable importance analysis
In this section, we describe the variable importance analysis that was conducted in order to identify
which GEDI LiDAR-derived variables are most helpful in predicting biomass. The procedure is quite
straightforward: building on [9], who estimated biomass solely from canopy height (and geographical
coordinates), we gradually provide a toy-model with additional GEDI variables as input (which we call
auxiliary variables).

3.3.1 Dataset
To conduct the variable importance analysis, we first need to identify the GEDI variables of interest,
and subsequently compile a dataset putting them all together.

Variables of interest After a careful examination of all GEDI data products’ descriptions, the
following variables were retained.

• rh (GEDI L2A) - Canopy Relative Height metric at 1% interval (from rh0 to rh100).

• digital_elevation_model (GEDI L2A) - TanDEM-X [51] elevation at GEDI footprint location.

• canopy_cover (GEDI L2B) - Percent of the ground covered by the vertical projection of canopy
material (i.e. leaves, branches and stems only).

• fhd_normal (GEDI L2B) - Foliage height diversity (FHD) is a canopy structural index describing
the vertical heterogeneity of foliage profile [52]. It measures the complexity of canopy structure.

• pai (GEDI L2B) - The plant area index (PAI) is defined as one half of the total plant area (all
canopy structural elements, e.g. leaf, branch, and trunk) per unit ground surface.

• pft_class (GEDI L2B) - In terrestrial ecology, plant functional types (PFTs) are sets of species
with similar responses to the environment and with similar effects on ecosystem functioning [53].
PFTs are provided by GEDI as a 1-km grid derived from the MODIS MCD12Q1v006 Product [54].
Values follow the Land Cover Type 5 Classification scheme: DBT (deciduous broadleaf trees),
DNT (deciduous needleleaf trees), EBT (evergreen broadleaf trees), ENT (evergreen needleleaf
trees), GSW (grasses, shrubs, and woodlands).
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Other variables were considered for quality-filtering and matching purposes. Those variables include:

• quality_flag (GEDI L2A, L2B) - Flag provided to allow users to easily remove erroneous and/or
lower quality returns.

• l4_quality_flag (GEDI L4A, L4B) - Flag identifying shots that may be considered as samples of
the population of which the applied models are representative.

• shot_number (all GEDI products) - Unique identifier used to link observations between groups
and between data products. The shot number format is OOOOOBBRRGNNNNNNNN, where
OOOOO is the orbit number, BB is the beam number, RR is reserved for the future and G is the
sub-orbit number, and NNNNNNNN is the shot number within the beam.

An additional variable is defined for matching purposes: pattern. For a given data point, the cor-
responding pattern references the file of origin. It is made of: the date and time of acquisition
(YYYYDDDHHMMSS); the orbit number; the sub-orbit granule number; the track number; and the
positioning and pointing determination system (PPDS) type.

Data Processing We downloaded GEDI L2A/L2B/L4A data from May 2020 to September 2020, to
align with the temporal range of Sentinel-2 data (as described in Section 3.1.2). We filter for quality
data using the quality_flag and l4_quality_flag. We only keep data coming from power beams as
previous work [9] has shown that they provide more reliable estimates than coverage beams. We do
not consider AGBD values that are bigger than 500, as the literature [55] suggests, to maintain a
representative sample of values. The footprints across GEDI data products were then matched, based
on their latitude, longitude, shot_number, and pattern. We thus obtain a dataset made of 150, 174, 906
GEDI footprints, with AGBD values and the afore-mentioned auxiliary variables.

Insights From the AGBD values distribution (Figure 11) we observe that the data is positively
skewed: low biomass values are much more prevalent. This long-tail distribution is consistent with
high biomass values being concentrated in a few regions on Earth and most of the land surface having
low biomass density [55]. We also compute the pairwise Pearson correlation [56] coefficients between a
subset of the variables (Figure 12); where −1 means perfect negative correlation, +1 means perfect
positive correlation, and zero being no correlation between X and Y [57]. Results indicate that the
auxiliary variables are sufficiently correlated to eventually perform multi-task learning.

3.3.2 Method
In order to conduct the variable importance analysis, we leverage LightGBM [58], a gradient boosting
framework that uses tree-based learning algorithms. It was developed to solve the training speed and
memory consumption issues associated with the conventional implementations of gradient boosted
decision trees when working with large datasets. We leverage its built-in feature_importance method,
which describes the number of times each feature is used in a given model. As decision trees are built
by splitting observations based on feature values, this inherently quantifies each feature’s importance in
the model’s prediction. We also conducted an ablation study by training various LightGBM models,
each on a different subset of the variables.

3.3.3 Results
We report each model’s performance metrics in Table 2. Additionally, we plot the best two models’
respective features’ importance in Figures 13 and 14. Unsurprisingly, the best performing model is
the one having access to all available variables; and the worst performing model is the one having
access to the smallest subset of variables, i.e., the latitude, longitude, and rh98. Notably, there is a
huge performance gap between the two models. As you increasingly make more variables available to
the models, their respective performance improve, which shows that having access to more variables
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Figure 11: Dataset AGBD values distribution.
AGBD values up to 500 Mg·ha�1 are binned in 25

Mg·ha�1 bins; AGBD values large than 500
Mg·ha�1 are binned together.

Figure 12: Pearson correlation coefficients
for a subset of the variables.

Figure 13: Variable importance analysis for the best performing LightGBM model.
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Figure 14: Variable importance analysis for the second best performing LightGBM model.

ultimately does help the prediction of AGBD. The main take-away from the ablation study is the
identification of the most relevant RH metrics: while making all RH metrics available to the model
yields the best performance, it is not feasible in practice, as it represents a huge amount of data;
however, the analysis shows that using as few as 4 well-chosen RH metrics already yields adequate
performance metrics. We choose those metrics based on the best model’s features importance plot,
and Pearson correlation between RH metrics. Additionally, the feature importance plots show that the
models do not rely on the different canopy variables equally: the fhd_normal appears to be much more
important than either the canopy_cover or the pai; we still include them, but keep it in mind for the
remainder of this work.

