
Approximate Second Order Optimization
for Fast Few-Shot Learning

Master’s Thesis

Yihang She
Department of Civil, Environmental, and Geomatic Engineering

Advisors: Dr. Martin Danelljan, Goutam Bhat
Supervisor: Prof. Dr. Fisher Yu, Prof. Dr. Konrad Schindler

July 5, 2021

Abstract

Few-shot object detection refers to the problem of detecting objects with only a few examples. It is a
challenging but real setting as many datasets arising from nature have long-tailed distributions. Currently,
mainstream research in few-shot object detection employs traditional gradient descent to find a solution to
optimization problems. Unfortunately gradient descent’s non-competitive convergence rate results in high
latency and consequently restricts real-time applications. Another issue is catastrophic forgetting where
previously learned knowledge is lost as the model overfits on few-shot data.

In this thesis, we first revisited the optimization problem in few-shot object detection and designed a
steep gradient descent strategy based on Conjugate Gradients (CG). In addition, we applied a meta learned
weight generator and a feature-wise regularizer to make CG even faster and more stable on existing bench-
mark. Next, we proposed a simple yet effective hierarchical detection approach (HDA) to address catas-
trophic forgetting. We ran extensive experiments on the COCO dataset to measure model performance
and converging speed. Experiments show that our optimization strategy CG is about 30 times faster than
stochastic gradient descent when applied to the same two-stage tuning approach (TFA). Consequently, HDA
achieves state-of-the-art in base class performance without any knowledge forgetting and has a competitive
performance on novel classes. HDA converges 200 to 250 times faster than SGD in TFA, and as such shows
potential for real-time applications.

Acknowledgements

This master thesis would be impossible without the guidance of my esteemed colleagues. In particular, I
wish to express my appreciation towards Prof. Dr. Fisher Yu and Prof. Dr. Konrad Schindler for advising
me on the choice of topic and supervision throughout this journey. I also wish to express my enormous
gratitude to Dr. Martin Danelljan and Goutam Bhat for their generous support and timely advice. I would
also like to thank my friends Nando Metzger and Bryan Yu sincerely for proofreading the thesis and giving
valuable feedback.

Last but not least, I would like to thank my parents for their unconditional love and support. I dedicate
my thesis to them.

Contents

1 Introduction 1
1.1 Focus of this Work . 2
1.2 Thesis Organization . 3

2 Related Work 5
2.1 Few-shot Learning . 5
2.2 Optimization in Few-shot Learning . 6
2.3 Object Detection . 6
2.4 Few-shot Object Detection . 6

3 Methods 9
3.1 Fast Convergence with Conjugate Gradient . 9

3.1.1 Baseline Approach: TFA . 9
3.1.2 Conjugate Gradient-based Optimization . 10

3.2 Refined CG in TFA with Meta-Learning . 12
3.3 Hierarchical Detection Approach . 13

4 Experiments and Results 17
4.1 Dataset . 17
4.2 Evaluation Metrics . 17
4.3 Implementation Details . 17
4.4 Experiments . 18

4.4.1 Naive CG in TFA . 18
4.4.2 Meta-Learning to Refine CG in TFA . 19
4.4.3 HDA with CG . 19
4.4.4 Running Time . 20

5 Discussion 23
5.1 Benchmarks . 23
5.2 Model Performance in Average Precision . 23
5.3 Model Performance in Convergence Speed . 25

6 Conclusion 29
6.1 Summary . 29
6.2 Outlook . 29

I

CONTENTS

II

List of Figures

3.1 Work flow of meta learning weight generator and regularizer 13
3.2 Workflow of hierarchical detection approach . 15

5.1 Influence of meta learned modules on TFA+CG for 1-shot COCO dataset (seed 0) 24
5.2 Convergence of different models on 1-shot COCO dataset (seed 0) 26

III

LIST OF FIGURES

IV

List of Tables

4.1 Average precision of the model TFA+SGD . 18
4.2 Average precision of the model TFA+CG . 19
4.3 Average precision of the model TFA+CG+meta . 19
4.4 Average precision of the model HDA+CG . 20
4.5 Average precision of the model HDA+CG+aug . 20
4.6 Time per iteration and number of iterations in optimization 20
4.7 Running time for feature extraction and optimization . 21

5.1 Performance of different models in generalized few-shot object detection 25
5.2 Overall running time of different models . 27

V

LIST OF TABLES

VI

Chapter 1

Introduction

Humans have the ability to quickly learn new concepts after experiencing similar tasks. This ability is
commonly demonstrated as they go about their daily lives. For example, a pianist can readily learn to
play the violin while exerting less effort compared to a novice with no background in music. If this could
be simply be explained by age, consider how a toddler can learn new words after being given only a few
instructions. Such an ability to effectively adapt to a new task with only a few examples is an ability also
desired in machine learning. In technical terms, we define this challenge as the few-shot learning problem.
Few-shot learning is significant for real-world applications of machine learning because on the one hand,
real-world data from many domains naturally have a long-tailed distribution with imbalances in sample
sizes across different classes. On the other hand, constraints such as computational and memory resources,
physical labor costs for human annotations, as well as data privacy restricts the ability to apply the traditional
machine learning paradigm of training a model on an abundance data. Real world applications require
making the most of limited data. The general paradigm of few-shot learning is to have a data-abundant set
of base classes and a data-scarce set of novel classes and try to generalize the knowledge learned from the
abundant dataset of base classes to a few-shot dataset of novel classes [13, 26, 20, 22, 37, 33, 6, 40].

Currently, in few-shot learning, the instance-level task of object detection is less well studied compared
to the image-level task of classification. As one of the fundamental tasks in computer vision, object de-
tection aims at localizing object instances in an image, which is usually represented by bounding box, and
determining the class label for each instance. Few-shot object detection is challenging given that it requires
both classification and localization of the detected objects but with only a few examples. Besides, it is im-
portant for few-shot object detection to retain the performance on base classes while learning novel classes
because in real applications, a scene could contain instances of both base and novel classes. The requirement
to achieve high performance on both base and novel classes is also known as generalized few-shot object
detection [38, 23, 12]. Currently, there are two major paradigms for few-shot object detection including
meta-learning and transfer learning. The meta-learning-based approaches first learns task-level knowledge
from the data-abundant base set and then applies it to a few-shot task. Benchmarks [21, 27, 11] for few-shot
object detection were first developed with meta-learning as its idea to first learn task-level knowledge fits the
setting of few-shot learning well. Subsequent to the meta learning-based approach, the two-stage fine-tuning
approach TFA [38] and its following works [23, 12] developed the transfer learning-based approach, where
the model is first trained on the data-abundant base dataset and then only a few layers are fine-tuned while
the other layers remain fixed. Besides, for few-shot object detection, researchers noticed the necessity of
keeping the performance on base classes while learning novel classes, as in real-world object detection one
scene could contain the instances of both base and novel classes [12].

1

CHAPTER 1. INTRODUCTION

While existing literature have developed a few methods to tackle few-shot object detection, there is still
room for improvement in the space of ”fast adaptation” and the avoidance of ”catastrophic forgetting”. Fast
adaptation: Currently, Stochastic Gradient Descent (SGD) is commonly used for model updates in few-
shot object detection. On the one hand, SGD is computationally cheap and stable at every single iteration
and it has been well implemented in popular machine learning libraries. On the other hand, it endures slow
convergence with a vast number of iterations, which fails to meet the demand of fast adaption and therefore
hinders the potential of few-shot object detection in real-world applications. Catastrophic forgetting: As
aforementioned, retaining the performance on base classes is also important. However, in few-shot learning,
it is often the case that the knowledge learned on old classes is largely forgotten when the model adapts
to new classes, which is referred as catastrophic forgetting. Even in the transfer learning-based approach
where the model performance on base classes is largely refined than its previous meta learning-based bench-
marks, forgetting still happens compared to the pre-trained base model. To mitigate the forgetting, various
techniques such as knowledge distillation have been applied [12]. However, even in the work [12] that the
model performance on base class has been successfully retained, complexity of the model is increased and
loss in knowledge distillation is still inevitable. If we want a robot to quickly detect objects in a novel scene
but with a few examples, current approaches are unsatisfactory and more works need to be done to ensure a
real-time performance without catastrophic forgetting.

