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Abstract

Point cloud registration serves as a key component to a wide range of applications include 3D
reconstruction and LiDAR odometry and mapping. Existing approaches focus on registration of
point clouds with over 30% overlap, lowering this bound is of great benefit to real world applica-
tions. For example, under a 3D reconstruction setting, this would allow for reduced acquisition
time and fine-grained local geometry reconstruction by leveraging more fragment pairs. In this
thesis, we take the first attempt to study registration of low overlapping point clouds. This
is challenging because: i). fully convolutional local geometric features are contaminated by
irrelevant global context; ii). the inlier ratio of the over-complete correspondence set is upper-
bounded by the low overlap ratio p. To mitigate such challenges, we propose a pruning module,
which works by first aggregating local features to global patch-wise descriptors, then solving a
partial assignment problem with a differentiable optimal transport layer. It directly attends the
deep point cloud registration model to the overlap region and explicitly reduces the search space
of feature matching. Our pruning module is light and efficient that can be easily plugged into
deep point cloud registration models. We demonstrate improved performances from two deep
learning models on two benchmarks, the improvement is significant in low overlap regions.
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1
Introduction

Point cloud registration is a key task in point cloud processing, based on the consen-
sus over common parts captured from different sensors or viewpoints, it allows us to
reconstruct the whole object/scene from multiple point sets. It has wide applications, in-
cluding autonomous driving [Zhang and Singh, 2015], 3D reconstruction [Choi et al., 2015],
simultaneous localisation and mapping [Mur-Artal et al., 2015], virtual and augmented
reality [Newcombe et al., 2011] etc.

Most works [Khoury et al., 2017] only address registration of point clouds with over
30% overlaps, as is shown in Table 1.1, starting from strong local geometric features
3DSN [Gojcic et al., 2019a], the geometric registration performances almost saturate on such
benchmark. However, if we take a close look at the registration recall with respect to overlap
ratios in Figure 1.1, we find the performances drop quickly in low overlap regions. Registration
of point clouds with low overlap is important in two senses: on one hand, it can save acquisition
time by reducing total scans required to capture the whole scene; on the other hand, it allows
for more fragment pairs to be registered, capturing detailed local geometries and increasing the
registration accuracy.

Most recently, there also emerged many end-to-end point cloud registration mod-
els [Wang and Solomon, 2019a, Yew and Lee, 2020]. However, they only report performances
on highly overlapping object-centric synthetic datasets. Unlike synthetic data, real 3D point
cloud scans are influenced by self-occlusion and substantial noise, and could have only a small
degree of overlap between scans. The performances of these deep models on real data should
be carefully tested.
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1. Introduction
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Figure 1.1.: Registration recall w.r.t. overlap ratios. We use D3Feat [Bai et al., 2020] features and
RANSAC [Fischler and Bolles, 1981] for model estimation.

Table 1.1.: Registration recall on 3DMatch benchmark [Zeng et al., 2017]. There are in total eight
scenes, Kitchen has the most fragment pairs, thus the recall is less biased by randomness.

3DMatch CGF PPFNet 3DSN FCGF MultiReg D3Feat TEASER++

Kitchen 0.85 0.72 0.90 0.96 0.95 0.98 0.96 0.98

Home 1 0.78 0.69 0.58 0.88 0.91 0.93 0.93 0.92

Home 2 0.61 0.46 0.57 0.79 0.72 0.73 0.70 0.83

Hotel 1 0.79 0.55 0.75 0.95 0.93 0.97 0.95 0.97

Hotel 2 0.59 0.49 0.68 0.83 0.88 0.90 0.91 0.89

Hotel 3 0.58 0.65 0.88 0.92 0.81 0.89 0.85 0.94

Study 0.63 0.48 0.68 0.84 0.86 0.92 0.85 0.89

MIT Lab 0.51 0.42 0.62 0.76 0.82 0.78 0.69 0.84

1.1. Objective of this Thesis

The aim of this thesis is to develop a deep learning model for registration of 3D point clouds
with low overlap. In this thesis, we try to answer the following two questions:

1. Why do current state-of-the-art learning-based methods fail to register point clouds with
low overlap?

2. How can we improve learning-based methods for this task?

2



1.2. Structure of this Thesis

1.2. Structure of this Thesis

This thesis is organized as follows: Chapter 2 reviews several essential components in a
correspondence-based, end-to-end point cloud registration pipeline. Chapter 3 presents the
methodological approach employed in this these. In more detail, Section 3.1 introduces
fundamental properties of point sets and basic point cloud processing. Feature extraction
model is explained in Section 3.2, followed by hard and soft feature matching methods
in Section 3.3. Section 3.4 talks about filtering networks that output associated weights for
each correspondence, these weights together with the correspondence set are employed to
get final pose estimation, explained in Section 3.5. Our main contributions are elaborated
in Section 3.6 and Section 3.7. Chapter 4 presents experimental results and discussions.
Eventually, this thesis is summarized in Chapter 5 with conclusions and outlooks.
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2
Related Work

This chapter reviews several key components in a complete point cloud registration pipeline.
First, we introduce deep learning models on 3D data, which is fundamental to the whole
pipeline. Second, we discuss both hand-crafted and learned feature extraction models that gen-
erate meaningful feature descriptors from local geometries. Third, we talk about learned outlier
filters that classify feature matches into inliers and outliers. Finally, we present end-to-end deep
learning models that aimed for point cloud registration.

2.1. Deep learning in 3D

3D data have multiple representations, they can be represented by multiple images with
different viewing directions [Su et al., 2015, Kalogerakis et al., 2017, Li et al., 2020],
as voxel grids [Maturana and Scherer, 2015, Qi et al., 2016, Choy et al., 2019b], point
clouds [Qi et al., 2017a, Qi et al., 2017b, Thomas et al., 2019], meshes [Defferrard et al., 2016,
Gkioxari et al., 2019], or implicit functions [Park et al., 2019, Mescheder et al., 2019]. Here,
we limit ourselves to point clouds and voxel grids.

2.1.1. Point cloud-based methods

Pointnet [Qi et al., 2017a] was a seminal work for deep learning directly from point clouds. The
basic idea is to apply a shared bank of MLPs to the coordinates and attributes of each individual
point, as approximations of point kernels to extract point-wise features, then use global max-
pooling to abstract to a global representation in a permutation-invariant manner. By design,
Pointnet does not capture local structures induced by the metric space the points live in, making
it difficult to deal with geometric detail. To overcome this limitation, the follow-up version

5



2. Related Work

Pointnet++ [Qi et al., 2017b] applies Pointnet recursively on a nested partitioning of the input
point set, to hierarchically aggregate local information into a compact and fine-grained repre-
sentation. Pointnets rely on MLPs to process point clouds individually, the receptive field is
limited even with a few set abstraction layers, harming the downstream tasks like semantic seg-
mentation. More recently, there have been some attempts to design convolutions directly over
point clouds [Thomas et al., 2019, Atzmon et al., 2018, Li et al., 2018]. These methods rely on
Euclidean space these points live in to build neighborhood and design spatial kernels, they
aggregate local context in a better manner and have shown strong performances on semantic
segmentation [Thomas et al., 2019]1 and geometric registration [Bai et al., 2020].

2.1.2. Voxel-based methods

Voxels are a straight-forward 3D generalisation of pixels, but point clouds from 3D sensors
are sparse by nature. Instead of applying 3D convolutions on the full volumetric occupancy
grid [Maturana and Scherer, 2015], sparse CNNs store the non-empty voxels as sparse tensors
and only performs convolutions on such sparse coordinate lists. Graham et al. [Graham, 2014]
introduce a CNN which takes sparsity into account, but is limited to small resolution (803

voxels in their experiments) due to the decrease in sparsity after repeated convolution. To deal
with the dilation of non-zero activations, Graham et al. [Graham and van der Maaten, 2017]
advocate the strategy to store the convolution output only at occupied voxels. Hackel
et al. [Hackel et al., 2018] explore feature sparsity by selecting only a fixed number of
the highest activations. Choy et al. [Choy et al., 2019a] introduce MinkowskiEngine, an
open-source auto-differentiation library that extends [Graham and van der Maaten, 2017]
to 4D spatio-temporal perception. It also proposes hybrid kernels with predefined sparsity
patterns to mitigate the exponential increase of parameters. Sparse convolutions have shown
strong performances on geometric registration [Choy et al., 2019b, Gojcic et al., 2020], image
matching [Rocco et al., 2020], object detection [Gwak et al., 2020], and scene recogni-
tion [Huang et al., 2020].

2.2. Feature extraction

2.2.1. Hand-crafted features

Extracting discriminative and robust 3D local descriptors is a fundamental task in the field of
3D computer vision, as this is usually the first step for downstream applications like point cloud
registration, 3D reconstruction and LiDAR odometry. 3D point clouds are usually captured
by different range cameras or scanners at different viewpoints, in order to match them cor-
rectly under arbitrary spatial transformation, rotation invariance is a desired key property of
these 3D local descriptors. In general there are two strategies to achieve this. The first is to
estimate a unique local reference frame(LRF) and then transform the local patch before fea-
ture extraction to obtain a canonical representation, such LRF is typically based on the eigen-

1Please refer to two benchmarks: Semantics3d: http://www.semantic3d.net/view_results.php?
chl=1 and Scannet: http://kaldir.vc.in.tum.de/scannet_benchmark for more details.
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2.3. Learned outlier filters

value decomposition of the sample co-variance matrix of the local patch. Methods include
SHOT [Tombari et al., 2010b] and USC [Tombari et al., 2010a] rely on this strategy. However,
such LRF is non-unique [Guo et al., 2013] by its simplest definition, the second strategy is to
rely on the intrinsically rotation-invariant point pair features(PPF) as basis for feature extraction.
These methods include FPFH [Rusu et al., 2009] and PPFH [Rusu et al., 2008]. Despite signif-
icant progress in the field, hand-crafted 3D local descriptors never reached the performance of
their 2D counterparts2.

2.2.2. Learned features

Inspired by the success of deep learning methods in image matching [Anastasiya Mishchuk, 2017,
Dusmanu et al., 2019], there has also been rapid progress in learning local geometric rep-
resentations from 3D data. CGF [Khoury et al., 2017] and LORAX [Elbaz et al., 2017]
utilise deep learning models to reduce dimensions of their handcrafted descriptors.
3DMatch [Zeng et al., 2017] voxelizes the region around each key-point and uses an modified
AlexNet to learn local descriptors supervised by a contrastive loss. PPFNet [Deng et al., 2018b]
samples different local patches and applies Pointnet to extract local context each, then it relies
on max-pooling to fuse global context from all patches and concatenate it to the local
context such that each local descriptor is also aware of the global context, local descriptors
are finally optimised by a N-tuple loss. PPF-FoldNet [Deng et al., 2018a] achieves feature
rotation invariance by using pure point pair features and is learned in a self-supervised way.
3DFeat-Net [Yew and Lee, 2018] jointly learns 3D feature detectors and descriptors for point
cloud matching with weak supervision. 3DSmoothNet [Gojcic et al., 2019a] relies on LRF to
canonicalise local patches and represents each patch using voxelised smoothed density values,
compact local descriptors are finally matched in a siamese deep learning architecture. This
patch-based processing is inefficient because intermediate network activations are not reused
across adjacent patches. FCGF [Choy et al., 2019b] overcomes this drawback by formulating
local feature extraction in a fully convolutional manner, it builds on sparse convolutions and
is 290 times faster than 3DSmoothNet [Gojcic et al., 2019a]. USIP [Li and Lee, 2019] is
a self-supervised method, it minimises the probabilistic chamfer loss of distances of each
point in one point cloud with its nearest neighbor in the other rotated and translated point
cloud. D3Feat [Bai et al., 2020] is a combination of D2-Net [Dusmanu et al., 2019] and
KPConv [Thomas et al., 2019], it simultaneously outputs salience scores and local descriptors
for each point. Li et al. [Li et al., 2020] propose an end-to-end learnable local multi-view
descriptors for 3D Point Clouds by integrating a differentiable renderer into a neural network.