RMSE MAE ME lat & lon canopy dem pft_class rh
20.7 6.7 0.03 all
22.8 7.4 0.03 0-50-70-98
23.9 8.1 0.04 0-70-98
24.5 8.3 0.03 0-50-70-98
25.7 8.5 0.03 0-70-98
26.8 9.3 0.04 0-50-60-70-98-100
29.72 10.1 0.03 0-98-100
30.86 10.5 0.02 98
32.28 11.62 0.02 98
37.45 15.7 0.02 98
39.2 16.7 0.02 98

Table 2: LightGBM models description and performance metrics. A ticked box indicates the model
was trained with the variable at hand. lat & lon indicates that both latitude and longitude were used,

as opposed to only latitude; canopy includes canopy_cover, pai, and fhd_normal; dem is the
digital_elevation_model; and rh indicates which relative height metrics were used.

From those analyses, we can draw the following conclusions:
• having access to more variables (as opposed to only rh98) helps the prediction of AGBD;

• the most helpful variables are rh0, rh50, rh70, rh98, fhd_normal, digital_elevation_model, and
the pft_class.
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At this point, we have identified the auxiliary variables that should prove most helpful for estimating
biomass, when provided as additional inputs. However, the ultimate goal is to produce a global
fine-grained AGBD map, and we only have auxiliary variables values at the sparse GEDI footprint level.
The question we now want to answer is: with only Sentinel-2 data (and geographical coordinates) as
input, could predicting not only biomass but the auxiliary variables as well, help guiding the biomass
estimation? In an effort to answer this question, we turn to Multi-task learning (MTL).

3.4 Dataset for MTL
In this section, we describe the dataset used for Multi-task learning, as well as how it was curated. As
a reminder, we leverage MTL, i.e. predicting biomass along with the auxiliary variables (rh0, rh50,
rh70, rh98, fhd_normal, pai, cover,digital_elevation_model, and the pft_class), to attempt to learn
solely from Sentinel-2 data.

3.4.1 Dataset creation
Relying on already curated Sentinel-2 imagery (Yuchang’s sensitive dataset) was both a blessing and
a curse. It exempted us from fetching and processing the imagery ourselves, which represents a huge
gain of time. But on the other hand, we only have Sentinel-2 patches for ⇠25% of the GEDI footprints
in 2020; whereas the present work relies on all of the GEDI footprints from May to September 2020.
By intersecting our GEDI footprints with the ones for which a Sentinel-2 patch is available, we hereby
reduce the size of our dataset.
The challenge was to actually perform this intersection, as the authors of [8] did not store a reference
to the GEDI file from which the footprint was from for each patch. Consequently, we had to develop a
matching strategy, which we describe in Figure ?? (Appendix). It basically boils down to iterating
over the patches, extracting the central footprint’s AGBD/latitude/longitude values, and finding the
matching GEDI footprint in my extended dataset.

3.4.2 Geographical split
The data we subsample from, Yuchang’s sensitive dataset, was separated into train/validation/test
sets by simply randomly splitting the data points (i.e. the GEDI footprints). On the other hand, the
authors of [9] used what we call a geographical split: they considered all Sentinel-2 tiles, discarded
overlapping tiles, and then randomly split them. As a consequence, all GEDI footprints that belong
to the same tile, belong to the same set (train/validation/test). This approach reduces data leakage,
as neighbouring GEDI footprints will remain within the same split. We therefore chose to follow this
approach, and re-shuffled our dataset. We used the exact same Sentinel-2 tiles split as in [9]. The
resulting geographical distribution of the data points is depicted in Figure 15.

3.4.3 Comparison with the other datasets
We hereby provide insights on the obtained dataset, and compare it with Yuchang’s [8] and Clémence’s [9].
Table 3 displays the number of data points per dataset, as well as their respective train/test/validation
splits. The present dataset is very much reduced in terms of number of data points, compared to the
other datasets: there is a ratio of 1 : 40 between my dataset, and Clémence’s dataset. Figures 17-22
further show the data distributions in terms of AGBD values. Evidently, the present dataset displays
a widely different data distribution from Yuchang’s and Clémence’s, which are similar. This data
distribution shift it is not due to the fact that the data is constrained to the May-September range,
as the distribution of Clémence’s dataset when constrained to May-September range is similar to its
non-constrained counterpart (see Figure 16). It is also not due to the additional quality_flag, as the
distribution in Figure 11 is similar to that of Yuchang and Clemence’s datasets. It is, seemingly, due
to a shift in the geographical distribution of the data, that appeared after the matching procedure.
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Figure 15: Geographical distribution of the data points. The red, green, and blue colors respectively
correspond to the train, test, and validation data.

Dataset Train Validation Test Total
Mine (pre reshuffling) 5,801,220 (61%) 1,753,521 (18%) 1,996,634 (21%) 9,551,375
Mine (post reshuffling) 6,187,548 (65%) 1,363,698 (14%) 2,000,129 (21%) 9,551,375

Yuchang (sensitive) 105,874,949 (63%) 26,261,569 (16%) 34,718,285 (21%) 166,854,803
Yuchang (no vegetation) 117,802,785 (64%) 28,110,626 (15%) 37,713,955 (21%) 183,627,366

Clemence 256,874,374 (64%) 65,684,201 (16%) 77,549,389 (20%) 400,107,964

Table 3: Number of data points per dataset, and their respective train/test/splits.
Yuchang refers to the data from [8] and Clemence refers to the data from [9].