1.1 Focus of this Work

Given the issues analyzed above, the focus of the thesis can be captured with three words: Faster, Higher,
Stronger. We propose a steep gradient descent technique and a novel hierarchical detection framework to
achieve faster convergence in adaptation, higher performance on base classes without catastrophic forget-
ting, and stronger performance in real-world settings.

To achieve fast adaptation, we tailored an optimization strategy based on Conjugate Gradient (CG) [8].
We started by interpreting the optimization problem in the transfer learning-based approach as a shallow
learning problem, where only a few layers are optimized. We then analyzed how to apply Newton’s method
properly for such a problem by approximating the Hessian matrix at every step using the Gauss-Newton’s
method. Then we applied CG to efficiently approximate the second-order optimization at each step. We first
show that our optimization method is significantly faster than the traditional SGD by applying CG to the
popular transfer learning approach TFA [38]. During subsequent analysis, we investigated how task-level
knowledge could benefit transfer learning approaches with CG, wherein we determined that a good initial
guess of weights can speed up CG while knowledge of the sensitivity of weights to different classes can
regularize the CG to minimize overfitting to few-shot data. Therefore, we meta-learned a weight generator
with feature embedding and a feature-wise regularizer to boost the performance of the current transfer
learning approach when CG is deployed. Furthermore, to have higher performance, we proposed a simple
yet effective hierarchical detection approach (HDA) that completely retains base class performance, thus
negating catastrophic forgetting. The faster convergence and higher performance of HDA together make it
stronger in real world challenges such as online learning of robots.

To summarize, the contributions of the thesis are as follows:

• We designed a CG-based steepest gradient descent strategy for few-shot object detection, which
achieves mush faster convergence than traditional gradient descent and thus ensures a seamless per-
formance in real-time applications.

• We integrated the meta-learning strategy with the transfer learning approach and utilized task-level

2

CHAPTER 1. INTRODUCTION

knowledge to make CG even faster and minimize overfitting when applied to current transfer learning
approach.

• We proposed a simple yet effective hierarchical detection approach to completely alleviate the catas-
trophic forgetting on base classes without any increase of model complexity.

1.2 Thesis Organization

The remaining chapters of the thesis are organized as follows:
Chapter 2 will introduce the recent literature that are related to our work, including researches in few-

shot learning, object detection, and few-shot object detection.
Chapter 3 will detail the methodology used in the work, including Conjugate Gradient-based optimiza-

tion strategy, meta learning of weight generator and feature-wise regularization, and hierarchical detection
approach.

Chapter 4 will present the dataset, evaluation metrics, implementation details of our experiments and
results.

Chapter 5 will compare the results with existing benchmarks and discuss the implications.
Chapter 6 will summarize the work done in the thesis and give an outlook for future researches.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Related Work

2.1 Few-shot Learning

Few-shot learning aims at learning a model that can generalize well to new knowledge provided considerably
small datasets. Currently, several paradigms have been developed for the few-shot learning issues: meta-
learning [13, 26, 20, 32, 14, 39, 34], metric learning [22, 37, 33, 35, 7], and transfer learning [7, 9]. The
goal of meta-learning is to first learn task-level knowledge before learning a specific task. This task-level
knowledge helps the model quickly adapt to new tasks with limited training data, which makes it suitable
for the problem of few-shot learning. Optimization-based meta-learning is a prevalent paradigm and one
way is to learn a good weight initialization. MAML [13] and its variants [26, 20] try to learn a good initial
weight by optimizing it over simulated tasks in the meta-learning phase, and with the meta-learned weights,
the model can generalize to the few-shot data with only a few steps of gradient update. Instead of learning
the initial weights directly, another way is to meta-learn weight generation. Rusu et al. [32] meta learned
a low dimensional embedding space to sample the model weights by conditioning on the few-shot data,
which is easier to optimize compared to the high dimension space of model parameters. Gidaris et al.
[14] adopted an attention-based weight generator for few-shot classification. Wang et al. [39] applied a
meta-learned network module to generate the model weights by feature embedding. Sun et al. [34] meta-
learned the scaling and shifting of pre-trained weights of a deep neural network to leverage the advantages
of both meta-learning and transfer learning. Compared to learning the model weights directly, generating
the weights conditioned on inputs is usually more task-specific, which was also applied in the thesis work.

Another paradigm to tackle the few-shot learning issue is metric learning, which also achieved compet-
itive results. Metric learning aims at measuring the distance of the input data in a learned space. There are
different variants to measure the distance. Siamese Neural Network [22] compare the similarity of the inputs
for one-shot learning. Matching Nets [37] maps a query example to its label by matching it with the labeled
support set. The Prototypical Network [33] computes the distance based on the prototype representation
of input classes. Relation Network [35], which is also meta-learned, computes the relation scores between
the query image and the few-shot examples of novel classes. Researchers also found that distance-based
classifiers, which compute the cosine similarities between the feature and weight vectors, can reduce the
intra-class variation and thus benefit the joint prediction of base and novel classes [14, 7, 38].

On another note regarding transfer learning, Chen et al. [7] fixed the pre-trained weights of base rep-
resentation and fine-tuned the classifier for few-shot novel classes, which achieved results comparable with
state-of-the-art. Dhillon et al. propose a transfer learning-based approach for image classification and con-
sider it as a strong baseline for few-shot learning problem.

5

CHAPTER 2. RELATED WORK

2.2 Optimization in Few-shot Learning

Bertinetto et al. [1] noticed that in the few-shot learning setting, updating only the parameters sensitive
to specific classes actually formulate a shallow learning problem, and adaptation strategies that are more
efficient than gradient descent exist for such a problem. They tested ridge and sigmoid regressions with
closed-form solutions to achieve fast convergence for the meta-learning-based few-shot learning. Similarly,
FIML [36] proposed a steepest gradient optimization algorithm that can be generalized to various learning
objectives. A series of works [8, 2] applied the conjugate gradient method to update the few-shot learner
in online tracking, where only the annotation of the initial frame is available and the model needs to be
able to quickly adapt the following frames. A similar approach with conjugate gradient was also applied to
other online settings such as video object segmentation [3] and has been proved to be efficient. While in
current researches of few-shot object detection the gradient descent method is still dominant, we applied the
conjugate gradient method for fast convergence that is preferable in real-time applications.

2.3 Object Detection

Currently, the paradigms of object detection are dominated by the one-stage [28, 25, 29, 30] and two-stage
detection approaches [16, 15, 31, 18, 17]. YOLO series [28, 29, 30] is one of the representative works
in one-stage detection, which applied a single neural network to predicting both the bounding box and
classification score based on the anchors densely placed on an image. For two-stage detection, R-CNN
[16] and its following variants (e.g. Fast R-CNN [15], Faster-RCNN [31], Mask R-CNN [17]) are popular,
which firstly samples class-agnostic proposals from image features in the first stage, and makes region-wise
predictions given the sampled proposals in the second stage. Compared to the one-stage approach, the
two-stage approach is usually slower but more accurate. Recently, the attention-based transformer was also
introduced to vision task [10] and Carion et al. [5] proposed DETR with encoder-decoder architecture to
detect objects directly from global context with less heuristic design, which also achieve competitive results.
Currently, the two-stage approach Faster-RCNN is widely used as the base detector to build benchmarks in
existing researches for few-shot object detection [38, 19, 23, 12]. In the thesis, we applied the two-stage
Faster RCNN as our basic model architecture.