2.3. Learned outlier filters

In a correspondence set, for each correspondence(point pair) after ground truth trans-
formation, inlier(good correspondence) is spatially close to each other and outlier(bad
correspondence) is distant by at least a margin τ . In spite of powerful learned 3D local descrip-
tors [Choy et al., 2019b], the over-complete correspondence sets obtained by feature matching

2Please refer to [Guo et al., 2016] for a comprehensive comparison of these hand-crafted descriptors.
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2. Related Work

are still seriously contaminated by outliers [Yang et al., 2020]. Heuristics include Lowe’s ratio
test [Lowe, 2004] and mutual check are effective, deterministic and data-independent prelimi-
nary steps to filter outliers. They are usually followed by RANSAC [Fischler and Bolles, 1981]
to determine final inlier set and estimate transformation model. In this section, we introduce
several deep learning models aimed at filtering outliers.

2.3.1. Outlier filtering networks

Ranftl and Koltun [Ranftl and Koltun, 2018] point out that inlier and outlier distributions over
an over-complete correspondence set admit regularity that can be learned. They introduce a
deep learning model to directly classify inliers and outliers and thus robustly estimating the
fundamental matrices. A concurrent work from Yi et al. [Moo Yi et al., 2018] proposes con-
text normalisation to incorporate global context in permutation-equivalent networks(Pointnets),
we term this PointCN. It has the same form as instance normalisation [Ulyanov et al., 2016]
while plays a different role, aiming to learn the hidden scene geometry and camera motion
of image pairs to determine the inlier/outlier matches in multiple view geometry. Pointnets
used in PointCN operates on each point individually and thus can’t capture local context,
OANet [Zhang et al., 2019] overcomes this by mapping correspondences to a fewer nodes, then
it applies the weight-sharing perceptrons on the spatial dimension to establish spatial correla-
tions. ACNet [Sun et al., 2019] embeds the attention mechanism into PointCN to exclude the
influence of outliers during normalisation.

2.3.2. Differentiable RANSACs

RANdom SAmple Consensus(RANSAC) [Fischler and Bolles, 1981] is a classic and has
been widely for model estimation [Hartley and Zisserman, 2003] since it was proposed,
there have been many follow-up works including DEGENSAC [Chum et al., 2005], GC-
SAC [Barath and Matas, 2018] and MAGSAC [Barath et al., 2019]. It’s so strong that even
today, with careful hyper-parameter tuning, is difficult to beat [Jin et al., 2020]. In deep
learning era, there have also been some attempts to differentiate and directly optimise it for
downstream applications. DSAC [Brachmann et al., 2017] mimics the behavior of RANSAC,
it differentiates the minimal set proposal and consensus scoring function by substituting the
deterministic selection of the highest scoring model hypothesis with a probabilistic selection
over the softmax distribution of scores. The scoring network is prone to overfitting, in a
follow-up work, Brachmann et al. [Brachmann and Rother, 2018] replace it with a soft inlier
count. In addition, it uses the Shannon entropy to measure scoring distribution broadness and
keep it within a reasonable range to stabilise the training process. More recently, Brachmann et
al. [Brachmann and Rother, 2019] extend [Brachmann and Rother, 2018] to learn hypothesis
search in a principled fashion that directly optimize an arbitrary task loss during training.

8



2.4. Deep point cloud registration

2.3.3. Neighborhood consensus networks

Neighborhood consensus network [Rocco et al., 2018] builds on the classic idea of disam-
biguating feature matches using semi-local constraints [Bian et al., 2017]. It formulates the
problem of filtering outliers as identifying spatially consistent matches by analysing neighbor-
hood consensus patterns in 4D space, and such consensus could be reflected by the activations
from convolutional operations. Convolutions in 4D space is computationally expansive and
thus not capable of high-accuracy localised correspondences, Rocco et al. [Rocco et al., 2020]
identifies the sparse nature of such 4D space and overcomes this drawback using sparse
convolutions. Two concurrent works from Choy et al. [Choy et al., 2020a, Choy et al., 2020b]
interpret this as recognising geometric patterns in high-dimensional space and further extend
4D convolutions for image matching to 6D convolutions for 3D point cloud matching.

2.4. Deep point cloud registration

There have been many attempts to do point cloud registration in an end-to-end fashion. Point-
NetLK [Aoki et al., 2019] is a combination of PointNet [Qi et al., 2017a] and Lucas & Kanade
algorithm [Lucas et al., 1981], it unrolls them into a single trainable recurrent deep neural net-
work. Instead of explicitly encoding such alignment process, PCRNet [Sarode et al., 2019] uses
Pointnets to directly regress the 3 translation and 4 normalized rotation quaternion. Similarly,
CorsNet [Kurobe et al., 2020] regresses the per point offset from one point cloud to another.
DeepICP [Lu et al., 2019] takes initial pose estimations from on-board sensors of autonomous-
driving cars to establish rough correspondence sets and then uses Pointnets to extract features,
final SVD-based refinement is built on the topk matches. DCP [Wang and Solomon, 2019a]
uses DGCNN [Wang et al., 2019] to first extract independent features, then it uses a symmet-
ric Transformer [Vaswani et al., 2017] module to learn the co-contextual information between
two point clouds, final pose is also solved using singular value decomposition. A follow-up
work PRNet [Wang and Solomon, 2019b] extends DCP [Wang and Solomon, 2019a] to partial-
to-partial registration by using a topk operator to determine points in common before feature
matching. RPM-Net [Yew and Lee, 2020] approach the partial-to-partial assignment by intro-
ducing a differentiable Sinkhorn layer [Sinkhorn and Knopp, 1967] with extended dustbin rows
and columns to deal with non-common points. Gojcic et al. [Gojcic et al., 2020] propose the
first end-to-end learnable, multiview 3D point cloud algorithm. In its simple form of pair-
wise registration, it uses FCGF [Choy et al., 2019b] for efficient feature extraction, modified
OANet [Zhang et al., 2019] for outliers filtering and weighted SVD for final pose estimation.
DGR [Choy et al., 2020a] shares FCGF and weighted-SVD layer with [Gojcic et al., 2020] in
common, while it uses a 6D convolutional networks to classify inliers and outliers.
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3
Methodology

In this chapter, we first introduce several key components of our model in detail, then we present
our complete model aimed for registration of point clouds with low overlap. We mainly follow
the pair-wise registration proposed in [Gojcic et al., 2020]. However, due to the nature of low
overlapping point clouds, we get much lower inlier ratios and this is problematic for filtering
networks. To mitigate this problem, we propose a pruning scheme to sample a few patch pairs
that are subsets of input point clouds and are of high probability to cover the overlap region.
These patches are further used to determine correspondences, filter outliers and estimate poses.
We term this pruning scheme as sampling subset I from input P could be interpreted as pruning
P\I. Through this operation, we explicitly reduce the search space of feature matching and
potentially1 increase the overlap ratio, transforming our originally difficult task into a relatively
easier one.

This chapter is organized as follows:

1. We introduce properties of point sets, point cloud sampling methods and 3-dimensional
Euclidean space.

2. We present Fully Convolutional Geometric Feature(FCGF) [Choy et al., 2019b] for effi-
cient feature extraction.

3. We talk about Learning to Find Good Correspondence(LTFGC) [Moo Yi et al., 2018] and
Order-Aware Network(OANet) [Zhang et al., 2019] for outlier filtering, and their exten-
sions to point cloud registration.

4. We show the Kabsch algorithm [Kabsch, 1976] for 3D pose estimation.

5. We propose a pruning scheme to sample optimal subsets.

6. We present our complete model.

1We say potentially because current model could fail to sample subsets that cover overlap regions some time.
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3.1. Preliminaries

3.1.1. Point sets

Since the introduction of AlexNet [Krizhevsky et al., 2012], deep learning in the form of con-
volutional neural networks has became the standard approach in image recognition tasks and
has almost revolutionized the whole computer vision field in recent 10 years. However, deep
learning on 3D data lags far behind. There are several reasons: i). For 3D convolution, memory
consumption increases cubically with voxel resolution and current hardware can’t afford that
yet; ii). Point cloud, as the most common representation of 3D data, is unstructured and imposes
great challenge for deep learning algorithms. The former is now partially fixed by sparse con-
volution [Choy et al., 2019a] but due to its specific batch processing, researchers still encounter
many challenges when "reinventing" deep learning models in 3D. Pointnet [Qi et al., 2017a]
addresses the latter problem by s shared bank of MLPs and global pooling layer. Here, we
introduce several properties of point clouds that should be carefully taken into account when
designing algorithms to learn meaningful features:

1. Unordered: A point cloud of N points are represented by a point set of cardinality N ,
such set is unordered and our model should be invariant to the N ! permutations of the
input set.

2. Neighborhood: Each point in a point cloud is not isolated, it forms a subset with its close
neighbors measured by Euclidean distance space. Our model could extract meaningful
local context from interactions within such subsets.

3. Sparsity: Point clouds are mostly sampled from the surface of scenes and objects, they
are sparse by nature. A straight-forward discretization of point clouds into 3D grids would
lead to massive redundant space and is not efficient. An efficient algorithm should also
take such sparsity into consideration.

4. Invariance under transformations: Rotating and translating a point cloud of a table
doesn’t change the fact that the point cloud represents a table. The learned representation
should be invariant under certain Euclidean transformation.

3.1.2. Iterative Farthest Point Sampling

Pointnets [Qi et al., 2017a] and dynamic graph neural network [Wang et al., 2019] require fixed
number of points as input. Given input point clouds P = {x1,x2, ...,xn} of size n, we
can use iterative farthest point sampling (FPS) [Qi et al., 2017b] to choose a subset P ′ =
{xi,1,xi,2, ...,xi,m} of arbitrary size m, such that xi,j is the most distant point (Euclidean dis-
tance) from the setM = {xi,1,xi,2, ...,xi,j−1} with regard to the rest P\M. Compared with
random sampling, it has better coverage of the entire point set given the same size. We took the
implementation from here2, the same scene with different levels of sparsity are shown in Figure
3.1.

2https://github.com/rusty1s/pytorch_cluster
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3.1. Preliminaries

Figure 3.1.: Scene representation with different FPS settings. It starts with 1024 points and doubles each
time until it reaches the raw resolution.