Indeed, the data points are more densely located around the equator (see 15, where biomass values
tend to be higher. However, the bug responsible for this geographical shift is yet to be found.
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Figure 16: Distribution of Clémence’s dataset AGBD values, constrained to the May-September range.
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Figure 17: My train dataset AGBD values
distribution (5 Mg·ha�1 bins)

Figure 18: My test dataset AGBD values dis-
tribution (5 Mg·ha�1 bins)

Figure 19: Clemence’s train dataset AGBD
values distribution (5 Mg·ha�1 bins)

Figure 20: Clémence’s test dataset AGBD
values distribution (5 Mg·ha�1 bins)

Figure 21: Yuchang’s train (sensitive) dataset
AGBD values distribution (5 Mg·ha�1 bins)

Figure 22: Yuchang’s test (sensitive) dataset
AGBD values distribution (5 Mg·ha�1 bins)
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4 Methods
We have outlined the various data sources and datasets used throughout this work. Notably, the dataset
curated for MTL. We now turn to the actual methods and describe how MTL is conducted. This
chapter describes the models that were trained, the training procedure, and the evaluation framework.

4.1 Models
To recapitulate, we perform MTL by providing the models with Sentinel-2 data and geographical
coordinates (in accordance with previous work [9], we only provide the latitude). In turn, the models
predict biomass, along with the auxiliary variables (rh0, rh50, rh70, rh98, fhd_normal, pai, cover,
digital_elevation_model, and the pft_class).

As per Section 2.3, a model performing MTL is (typically) made of: a body, whose parameters are
shared among all tasks; and multiple heads, whose parameters are task specific. We hereby describe
the various architectures that were experimented with, both in terms of heads and bodies. The total
number of trainable parameters per model can be found in Table 4.

Model Number of trainable parameters
FCN 351K

ResNeXt 5.5M
Xception 15.0M

Table 4: Number of trainable parameters per model architecture.

4.1.1 Heads
Each head is defined as a Convolutional Neural Network (CNN). This section describes the high-level
architecture of the heads; we refer the reader to the specific models’ architectures for implementation
details.

In order to model the aleatoric uncertainty, as described in Section 2.2, we design a two-branch CNN:
both branches are identical in terms of components, but one outputs the mean of the predicted variable,
while the other one outputs the log-variance. We hence define the head’s architecture as a Gaussian
CNN. Note that outputting log-variance and subsequently applying the exponential function guarantees
that the estimated variance is positive [59].

Each branch consists of:

• a various number of stacked convolutional blocks (Conv Block), each made of a 2d convolution
(with kernel_size = 3, stride = 1, and padding = 1), a batch normalization layer, a ReLU
activation function, and a 2d max pooling layer (with kernel_size = 3, stride = 1, and
padding = 1).

• a downsampling layer (Downsampling), that can either be a 2d convolution with kernel_size = 1,
stride = 5, and padding = 0; or a 2d average pooling layer with kernel_size = 5, stride = 5,
and padding = 0.

• a 2d convolution with kernel_size = 1, stride = 1, and padding = 0.

The downsampling component lowers the resolution from 15⇥ 15 pixels for the input, to 3⇥ 3 pixels
for the output, which amounts to a 50m ⇥ 50m resolution on the ground. This is motivated by
suggestions [9] made by experts from ESA and NASA.
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Figure 23: Architecture of the Multi Task Fully Convolutional Neural network (FCN).

4.1.2 Fully Convolutional Neural network
The first (and less complex) model architecture that was experimented with is an adaptation of [9].
The body is a Fully Convolutional Network (FCN), which is a particular type of CNNs that takes
inputs of arbitrary size and produces outputs of the same size. This is particularly relevant for dense
pixel-level prediction such as pixel-wise regression, which is precisely the focus of this project. The
FCN at hand is made of 5 stacked Conv Blocks. The output is then fed into as many heads as there
are tasks. The overall architecture, and its details, are described in Figure 23.

4.1.3 ResNeXt
The second (and more complex) model architecture that was experimented with is an adaptation of [60],
whose authors modified the design principles of ResNeXt to address the specific challenges of forest
structure mapping. The body’s architecture is composed of:

• an Entry block made of a 2d convolutional layer (with kernel_size = 1), followed by a batch
normalization layer, and a ReLU activation function.

• a succession of ResNeXt blocks, made of a 2d convolution layer (with kernel_size = 1), another
2d convolution layer (with kernel_size = 3, grous = 32), and another 2d convolution layer (with
kernel_size = 1). The former two are each followed by a batch normalization layer and a ReLU
activation function, while the latter is followed only by a batch normalization layer. Following
the ResNet principle, a skip connection bypasses each block, after which point a ReLU activation
function is applied, such that the block learns an additive residual update to its input. Due to
the grouped convolution, each block effectively implements a multi-branch computational graph,
where all branches are eventually combined by summation.

The model at hand is set with Nblocks = [2, 5, 3] and Nchannels = [64, 128, 256]. The output is then fed
into as many heads as there are tasks. The overall architecture, and its details, are described in Figure
24.
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Figure 24: Architecture of the Multi Task ResNeXt network.

4.1.4 Xception
The last (and most complex) model architecture that was experimented with is an adaptation of [61],
whose authors modified the design principles of Xception [62] to perform vegetation height mapping.
The body’s architecture is composed of an Entry Block, and a series of 8 Middle Blocks. Each of
these blocks are themselves composed as follows:

• the Entry Block is made of a succession of three 2d convolutional layers (with kernel_size = 1);
the first two are followed by a batch normalization layer and a ReLU activation function; the latter
is followed by a batch normalization layer only. At this point, a ”shortcut” is added (point-wise)
to the output, before being put through a ReLU activation function. The shortcut consists of
applying a 2d convolutional layer (with kernel_size = 1) and a batch normalization layer to the
block’s input.

• the Middle Block is made of a ReLU activation function, a SepConv Block, a batch normalization
layer, a ReLU activation function, another SepConv Block followed by a batch normalization
layer. At this point, as in the Entry Block, the same ”shortcut” is added (point-wise) to the
output, before being put through a ReLU activation function.

• the SepConv Block is at the core of the Xception architecture. It consists in a spatial convolution
(a 2d convolutional layer with kernel_size = 3 and groups = 728) being performed independently
over each channel of the input, followed by a point-wise convolution (a 2d convolutional layer
with kernel_size = 1) projecting the channels output by the depthwise convolution onto a new
channel space.