2.4 Few-shot Object Detection

Few-shot object detection aims to detect the novel objects with only a few training examples, which is less
studied compared to few-shot classification but is more complicated as an instance-level task that requires
both localization and classification. Existing literature mainly adopted two paradigms to tackle the issue:
meta-learning-based approach [21, 27, 11, 41, 19] and transfer learning based approach [6, 40, 38, 23,
12]. Similar to the idea of meta-learning introduced before, researchers leverage the meta-learned task-
level knowledge to the detection task with limited training data. MetaYOLO [21] meta learned a feature
learner module to extract the generic features of novel objects and a reweighting module to make predictions
provided these features. ONCE [27] studied the few-shot object detection in the incremental setting by
extracting class-agnostic features and meta-learning a code generator that is class-specific. Fan et al. [11]
proposed Attention-RPN and Multi-Relation Detector to learn a metric space to measure the similarity
of object pairs for detection. Following the DETR [41] introduced before, Meta-DETR meta leaned an
encoder-decoder transformer for the few-shot object detection. DCNet [19] meta learned a Dense Relation
Distillation module and Context-aware Aggregation module to fully leverage the features of novel objects.

6

CHAPTER 2. RELATED WORK

For the transfer learning approach, LSTD [6] is one of the early works that adapted the detector learned
on data-abundant objects to the target domain of few-shot novel objects. Wang et al. [38] proposed the
two-stage fine-tuning approach TFA, where in the first stage a base predictor was trained in data-abundant
base objects, and in the second stage the final layers for classification and bounding box localization were
tuned on a balanced few-shot dataset containing both base and novel classes. This tuning-based approach
is simple yet effective, which outperforms previous benchmarks using meta-learning. Additionally, they
measured the model performance on both base and novel classes, as in real case one scenario can contain
objects of both base and novel classes. Following TFA, LEAST [23] attributed the layers of the base model
into the class agnostic layers extracting features at the image level and the class sensitive layers extracting
features at the object level. Compared to TFA, more layers considered to be class sensitive were tuned,
which boosts the performance on novel classes accordingly, however, deteriorates the performance on base
classes. To mitigate this knowledge forgetting, they further applied knowledge distillation and the clustered
exemplars of base objects. Fan et al. [12] noticed that even though TFA has achieved competitive results, it
is still inferior to the performance of the pre-trained detector on base classes. They proposed Retentive R-
CNN, which inherited the tuning approach of TFA with an auxiliary consistency loss to distill the knowledge
of the base detector. Retentive R-CNN achieved performance on base classes that are on par with the pre-
trained detector. However, even with distillation, loss of pre-learned knowledge is still inevitable. In this
thesis, we proposed the hierarchical detection approach, which is simpler, more intuitive, and achieved the
performance on base classes exactly as the pre-trained detector without any losses.

7

CHAPTER 2. RELATED WORK

8

Chapter 3

Methods

Our work follows the transfer-learning approach [6, 40, 38, 23, 12] for few-shot object detection, which has
a problem setting as follows: given data-abundant base categories Cb and data-scarce novel categories Cn

with corresponding datasets Db and Dn, we first train a base detector Mb on Db, which is supposed to have
strong ability to detect objects in Cb. Then we freeze the modules in the base detector Mb that are considered
as class-agnostic and fine-tune only final layers on Dn or a combination of Dn on a small subset of Db to
obtain the novel detector Mn that is able to detect the novel categories Cn.

In the following sections, we will first revisit the optimization problem in one of the representative
transfer-learning approaches TFA [38], and introduce our faster convergence algorithm using Conjugate
Gradient (CG). Next, we will describe a dedicated strategy of meta-learning to make CG even faster and
more stable based on the TFA framework. Then, we will introduce a novel hierarchical detection framework
to address the catastrophic forgetting issues on base classes Cb with the ability of fast adaptation, and a new
setting for few-shot object detection.

3.1 Fast Convergence with Conjugate Gradient

3.1.1 Baseline Approach: TFA

The two-stage fine-tuning approach TFA [38] deployed the two-stage detector Faster-RCNN as the base
model architecture. Faster-RCNN [31] consists of a convolutional neural network (CNN) module for ex-
tracting generic image features, a Regional Proposal Network (RPN) to generate proposals for potential
objects and a Region of Interest (ROI) head for making detections. Specifically for the ROI head, it first
extracts the box features from the sampled proposals with two fully connected linear layers, and then the
extracted box features will be passed two separate linear layers: one as a classifier C to classify each pro-
posal and another as bounding box regressor R to localize each proposal, wherein the classification and the
localization are made simultaneously.

TFA proposes to first train Faster-RCNN on the data-abundant Db to have a base detector Mb, and in
the second stage, it freezes all the modules of Mb except for the two final linear layers, namely the classifier
C and R, which will be fine-tuned on a balanced few-shot dataset containing both base categories Cb and
novel categories Cn. Therefore, the loss L being optimized is actually composed of two components:

L = Lcls + Lloc (3.1)

where Lcls is a cross entropy loss for classification in C and Lloc is a smoothed L1 loss for bounding box
regression in R. Stochastic Gradient Descent (SGD) [4], as a widely used optimization technique in the

9

CHAPTER 3. METHODS

machine learning, was also applied to optimize L in TFA and many other researches that tackle few-shot
object detection. SGD updates the model weights w by simply computing the first-order gradient of L:

w
i+1 = w

i ��w
i (3.2)

�w
i = ↵ ·�L(wi) (3.3)

where �w
i is the gradient update at iteration i. ↵ is the step length, and �L is the first-order gradient of L.

SGD is computationally cheap for each iteration and is stable to reach convergence in various learning
settings. However, optimization with SGD can usually suffer a slow convergence, which harms the potential
of few-shot object detection in an online setting. To address this issue, we propose an optimization strat-
egy based on Conjugate Gradient to ensure the seamless performance of the few-shot detector in real-time
applications, which we will introduce in the following part.

3.1.2 Conjugate Gradient-based Optimization

. In the second stage of TFA, only the parameters of two separate linear layers each for C and R are
optimized. This actually formulates a shallow learning problem. As mentioned before, besides gradient
descent, other optimization strategies could be used to optimize such a non-deep model for a faster conver-
gence [1, 36]. To make the loss L fully convex and differentiable, we replace the smoothed L1 loss with a
L2 loss for Lloc. Thus each term of L is now formulated as:

Lcls(predcls, gtcls) = � log
exp(predcls[gtcls])

⌃j exp(predcls[j])
(3.4)

Lloc(predloc, gtcls, gtloc) =
1

n
(predloc[gtcls]� gtloc)

2 (3.5)

where predloc is the classification score from C, and gtcls is the ground truth label. j indexes the other
predictions scores other than gtcls. predloc is the prediction of bounding box regression from R, and gtcls

is the ground truth localization. n of the number of detected proposals.
These two terms together formulate a convex, differentiable and positive-definite loss function for L.

One well-known steep gradient technique to optimize such a formulation is Newton’s method, which lever-
ages the second-order information to search for a steep converging direction. To find the steepest gradient
�w

i for every iteration i, Newton’s method approximate the loss L(wi+1) at next parameter estimation
w

i+1 using second-order Taylor expansion at current estimation w
i:

L(wi+1) = L(wi +�w
i) ⇡ L(wi) + (�w

i)T�L(wi) +
1

2
(�w

i)THwi�w
i (3.6)

where Hwi is the Hessian matrix of second-order derivatives.
A solution can be found by setting the the derivative of L(wi +�w

i) to �w
i as zero:

@L(wi +�w
i)

@�wi
=

@

@�wi
[L(wi) + (�w

i)T�L(wi) +
1

2
(�w

i)THwi�w
i] = 0 (3.7)

�w
i = �H�1

wi ·�L(wi) (3.8)

However, calculating the inverse of Hessian matrix H
�1 is computationally expensive and can be nu-

merically unstable. As analyzed before that we are actually optimizing a shallow learning problem where
only the parameters of two separate linear layers are tuned, it is viable to approximate L at every step as a

10

CHAPTER 3. METHODS

simpler positive-definite quadratic loss. Gauss-Newton algorithm can be applied to problems with such a
formulation, which avoids the calculation of second-order Hessian by approximating it with the first-order
Jacobian. Gauss-Newton algorithm defines a residual r and optimizes L by formulating it as a non-linear
least square of r:

r(w) = w(x)� y (3.9)

L(w) = kr(w)k2 = k(w(x)� y)k2 (3.10)

where r(w) is the residual vector of at weight estimate w, (x, y) is a pair of input and ground truth data,
w(x) is the model prediction given the input x.