3.1.3. Voxelization

Sparse convolution is a voxel-based method and requires the input point clouds to be voxelised
into discrete 3D grids. When the voxel resolution is high, it’s common that several points
with different labels/colors fall into the same voxel. MinkowskiEngine [Choy et al., 2019a]
randomly chooses one point and assigns its label to the voxel by default. SparseC-
onv [Graham and van der Maaten, 2017] supports randomly picking one label or averaging the
labels.

3.1.4. 3-dimensional Euclidean space

Angle-axis representation A 3D rotation matrix could be represented using angle-axis
representation, which is composed of a single rotation angle θ and its axis ω. For a rotation
matrix R, the angle-axis (θ,ω) representation3 is:

θ = arccos

(
Tr(R)− 1

2

)
,ω =

1

2 sin θ


R(3, 2)−R(2, 3)

R(1, 3)−R(3, 1)

R(2, 1)−R(1, 2)

 (3.1)

Euler angle and rotation matrix Given the Euler angle representation of a rotation matrix,
we can derive the rotation matrix as a sequence of three rotations, one about each principle axis,

3https://en.wikipedia.org/wiki/Axis\T1\textendashangle_representation
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3. Methodology

then it has the form:

R = Rz(φ)Ry(θ)Rx(ψ)

=


cos θ cosφ sinψ sin θ cosφ− cosψ sinφ cosψ sin θ cosφ+ sinψ sinφ

cos θ sinφ sinψ sin θ sinφ+ cosψ cosφ cosψ sin θ sinφ− sinψ cosφ

− sin θ sinψ cos θ cosψ cos θ



=


R11 R12 R13

R21 R22 R23

R31 R32 R33


(3.2)

To retain the Euler angles from the rotation matrix, starting with R31, we find R31 = − sin θ,
then we get θ = − sin−1 (R31). There are two distinct values of θ that satisfy the equation.
Therefore, we can determine two possible values for Euler angles from rotation matrix4.

3.2. Feature extraction

Feature extraction provides each point/voxel associated features that describe local and global
context, it is the key to feature matching and downstream applications that require correspon-
dences between two images pairs or point clouds. Given a point cloud P ∈ RN×3, a feature
extraction model F predicts feature fi ∈ RC for each point pi ∈ R3 in P. Ideally, within
the same point cloud, the proximity of neighboring points in data space is preserved in feature
space; between two point clouds, spatially neighboring points after ground truth transformation
are closer to each other than the rest points in feature space. In consideration of both speed and
accuracy, we choose Fully Convolutional Geometric Feature(FCGF) [Choy et al., 2019b] as our
feature extraction backbone. As its name indicated, it is a fully convolutional neural network
that processes the whole point cloud in a single forward pass. In addition, it is a voxel-based
method, it uses sparse convolution to build deep networks and is thus memory efficient. In
this section, we first introduce sparse convolution, then we talk about metric learning which is
fundamental to feature learning, finally we present FCGF [Choy et al., 2019b].

3.2.1. Sparse convolution

Analogous to a dense 3D tensor(H × W × C, H and W represent image height and width,
C represents feature channels) used by 2D convolution, a standard input representation for 3D
convolution is a dense 4D tensor: three spatial dimensions and one feature dimension. However,
most voxels are empty due to the inherent sparsity. Such sparsity5 increases with the voxel
resolution, while the memory also increases cubically, causing huge waste of both storage and
computation. Instead, sparse convolution operates on sparse tensors.

4https://www.gregslabaugh.net/publications/euler.pdf
5Sparsity is defined as the ratio of empty voxels
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3.2. Feature extraction

Formally, we can represent a sparse tensor for input 3D data as coordinates C and associated
features F:

C =


b1 x1 y1 z1

...
...

...
...

bN xN yN zN

 ,F =


fT1
...

fTN

 (3.3)

where (xi, yi, zi) is the i-th 3D coordinate and bi is the batch index which provides an additional
dimension for batch processing. fi is the feature associated with the i-th coordinate. In the most
simple setting, fi is set to be 1 to indicate the occupancy of the sparse tensor.

Contrast to normal convolutions, in intermediate layers, a sparse tensor has a feature at location
u only if the corresponding coordinate is present in C, this avoids the dilation of non-empty
voxels in each layer and keeps the same sparse pattern.

3.2.2. Metric learning

The goal of metric learning is to learn a function Fθ(x) : RC → RD that keep the neighboring
proximity in both input and output space. Let D(x, y) : RD × RD → R be a metric function
measuring distance in the embedding space. Metric learning begins with two constraints: sim-
ilar features have to be close to each other: D(fi, fj) → 0 ∀(i, j) ∈ P and dissimilar features
have to be at least a margin away: D(fi, fj) > m ∀(i, j) ∈ N , where P andN denote positive
and negative sets that are used to train the network6. In practice, we look for the positive pairs
that are most distant and negative pairs that are most close, which we term hard positive mining
and hard negative mining respectively. Lin et al. [Lin et al., 2015] show that the constraints for
positive pairs could lead to over-fitting and propose a margin-based loss for positive pairs:

L (fi, fj) = Iij [D (fi, fj)−m+]2 + Īij [m− −D (fi, fj)]
2 (3.4)

where m+ and m− are margins for positive and negative pairs, Iij = 1 if (i, j) ∈ P and 0
if (i, j) ∈ N , and ·̄ is the NOT operator. We can also convert the constraint D(p,p+) <
m+,D(p,p−) > m− into a triplet loss: by adding the two constraints, we getD(p,p+)+m− <
D(p,p−) + m+, then set m = m− − m+ > 0, we get D(f , f−) − D(f , f+) > m, finally we
reach our triplet loss:

L (f , f+, f−) = [m+D (f , f+)−D (f , f−)]2 (3.5)

This loss makes sure that, given an anchor point f , the projection of a positive point p+ is closer
to the anchor’s projection than that of a negative point p−by at least a margin m. Analogous
to the hard positive and negative samples for contrastive loss, the mining of hard triplets is also
crucial for training. As the dataset gets larger, the possible number of triplets grows cubically,
the neural network relatively quickly learns to correctly map most trivial triplets, rendering a
large fraction of triplets uninformative. On the other hand, selecting only the hardest triplets
would introduce outliers unproportionally and make neural network unable to learn "normal"
associations. Hence it is common to only mine moderate negatives and positives. On the other
hand, embedding all the training samples and computing all pairwise distances are expensive,

6Note that features are all normalised, otherwise by scaling them, the margin could be arbitrarily small or big.
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Hermans et al. [Hermans et al., 2017] propose the Batch Hard mining, which selects the hardest
positive and hardest negative samples for each anchor within the batch when forming the triplets
to compute loss. Such formation can be considered moderate triplets, since they are the hardest
within a small subset of the data, which is exactly what is best for learning with the triplet loss.

3.2.3. Fully Convolutional Geometric Features

Network architecture FCGF [Choy et al., 2019b] feature is a fully convolutional geometric
feature built on Minkowski Engine [Choy et al., 2019a] which is an auto-differentiation library
that provides support for sparse convolutions and implements all essential deep learning lay-
ers. FCGF uses a UNet [Ronneberger et al., 2015] structure with skip connections and residual
blocks to extract sparse-convolutional features. The network architecture is shown in Figure 3.2,
it consists of a contracting path to gradually capture local and global context, and a symmet-
ric expanding path that enables precise localisation. Skip connections are applied in expanding
path which concatenates the low-level features from contracting path to high level features from
up-sampling operations. Specifically, the contracting path starts with a convolutional layer with
7× 7× 7 convolution kernels to first abstract big local context, then four strided convolutional
layers with residual blocks aggregate richer local context and increase the number of feature
channels to be 256, we term this bottleneck. The expanding path gradually up-samples the high
level features from bottleneck with transposed convolution and finally reaches the input resolu-
tion. Our final FCGF feature is a compact 32-dimensional feature that is powerful and efficient
for feature matching.

Figure 3.2.: FCGF network architecture. Each block is characterized by three parameters: kernel size,
stride, and channel dimensionality. Figure is taken from [Choy et al., 2019b].

Loss function Due to inherent properties of a fully convolutional network, metric learning
is challenging in two aspects. First, batch samples don’t follow an independent and identical
distribution(i.i.d.) and it is crucial to filter out false negative samples in hard-negative mining.
Under a traditional metric learning setting, for example, learning an embedding for object clas-
sification task, the feature extraction model consumes the input images/point clouds and outputs
a single feature as the global descriptor of the input. These global descriptors are only dependent
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on the inputs, as long as the inputs are not highly correlated7, they follow an i.i.d. However such
i.i.d. assumption doesn’t hold for a fully convolutional network. The feature extraction model
takes the point cloud and outputs associated features for each point, spatially neighboring points
produce adjacent features that are also correlated in feature space, thus, hard-negative mining
could find features adjacent to anchors, and they are false negatives. Second, the number of fea-
tures used in a fully convolutional network is orders of magnitude larger than in standard metric
learning problems and thus it is not feasible to use all pairwise distances within a batch. For
instance, FCGF [Choy et al., 2019b] generates 40k features for a pair of scans (this increases
proportionally with the batch size and voxel resolution) while a mini-batch in traditional metric
learning has only around 1k features.

In consideration of these two challenges, FCGF uses hardest-contrastive and hardest-triplet
losses. First, FCGF samples anchor points and a set of candidates for mining per scene. Then,
FCGF mines the hardest negatives f−i , f

−
j for both fi and fj in a positive pair (fi, fj) as in Figure

3.3 and remove false negatives that fall within a certain radius from the corresponding anchor.
Finally, FCGF uses the pairwise loss for the mined quadruplet (fi, fj, f

−
i , f

−
j ) and form the fully-

convolutional contrastive loss:

LC =
∑

(i,j)∈P

[D (fi, fj)−m+]2 /|P| + λnIi

[
m− −min

k∈N
D (fi, fk)

]2

/ |Pi|

+λnIj

[
m− −min

k∈N
D (fj, fk)

]2

/ |Pj|

(3.6)

The normalization term for negative pairs simply averages all valid negative pairs equally. λn
is a weight for negative losses and FCGF simply uses 0.5 to weight positives and negatives
equally. Similarly, FCGF constructs the triplet loss:

LT =
1

Z

∑
(i,j)∈P

(
I (i, ki)

[
m+D (fi, fj)−min

k∈N
D (fi, fk)

]

+I (j, kj)

[
m+D (fi, fj)−min

k∈N
D (fj, fk)

]) (3.7)

The above finds the hardest negatives for both fi, fj ∈ P . FCGF follows [Hermans et al., 2017]
and uses non-squared loss to mitigate features from collapsing into a single point. In practice,
false negatives indicator I((i, ki) and Ii is implemented using efficient hash-based filtering.