The output of the blocks is then put through a 2d convolutional layer with kernel_size = 1, and fed
into as many heads as there are tasks. The overall architecture, and its details, are described in Figure
25.
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Figure 25: Architecture of the Multi Task Xception network.

4.2 Training procedure
We use a patchwise training procedure with patches of size 15⇥ 15 pixels, corresponding to 150⇥ 150
m2 on the ground. Each patch has one valid ground truth pixel at its center. Pixels with missing
ground truth do not contribute to the per-patch loss, such that they do not affect the training procedure.

The optimisation of the parameters of the networks is done by mini-batch stochastic gradient descent
(SGD). We use a popular variant of SGD called ADAM [63] that adaptively adjusts the learning rate
for each trainable parameter by normalizing the global learning rate with the running average of the
gradient. This has the effect of amplifying the step size along low gradients and attenuating it for high
gradients. In this way, the solver is less sensitive to the chosen base learning rate, and there is no need
to design a careful learning schedule [6].

For the experimental evaluation of our method, the base learning rate is set to 0.0001, and the batch
size to 64 patches (dictated by memory constraints of the GPU hardware). Each epoch, the network
sees 5000 batches of the training set, and evaluates on 1000 batches of the validation set (as in [8] and [9]).

To quantify the epistemic uncertainty, as described in Section 2.2, we train ensembles of models for
each experiment. Because of GPU hardware constraints, and motivated by the fact that even a small
number of models in an ensemble can effectively monitor the epistemic uncertainty [31,64], we use 3
models per ensemble.

As mentioned in Section 3, the available data is first split into two geographically separated parts, a
training set and a test set that is never seen during training and only used to evaluate the performance
of the trained model. The training set is, in turn, split into a training part and a (smaller) validation
part, where the latter is never used to compute gradients for back-propagation. The learning process is
monitored by observing both the training loss and the validation loss.

30



4.2.1 Training losses
We define multiple loss functions, for various purposes. For single-task learning (i.e. our baseline
models), any typical regression loss can be applied. For MTL, one might use different losses depending
on the weighting scheme, and variables to be predicted. Indeed, with all but one of our target variables,
one can apply any regression loss. But one of the target variables (pft_class) is categorical, so we also
define a classification loss.

For all of the losses listed below, N is the number of samples, yi is the target value, xi is the in-
put data point, µ(xi) is the mean predicted value, �(xi) is the predicted variance. As explained in
Section ??, the model outputs the log-variance. To obtain the variance, we apply the exponential
function. But, when the log-variance tends to �1, the variance will tend to 0, which we do not
want as we are dividing by the variance in the GNLL and LNLL losses. For numerical stability, we
hence add a small number (✏ = 1e�6) to the log-variance. We hence obtain: �(xi) = exp(log_�(xi)+✏.

The Root Mean Squared Error (RMSE) is a commonly used loss function for regression tasks in neural
networks. Mathematically, it is defined as:

(RMSE) Loss =
1

N

NX

i=1

(µ(xi)� yi)
2

The use of the square function in the loss function ensures that the loss increases quadratically as
the predicted value deviates further from the target value. The square root function in the defini-
tion of RMSE then scales the loss back to the original units of the target variable, making it easier
to interpret. The goal of the RMSE loss function is to minimize the mean squared error between
the predicted values and the target values. This makes it well-suited for regression tasks where the
target variable is a continuous variable that does not necessarily follow a specific probability distribution.

The Gaussian Negative Log Likelihood (GNLL) is a commonly used loss function for regression tasks in
neural networks where the target variable is assumed to have a Gaussian distribution. Mathematically,
it is defined as:

(GNLL) Loss =
1

N

NX

i=1


log �(xi) +

(yi � µ(xi))2

�(xi)

�

The goal of the GNLL loss function is to minimize the mean squared error between the predicted values
and the target values, while taking into account the uncertainty or variability of the target values.
This makes it well-suited for regression tasks where the target variable is assumed to have a Gaussian
distribution.

The Laplace Negative Log Likelihood (LNLL) is a loss function commonly used in neural networks for
regression tasks where the target variable has a Laplace distribution. Mathematically, it is defined as:

(LNLL) Loss =
1

N

NX

i=1


log

�(xi)

2
+

|yi � µ(xi)|
�(xi)

�

The goal of the LNLL loss function is to minimize the average distance between the predicted values
and the target values, while taking into account the uncertainty or variability of the target values.
This makes it well-suited for regression tasks where the target variable is known to have a Laplace
distribution, such as in image denoising, audio signal processing, and other types of signal processing.

The cross-entropy (CE) loss is a commonly used loss function for classification tasks in neural networks.
Mathematically, it is defined as:
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(CE) Loss = � 1

N

NX

i=1

CX

j=1

yi,j log(µ(xi,j))

where C is the number of classes, yi,j is the ground truth label for the i-th sample and j-th class
(it is 1 if the sample belongs to class j and 0 otherwise), and µ(xi,j) is the predicted probabil-
ity of the i-th sample belonging to the j-th class. The use of the logarithm function ensures that
the loss increases exponentially as the predicted probability deviates further from the ground truth label.

4.2.2 MTL Weighting schemes
When performing MTL, one needs to combine in some way the losses of the individual tasks into a
global loss for the network, i.e., setting {wi}i=1,...,M such that

L =
MX

i=1

wi Li

where Li is the loss of the i� th task, and M is the total number of tasks.

As explained in Section 2.3, several weighting schemes exist. We experimented with the following ones:

Equal weights – this approach consists in setting wi = 1 8i 2 {1, ...,M}, not taking into account
the potential differences in magnitude in the values predicted for each task;

Constant task-specific weights – this approach consists in setting wi = feature_importancei 8i 2
{1, ...,M}, where feature_importancei is the feature importance of the i� th task as calculated in
Section 3.3.2. This approach does not take into account the potential differences in magnitude in the
values predicted for each task, but assigns relative importance factors to each task;

Uncertainty weighting – this approach, described in Section 2.3, consists in setting wi = �i 8i 2
{1, ...,M} where �i is the predicted variance of the i� th task, i.e., the output of the second branch of
each head. In the case of pft_class, a categorical variable, we fix the temperature parameter �i = 1.