Then it approximates the residual r(wi+1) at next parameter estimation w
i+1 with the first-order Taylor

expansion of r(wi) at current estimation w
i, and then approximate the loss L(wi+1) by replacing r(wi+1)

with its first-order expansion:

r(wi+1) = r(wi +�w
i) = r(wi) + Jwi�w

i (3.11)

L(wi+1) = ||r(wi+1)||2 ⇡ (�w
i)TJT

wiJwi�w
i + 2(�w

i)TJT
wir(wi) + r(wi)T r(wi) (3.12)

where Jw = @r(wi)
@wi is the Jacobian of first-order derivative of r at w.

A solution can be found by setting the the derivative of L(wi+1) to �w
i as zero:

@L(wi+1)

@�wi)
=

@

@�wi
[(�w

i)TJT
wiJwi�w

i + 2(�w
i)TJT

wir(wi) + r(wi)T r(wi)] = 0 (3.13)

�w
i = �(JT

wiJwi)�1
Jwir(wi) (3.14)

If we set Hwi ⇡ J
T
wiJwi , and Bwi = Jwir(wi), a numerical solution of �w

i can then be found by
solving the following system of linear equations:

Hwi�w
i = Bwi (3.15)

Provided that Hwi is positive-definite, one efficient way to find an approximated solution of �w
i is the

iterative Conjugate Gradient (CG) algorithm, which has been introduced and successfully applied to the
online tracking [8, 2] that shares a similar setting of few-shot learning. CG approximate the solution of �w

i

at every iteration i by iteratively calculating a series of conjugate gradients �j and corresponding coefficients
�cj :

�w
i = ⌃j�j�cj (3.16)

Intuitively, it finds the optimal step length and direction for each step of Newton iteration, which results
in a steep gradient for fast convergence. To summarize, we adopt Newton’s method as the foundation
to derive the steepest gradient for every iteration. Given the non-deep model to optimize in the transfer-
learning-based approach, we further approximate the loss at every Newton iteration as a quadratic loss
where the Gauss-Newton algorithm can be applied to find the gradient update by solving a linear system.
Then the solution of this linear system, namely the steep gradient, can be efficiently approximated by a
series of CG iterations.

11

CHAPTER 3. METHODS

3.2 Refined CG in TFA with Meta-Learning

Task-level knowledge to learn. While previously the transfer-learning and meta-learning based approaches
are two explicit streamlines, we argue that the task-level knowledge can also benefit the transfer-learning
based approach if it is learned properly. We consider two kinds of task-level knowledge that can especially
benefit the TFA framework to which CG is deployed. One of task-level knowledge is a good initialization
of novel weights w0

n =
n
w

0
n,i, i = 1, · · · , N

o
for detecting Cn (N is the number of weight matrix or bias

vector in each linear layer of C and B), which can help CG achieve even faster convergence. For this goal,
we meta learn a network module N = {Ni, i = 1, · · · , N} to generate the initial weights by embedding
the task-specific box features, where Ni is the sub-network to predict specific w0

n,i. Given the input features
xn 2 Rcn⇥d (each row of xn is the average of box features belonging to the same class in Cn. cn is the
number of novel classes. d is the dimension of flattened box features), each sub-network Ni generates the
corresponding weight or bias w0

n,i 2 Routn,i⇥feati for each linear layer of classifier C and box regressor B
(outn,i is the output dimension of w0

n,i. feati is the dimension of input feature. feati = d for weight and
feati = 1 for bias). The predicted novel weights w0

n will be concatenated with the pretrained base weights
w

0
b to have the initial weights w

0 =
�
w

0
b , w

0
n

for fine-tuning. Ni consists of two fully connected linear

layers and a function F to rearrange the dimension of the outputs and scale the predicted weights so that it
is at the same magnitude as w0

b :

w
0
n,i = Ni(x) = F(Linear2i(ReLU(Linear1i(xn)))) (3.17)

Another is the feature-wise sensitivity of base weights wb when making detection of different classes.
As in the fine-tuning stage, model performance on the base classes Cb tends to drop when the well pretrained
weights w0

b get updated, which is referred as ’catastrophic forgetting’ [42, 12]. This is especially an issue
for CG, as it can easily overfit the few-shot dataset due to fast convergence, which leads to the drop of model
performance on Cb. Task-level knowledge of the sensitivity of the base weights wb for different classes can
be used to regularize the update of wb so that the decline in model performance on Cb can be mitigated
during fine-tuning. For this goal, we meta learn a set of regularizing vectors � = {�i, i = 1, · · · , N} to
regularize the base weights wb = {wb,i, i = 1, · · · , N} feature-wise by comparing it with the pretrained
base weights w

0
b , where wb,i 2 Routb,i⇥feati and �i 2 Rfeati . This feature-wise regularization term Lreg

will added to L:
L = Lcls + Lloc + Lreg (3.18)

Lreg = ⌃N
i k�i � (wb,i � w

0
b,i)k2 (3.19)

where� is element-wise multiplication between �i and each row of the difference matrix between (wb,i and
w

0
b,i.

Meta learning phase. We follow the idea of optimization-based mata learning [13] to meta learn the
weight generator N and feature-wise regularizing factor �. The core of the meta learning phase is to simulate
the few-shot object detection task and optimize the modules over sampled tasks to learn the task-level
knowledge. To simulate the few-shot dataset, we randomly sample a stream of tasks from the base dataset
Db. Each task contains a support set Ds, a query set Dq, and a random split of pesudo base classes Cmeta,b

and pesudo novel classes Cmeta,n from base classes Cb. For each sampled task, the meta learning phase
jointly optimize N and � with an inner loop and an outer loop. The inner loop is used to optimize the model
weights wmeta with N and � being integrated in the optimization. Specifically, for each sampled task at the
inner loop, wmeta is initialized with w

0
meta =

n
w

0
meta,b, w

0
meta,n

o
, where w

0
meta,b is a subset of pretrained

weights w0
b corresponding to Cmeta,b, and w

0
pseudo,n is generated by N via embedding the box features of

12

CHAPTER 3. METHODS

Cmeta,n in Ds. Then wmeta get updated over the support set Ds with a few iterations, where the feature-wise
regularizing factor � is applied to the loss. With the updated model weights wmeta passed from the inner
loop, the outer loop will update N and � with a step of gradient descent by evaluating wmeta on the query
set Dq. Note that in this phase the parameters of N and � are set as learnable, and the computational process
though out both loops are tacked so that the loss evaluated on Dq can be back propagated to update N and
�.

Figure 3.1: Work flow of meta learning weight generator and regularizer

Meta testing phase. In this phase, we fix the meta learned N and � and applied it to refine the CG
optimization deployed in the TFA framework. N predicts the novel weight w0

n for Cn by embedding xn,
which will be concatenated with w

0
b to have the initial weights w0. � will be applied to regularize the update

of base weights wb feature-wise to alleviate the knowledge forgetting on Cb.

3.3 Hierarchical Detection Approach

In this section we proposed a novel Hierarchical Detection Approach (HDA) for few-shot object detection
to address the catastrophic forgetting on base classes Cb. It is based on transfer learning similar as TFA,
but different from TFA and its variants that make joint detection on Cb and Cn by fine-tuning both wb

and wn, HDA detect the objects according to their label hierarchy. Given the sampled box proposals, at
the first hierarhical level it applied the pretrained base detector Mb to extracting the box proposals and
detecting the object classes C = {Cb, Cbg,1}, where Cbg,1 is a super-class of all proposals that are considered
as background by Mb. Then at the second hierarchical level, we train a non-deep novel detector Mn =
{Cn,Bn}, which only contains a classifier Cn and a box regressor Bn. From the background proposals

13

CHAPTER 3. METHODS

corresponding to Cbg,1 and applied it to detecting Cbg,1 = {Cn, Cbg,2}, where Cbg,2 is another super class
of background proposals detected by Mn. HDA was proposed based on two assumptions:

• Assumption 1. The pretrained detector Mb is good enough to detect Cb.