Implementation details On 3DMatch dataset [Zeng et al., 2017], FCGF applies differ-
ent data augmentations for both scans in a pair include random scaling ∈ [0.8, 1.2] rotating
∈ [0◦, 360◦]. Such rotation augmentation is a simple and effective way to make FCGF invari-
ant to relative camera pose changes. Using colors or normals as sparse tensor features leads
to overfitting as 3DMatch dataset is not diverse enough, despite the data augmentation tricks.
In this end, FCGF creates an input sparse tensor with coordinates from a scan and 1-vectors
as features. The voxel size is set to be 2.5 centimeters and the geometric feature dimension is
32. FCGF trains the networks for 100 epochs using SGD [Rosenblatt, 1958]. It starts with a
learning rate 0.1 and decays with an exponential learning rate schedule with γ = 0.99.

7Batch samples are normally constructed by random sampling from a large and diverse dataset, the batch size is
relatively small to the dataset. Therefore, batch samplers are usually not correlated.
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Figure 3.3.: Sampling and negative-mining strategy for each method. Figure is taken from
[Choy et al., 2019b].

3.3. Feature matching

Feature matching is the step to establish correspondences between two point clouds. For two
features fi and fj from two point clouds, their squared distance: D(fi, fj)

2 = ‖fi − fj‖2 =
‖fi‖2 + ‖fj‖2 − 2fi

T fj. Since FCGF [Choy et al., 2019b] features are normalized such that
‖fi‖ = ‖fj‖ = 1, we get D(fi, fj) = 2 − 2fi

T fj. We know that D(fi, fj) → 0 when two
features are similar and D(fi, fj) > m− when two features are dissimilar, thus the inner product
fi
T fj serves as a good measure of the similarity between two features, this score is high when

two features are similar and vice versa. In general, we have two ways to determine the final
correspondence, they are the hard argmax sampler and the soft softmax sampler.

3.3.1. Argmax sampler

The behavior of argmax sampler resembles that of nearest neighbor search. In a toy example
shown in Figure 3.4, after computing the feature similarity scores between pi and candidates
{qi}, i = 0, 1, 2, 3, 4, we assign the candidate q4 to pi as its correspondence, as it has the
highest similarity score(smallest distance in feature space). Mathematically, this equals to one-
hot encoding of the argmax function over the similarity scores vector:

m(pi,Q) = onehot[argmax(FQfi
T )]Q (3.8)

where m(pi,Q) is the function to determine the correspondence of pi from Q, FQ ∈ RN×C

represents the features, Q ∈ RN×3 represents the coordinates.

One drawback of argmax sampler is that it is non-differentiable. Due to the argmax operation,
the gradients could only pass the argmax-indexed feature during back propagation, this could
lead to high variance and cause instability during training and is thus problematic in an end-to-
end model. In practice, argmax sampler usually is only used at inference stage to produce sharp
correspondences. At training stage, it is replaced by a soft version to improve stability.

3.3.2. Softmax sampler

To alleviate the non-differentiability of argmax sampler, softmax sampler uses a probabilistic
approach that generates a "soft map" from one point cloud into the other. In the toy sample
shown in Figure 3.4, we assign an associate weight to each candidate qi based on its distance
to the query pi in feature space, these weights are all non-negative and normalized such that
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Figure 3.4.: Toy example of Argmax(left) and Softmax(right) sampler.

the summation is 1. The final correspondence is the weighted average of all these candidates.
Formally, these weights are given by a softmax function over the similarity scores:

m(pi,Q) = softmax(FQfi
T )Q (3.9)

Softmax function is differentiable everywhere, thus can be used during training to increase sta-
bility. However, because softmax sampler uses a "soft map", the weights are spread out that the
correspondence is not sharp. In the optimal situation8, each query has at most one correspon-
dence and its weight should be 19. To control this hardness or smoothness of the soft map, we
can introduce a temperature parameter λ:

m(pi,Q) = softmax(FQfi
T/λ)Q (3.10)

As is shown in Figure 3.5, in the limit λ→ 0, the soft map converges to a deterministic nearest
neighbor(NN) search [Plötz and Roth, 2018]. In practice, this usually happens when the net-
work is confident with its prediction at the end of the training. In addition, we also find that
a proper initialisation of the temperature value λ10 is important to finally get sharp correspon-
dence.
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Figure 3.5.: Influence of temperature value in a soft mapping.

3.3.3. Gumbel-Softmax sampler

PRNet [Wang and Solomon, 2019b] proposes to use Gumbel-Softmax [Jang et al., 2016] to ob-
tain sharp correspondence at the beginning of training while preserving the differentiability. It

8Non-maximum suppression is applied such that there’s no ambiguity in feature matching.
9Argmax sampler can help but only at inference stage.

10Initialise with a small value like 0.01.
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works by sampling the softmax weight vector in forward pass and back-propagating through
the full weight vector. Formally, the Gumbel–Softmax mapping function is given by:

m (pi,Q) = onehot

[
arg max

j
softmax

(
FQfi

T + gij
λ

)]
(3.11)

where (gi1, ..., gij, ..., giN) are i.i.d. samples drawing from Gumbel(0,1). The distribution of
Gumbel(0,1) is shown in Figure 3.6. The map in Equation 3.11 is not differentiable due to
the discontinuity of argmax operator. Instead, PRNet [Wang and Solomon, 2019b] relies on
straight-through gradient estimator [Bengio et al., 2013] which yields biased sub-gradient esti-
mates with low variance during back propagation. Specifically, it uses Equation 3.10 to compute
loss.

In practice, we find that with normalised FCGF [Choy et al., 2019b] features, the magnitude of
similarity scores is much lower than that of Gumbel noise, rendering our features uninformative
in the numerator term. Even with un-normalised features, we don’t find it useful compared to
softmax sampler with temperature. We list it here simply for the sake of completeness of this
thesis.
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Figure 3.6.: Probability density function of Gumbel(0,1).

3.4. Outlier filtering

Outlier filtering filters out outliers from feature matching. For a correspondence setO, a filtering
network F predicts a weight w ∈ [0, 1] that indicates the likelihood to be an inlier.

There are two reasons for the presence of outliers in an over-complete11 correspondence sets.
The first is that by nature, only points in the overlap region could have a good correspondence,
rendering many correspondences outliers, especially for point clouds with low overlap. The
second is that even our features are trained such that the neighboring proximity is kept in fea-
ture space, they are still far from perfect and this causes ambiguities during feature matching.

11We say "over-complete" because we predict correspondences for all the points in one point cloud. The knowl-
edge of "overlap region" is not accessible to us without ground truth transformation, otherwise we would only
need to predict for points in the overlap region.
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Consider two fully overlapping point clouds of the same size, in the best case, the score ma-
trix is a permutation matrix that all the elements ∈ {0, 1} and each row and columns sums to
1. However, what we could actually get is a fuzzy matrix that is shown in Figure 3.7, such
ambiguities bring us many outliers.

Figure 3.7.: Visualization of score matrix. Left: desired score matrix. Right: actual score matrix from
FCGF [Choy et al., 2019b].

To filter out outliers, one classic solution is first applying heuristics include ratio
test [Lowe, 2004] and mutual check, then using RANSAC [Fischler and Bolles, 1981]
for robust estimation. RANSAC works by alternating between hypothesis set proposal
and selection based on the sample consensus. The expected iterations k required to get an
outlier-free hypothesis set is as follows:

k =
log(1− p)
log(1− wn)

(3.12)

where w is the inlier ratio, n is the minimum number of samples required to estimate a
model(cardinality of the hypothesis set), p is be the desired probability that the RANSAC
algorithm provides an outlier free hypothesis set. In point cloud registration, to find at least
n = 3 good correspondences with p = 99.9%, the required iterations k ≈ 860 when w = 0.2,
this number is much bigger when the inlier ratio is smaller(k = 55000 when w = 0.05).
Therefore, it’s time-consuming to get reliable estimation for low overlapping point clouds. In
addition, the hypothesis selection is non-differentiable that it can’t be directly used to train a
deep neural network.

In this section, we present PointCN [Moo Yi et al., 2018, Ranftl and Koltun, 2018] and
OANet [Zhang et al., 2019]. These two methods were originally proposed for image-
based epipolar geometry tasks and were adopted to point clouds for deformation anal-
ysis [Gojcic et al., 2019b] and pair-wise registration [Gojcic et al., 2020]. With context
normalisation, they turn out to be efficient and can generalise well to unseen scenes.

3.4.1. PointCN

DFE [Ranftl and Koltun, 2018] and LTFGC [Moo Yi et al., 2018] are concurrent works that ex-
ploit combining Pointnet [Qi et al., 2017a] and context normalization [Ulyanov et al., 2016] to
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classify putative correspondences, which they refer to as PointCN. PointCN takesN normalised
correspondences between two 2D points (4×N) as input, and predicts one weight for each cor-
respondence that encodes the likelihood to be inlier. Weights-sharing Perceptrons(Pointnet)
process each correspondence independently and thus are invariant to permutations and flexible
to the size of input. Context normalisation integrates first and second moment statistics of in-
termediate activations within each image pair to encode global context, such as scene geometry
and camera motion.

Context normalisation In practice, context normalisation applies the same operation as
instance bormalisation [Ulyanov et al., 2016]. Let oli ∈ RCl be the output of layer l for corre-
spondence i, where C l is the number of neurons in layer l, we normalised oli to be:

CN(oli) =
oli − µl

γl
(3.13)

where,

µl =
1

N

N∑
i

oli, γ
l =

√√√√ 1

N

N∑
i

(oli − µl)2 (3.14)

By normalising each Perceptron’s output across correspondences, but separately for each image
pair, we efficiently encode global context into the distribution of the feature maps, rendering our
model aware of scene geometry and camera motion and thus can distinguish between inliers and
outliers.

Network architecture The network architecture of LTFGC [Moo Yi et al., 2018] is
shown in Figure 3.8. There are in total 12 Resnet blocks [He et al., 2016], each block
contains two sequential sub-blocks that consists of: a Perceptron with 128 neurons, an
instance normalisation layer, a batch normalisation [Ioffe and Szegedy, 2015] layer and a
ReLU [Hahnloser et al., 2000] non-linear activation function. Finally, a ReLU followed by a
tanh function is applied to force the output weights in the range [0,1). As is shown in Figure
3.9, such truncated tanh is preferred over a sigmoid function as it produces more binary weights
to completely remove outliers.

Figure 3.8.: Network architecture of Learning to Find Good Correspondence. Figure is taken from
[Moo Yi et al., 2018].
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Figure 3.9.: Comparison between truncated tanh and sigmoid functions.

Iterative form To refine the estimation, DFE [Ranftl and Koltun, 2018] formulates this task
as an iteratively re-weighted least-squares(IRLS) problem. It has in total 5 consecutive esti-
mation modules. As is shown in Figure 3.10, each module consists of two steps: the first step
takes correspondences and associated weights from last module to estimate a model, the second
step takes correspondences and residuals with respect to the previously estimated model and
generates new weights.

Figure 3.10.: DFE estimation module. Figure is taken from [Ranftl and Koltun, 2018].

Loss function We can form two loss terms. First, predicting the likelihoods of being inliers
can be seen as a binary classification task, our model classifies correspondences as inliers or
outliers. Therefore, we can apply the binary cross-entropy lossLc to supervise the classification.
Second, the model estimation module is a weighted least-squares problem and has a closed-
form solution that is also differentiable, thus we can form a regression loss Le over the final
estimated fundamental or essential matrix.