4.3 Evaluation scheme
4.3.1 Evaluation metrics
We rely on several metrics to evaluate the quality of our predictions. The focus of this work is on the
prediction of AGBD, so the evaluation metrics hereby described evaluate the performance of regression
models only. In the following, ŷi is the predicted value, while yi is the target value.

The Root Mean Squared Error (RMSE), as described previously, measures the average distance between
the predicted and true values, taking into account the magnitude of the errors. RMSE is useful when
we want to penalize larger errors more heavily than smaller errors.

RMSE =

vuut 1

N

NX

i=1

(ŷi � yi)2

The Mean Error (ME) measures the average difference between the predicted and true values. A
positive ME indicates that the model tends to overestimate the true values, while a negative ME
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indicates that the model tends to underestimate the true values.

ME =
1

N

NX

i=1

(ŷi � yi)

The Mean Absolute Error (MAE) measures the average absolute difference between the predicted and
true values, regardless of their direction. It provides a measure of the magnitude of the errors made by
the model.

MAE =
1

N

NX

i=1

|ŷi � yi|

4.3.2 Comparison with other biomass maps
Following the approach defined in [9], we benchmark our AGBD predictions against those of ESA CCI
(3.1.4) and CMS FIA (3.1.5). The authors of [9] used forest growth data to adjust the existing maps’
AGBD values to the year 2020. They derived two trajectories: a pessimistic one, with growth data
worst case scenarios, and an optimistic one, with growth data from best case scenarios. Then, we can
simply aggregate and average the predictions at the hexagon cell level defined by the FIA.
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5 Results and Discussion
5.1 Experiments
We display the results of the experiments in Table 5, and hereby discuss their implications.

Architecture CH S2 Loss MTL RMSE MAE ME
Xception RMSE uncertainty 78.60 55.97 -7.15
Xception GNLL 79.61 56.87 -6.97
Xception RMSE uncertainty 75.52 53.83 -4.80
Xception GNLL constant 77.14 55.03 -6.21
Xception LNLL constant 78.90 54.56 -13.04
Xception GNLL 77.58 55.85 -3.95
Xception LNLL 78.50 54.12 -13.96
Xception RMSE uncertainty 81.74 60.38 -3.30
Xception GNLL 81.61 60.20 -3.88
ResNeXt RMSE uncertainty 79.93 57.16 -6.22
ResNeXt GNLL 84.29 60.98 -7.26
ResNeXt RMSE uncertainty 76.77 54.88 -5.66
ResNeXt GNLL 79.15 57.44 -4.50
ResNeXt RMSE uncertainty 81.97 60.61 -4.09
ResNeXt GNLL 82.03 60.69 -3.38
FCN RMSE uncertainty 86.64 63.58 -4.38
FCN GNLL 86.61 63.80 -3.01
FCN RMSE uncertainty 80.01 58.19 -5.58
FCN GNLL 79.78 58.12 -2.52
FCN RMSE uncertainty 82.16 61.18 -1.39
FCN GNLL 82.07 60.50 -4.42
Table 5: The models’ test performance metrics. CH indicates that Canopy Height was an input

feature. S2 indicates that the Sentinel-2 bands were input features. MTL describes the MTL weighting
strategy, where a blank cell indicates single-task learning.

Impact of model complexity As one might expect, models with more parameters tend to outperform
those with fewer parameters. In terms of RMSE, the gap between the best performing Xception model
and the best performing FCN model is 4.26; while the gap between the former and the best performing
resNeXt model is 1.25. Moving forward, it is important to note that this increase in performance
comes at the cost of a 10-fold increase in the number of parameters. As such, the added complexity
and resource requirements of the Xception models may need to be carefully considered when deciding
whether the marginal improvement in performance is worth the additional cost.

Impact of loss function We can only infer a potential impact of the choice of loss function from
comparing identical models that were trained with different losses. We therefore consider the 4-th
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Figure 26: Predictive uncertainty vs. Empirical RMSE for an uncertainty-weighted MTL ResNeXt
model (left), and a GNLL single-task ResNeXt model (right).

and 5-th line of Table 5: Xception models with Sentinel-2 data and canopy height data as input and
trained using, respectively, the GNLL and the LNLL as constant-weighted loss for MTL. While the
GNLL-based model performs better than the LNLL-one with respect to RMSE, it performs marginally
worse in terms of MAE. However, when it comes to the ME, that of the LNLL-based model is slightly
more than twice that of the GNLL-based model. We thus retain that the GNLL loss tend to outperform
the LNLL, for this use case.

Impact of the MTL weighting schemes The equal weighting scheme was quickly dismissed in
early trials, as it clearly reported under-performing results; we do not even include it here. Regarding
the other two weighting schemes (we refer the reader back to Section 2.3 for a description), the
uncertainty-based one outperforms the one based on constant weights. This is true for both the GNLL
and the LNLL, and is consistent with the existing literature on MTL. On another note, using the
model’s predicted variance (or log-variance) to weight the losses terms has the impact that the variances
are eventually parametrized, and updated accordingly. As a result, the variances are not well-calibrated
anymore, and cannot be interpreted as the predictive uncertainty. We illustrate this behavior in Figure
26.

MTL vs. single-task learning In the case of the FCN models, it seems that MTL does not help
at all in the estimation of biomass, it even hinders it to some extent. This might be due to the fact
that the model is not complex enough to learn how to properly update the parameters to perform
MTL effectively. In the case of the ResNeXt and Xception models, MTL consistently out-performs
single-task learning; except in the notable case where the Xception model was provided as sole input
the canopy height map. This might suggest that the features learned by the Xception model from
the canopy height map are highly informative for estimating biomass, and that the additional tasks
added in MTL may have interfered with the learning of these important features, resulting in a drop in
performance. Whereas, when the models are provided with the canopy height map, and the Sentinel-2
data, they are able to leverage the complementary information from both sources, leading to improved
performance through MTL. The combination of the two sources of data allows the model to better
capture the complexity of the biomass estimation task and effectively leverage the learned features to
improve accuracy.