• Assumption 2. Mb is robust enough to distinguish Cbg,1 from Cb.

The first assumption is based on the fact that Mb was pre-trained on a large dataset Db with abundant
annotations of classes Cb. Further fine-tuning the well-trained parameters wb on a few-dataset usually
does not improve the model performance on Cb. On the contrary, it results in ’catastrophic forgetting’
of prel-learned knowledge, which requires additional tricks such as knowledge distillation to alleviate this
forgetting. Therefore, to make sure the performance on Cb, one intuitive approach would be to fix Mb and
apply it directly to detect Cb. However, in the few-shot object detection task, the model needs to detect not
only Cb, but also Cn. This requires the second assumption regarding the robustness Mb against background
proposals, which is supposed to contain most of the box proposals of Cn so that it is reliable for the further
detection on Cn. In the following sections, we will detail the workflow of the hierarchical detection.

Detection on base classes. Same as TFA, HDA applied Faster-RCNN as base detector and the pretrained
detector Mb was decomposed into three parts Mb = {Mbase, Cb,Bb}, where Mbase is used to extract
the class-agnostic proposals and box features, Cb and Bb are two separate linear layers for classification
and localization on Cb. We first applied the class-agnostic Mbase to sample a set of box proposals P =
{Pi, i = 1, · · · ,K} for detection of all classes C = {Cb, Cn}. Each Pi here represents the bounding box,
box features and associated data for training or inference. To make sure that the performance on base classes
can be completely retained while not hindering the detection on novel classes, we proposed a dedicated
workflow to filter the proposals Pb and Pbg,1 for detecting Cb and Cn. Provided the box proposals P and
the classification score S 2 RK⇥(kCbk0+1) from Cb (K is the number of box proposals, kCbk0 + 1 is the
number of output channels of Cb including background class), the filtering of Pb is actually to simulate how
inference on S will be done to output the detection for Cb. As shown in Algorithm 1, step 1 and step 2 filter
the indices Ib of proposals which have a classification score in any of the output channels for Cb greater than
the score_thresh. This makes sure that the proposals with very likely objectness are selected. However,
the selected proposals with high objectness could also contain many proposals belonging to Cn. Thus step
3 to step 4 further filter the proposal indices using the Non-maximum Suppression (NMS) with the given
threshold NMS_thresh} and selects the top-k (top_k) proposals from the NMS outputs according to the
scores in descending order. Step 1 to 5 together select a subset of proposals Pb that are most likely to contain
positive objects in Cb and will leave the remaining proposals Prest for further detection.

Detection on novel classes. From the remaining proposals Prest and scores Srest filtered out by step 1
to step 5 in the Algorithm 1, we filter the proposals Pbg,1 belonging to the super-class of background Cbg,1

at the first hierarchical level, which is done by selecting proposals that have a background score greater than
scores of any other class in Cb (step 6 to step 8). Then the background proposals Pbg,1 will be passed to the
novel detector Mn = {Cn,Bn} for detecting objects in C = {Cn, Cbg,2}, where Cn is the novel class and
Cbg,2 is another super-class of background at the second hierarchical level.

Training and inference. For training, we fix the pretrained Mb and only need to train the novel detector
Mn. The dataset is same as the one used in TFA, namely a balanced few-shot dataset Dtrain containing both
base and novel classes. Dtrain will be first passed to the base detector to generate proposals P , which will
be split into Pb and Pbg,1 according to the procedure described before. Then Pbg,1 will be used to train the
classifier Cn and box regressor Bn of Mn. The inference process follows a similar logic, where we passed
the test set Dtest first to Mb to extract the proposals P and then filter it into Pb and Pbg,1. Then we passed
Pb to the Cb and Bb of Mb for detecting Cb, and passed Pbg,1 to the trained Mn for detecting Cn.

14

CHAPTER 3. METHODS

Algorithm 1 Procedure of Proposal Filtering
Input:
Extracted proposals P = {Pi, i = 1, · · · ,K}, classification scores S 2 RK⇥(kCbk0+1)

Require: score_thresh, nms_thresh, top_k
Output: Proposals Pb for detecting Cb, proposals Pbg,1 for detecting Cn

1: Sb S[:, : �1] . Sb is the classification score for Cb

2: Ib Sb > score_thresh . Ib are indices of selected base proposals
3: Ib NMS(P, Ib,nms_thresh)
4: Ib Ib[: topk]
5: Pb P [Ib] . Pb is the set of filtered proposals for detecting Cb

6: Prest P \ Pb, Srest S \ S[Ib]
7: Ibg,1 Srest[:,�1] > Max(Srest[:, : �1],dim = 1) . Ibg,1 are indices of background proposals
8: Pbg,1 Prest[Ibg,1] . Pbg,1 is the set of proposals for detecting Cn

Figure 3.2: Workflow of hierarchical detection approach

15

CHAPTER 3. METHODS

16

Chapter 4

Experiments and Results

4.1 Dataset

We used the Microsoft COCO dataset [24] for our experiments, which has abundant images and annotations
and is widely used for researches in few-shot object detection. COCO dataset has 80 categories that can be
used for training. Following previous works [38, 23, 12], we split the 80 categories into 60 base categories
and 20 novel categories. The test set has 5000 images that contain all categories, and the remaining images
were used for training. A base dataset containing 60 base categories is used for training the base model
and also for meta-learning. For few-shot learning of novel categories, we have a K 2 {1, 2, 3, 5, 10} -shot
datasets sampled over 10 random seeds following [38], which is a balanced small dataset containing all
categories.

4.2 Evaluation Metrics

Precision aspect. Following the setting of generalized few-shot object detection [38, 23, 12], we apply
the average precision to measure the model performance in all classes (AP), base classes (bAP), and novel
classes (nAP), respectively. Average precision is defined as the area under the precision-recall curve at a
certain IOU threshold. Same as previous benchmarks [38], here AP refers to the mean of average precisions
of all classes with an IOU threshold from 0.5 to 0.95. The definition for bAP and nAP is similar to AP, but
they are calculated for base and novel classes, respectively. Besides, AP at a certain IOU threshold is also
used for measuring the model performance. For instance, AP50 is the AP calculated at an IOU threshold of
0.5.

Time aspect. To measure the speed of convergence with different optimization strategies, we measure
the following metrics: time used for extracting features and proposals from the frozen layers T

0, time per
iteration t, number of measured iterations n, and time needed for reaching convergence T = t · n. The unit
for time measurement is seconds (s).

4.3 Implementation Details

We use Faster-RCNN as the basic model architecture and ResNet-101 as the backbone. The base detector
Mb pre-trained by Wang et al. [38] is directly applied in the thesis, wherein Mb was trained using SGD
with 110000 iterations, momentum 0.9, weight decay 0.0001, and base learning rate of 0.02 on the dataset

17

CHAPTER 4. EXPERIMENTS AND RESULTS

containing 60 base categories. After the base detector being trained, all its layers except for the layers of C
and B are fixed, and C and B will be tuned in TFA or adapted for hierarchical detection.

When applying CG, we first extract all proposals and associated box features from the fixed layers of
the detector, and then optimize CG on all the extracted proposals and features. To have a fair comparison
regarding the running speed of SGD with CG, we adapt the implementation of SGD in TFA, where the
proposals and features for each image are first extracted, and then the extracted proposals and features are
batched to fine-tune the model with SGD.