In practice, LTFGC [Moo Yi et al., 2018] trains the filtering network with a hybrid loss function:

Lx(Φ) = αLc (Φ,x) + βLe (Φ,x) (3.15)
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3. Methodology

where Φ are the network parameters and x is a set of putative correspondences, α and β weight
two loss terms.

Classification loss is a binary cross-entropy loss:

Lc (Φ,x) =
1

N

N∑
i=1

γiH
(
yi,S

(
oi
))

(3.16)

where γi is a weight to balance positive and negative examples, oi is un-normalised logit, S is
the sigmoid function used in conjunction with binary cross entropyH.

Regression loss is a mean squared error loss function:

Le (Φ,x) = min
{∥∥E∗ ± E

∥∥2
}

(3.17)

where E∗ is the ground truth essential matrix and E is the estimation.

Classification loss alone proves to be robust while adding the regression loss as a regulariser
further improves the performance. Detailed ablation studies are shown in Figure 3.11: Ours
denotes optimising with two loss terms, Essential denotes optimising with regression loss only,
Classification denotes optimising with classification loss only, Direct denotes directly regress-
ing the Essential matrix. Essential and Direct, which do direct regression without classification,
perform worse than Classification, as long as the number of keypoints is sufficient. Ours out-
performs all the others by combining both classification and regression, by a margin of 12-24%.
Note that the difference is larger for smaller error thresholds, suggesting that both Essential and
Direct are learning the general trend of the dataset without providing truly accurate poses.

Figure 3.11.: Comparison between different optimisation strategies. Figure is taken from
[Moo Yi et al., 2018].
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3.4. Outlier filtering

3.4.2. Order-Aware Network

Order-Aware Network(OANet) [Zhang et al., 2019] is different from LTFGC [Moo Yi et al., 2018]
in two ways. First, it introduces differentiable pooling and unpooling layers to capture local
context which is missed in PointCN. Second, it introduces spatial correlation layer which is
complementary to PointCN to better capture global context. With these two modifications, it
improves outlier filtering results.

Local context One drawback of PointCN is that it applies MLPs to each correspondence
individually, hence it can not capture local context, which has been shown important in Point-
net++ [Qi et al., 2017b]. OANet [Zhang et al., 2019] introduces a differentiable pooling layer
to map correspondences to clusters. Specifically, to mapN correspondences toM nodes, where
N > M , it directly learns a weight matrix Spool ∈ RN×M such that:

Xl+1 = STpoolXl (3.18)

where Xl+1 ∈ RM×D,Xl ∈ RN×D. Each row of STpool is normalised such that each node in Xl+1

can be seen as weighted average of all the samples in Xl. Different nodes attend to different
local context by learning different weight vectors. Up-samplingM nodes toN correspondences
is done by learning another weight matrix Sunpool in the same fashion.

Spatial correlation Another drawback of PointCN is that it encodes the global context by
mean and variance of features, this overlooks the underlying complex relationships between
correspondences. OANet [Zhang et al., 2019] overcomes this by introducing a differentiable
spatial correlation layer.

As is shown in Figure 3.12, N features first go through the differentiable pooling layer to form
M nodes which encode different local contexts, then six order-aware filtering networks cor-
relate the nodes to better model the global context. The order-aware filtering block is shown
in Figure 3.13, it has two PointCN modules and one spatial correlation layer in between. The
motivation for such design is that the pooled nodes are in a canonical order, their relations are
potentially useful. Spatial correlation layer applies weight-sharing perceptrons directly on the
spatial dimension to encode such relations. Note that PointCN applies weight-sharing percep-
trons on the channel dimension, therefore these two operations are orthogonal to each other and
are thus complementary. Therefore, the order-aware filtering module combines both of them to
better capture the global context.

3.4.3. Extension to point cloud registration

It is straight-forward to extend PointCN [Ranftl and Koltun, 2018, Moo Yi et al., 2018] or
OANet [Zhang et al., 2019] to point cloud registration. Apart from the input difference(changed
from 4 × N to 6 × N ), to estimate the final model, the weighted 8-point algorithm is also
replaced by weighted kabsch algorithm [Kabsch, 1976], we will detail the latter in Section
3.5. In addition, we follow [Gojcic et al., 2020] to design our filtering network, it consists
of an initial step and a refine step, the initial step takes the correspondences set and predicts
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3. Methodology

Figure 3.12.: Network architecture of OANet. Figure is taken from [Zhang et al., 2019].

weights, the refine step takes the correspondence set together with their weights and residuals
with respect to the previously estimated model, then predicts new weights. According to the
inlier/outlier classification recall and precision, we see a consistent improvement from the
refine step. In consideration of the computational load, we only refine once.

3.5. Transformation estimation

Point cloud registration can be formulated as a weighted least-squares problem. Given a set
of correspondences and associated weights, the optimal transformation will minimise their L2

distances:

R̂, t̂ = arg min
R,t

Np∑
i

wl‖Rpi + t−m(pi,Q)‖2, pi ∈ P (3.19)

where m(pi,Q) determines correspondence of pi from Q. For good correspondences, R̂
and t̂ minimise their L2 distances in Euclidean space, while for bad correspondences, their
weights are close to 0 and influences are thus discarded in our minimisation problem. Arun et
al. [Arun et al., 1987] propose a closed-form solution to Equation 3.19, which we refer to as
Kabsch algorithm.
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3.5. Transformation estimation

Figure 3.13.: Order-Aware Filtering block. Figure is taken from [Zhang et al., 2019].

3.5.1. Kabsch algorithm

Given two point clouds P and Q, together their feature matching function m and weights {wl},
we summarise the closed-form solution to Equation ??eq: kabsch as follows:

we first determine weighted centroids p and q of P and Q:

p :=

∑NP

l=1 wlpl∑NP

l=1 wl
, q :=

∑NQ

l=1wlql∑NQ

l=1 wl
(3.20)

then, the centered point clouds can be computed as:

p̃l := pl − p, q̃l := ql − q, l = 1, . . . , N (3.21)

let P̃ ∈ RN×3 and Q̃ ∈ RN×3 denote the centered point clouds, then a weighted co-variance
matrix S can be computed as:

S = P̃TWQ̃ (3.22)

where W = diag(w1, ..., wN) is the diagonal weight matrix. Considering the singular value
decomposition S = UΣVT , the solution is given by:

R̂ = V


1 0 0

0 1 0

0 0 det
(
VUT

)
UT (3.23)

where det denotes computing the determinant and is used here to avoid creating a reflection
matrix. Finally, t̂ is computed as:

t̂ = q− R̂p (3.24)

Kabsch algorithm is differentiable [Paszke et al., 2017], thus can be plugged into an end-to-end
model for robust estimation.

3.5.2. Geometric loss

In an end-to-end point cloud registration model, given ground-truth and estimated transforma-
tions, we have several options to measure the deviation and supervise the training.

27
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Frobenius norm [Gojcic et al., 2020, Wang and Solomon, 2019b, Aoki et al., 2019] use
Frobenius norm of relative transformation matrices:

L =
∥∥∥R∗ − R̂

∥∥∥
F

+
∥∥t∗ − t̂

∥∥
2

(3.25)

where the Frobenis norm of a matrix A is defined as follows:

‖A‖F :=

√√√√ M∑
i=1

N∑
j=1

a2
ij = ‖ vec(A)‖2 =

√
trace (A>A) (3.26)

L2 norm [Choy et al., 2020a] uses the rotation angle deviation and L2 norm of the translation
vector as geometric loss:

Lrot(R̂) = arccos
Tr
(
R̂TR∗

)
− 1

2

Ltrans(t̂) =
∥∥t̂− t∗

∥∥2

(3.27)

L1 norm [Yew and Lee, 2020] uses the L1 distance between the source point cloud X trans-
formed using ground-truth and estimated transformations:

L =
1

J

J∑
j

∣∣∣(R∗xj + t∗)−
(
R̂xj + t̂

)∣∣∣ (3.28)

3.6. Patch-based pruning

As is illustrated in introduction part, with the above-mentioned techniques, state-of-the-art
methods fail to get descent results on low overlapping point clouds. The main reason is that
low overlapping point clouds inherently have fewer good correspondences, this makes it more
challenging for filtering networks to correctly determine inliers from an over-complete corre-
spondence set that is highly contaminated by outliers. To mitigate this problem, we aim to
directly increase the overlap ratio, this could be achieved by removing points outside of overlap
region and thus decreasing the denominator in Equation 3.29.

overlap ratio =
# points in the overlap region

# points in the overlap region + # points outside of overlap region
(3.29)

However, such overlap information is only accessible when given the ground truth transforma-
tion. On the other hand, for two subsets Ps and Qs of point clouds P and Q that fall into the
overlap region, they have similar appearance, and such appearance information is invariant to
Euclidean transformation12. Therefore, our goal becomes mining the subsets of two point clouds
that fall in the overlap region, this could be done by analysing their appearance similarities.

In the following parts, we first present a simple yet effective clustering and set aggregation
methods, then we introduce an optimal transport layer used to solve the partial assignment
problem.
12Rotating and translating the scan of a bunny doesn’t change the fact that it looks like a bunny.
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3.6. Patch-based pruning

3.6.1. Sampling and clustering

The first step is building a few subsets(patches) for each point cloud. The coverage of each
patch should not be too big nor too small. If it’s too big, in the extreme case, as big as the
input point cloud, then we simply go back to the original problem. If it’s too small, it becomes
difficult to distinguish patches as most of them would be small planar areas.

We build patches in two steps. Consider a point cloud P, first, we apply iterative farthest point
sampling(FPS) [Qi et al., 2017b] to determine K centroids. Compared with random sampling,
FPS has better coverage of the entire point set. This is especially beneficial when we only
sample a few centroids. Second, we form K patches using k-nearest-neighbor search. The
size M of each patch depends on the size of input and the number of patches. In practice, we
determine this by running a gird search.

Our proposed FPS and k-nn is fully deterministic and only contain 2 hyper-parameters K and
M . This simple strategy turns out to be sufficient for this task. Other advanced methods include
geometrically homogeneous partition [Landrieu and Simonovsky, 2018], which partitions the
point cloud into geometrically simple yet meaningful shapes, and these shapes don’t overlap
with each other. However, it requires to compute hand-crafted geometric features for each point
beforehand and is thus computationally heavier. In addition, different partitions have different
sizes, making it less flexible to be incorporated into highly optimized batch processing under
PyTorch framework [Paszke et al., 2017]. We leave this choice to future work.

3.6.2. Set aggregation

Set aggregation computes a compact global descriptor for each patch. We have two options for
this: one is directly learning a global descriptor from coordinates, for example the bottleneck
in Pointnet [Qi et al., 2017a]; another is aggregating the point-wise FCGF [Choy et al., 2019b]
features. We choose the latter because FCGF [Choy et al., 2019b] features are computed on
whole point cloud, it has richer global and local context that is helpful in disambiguate similar
patches.