Impact of the input data sources Although the goal of this work was to leverage MTL to
learn solely from Sentinel-2 data, we realized that our low number of data samples would likely not
make it possible. In an effort to palliate that, and to assess how the models would perform with
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Figure 27: Sample prediction displaying the cell-like pattern (tile 59GLL). Right: zoomed.

an additional data source, we also provide canopy height data as an input. For benchmarking pur-
poses, i.e. to compare with Clémence’s work, we also train models with only canopy height data as input.

Across all architectures, losses, MTL or not, the best performing models are consistently those that
are provided canopy height data and Sentinel-2 data as input. Unsurprisingly, as both types of data
contain important information that is relevant for estimating biomass: the canopy height data provides
information about the vertical structure of the forest, while the Sentinel-2 data provides information
about the spectral characteristics of the forest. By combining these two sources of information, the
models are able to better capture the complexity of the relationship between these variables, resulting
in improved performance. Now, as we look further into canopy height data versus Sentinel-2 data as
input, we treat FCN as a special case, as it does not align with the conclusions that can be drawn
from the other models. In the case of FCN, the models provided with canopy height data outperform
those provided with Sentinel-2 data. In the case of ResNeXt and Xception, the models provided with
Sentinel-2 data outperform those provided with canopy height data. This discrepancy may be due to
the fact that FCN has significantly fewer parameters than ResNeXt and Xception, and as a result may
be less capable of effectively learning from the more complex Sentinel-2 data. In general, more complex
architectures like ResNeXt and Xception may be better suited to learn from the high-dimensional
Sentinel-2 data, whereas simpler models like FCN may benefit more from the additional information
provided by the canopy height data.

Choice of Downsampling layer While there was no quantitative difference between the two proposed
downsampling methods (using a convolutional layer vs. using an average pooling layer), we did notice
an important qualitative difference. More specifically, models trained with the Conv2d downsampling
layer displayed an undesirable behavior at inference time, where cell-like patterns could be seen in
the tile-level predictions (see Figure 27). Switching to the AvgPool downsampling layer got rid of this
artifact. As this switch was applied early-on, we do not report metrics of models trained with the
Conv2d downsampling layer.
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5.2 Cross-datasets evaluation
In an effort to understand more about the impact of the data distribution shift, we perform cross-
datasets evaluation of the best performing model, as well as Clémence’s best model. Simply put, we
evaluate each model on: Clémence’s test set, Yuchang’s test set, and my test set. While Clémence’s
and Yuchang’s datasets have a similar biomass values distribution (cf. Figures 20 and 22), my dataset
has much fewer datapoints, but with more medium-to-high biomass values (cf. Figure 18).

Model Dataset RMSE MAE ME
Clémence Clémence 64.87 20.29 -3.21

Yuchang 77.12 32.30 -5.11
Mine 85.80 61.25 -6.40

Mine Clémence 69.65 30.75 11.05
Yuchang 79.60 39.65 10.04
Mine 75.52 53.83 -4.80

Table 6: Cross-datasets test metrics.
Model describes whose model was evaluated and Dataset describes on whose dataset it was evaluated.

Both models are relatively sensitive to the data distribution shift: there is a consistent performance
drop when the models are evaluated on a dataset they have not been trained on. Future work could
explore techniques such as domain adaptation or transfer learning to mitigate the impact of data
distribution shift on model performance.

5.3 Visual assessment
We finally visualize a few selected models’ predictions on a couple of selected Sentinel-2 tiles. Regarding
the models, we compare the following ones: the best model with GNLL (CH, S2, MTL with constant
GNLL), the best model with LNLL (CH, S2, single-task learning with LNLL), the best model with only
Sentinel-2 data as input (S2, MTL with uncertainty RMSE), and the best model overall (CH, S2, MTL
with RMSE uncertainty). We also include predictions from Clémence’s model, and the GEDI L4B
data product. As for the tiles, the next page displays predictions for Sentinel-2 tile 38TMM, located in
Georgia; the following page displays predictions for Sentinel-2 tile 22MDE, located in Brazil.

From this (limited) qualitative assessment, we can infer the following:

• models that rely solely on Sentinel-2 data as input are more sensitive to the visual artifacts of
Sentinel-2: one can see clouds in prediction [22MDE - 3], which are present in the input Sentinel-2
image, while they are not present in either of the other predictions, which also relied on canopy
height data;

• models that were trained with LNLL ([38TMM-4] and [22MDE-4]) are the ones that under-predict
biomass the most;

• models that manage to learn the highest biomass values are those trained using uncertainty-based
MTL ([38TMM-2] and [22MDE-2]);

• overall, the models extract the appropriate features from the input, but consistently under-predict
the corresponding biomass values.
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[38TMM - 1] CH, S2, MTL  
(GNLL constant)

[38TMM - 2] CH, S2, MTL  
(RMSE uncertainty)

[38TMM - 3] S2, MTL  
(RMSE uncertainty)

[38TMM - 4] CH, S2, LNLL, STL

[38TMM - 5] Clémence [38TMM - 6] GEDI L4B



[22MDE - 1] CH, S2, MTL 
(GNLL constant)

[22MDE - 2] CH, S2, MTL  
(RMSE uncertainty)

[22MDE - 3] S2, MTL  
(RMSE uncertainty)

[22MDE - 4] CH, S2, LNLL, STL

[22MDE - 5] Clémence [22MDE - 6] GEDI L4B



5.4 Comparison with other biomass maps
In order to benchmark our best model’s performance on FIA reference data (cf. Section 3.1.5), one
has to aggregate the biomass predictions at the hexagon-level. This is performed in two steps: we
first downsample the predictions from a 50m⇥ 50m pixel resolution to a 1km⇥ 1km pixel resolution,
and average the predictions to reach the hexagon-level resolution. We experiment with two ways of
performing the downsampling step:

• the first method, average, consists in taking the average of the 50m⇥ 50m predictions;

• the second method, max, consists in taking the maximum of the 50m⇥ 50m predictions.