All experiments are run on the K 2 {1, 2, 3, 5, 10} -shot datasets sampled over 10 random seeds, and
the results of average precision are aggregated over the 10 groups of different random seeds to measure the
model performance more accurately [38]. For the time aspect, we report the time metrics from experiments
that were run on seed 0.

To measure the time metrics, we run all experiments on a single GPU with the same type ’TITXAN Xp’.

4.4 Experiments

4.4.1 Naive CG in TFA

Baseline. To have a fair comparison for the running time with CG, we adapt the original implementation of
SGD in TFA w/cos to run it on the extracted proposals and features. The remaining setting for running
SGD is as same as the one in TFA. Specifically, we first train the weights corresponding to detecting Cn on
the novel dataset and then concatenate the weights with the pre-trained weights corresponding to Cb, and
then fine-tune the model weights on the few-shot dataset. Same as the setting in TFA, we apply the SGD
with momentum 0.9 and weight decay 0.0001. The learning rate for training novel weights is 0.01 and the
one for fine-tuning is 0.001. The number of iterations increases with the size of the few-shot dataset. The
model run in this experiment is noted as TFA+SGD for short. Table 4.1 displays the model performance of
TFA+SGD.

Table 4.1: Average precision of the model TFA+SGD

Shots All Base Novel

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

1 24.1 40.3 25.4 31.5 52.3 33.2 2.3 4.4 2.1
2 24.7 40.5 26.4 31.7 51.5 34.1 3.8 7.5 3.5
3 25.0 40.6 27.0 31.6 51.0 34.5 4.9 9.4 4.7
5 25.7 41.3 27.6 31.8 50.9 34.8 6.4 12.6 6.0
10 26.1 42.3 27.8 31.6 51.0 34.5 8.3 16.4 7.7

Naive CG. We replace the SGD with CG in the two-stage tuning approach TFA with cosine output
layers (TFA w/cos) to observe how the model performance and converging speed will change. As afore-
mentioned, for the few-shot dataset, we first extract the proposals and box features from the fixed layers of
the pre-trained detector and then run CG directly on these extracted proposals and features. For weights in
C and B, we initialize the parameters corresponding to Cn with randomly initialized weights. For all the
datasets with different shots, we run CG with 100 Newton iterations and each Newton iteration is approx-
imated with 2 CG iterations. The model run in this experiment is noted as TFA+CG for short. Table 4.2
displays the model performance of TFA+CG.

18

CHAPTER 4. EXPERIMENTS AND RESULTS
Table 4.2: Average precision of the model TFA+CG

Shots All Base Novel

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

1 24.2 40.5 25.3 31.4 52.2 33.0 2.6 5.4 2.3
2 25.3 41.8 27.1 32.4 53.0 34.9 4.0 8.1 3.5
3 26.2 42.7 28.3 33.3 53.7 36.5 4.9 9.8 4.5
5 27.3 44.1 29.7 34.3 54.6 37.6 6.4 12.5 6.0
10 28.5 45.6 31.0 35.2 55.4 38.6 8.5 16.1 8.1

4.4.2 Meta-Learning to Refine CG in TFA

Each element of the regularizer � is randomly initialized from the Gaussian distribution G ⇠ (0, 0.1), and
the predicted weights from N are scaled with the factor 0.1 to make sure that the magnitude of the predicted
weights is same as the one of the pre-trained weights. For each sampled task, we randomly split the 60
categories in Cb into 40 pseudo base categories Cmeta,b and 20 pseudo novel categories Cmeta,n. Both the
support set and the query set are 60-way-1-shot datasets. Each meta-learning loop contains an inner loop
and an outer loop. For the inner loop of meta-learning, we run 5 Newton iterations and 2 CG iterations for
each Newton iteration to update the model weights. For the outer loop of meta-learning, we run a single
SGD step to update N and � with the learning rate 0.01, momentum 0.09, and weight decay 0.0001. We run
1000 meta-learning loops to meta learn N and �. When applying these meta-learned modules to TFA with
CG, we run 30 Newton iterations, each with 2 CG iterations. The model run in this experiment is noted as
TFA+CG+meta for short. Table 4.3 displays the model performance of TFA+CG+meta.

Table 4.3: Average precision of the model TFA+CG+meta

Shots All Base Novel

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

1 24.3 40.6 25.7 31.6 52.8 33.4 2.3 4.2 2.3
2 25.3 41.4 27.4 32.6 53.3 35.4 3.3 6.0 3.3
3 25.9 41.9 28.3 33.3 53.5 36.4 3.8 6.9 3.9
5 26.4 42.2 28.9 33.8 53.6 37.0 4.5 8.0 4.6
10 26.9 42.3 29.4 34.2 53.6 37.5 4.8 8.5 5.0

4.4.3 HDA with CG

Naive CG. For the proposal filtering in HDA, we set score_thresh = 0.05, nms_thresh = 0.5 and
top_k = 100 following the common setting of Faster R-RCNN during inference in previous benchmarks
[38, 23, 12]. Given the filtered proposals, we run 30 Newton iterations and each with 2 CG iterations to train
the novel detector head, which is randomly initialized. The model is noted as HDA+CG for short. Table 4.4
displays the model performance of HDA+CG.

HDA with feature augmentation. To boost model performance on novel classes and make CG less
overfitting, we further augment the filtered proposals that have the ground truth label belonging to the novel

19

CHAPTER 4. EXPERIMENTS AND RESULTS
Table 4.4: Average precision of the model HDA+CG

Shots All Base Novel

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

1 30.0 45.8 32.6 39.2 59.3 42.8 2.4 5.2 1.9
2 30.4 46.6 32.9 39.2 59.3 42.8 4.1 8.7 3.4
3 30.7 47.1 33.3 39.2 59.3 42.8 5.1 10.3 4.5
5 31.0 47.7 33.5 39.2 59.3 42.8 6.4 12.8 5.8
10 31.4 48.3 34.0 39.2 59.3 42.8 8.0 15.2 7.5

categories Cn. For each Newton iteration, we first duplicate every single shot of the proposal and corre-
sponding box features into 5 shots, and apply Gaussian noise sampled from G ⇠ (0, 0.1) to all the box
features and then apply dropout with a rate of 0.5. The model is noted as HDA+CG+aug for short. Table 4.5
displays the model performance of HDA+CG+aug.

Table 4.5: Average precision of the model HDA+CG+aug

Shots All Base Novel

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

1 30.2 46.2 32.7 39.2 59.3 42.8 3.0 6.8 2.3
2 30.6 47.1 33.0 39.2 59.3 42.8 4.7 10.4 3.6
3 31.0 47.5 33.2 39.2 59.3 42.8 5.6 12.0 4.6
5 31.2 48.2 33.6 39.2 59.3 42.8 7.1 14.9 6.0
10 31.8 49.4 34.1 39.2 59.3 42.8 9.1 18.4 7.9

4.4.4 Running Time

For each model, we measure the converging speed by counting the time per iteration t and number of
iterations n, based on which we calculate the time T needed for optimization. Besides, we measure the time
needed for extracting proposals and box features before the optimization starts, in order to have an overall
view regarding the time needed for model training. The time measurement is based on the experiments run
on datasets sampled from random seed 0. As TFA+SGD has a stage for pre-training the novel weights and a
stage for fine-tuning, we counted the running time for each stage, which are noted as TFA+SGD (novel) and
TFA+SGD (tuning), respectively. The results can be referred in Table 4.6 and Table 4.7.