Consider a patch with associated coordinates Cs ∈ RM×3 and features Fs ∈ RM×C , our goal
is aggregating them into a global descriptor Gs ∈ RC′ . One key property of set aggrega-
tion is permutation-invariance, because Cs and Fs are order-less. Global max-pooling and
average-pooling are typical permutation-invariant operations that are independent of orders of
input. However, they treat each element equally and are task-agnostic, are too simple to capture
complex global context and adapting to downstream applications. Instead, we learn a data-
dependent attentive pooling [Hu et al., 2020] layer to efficiently aggregate set features. Specif-
ically, we first learn a linear layer W to map feature vectors to associate weights s, then we
apply another MLP to the weighted feature vector to generate our final global descriptor:

si = ψ(fi,W), Gs = MLP (
N∑
i

si · fi) (3.30)

Actually, max-pooling and average-pooling could be seen as special cases of attentive pooling,
where s equals to [0, ..., 1, ..., 0] and 1M/M respectively and MLP becomes an identical layer.
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Other more complex methods include NetVLAD [Arandjelovic et al., 2016]. The high
level idea is first learning several centroids, then each centroid aggregates different local
contexts, and finally they are concatenated to a global descriptor. We leave the ablation of
NetVLAD [Arandjelovic et al., 2016] in our framework to future work.

3.6.3. Partial assignment

Partial assignment determines topk patch pairs to be used for registration, topk < M . We term
this partial assignment because not all patches could find a match, only those intersect with
the overlap region are likely to be selected. In practice, we rely on a differentiable Sinkhorn
algorithm [Sinkhorn, 1964] to solve this.

Outlier bins In this partial assignment problem, some patches should be ignored as they
can’t find a match. This is achieved by assigning them to dustbins [DeTone et al., 2018]. Specif-
ically, we first build K ×K score matrix S from global descriptors {Gs}, then we extend it to
a (K + 1)× (K + 1) matrix S that satisfies:

SK+1,i = Sj,K+1 = z, 1 ≤ i, j ≤ K + 1

S:K,:K = S
(3.31)

where z is a learnable parameter that adapts to the magnitudes of S as training proceeds.

Optimal transport Given the augmented score matrix S, we aim to find a partial assignment
matrix P ∈ R(K+1)×(K+1) which defines correspondences between two patch sets. It satisfies in
total 2K + 2 constraints:

P(i,:)1K+1 = P
T

(:,i)1K+1 = 1,∀i, j ≤ K

P(K+1,:)1K+1 = P
T

(:,K+1)1K+1 = K
(3.32)

Consider two patch sets Ps and Qs of size K, i-th patch in Ps is assigned to j-th patch in Qs
if Pi,j is the maximum along both i-th row and j-th column. i-th patch is ignored(assigned to
dustbin) if Pi,K+1 is the maximum along i-th row.

Determining P is a quadratic assignment problem, it’s NP-hard and requiring expensive
and complex solvers to find an optimal solution. However, from the optimal transport
theory [Cuturi, 2013], by adding an entropy regulariser, the assignment matrix can be obtained
by solving:

min〈S,P〉 − λH(P) (3.33)

where〈·, ·〉 is the Frobenius dot product, 〈S,P〉 =
∑

i,j Si,jPi,j and H(·) is an entropy regular-
ization term defined asH(P) = −

∑
i,j Pi,j log

(
Pi,j

)
.
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Sinkhorn’s algorithm According to Sinkhorn [Sinkhorn, 1964], Equation 3.33 constrained
by Equation 3.32 can be solved using the method of Lagrangian multipliers, the final solution
is given in an iterative form13. In practice, P is found by alternating between row normalisation
and column normalisation of S. However, in a deep learning model, this is found to suffer from
numerical overflow and is unstable [Dang et al., 2020]. Instead, we follow [Sarlin et al., 2020,
Yew and Lee, 2020] and apply such normalisation in log-space. The algorithm is in Algo. 1,
where logsumexp(A)i = log

∑
j(exp(Ai,j)).

Algorithm 1: Log-domain Sinkhorn’s algorithm.
Input: score matrix S ∈ RK×K , iterations n, dustbin value z, count j = 0
Output: P ∈ RK+1,K+1

1 Initialise S ∈ RK+1,K+1 by padding z to S ;
2 Initialise t = [− log(2K),− log(2K), ...,− log(2K), log(K)− log(2K)]T ∈ RK+1,1 ;
3 Initialise u = v = 0K+1 ;
4 while j<n do

5

u = t− log sumexp
(
S + 1K+1v

T
)

v = t− log sumexp
(
S + u1TK+1

)
j = j + 1

6 end
7 P = S + u + v + log(2K)

8 P = exp(P)

With Sinkhorn’s algorithm, we obtain a doubly stochastic matrix P14. This enforces reciprocity
of the matches, it is similar to mutual check but in a soft manner.

Loss function Sinkhorn’s algorithm is deterministic and has no learnable parameters. To su-
pervise our set aggregation model and the dustbin parameter z, inspired by [Sarlin et al., 2020],
we minimise the negative log-likelihood loss:

L = −w
∑

(i,j)∈M

log Pi,j − (1− w)(
∑
i∈I

log Pi,K+1 −
∑
j∈J

log PK+1,j) (3.34)

whereM is the ground truth matches set, I and J are unmatched sets, w is a weight to bal-
ance positive and negative samplers. This supervision aims at simultaneously maximizing the
precision and recall of the matching.

We build the ground truth M, I and J in the following ways. We first compute the overlap
ratios between two sets of patches, and denote such overlap ratio matrix as O ∈ RK×K . Pair
(i, j) ∈ M if and only if i). Oi,j > 50%, ii). Oi,j is the maximum along both row and column.
If none of {(i, j)}, ∀i is assigned toM, then i is assigned to I. J is constructed in the same
manner.

13We provide detailed derivatives in Appendix A.1
14In probability and combinatorics, a doubly stochastic matrix (also called bistochastic), is a square matrix A of

non-negative real numbers, each of whose rows and columns sums to 1. This is actually an abuse of doubly
stochastic matrix, as is shown in Equation 3.32, only first K rows and columns sum 1
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3.7. Our complete model

Our complete model proposed for registration of 3D point clouds with low overlap is shown
in Figure 3.14. Consider two point clouds P and Q, they are first voxelised into 3D grids, then
we run feature extraction model to get FCGF features [Choy et al., 2019b]. Next, we sample
N points and associated features from each point cloud for efficient batch processing. After-
wards, patch-based pruning is applied to sample topk patch pairs. Each patch pair is processed
independently by our filtering network to determine inliers and outliers. Finally, we use the
inlier ratio as in indicator to select one patch pair from in total topk pairs and then run Kabsch
algorithm over it to give final pose estimation.

We find inlier ratio to be a reliable indicator to determine the most overlapping patch pair. The
intuition is that a patch pair with high overlap has more ground truth inliers in an over-complete
correspondence set, our filtering network is thus less influenced by outliers and is more confident
when predicting inliers. We measure such confidence by thresholding the predicted logits and
term this inlier ratio.

Input Features Left patch Geometric registration result

  Outlier filtering 
& pose estimationFeature extraction Pruning scheme

  Filtering network

Outlier InlierCorrespondence

Figure 3.14.: Proposed pipeline for registration of point clouds with low overlap. It consists of four
steps: feature extraction, patch-based pruning, outlier filtering and pose estimation.

32



4
Experiments

In this chapter, we first talk about several evaluation metrics; then we introduce 3DMatch bench-
mark [Zeng et al., 2017] and our new LowOverlap benchmark built on 3DMatch dataset; next,
we present results from baseline methods and our proposed model;

4.1. Evaluation metrics

Overlap ratio Intuitively, overlap is the intersection between two point clouds after ground
truth transformation. Formally, it’s defined as follows: consider a set of point clouds {Pi},
for any two point clouds Pi,Pj ∈ R3×N , we use a ground truth transformation (Rij, tij)
to align them into a common coordinate frame. Consider a point p ∈ Pi, let nn(p,Pi)
denotes the nearest neighbor of p in Pi\p. Let εi be the median of the set of distances
{‖p− nn (p,Pi)‖ : p ∈ Pi} and define ε = maxi εi. Now for a pair of point cloud (Pi,Pj),
for each point p ∈ RijPi + tij , we can compute nearest neighbor nn(p,Pj). Consider the
fraction of such pairs that are within distance ε. Specifically, define αij

αij =
|{p ∈ RijPi + tij : ‖p− nn (p,Pj)‖ ≤ ε}|

|Pi|
(4.1)

and similarly for αji. We say thatPi andPj overlap if min(αij, αji) ≥ 0.3 [Khoury et al., 2017].

On 3DMatch benchmark [Zeng et al., 2017], after voxel down-sampling(voxel size=2.5cm) the
point clouds, ε is 2.03cm.
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Feature match recall Feature match recall shows how good the feature extraction model is
at finding a reasonable number of good correspondences for final pose estimation 1. Formally,
it measures the percentage of fragment pairs that can recover the pose with high confidence(the
more inliers, the more likely our model is to recover the true pose):

R =
1

M

M∑
s=1

1

([ 1

|Kij|
∑

(p,q)∈Kij

1(‖Rijp + tij − q‖ < τ1)
]
> τ2

)
(4.2)

where M is the number of fragment pairs, τ1 is a threshold on Euclidean distance between the
correspondence (p,q) found in the feature space. τ2 is a threshold on the inlier ratio over the
correspondence set and could be determined by theoretical analysis of the number of iterations
k needed by RANSAC. To find at least n = 3 corresponding points with the probability of
success p = 99.9%, the number of iterations equals k ≈ 55000 when τ2 = 0.05 and could be
greatly reduced if τ2 can be increased(e.g. k = 860 if τ2 = 0.2).

Feature match recall is preferred over precision because the latter can be arbitrarily in-
creased by pruning fragment pairs [Deng et al., 2018a]. As is shown in Figure 4.1, FCGF
features [Choy et al., 2019b] can keep high recall with both strict inlier ratio and inlier distance
thresholds, this is a promising feature for efficient and precise pose estimation.

Figure 4.1.: Feature-match recall with respect to inlier ratio threshold τ2(left) and inlier distance accu-
racy tolerance τ1(right). Figure is taken from [Choy et al., 2019b].

Relative translation and rotation error We follow the definition used in [Yew and Lee, 2018],
the relative translation error (RTE) and relative rotation error (RRE) measure the deviations
from the ground truth pose:

RTE = ‖t̂− t‖

RRE = arccos(
Tr(R̂TR)− 1

2
)

(4.3)

where R̂ and t̂ represent the estimated rotation and translation, Tr(X) represents the trace of
matrix X.

1Note that feature match recall here is defined over a set of fragment pairs, this is different from that over a
fragment pair, which measures the percentage of retrieved ground truth correspondences.
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Geometric registration recall To evaluate the final geometric registration on two frag-
ments with over 30% overlap, Choi et al. [Choi et al., 2015] propose to directly measure the
effect of estimation on the ground-truth correspondences Kij . A transformation is accepted if it
brings these ground-truth correspondence pairs into alignment. Specifically, (Rij, tij) is consid-
ered a true positive if the root-mean-squares-error(RMSE) of the ground-truth correspondences
is below a threshold τ 2:

1∣∣K∗ij∣∣
∑

(p,q)∈K∗ij

‖Rijp + tij − q‖2 < τ 2 (4.4)

τ is defined as 0.2 meter in [Choi et al., 2015]. This calculation requires to pre-compute the
ground truth correspondences, instead, we directly compare with the ground truth transforma-
tion, a transformation is accepted if the relative rotation error is below 10◦ and the relative
translation error is below 30 centimeters [Yang et al., 2020]2. Similar to feature match recall,
registration recall is considered as the primary measure as precision can be raised by pruning
false positives using robust global optimisation [Choi et al., 2015].