In Figures 29 and 30 we report the binned residuals for, respectively, the average-pooled method, and
the max-pooled method. Additionally, Figure 28 displays the distribution of biomass values in the FIA
dataset.

In the average downsampling case, the performance of the model is clearly sub-optimal: it consistently
underpredicts biomass, by a very large amount compared to the other models. The only positive
outcome is that it outperforms FIA in the 0� 25 Mg/ha bin.
In the maximum downsampling case, the model performs slightly better. It is rather accurate in the
0� 25 Mg/ha bin. In some cases, e.g. in the optimistic case for the 25� 50 Mg/ha and 50� 75 Mg/ha
bins, or in the pessimistic case for the 50�75 Mg/ha bin, it even outperforms the other models. However,
as soon as we reach the 75 Mg/ha threshold, the model goes back to consistently underpredicting biomass.

As the FIA data distribution closely follows a long-tail distribution, similar to that of Yuchang’s and
Clémence’s datasets, it was expected that Clémence’s model would overall achieve a better performance
on the FIA data. However, the consistent underestimation of medium-to-high biomass values was
not expected, as the data distribution shift would suggest that such values would be more accurately
estimated using my model than using Clémence’s model. We blame most of this behaviour on the low
number of training samples, and elaborate on other contributing reasons in Section 6.2.3.

It is worth noting that these results should be taken with a grain of salt: the difference in data quantity
and data distribution across datasets is significant, and the FIA data distribution is very different to
that of the training dataset.

Figure 28: FIA AGB values distribution, for both scenarios.
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Figure 29: Binned residuals for the average-pooled model, for the FIA
optimistic (top) and pessimistic (bottom) scenarios.

Figure 30: Binned residuals for the max-pooled model, for the FIA
optimistic (top) and pessimistic (bottom) scenarios.
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6 Conclusion
In this chapter, we take a step back, and consider the outcomes and limitations of this work.

6.1 Outcomes
First of all, the use of Sentinel-2 data is a valuable approach for estimating biomass. However, the
incorporation of canopy height data can further improve the accuracy of the biomass estimation model.
Using both Sentinel-2 and canopy height data outperformed using only one of these sources. While not
surprising per se, one could have expected models with only Sentinel-2 data as input to learn as much as
models with Sentinel-2 data and canopy height data, as the latter was itself extracted from the former.
One possible explanation for this finding is that the canopy height data used in the study was obtained
from multiple Sentinel-2 images at different timestamps. Therefore, combining the information from
multiple timestamps led to a more accurate estimation of the canopy height, which, in turn, improved
the accuracy of the biomass estimation model.

The study also found that multi-task learning (MTL) can help with biomass estimation when Sentinel-2
data is available (either as the sole input, or alongside canopy height data). However, MTL does not
provide much added benefit when only canopy height data is present. The reason for this might be that
the signals provided by canopy height data alone seem insufficient, and MTL tends to confuse the task.

Lastly, the study raises a crucial question: Would providing more data cancel out the added benefit of
MTL? The answer to this question is not straightforward since it depends on various factors such as
the quality and quantity of the data provided. One possibility is that MTL is only useful in low-data
regimes since it helps to leverage information across different tasks. However, the study found that
MTL can improve the model’s performance even when more data is available. In particular, MTL
provides more added benefit when both Sentinel-2 data and canopy height data are present than
when only Sentinel-2 data is used as input. Therefore, more studies are required to determine the
optimal combination of data and techniques that can enhance the accuracy of biomass estimation models.

As a final word, the outcome of this work indicates that there’s only so much you can learn from
Sentinel-2 data only. Increasing model complexity, experimenting with various MTL approaches, helped
the regression task to some extent. But providing additional signals, like canopy height, helped the task
even more. This suggests that, while engineering state-of-the-art networks can get you quite far, there
exists a certain threshold that, to be overtaken, requires more data. Both in terms of data samples,
and by leveraging additional data sources with different modalities.

6.2 Limitations
We identify several limitations pertaining to this work, which we organize thematically.

6.2.1 Measuring biomass
Reference data When dealing with any type of learning, the quality of the ground-truth data is
a crucial factor to ensure the subsequent quality and robustness of the model. With regards to the
biomass reference data at hand, while it has been processed by GEDI, the underlying data relies on
”field” biomass values. There are many potential sources of bias when estimating those biomass values,
including methodological, human and equipment biases when measuring tree dimensions, and the use
of incorrect allometric models when estimating tree biomass from these measurements [23]. As a result,
the consistent accuracy and uncertainty assessment of continental and global scale AGB maps are
hampered by the lack of a global reference dataset [65, 66]. Additionally, the lack of availability of
reference biomass data from Majority World countries [27,67,68] raises ethical concerns.
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Earth Observations Additionally, previous works [69, 70] have shown that many factors can
negatively affect the potential of Earth observations (EO) to accurately estimate biomass. Those
factors include saturation at high biomass, mixed soil and vegetation components influencing signals
from low biomass areas, and variations in the EO signal due to environmental effects such as rain
and snow. And while leveraging EO is crucial to monitor biomass stocks, as it allows us to do it
more frequently, across longer periods of time, and over larger spatial scales when compared to forest
inventories, forest inventory plots were never designed to be used in combination with pixels from EO.
Data manually collected on the ground can hugely differ from remote satellite measurements in terms
of spatial resolution and coverage, so discrepancies are usually introduced when trying to generate
wall-to-wall remote sensing-derived products. As a result, a consistently observed pattern in current
AGB maps derived from space data is overestimation of low biomass and underestimation of high
biomass [65,69]. This is consistent with what we observe in this work, as well as in [9]’s and [8]’s works.
Pointers for a somewhat harmonized evaluation procedure could include a framework (see Figure 31)
developed by [7] to compare AGB maps with AGB estimates from a global collection of National Forest
Inventories and research plots that accounts for the uncertainty of plot AGB errors.