Table 4.6: Time per iteration and number of iterations in optimization

Model t (s) n T (s)

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA+SGD (novel) 0.0055 0.0059 0.0053 0.0055 0.0058 500 1500 1500 1500 2000 2.75 8.85 7.95 8.25 11.60
TFA+SGD (tuning) 0.0067 0.0067 0.0068 0.0070 0.0071 16000 32000 48000 80000 160000 107.20 214.40 326.40 560.00 1136.00
TFA+CG 0.0378 0.0687 0.1024 0.1683 0.3339 100 100 100 100 100 3.78 6.87 10.24 16.83 33.39
TFA+CG+meta 0.0464 0.0787 0.1129 0.1808 0.3401 100 100 100 100 100 4.64 7.87 11.29 18.08 34.01
HDA+CG 0.0191 0.0316 0.0458 0.0737 0.1407 30 30 30 30 30 0.57 0.95 1.37 2.21 4.22
HDA+CG+aug 0.0211 0.0359 0.0513 0.0822 0.1589 30 30 30 30 30 0.63 1.08 1.54 2.47 4.77

20

CHAPTER 4. EXPERIMENTS AND RESULTS
Table 4.7: Running time for feature extraction and optimization

Model T
0 (s) T (s) T

0 + T (s)

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA+SGD (novel) 3.03 5.51 6.75 10.38 19.58 2.75 8.85 7.95 8.25 11.60 5.78 14.36 14.70 18.63 31.18
TFA+SGD (tuning) 8.55 16.70 23.73 39.20 78.76 107.20 214.40 326.40 560.00 1136.00 115.75 231.10 350.13 599.20 1214.76
TFA+CG 9.36 17.43 23.20 37.53 74.42 3.78 6.87 10.24 16.83 33.39 13.14 24.30 33.44 54.36 107.81
TFA+CG+meta 8.82 18.77 24.84 37.72 76.87 4.64 7.87 11.29 18.08 34.01 13.46 26.64 36.13 55.80 110.88
HDA+CG 16.22 26.59 38.00 61.80 122.55 0.57 0.95 1.37 2.21 4.22 16.79 27.54 39.37 64.01 126.77
HDA+CG+aug 13.79 26.84 40.74 59.69 132.79 0.63 1.08 1.54 2.47 4.77 14.42 27.92 42.28 62.16 137.56

21

CHAPTER 4. EXPERIMENTS AND RESULTS

22

Chapter 5

Discussion

5.1 Benchmarks

For comparison, we mainly cite the previous benchmarks [38, 23, 12] that apply the setting of generalized
few-shot object detection (Table 5.1), where AP and bAP are given besides nAP to have a comprehensive
view of model performance and the results are run on multiple groups of random seeds were given to
reduce the variation of results on single seed. Specifically, we compare the two TFA models developed by
Wang et al. [38]: TFA w/fc and TFA w/cos, where the former applies the fully connected layer in the
classification layer C and the later applies the cosine similarity in C. Besides, they provide the benchmark
that fully fine-tune the Faster-RCNN detector, noted as FRCN+ft-full. We also compare with the metrics
reported in LEAST [23] and Retentive R-CNN [12]. For converging speed, we mainly compare our
models with TFA+SGD, as both LEAST and Retentive R-CNN follow the tuning approach of TFA.

5.2 Model Performance in Average Precision

For models in TFA family, our implementation of SGD in TFA (TFA+SGD) is roughly on par with the
original implementation of TFA w/cos. Its metrics are slightly lower than the one of TFA w/cos with
less than 1 point, probably due to the fact that we extracted all the proposals at one time while in the
original implementation, different groups of images were batched for every iteration to extract the proposals,
the randomness of which could make the model less overfitting. Our naive CG implementation in TFA,
TFA+CG, achieves performance on par with TFA w/cos with much less iterations. Especially for the
fewer-shot case (e.g. 1-shot), TFA+CG outperforms the original TFA w/cos much (2.6 vs. 1.9 on 1-shot
dataset).

For TFA+CG+meta where the meta learned modules are applied, we observe that for the 1-shot case,
it has a performance on par with TFA+CG. To further verify that whether the meta learned modules are
effective in the 1-shot case, we run the TFA+CG+meta for 200 iterations on the dataset sampled in seed
0 and compared it with TFA+CG initialized with random weights (Figure 5.1). Compared to the TFA+CG
with randomly initialized weights, TFA+CG+meta with the generated weights from N reaches higher nAP
in the beginning iterations (highlighted by the green box), which suggests that the N has learned a good
guess of the initial weights that can speed up the convergence. With more iterations (e.g. from 100 to
200 iterations), we observe that bAP of TFA+CG without regularization has a drop of about 2 points while
the bAP of TFA+CG+meta is steady (highlighted by the orange box). This indicates that the regularizer
� has effectively learned the sensitivity of features to different classes and regularizes the weight updates

23

CHAPTER 5. DISCUSSION

accordingly. However, in the case with more shots, the meta-learned modules harm the model performance
on novel classes although the bAPs are well retained. As the weight generator and regularizer were meta
learned in the 1-shot case, the results imply that these modules are not feasible for the case of higher shots,
for which we might need to meta learn the modules again.

(a) TFA+CG (b) TFA+CG+meta

Figure 5.1: Influence of meta learned modules on TFA+CG for 1-shot COCO dataset (seed 0)

Figure 5.2 displays the evaluation of convergence of other models (TFA+SGD, HDA+CG, HDA+CG+aug)
on COCO 1-shot dataset sampled from seed 0. Compared to the baseline TFA+SGD, it can be observed
that the HDA models achieve significantly higher nAP with much less iterations. To further evaluate the
influence the feature augmentation on HDA, we run the experiments of HDA with 40 iterations, which
have 10 additional iterations than the one we use to run the benchmarks. With more iterations, we observe
that there is a slight decrease on nAP in HDA+CG, while the nAP of HDA+CG+aug converges to a higher
value and is more steady after convergence, indicating that feature augmentation can not only boost the
performance of HDA on novel classes, but also make it less overfitting.

Our HDA model with feature augmentation, HDA+CG+aug, achieves the overall AP at the top among all

24

CHAPTER 5. DISCUSSION

benchmarks (Table 5.1). With the base detector being fixed, it has a bAP exactly the same as the pre-trained
model without any forgetting and it also achieves competitive metrics on nAP. Specifically, its performance
on base classes is on par with the competitive Retentive R-CNN. Compared to Retentive R-CNN,
our HDA approach, however, is much simpler without any auxiliary modules for knowledge distillation.
It also has much fewer parameters to optimize, where only a detector head for novel classes needs to be
trained. This also makes the HDA extremely fast in optimization, which we will discuss in the following
section. For performance on novel classes, the benchmark LEAST is the best and nAP of our HDA+CG+aug
is comparable with the second-place Retentive R-CNN. But in LEAST, more layers are fine-tuned,
which can be expected to boost the nAP, however, results in more overfitting and have the bAP dropped
accordingly. As can be observed, even with the examplar being applied to retain the performance on base
classes, bAP of LEAST is just on par with TFA models and is still inferior to HDA models.

Table 5.1: Performance of different models in generalized few-shot object detection

Model AP bAP nAP

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN+ft-full 16.2 15.8 15.0 14.4 13.4 21.0 20.0 18.8 17.6 16.1 1.7 3.1 3.7 4.6 5.5
TFA w/fc 24.0 24.5 24.9 25.6 26.2 31.5 31.4 31.5 31.8 32.0 1.6 3.8 5.0 6.9 9.1
TFA w/cos 24.4 24.9 25.3 25.9 26.6 31.9 31.9 32.0 32.3 32.4 1.9 3.9 5.1 7.0 9.1
TFA+SGD (Our Impl.) 24.1 24.7 25.0 25.7 26.1 31.5 31.7 31.6 31.8 31.6 2.3 3.8 4.9 6.4 8.3
LEAST - - - - - 29.5 - - 31.3 31.3 4.2 - - 9.3 12.8
Retentive R-CNN - - - 31.4 31.8 - - - 39.3 39.2 - - - 7.7 9.5

TFA+CG (Ours) 24.2 25.3 26.2 27.3 28.5 31.4 32.4 33.3 34.3 35.2 2.6 4.0 4.9 6.4 8.5
TFA+CG+meta (Ours) 24.3 25.3 25.9 26.4 26.9 31.6 32.6 33.3 33.8 34.2 2.3 3.3 3.8 4.5 4.8
HDA+CG (Ours) 30.0 30.4 30.7 31.0 31.4 39.2 39.2 39.2 39.2 39.2 2.4 4.1 5.1 6.4 8.0
HDA+CG+aug (Ours) 30.2 30.6 31.0 31.2 31.8 39.2 39.2 39.2 39.2 39.2 3.0 4.7 5.6 7.1 9.1

5.3 Model Performance in Convergence Speed

Regarding the time needed for convergence (Table 4.6 and Table 4.7), compared to TFA+SGD, the running
time for a single iteration of TFA+CG is longer than SGD, as CG iteratively approximates the second-order
optimization at every step. However, benefiting from the steep gradient, TFA+CG can reach convergence for
all datasets within 100 iterations, while for SGD the number of iterations is much larger and it significantly
increases with the size of the dataset. Overall, TFA+CG is about 30 times faster compared to TFA+SGD

regarding time needed for convergence (T), and the time needed for feature extraction are close (T 0). Ad-
ditionally, the original TFA with SGD first pre-trains the weights for novel classes, which brings additional
time costs, while CG with the steepest gradient optimizes the model weights from scratch and can delineate
comparable results with much less time.