4.2. Dataset and benchmark

We perform experiments on two benchmarks, 3DMatch benchmark [Zeng et al., 2017] that fo-
cuses on high overlap regions and LowOverlap benchmark which goes to extremely low overlap
regions.

4.2.1. 3DMatch benchmark

Zeng et al. [Zeng et al., 2017] provide a dataset of in total 62 scenes collected from Analysis-
by-Synthesis [Valentin et al., 2016], 7Scenes [Shotton et al., 2013], SUN3D [Xiao et al., 2013],
RGB-D Scenes v.2 [Lai et al., 2014], and Halber et al. [Halber and Funkhouser, 2016]. 54
scenes are used for training and 8 scenes are used for testing3. These scenes are captured in
different indoor spaces include bedrooms, offices, living rooms, and restrooms, by different
depth sensors include KMicrosoft Kinect, Structure Sensor, Asus Xtion Pro Live, and Intel
RealSense, at different scales and viewpoints with diverse local geometries. It provides
great diversities and allows our models to generalize across different indoor space. 3DMatch
benchmark [Zeng et al., 2017] provides eight sets of scene fragments(50-60 fragments for
each scene), each fragment is integrated from 50 depth frames using TSDF volumetric
fusion [Curless and Levoy, 1996] and represents part of the scene with 3D point cloud, they
are. The visualizations are in Figure 4.2 and Figure A.1.

2Note that these hyper-parameters should adapt to the nature of the dataset.
3The detailed train/test split can be found in the project webpage:https://3dmatch.cs.princeton.edu
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4. Experiments

Figure 4.2.: Visualizing geometric reconstructions of 8 test scenes.

4.2.2. LowOverlap benchmark

The official 3DMatch benchmark [Zeng et al., 2017] only considers registration of point clouds
with over 30% overlap 4, however, this thesis aims at low overlap region. For all fragment sets
of 8 test scenes, we compute the overlap ratios between each fragment pair and construct a new
benchmark, we term it LowOverlap benchmark. Based on the overlap ratio, it’s divided into
4 levels: 5%-10%,10%-20%, 20%-30%, and 30%-40%, each has 1591, 2315, 1477 and 989
fragment pairs respectively.

4.3. Results

In this section, we present detailed registration results. We fix FCGF [Choy et al., 2019b] as our
default feature extraction model5 for all the methods and the voxel size is 2.5 centimeters. We
run all the experiments on a workstation with Intel(R) Core(TM) i7-7700K CPU@4.20GHz,
32GB of RAM and one NVIDIA GeForce GTX 1080Ti GPU.

4.3.1. Baseline methods

We first present geometric registration results from existing methods, including hand-crafted
filtering methods and deep point cloud registration models.

4Note that from our inspection, there are fragment pairs of low overlap(way lower than 30%) listed as ground
truth to be registered.

5The pre-trained model can be found herehttps://github.com/chrischoy/FCGF.
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4.3. Results

Hand-crafted filtering methods RANSAC [Fischler and Bolles, 1981] has been a classic
for filtering outliers for 40 years, together with heuristics(Lowe’s ratio test [Lowe, 2004]
and mutual check) and careful hyper-parameters tuning, even today, they are still difficult
to beat [Jin et al., 2020]. Truncated least squares Estimation And SEmidefinite Relax-
ation(TEASER++) [Yang et al., 2020] is a quite recent work that allows for a certifiable
registration. It provides an indicator of the reliability of the final solution and allows to
reject the registration, this is particularly useful to loop closure detection in a Simultaneous-
Localisation-and-Mapping(SLAM) system.

We take RANSAC implementation from Open3D [Zhou et al., 2018], maximum correspon-
dence distance is 5 centimeters, two convergence criteria are 50000 and 1000. For TEASER++,
we take the hyper-parameters tailed to 3DMatch dataset from the author 6.

We sample 5000 points and associated features for each point cloud7, and report results with and
without mutual check as a preliminary outlier filter. Mutual check turns out to be an efficient
preliminary step that it can filter out around 90% correspondences. Detailed results are in Table
4.1 and Table 4.2, * indicates method with mutual check.

We can see that RANSAC benefits from mutual check on both benchmarks while TEASER++
suffers from it. On one hand, mutual check increases the inlier ratio τ2 in Equation 4.2, allows
RANSAC to sample better hypothesis set given fixed iterations. On the other hand, it also
decreases the real number of inliers, thus harming the performance of TEASER++. RANSAC
and TEASER++ have similar performances in high overlap regions, but the gap becomes big in
low overlap regions(see Table 4.2).

Table 4.1.: Registration recall on 3DMatch benchmark with RANSAC and TEASER++.

RANSAC RANSAC* TEASER++ TEASER++* # Samples

Kitchen 0.878 0.953 0.967 0.962 449

Home 1 0.868 0.934 0.962 0.925 106

Home 2 0.623 0.742 0.792 0.736 159

Hotel 1 0.863 0.962 0.940 0.940 182

Hotel 2 0.872 0.872 0.897 0.859 78

Hotel 3 0.808 0.808 0.846 0.808 26

Study 0.752 0.889 0.850 0.855 234

MIT Lab 0.667 0.714 0.733 0.711 45

Mean recall 0.791 0.859 0.874 0.849

6https://github.com/MIT-SPARK/TEASER-plusplus/blob/master/examples/teaser_
python_3dsmooth/teaser_python_3dsmooth.py

7For TEASER++ without mutual check, we only sample 2000 points, as it becomes super slow with more sam-
ples.
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4. Experiments

Table 4.2.: Registration recall on LowOverlap benchmark with RANSAC and TEASER++.

RANSAC RANSAC* TEASER++ TEASER++* # Samples

5%-10% 0.041 0.214 0.306 0.315 1591

10% - 20% 0.308 0.582 0.672 0.662 2315

20% - 30% 0.706 0.848 0.871 0.866 1477

30% - 40% 0.902 0.930 0.942 0.930 989

Mean recall 0.489 0.643 0.697 0.693

Deep point cloud registration In spite of many end-to-end point cloud registration
models [Aoki et al., 2019, Sarode et al., 2019, Wang and Solomon, 2019a], most of them
only deal with point clouds of almost 100% overlap. Figure 4.3 shows examples of such
registration. To the best of our knowledge, PRNet [Wang and Solomon, 2019b] and RPM-
Net [Yew and Lee, 2020] are the only two open-source models that aim for partial-to-partial reg-
istration. However, they are still limited to the simulated ModelNet40 dataset [Wu et al., 2015]
and are trained with roughly 50% overlaps. We train DCP [Wang and Solomon, 2019a] and
PRNet [Wang and Solomon, 2019b] on 3DMatch dataset and can not get reasonable results, this
is also confirmed in Table 1 of DGR [Choy et al., 2020a]. For RPM-Net[Yew and Lee, 2020],
we replace the feature extraction model with FCGF [Choy et al., 2019b] and final registration
recall on 3DMatch benchmark is 0.549. Besides, we also replace the front-end of Super-
Glue [Sarlin et al., 2020] with FCGF and extend it for 3D point cloud registration, the recall
increases to 0.605, still way lower than that from RANSAC or TEASER++. The main reason
is that the Sinkhorn layer in both models can not provide enough confident correspondences.
We attribute this to the domain gap between ModelNet40 and 3DMatch dataset. It’s easier
for deep models to learn the canonical representation of most shapes in ModelNet40 dataset.
In addition, 3DMatch dataset has more ambiguities in feature matching due to repetitive and
planar local geometries.

4.3.2. Our methods

We test both modified LTFGC [Moo Yi et al., 2018] and OANet [Zhang et al., 2019] as filter-
ing networks in our model. Filtering networks are trained from scratch on 3DMatch training
datasets. We take all the fragment pairs with over 20% overlaps, randomly sample 2048 points
for each point cloud and build correspondences, then train them with classification loss only
using Adam optimiser [Kingma and Ba, 2014] for 100 epochs, the learning rate initialises at
0.0001 and is divided by 10 at 20th, 50th and 80th epochs. Pruning scheme is also trained sep-
arately, it’s an extremely light network, which can be trained within 10 epochs using negative
log-likelihood loss. The patch number K is set to be 10, each patch has 512 points, cover-
ing a quarter of the whole point cloud. We sample 10 patch pairs from 100 possibilities after
removing the dustbin rows and columns from the partial assignment matrix.
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4.3. Results

Figure 4.3.: Geometric registration results on ModelNet40 [Wu et al., 2015]. Figure is taken from
[Wang and Solomon, 2019a].

Pruning results In Figure A.2, we show the intermediate results from our pruning scheme.
We can see that for most fragment pairs, our pruning scheme can find highly overlapping re-
gions. This can efficiently reduce the search space of feature matching, thus increasing the inlier
ratio of the over-complete correspondence set.

Quantitative results The detailed results are in Table 4.3 and Table 4.4, * indicates model
with our patch-based pruning scheme. We can see that our pruning scheme increases the ge-
ometric registration in both high and low overlap regions, the improvement is significant in
low overlap regions. On standard 3DMatch benchmark [Zhang et al., 2019], there are in total
68 fragment pairs saved by our pruning scheme, their median overlap ratio is 30.8%, some of
them only have 14% overlaps. On LowOverlap benchmark, 1009 fragment pairs are saved, the
median overlap ratio is 12.8%.

Qualitative results We present samples that fail to be registered by modified
OANet [Zhang et al., 2019] but saved by our pruning scheme. They are shown in Figure
A.3 and Figure A.4, we can see that by mining the most overlapping patch pairs, we can
register quite challenging fragment pairs with extreme low overlap ratios(5%).

Failed cases In Figure A.5, we show some failed cases on LowOverlap benchmark. There
are two sources for these failures, the first is that our pruning scheme can not always find
most overlapping patch pairs. In Figure 4.4 we plot patch-based pruning recall with respect to
different topk, we can see that it requires big topk to achieve a high recall. The second source
is our filtering network. Although it can get high precision and recall(above 95%) most of the
time, but it still could go wrong when there are too many outliers.
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Table 4.3.: Registration recall on 3DMatch benchmark with filtering networks.

LTFGC LTFGC* OANet OANet* # Samples

Kitchen 0.898 0.949 0.931 0.960 449

Home 1 0.896 0.906 0.925 0.906 106

Home 2 0.686 0.742 0.704 0.698 159

Hotel 1 0.890 0.929 0.923 0.956 182

Hotel 2 0.859 0.923 0.872 0.872 78

Hotel 3 0.769 0.846 0.846 0.808 26

Study 0.701 0.795 0.782 0.833 234

MIT Lab 0.689 0.644 0.689 0.689 45

Mean recall 0.816 0.842 0.834 0.842

Table 4.4.: Registration recall on LowOverlap benchmark with filtering networks.