6.2.2 Dataset
Quantity One cannot cast aside the possibility that the reduced size of the dataset (compared to
that of Clémence and Yuchang, for example) might be at fault regarding the models’ inability to learn
more, at least on a global scale. Recovering additional data points, notably by correcting the matching
procedure, could have changed the outcome of this work to some extent.

Temporal range Restricting the temporal range of Sentinel-2 images from May to September, for
the leaf-on season, might be an issue for the Southern hemisphere, e.g., Australia where their winter
spans June through August. Such seasonal changes can impact the quality of the features that can
be extracted from the Sentinel-2 images: should they be covered in snow, the models will struggle to
learn anything, and will most likely heavily rely on the geographical prior. Additionally, this results
in a temporal offset between the Sentinel-2 image and the reference GEDI biomass values: a GEDI
footprint might have been sampled in June and the corresponding Sentinel-2 image might have been
shot in September. A better way to consistently match Sentinel-2 images and GEDI footprints could be
to leverage the date at which the footprint was obtained; or to leverage the leaf_off flag in the GEDI
L2A data product, which indicates whether the observation was recorded during leaf-off conditions
in DBT and DNT prediction strata (see Figure 32). It is worth noting that taking such steps might
prove superfluous. While biomass production does vary over the course of the growing season, it
may not change significantly over a period of a few months. In some forests, biomass production
may be relatively constant throughout the year due to the presence of evergreen trees that retain
their leaves year-round. In contrast, in grasslands, biomass production may be more strongly tied to
seasonal changes in rainfall and temperature. Additionally, one might view this temporal mismatch as
introducing noise in the dataset, which can help the model generalize better.

6.2.3 Methods
MTL With respect to Multi-Task Learning, many promising methods were not investigated, for
lack of time. Those include using a bottom- vs. top-layer approach, as explained in 2.3. Other
weighting schemes, particularly those taking into account the history of the gradients, could have been
experimented with. Additionally, for a given architecture (e.g., Xception), all the heads were identical,
independently of the task being performed. While this remains the most widespread approach, one
might experiment with each head being tailored to the task at hand. Finally, the heads were also
identical (modulo the number of input features, and the number of hidden layers) across architectures,
making the ratio of head-parameters vs. body-parameters highly inconsistent.
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Figure 31: Schematic of the framework developed by [7].

Figure 32: The GEDI04_A [5] global stratification of plant functional types (PFT)
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Under-estimation The consistent under-estimation of biomass is the aspect of the model that should
be fixed in priority. It might be due to the fact that the best performing model, benchmarked against
FIA, was trained using RMSE. Considering that the training dataset has a wide range of values, not
balanced equally, this loss may not be the best choice for guiding the performance of the model. Other
losses, like the GNLL, that take into account the uncertainty linked with the prediction, might be
more suited in another framework. Additionally, it may be necessary to employ techniques such as
resampling or weighting.

Cloud mask In previous works [6, 9], the authors used the Level 2A cloud probability mask to
exclude cloudy patches: pixels with >10% cloud probability are considered as cloudy, and any patch
with � 10% cloudy pixels is discarded. They suggest that this approach avoids showing the network
patches carrying too little signal, but enables it to learn textural features that are robust near the
cloud borders. We did not proceed to mask patches this way.

6.3 Future Steps
Now that we have put things into perspective, it is time to reflect on the future steps that could be
taken.

6.3.1 Working with big data
The size of this dataset (although much smaller compared to Yuchang’s and Clémence’s) presented a
number of challenges, specifically, the slightest of bugs resulted in an exorbitant amount of time being
spent re-running the code on the entire dataset. In the future, I would rather start on a geographical
subset of the data. Once the methods and framework have been finalized, they can then be extended
to the global scale.

6.3.2 Biomass prediction
The present approach to biomass prediction could be meliorated through a number of steps. First of all,
the creation of a reference dataset, on which all methods (notably Clémence’s and Yuchang’s) would
be trained and tested. This would render the, currently difficultly comparable methods comparable.
Bench-marking the methods on the FIA data is a first step in this direction, but the GEDI footprints
from the continental US are not removed from the training data, so the metrics can be biased to
some extent. Additionally, looking for additional data sources might be what would help the learning
most. In addition to Sentinel-2 imagery, there are several data sources that can be used to regress
biomass density: LiDAR (Light Detection and Ranging) data can provide information about the height
and structure of vegetation; SAR (Synthetic Aperture Radar) data can penetrate through clouds and
provide information about the structure and moisture content of vegetation; other remote sensing
data, such as hyperspectral imagery and thermal imagery, can provide additional information about
vegetation properties.

6.3.3 Biomass change detection
Biomass change detection plays a critical role in environmental monitoring and management. With
the growing concern about climate change, the ability to accurately quantify and monitor changes in
vegetation biomass is becoming increasingly important. For example, changes in biomass can indicate
deforestation or forest degradation, which can lead to loss of habitat, soil erosion, and carbon emissions.
However, biomass change detection is a complex and challenging task. Directly estimating change in
biomass raises the issue of which reference data to use, as there is currently no large-scale biomass
change dataset. Another approach would be to compare predicted AGB maps across time-periods (e.g.
annually). One such statistically-robust method could be Bayesian hierarchical modeling [71]: one
specifies a probability distribution for the biomass values in each map, including the uncertainties of
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the individual biomass values; the model would then estimate the parameters of these distributions, as
well as the difference between the two maps, and provide a posterior distribution for the difference
that takes into account the uncertainties associated with each biomass value. An additional issue is to
distinguish between natural variability and actual changes in biomass. One could leverage climate data
such as temperature and precipitation, which can influence the growth and productivity of vegetation,
to somewhat teach the model how the biomass should be evolving. This could contribute to the
explainability of the model.
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Appendix

Figure 33: Intersection procedure pseudo-code.
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