Overall, the models in the HDA family are fastest, compared to TFA+SGD, HDA+CG is about 200 to
250 times faster regarding the time needed for convergence (T). Compared to TFA, HDA has much fewer
parameters to optimize as aforementioned, which also helps to speed up the optimization. For instance, the
time per iteration of HDA+CG is almost halved compared to the one of TFA+CG, and it can reach convergence
for datasets with different shots with only 30 iterations. The converging speed of HDA+CG+aug is slightly
slower than HDA+CG due to the feature augmentation at every iteration. Regarding the time needed for
feature extraction, HDA takes a longer time than TFA due to the process of proposal filtering. Table 5.2

25

CHAPTER 5. DISCUSSION

(a) TFA+SGD (b) HDA+CG (c) HDA+CG+aug

Figure 5.2: Convergence of different models on 1-shot COCO dataset (seed 0)

26

CHAPTER 5. DISCUSSION

compares the overall time needed by HDA and TFA. For TFA+SGD, we summarize the time in both stages of
pretraining novel weights and fine-tuning. With the time for feature extraction taken into account, HDA+CG
is about 7 to 10 times faster than TFA+SGD.

Table 5.2: Overall running time of different models

Model T
0 + T (s)

1 2 3 5 10

TFA+SGD 121.53 245.46 364.83 617.83 1245.94
HDA+CG 16.79 27.54 39.37 64.01 126.77
HDA+CG+aug 14.42 27.92 42.28 62.16 137.56

27

CHAPTER 5. DISCUSSION

28

Chapter 6

Conclusion

6.1 Summary

In this work, we tailor a steep gradient optimization for few-shot object detection based on Conjugate Gradi-
ent. Compared to traditional gradient descent, CG performs 30 times faster in optimization when applied to
the previous benchmark of the two-stage tuning approach TFA. Additionally, we consider task-level knowl-
edge that can refine the CG in TFA to make it even faster while minimizing overfitting. Experiment shows
that in the 1-shot case for which the meta-learning was conducted, the predicted weight can make CG faster
in beginning iterations and the feature-wise regularizer can effectively retain model performance on base
classes. Furthermore, we propose a novel hierarchical detection approach (HDA) to address the issue of
catastrophic forgetting. We observe that HDA can completely retain the model performance on base classes
while achieving competitive results on novel classes. HDA’s optimization is 200 to 250 times faster than
SGD in TFA and overall run-time is 7 to 10 times faster than the previous benchmarks. We conducted
extensive experiments on datasets sampled from different groups of random seeds and measure the model
performance comprehensively. Our approach helps release the potential of few-shot object detection in
real-time applications while without the worries of catastrophic forgetting.

6.2 Outlook

Future works that are well worth exploring include:
Hierarchical detection setting. Following the hierarchical detection approach proposed in the thesis,

we observe a novel experimental setting of hierarchical detection that has not been explored in the existing
literature. Perceiving objects hierarchically is natural for humans. For instance, when annotating the images
in the COCO dataset, the researchers asked the labors to first decide the super-category of the object to
annotate as it is more time-efficient [24]. With the HDA, we could further experiment the setting to first
detect the super-category of an object and then decide its child class.

Incremental learning. Incremental learning is a common setting in robotics, where only the novel data
is available and the robot needs to learn it without seriously forgetting learned knowledge [42]. Given the
fast convergence of CG and the merit of HDA without catastrophic forgetting, it would be interesting to test
our model in this setting.

Efficient feature extraction. In TFA+SGD, the time needed for convergence is dominant compared to
the time needed for feature extraction. But with CG being applied, in HDA+CG, the time needed for conver-
gence is largely shortened while the time needed for feature extraction becomes dominant. Researchers can

29

CHAPTER 6. CONCLUSION

look into a more efficient way to extract the proposals and box features to further speed up the overall time
needed to run the model.

30

Bibliography

[1] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model pre-
diction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 6182–6191, 2019.

[3] Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, Andreas Robinson, Michael Felsberg, Luc
Van Gool, and Radu Timofte. Learning what to learn for video object segmentation. In European
Conference on Computer Vision, pages 777–794. Springer, 2020.

[4] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–
436. Springer, 2012.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pages 213–229. Springer, 2020.

[6] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. Lstd: A low-shot transfer detector for object
detection. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[7] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate track-
ing by overlap maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4660–4669, 2019.

[9] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for few-
shot image classification. arXiv preprint arXiv:1909.02729, 2019.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[11] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-shot object detection with attention-rpn
and multi-relation detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4013–4022, 2020.

31

BIBLIOGRAPHY

[12] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. Generalized few-shot object detection without
forgetting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4527–4536, 2021.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

[14] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375,
2018.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 1440–1448, 2015.

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pages 2961–2969, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence,
37(9):1904–1916, 2015.

[19] Hanzhe Hu, Shuai Bai, Aoxue Li, Jinshi Cui, and Liwei Wang. Dense relation distillation with context-
aware aggregation for few-shot object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10185–10194, 2021.

[20] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11719–
11727, 2019.

[21] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object
detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 8420–8429, 2019.

[22] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

[23] Pengyang Li, Yanan Li, and Donghui Wang. Class-incremental few-shot object detection. arXiv
preprint arXiv:2105.07637, 2021.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European con-
ference on computer vision, pages 740–755. Springer, 2014.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision,
pages 21–37. Springer, 2016.

32

BIBLIOGRAPHY

[26] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

[27] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M Hospedales, and Tao Xiang. Incremental few-
shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13846–13855, 2020.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[29] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[30] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28:91–
99, 2015.

[32] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

[33] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175, 2017.

[34] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 403–412, 2019.

[35] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. Learn-
ing to compare: Relation network for few-shot learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1199–1208, 2018.

[36] Ardhendu Shekhar Tripathi, Martin Danelljan, Luc Van Gool, and Radu Timofte. Few-shot classifica-
tion by few-iteration meta-learning. arXiv preprint arXiv:2010.00511, 2020.

[37] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29:3630–3638, 2016.

[38] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gonzalez, and Fisher Yu. Frustratingly simple
few-shot object detection. arXiv preprint arXiv:2003.06957, 2020.

[39] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and Joseph E Gonzalez. Tafe-net: Task-aware
feature embeddings for low shot learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1831–1840, 2019.

[40] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang. Multi-scale positive sample refinement for
few-shot object detection. In European Conference on Computer Vision, pages 456–472. Springer,
2020.

33

BIBLIOGRAPHY

[41] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu. Meta-detr: Few-shot object detection via
unified image-level meta-learning. arXiv preprint arXiv:2103.11731, 2021.

[42] Wang Zhou, Shiyu Chang, Norma Sosa, Hendrik Hamann, and David Cox. Lifelong object detection.
arXiv preprint arXiv:2009.01129, 2020.

34

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