LTFGC LTFGC* OANet OANet* # Samples

5%-10% 0.069 0.255 0.1 0.309 1591

10% - 20% 0.375 0.6 0.444 0.641 2315

20% - 30% 0.717 0.823 0.778 0.847 1477

30% - 40% 0.886 0.906 0.901 0.926 989

Mean recall 0.512 0.646 0.556 0.681

4.4. Discussion

In this section, we compare our method with hand-crafted filters.

4.4.1. Hand-crafted filters vs. learning based filters

On standard 3DMatch benchmark, we can see that TEASER++ [Yang et al., 2020] has the
strongest performance, followed by RANSAC [Fischler and Bolles, 1981] with mutual check,
then is filtering networks with our pruning scheme. If we only look at the scene Kitchen which
has the most fragment pairs and the result is less biased by randomness compared to mean re-
call, our model is quite close to TEASER++ and is better than RANSAC. The same trend is
also shown on LowOverlap benchmark.

We don’t compare their run-time in our study, the main reason is that learning-based meth-
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Figure 4.4.: Patch-based pruning recall@k. A patch-based pruning is accepted if the most overlapping
patch pair is within the topk patch pair set.

ods are highly optimised by batch processing on GPU, while hand-crafted filters are mostly
implemented on CPU and don’t benefit from parallelization. In [Gojcic et al., 2020], they
report that filtering network is around 14x faster than RANSAC on the whole scene, while
[Cavalli et al., 2020] reports the contrary result(14ms(hand-crafts) vs. 21ms(learning-based)),
we attribute this to different implementation details.

Deep learning models are data-driven models, while hand-crafted models are mostly
data-agnostic and can not benefit from training samples. The most recent success of GPT-
3 [Brown et al., 2020] has shown that by scaling up language models to have 175 billion
parameters and train on 45TB data, it can bring substantial gains on many NLP tasks and
benchmarks. We have reasons to believe that our performances can also be further improved
by scaling up the training samples and using more powerful models.

4.4.2. Pruning vs. heuristics

Despite the fact that both increase the final inlier ratio, our pruning scheme is different from
heuristics(mutual check). Pruning scheme is applied before feature matching, it aims to find the
most overlapping region and reduce search space for feature matching, while heuristics work
after feature matching, aiming to increase the inlier ratio. To some degree, our pruning scheme
works by directly manipulating the input, it is flexible to be plugged into any deep learning
models. In addition, it can also be combined with heuristics, for example adding heuristics in
between feature matching and filtering networks in our model. In theory, this could improve
our filtering network.
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5
Conclusion and future work

5.1. Conclusion

In this thesis, we study the task of registration of 3D point clouds with low overlap, and show im-
proved results from pair-wise registration [Gojcic et al., 2020] with proposed pruning scheme.

We first show that the performances on standard 3DMatch benchmark [Zeng et al., 2017] are
almost saturated, by analysing the failed cases, we find most of these fragment pairs have
low overlap. Then we report that most end-to-end deep point cloud registration models fail
to achieve reasonable performances on real scans, this is attributed to low overlap on real scans
and the domain gap between ModelNet40 [Su et al., 2015] and 3DMatch [Zeng et al., 2017],
the latter is more difficult as feature matching has more ambiguities due to repetitive and planar
local geometries. Next, we analyse the learning-based pair-wise registration pipeline proposed
by Gojcic et al. [Gojcic et al., 2020], and find it could still break at outlier filtering step for low
overlapping fragment pairs. Having observed that two patches intersect in the overlap region
share similar geometric appearance which is robust to Euclidean transformations, we propose a
pruning scheme to mine the most overlapping patch pairs and use them for further registration.

In detail, our pruning scheme starts by building several patches from input point clouds, then a
light attentive pooling model aggregates the local features and predicts a global patch descriptor.
Finally a differentiable Sinkhorn layer [Cuturi, 2013] solves the partial assignment problem
from the score matrix extended by dustbin rows and columns. The proposed pruning scheme is
light and flexible that can be easily plugged into deep point cloud registration models. We hope
it could serve as a good start to explore this challenging task in deep learning era.

43



5. Conclusion and future work

5.2. Future work

In this section, we present several future works to improve our model.

Co-contextual learning Co-contextual learning has shown strong performances for feature
matching in 2D [Sarlin et al., 2020]. The high level idea is that feature extraction model works
on each image independently, rendering the extracted features unaware of the other image to
be matched and causing many ambiguities at feature matching step. Co-contextual learning
works by allowing two feature sets to communicate with each other, features are then updated
with information aggregated through message passing formulation [Gilmer et al., 2017] over a
complete graph. We find such scheme powerful for image matching that it almost doubles the
inlier ratios from original features. In addition, it greatly decreases the ratio between second
highest similarity score and highest score from 92% to 70%, making feature matching less am-
biguous. We’ve conducted extensive experiments to extend this idea to point cloud registration,
but merely get any improvements. One possible breakthrough would be the rotation invariant
positional encoding.

Soft attention scores At current stage, we prune points in a hard manner by simply re-
moving them, this is problematic if we fail to find the most overlapping patch pairs at first step.
A soft pruning scheme would rely on point-wise attention scores to guide feature matching and
correspondence weighting. This is more robust as all components of our model have access to
complete input regardless of their orders, attention scores are updated such that all components
finally reach a consensus.

Hierarchical structure Our model prunes points in an one-shot manner, the final patch
covers 25% of the input, regardless of the real size of overlap region. Ideally, the model follows
a coarse-to-fine strategy, it first takes the sparse point clouds and roughly determines the overlap
regions, then it consumes dense point clouds and attends to the overlap region more precisely.
We hope above-mentioned soft attention scores could make such hierarchical structure possible.

Fine-tuning the whole model Currently we train each part of our model separately and
finally put them together. In theory, our model could still benefit from fine-tuning them alto-
gether.
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A.1. Full derivatives of Sinkhorn iterations

Consider two discrete probability distribution P and Q defined on two finite sets
X = {x1, x2, ..., xk} and Y = {y1, y2, ..., yk} respectively. Stochastic transportation
maps Γ between P and Q are conditional distributions that fulfill the following marginalization
property: ∑

k

Γ (yn|xk)P (xk) = Q (yn) (A.1)

Denote the set of all possible stochastic transportation maps as G, the cost of sampling (xn, yk)
as c(xn, yk), then the expected cost of the least expensive transportation map is:

OTc[P,Q] = min
Γ∈G

∑
n,k

[c (xn, yk) Γ (yk|xn)P (xn)] (A.2)

The optimal conditional probability Γ(y|x) is non-zero only for few values of y. The reason is,
given an element x̂, there is usually a ŷ such that the transportation cost is the smallest:

c(x̂, ŷ) < c(x̂, y), ∀y ∈ Y (A.3)

The optimal solution is transporting all the probability mass from x̂ to ŷ. However, this is not
always possible because the probability mass P (x̂) could be larger than P (ŷ). In this case,
then the best thing to do is allocating as much mass as possible to ŷ and the rest to the second
cheapest element of Y . In the ideal case, for each element x in X , there is a unique and distinct
y in Y that minimizes the transportation cost and shares the same probability mass, then the
transportation map Γ is fully deterministic. Entropic regularization is a way to counteract the
tendency of optimal transport to produce nearly deterministic transportation maps by adding a
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A. Appendix

term that favors randomness, which is the entropy of the transportation maps, then the result is
a regularized transportation problem:

OT εc [P,Q] = min
Γ∈G

[∑
n,k

[c (xn, yk) Γ (yk|xn)P (xn)]− εH[Γ(y, x)]

]
(A.4)

The biggest advantage of including entropic regularization in an optimal transport problem is
that the regularized solution can be found very efficiently using a simple iterative algorithm.
Denote the joint distribution Γ(yn‖xk)P (xk) as Γ(xk), the probability P (xk) as Pk and Q(yk)
as Qk. Then we need to optimize the objective function:

E[Γ] =
∑
n,k

[CnkΓnk] + ε
∑
n,k

log (Γnk) Γnk (A.5)

under the following set of constraints: ∑
k Γnk = Qn∑
n Γnk = Pk

(A.6)

These two constraints can be integrated into the objective function using two sets of Lagrangian
multipliers and will result in the following functions:

L[Γ] = E[Γ]−
∑
n

λn

(
Qn −

∑
k

Γnk

)
−
∑
k

χk

(
Pk −

∑
n

Γnk

)
(A.7)

This function is smooth and convex, which implies that we can find the global minimum by
differentiating the loss and setting the gradients to be zero:

∇n,kL[Γ] = Ckn + ε log (Γnk) + ε+ λk + χn (A.8)

After setting the gradients with respect to Γnk to zero, we get:

Γnk = exp (−λk/ε) exp (−Ckn/ε) exp (−χn/ε− 1)

= vkKknun
(A.9)

where Kkn = exp (−Ckn/ε),vk = exp (−λk/ε), un = exp (−χn/ε− 1). together with the
constraints in A.6, we get: ∑

k Γnk = vn (
∑

kKn,kuk) = Qn∑
n Γnk = uk (

∑
nKn,kvn) = Pn

(A.10)

To satisfy the two constraints, one strategy is to iteratively update each set of variables while
keeping the other set fixed:

v
(t+1)
n = Qn(∑

kKnku
(t)
k

)
u

(t+1)
k = Pk(∑

nKnkv
(t+1)
n

) (A.11)

Then we get the final sinkhorn iterations1.
1Refer to this post for more details: https://mindcodec.ai/2018/10/01/
an-intuitive-guide-to-optimal-transport-part-iii-entropic-regularization-and-the-sinkhorn-iterations/
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A.2. 3DMatch training dataset

A.2. 3DMatch training dataset

Figure A.1 shows RGB-D reconstruction of 3DMatch training dataset.

A.3. Geometric registration with pruning scheme

Figure A.2 shows the intermediate pruning results. Figure A.3 and Figure A.4 show the success-
ful geometric registration results with our pruning scheme, Figure A.5 shows some examples of
failed cases.
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A. Appendix

Figure A.1.: Visualizing several RGB-D reconstructions of training scenes. Figure is taken from
[Zeng et al., 2017].
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A.3. Geometric registration with pruning scheme

Figure A.2.: Visualisation of intermediate pruning results on LowOverlap benchmark. We randomly
sample 12 fragment pairs, the first row shows the input, the second row shows the pruning
results. Note that each patch actually only has 512 points, for better visualisation, we apply
a radius search to the raw point clouds to get dense representation.
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Figure A.3.: Visualisation of successful registrations on 3DMatch benchmark. The first row shows suc-
cessful registrations from our model, the second row shows failed registrations from modi-
fied OANet.
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A.3. Geometric registration with pruning scheme

Figure A.4.: Visualisation of successful registrations on LowOverlap benchmark. The first row shows
successful registrations from our model, the second row shows failed registrations from
modified OANet.
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Figure A.5.: Visualisation of failed registration on LowOverlap benchmark. The first row shows the
ground truth, the second row shows that from our model.
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