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Abstract

Research in automatic 3D reconstruction systems in underwater settings has been scarce until

recently. Demands from marine environmental studies, in particular, have driven the motivation

for research into new, robust methods for reconstructing underwater scenes. However, applica-

tions extend into many other fields including archaeology, industrial inspection, and underwater

augmented reality. When imaging underwater, there exists geometric and radiometric effects

due to the propagation of light through water and through changing media. A camera inside of

a protective housing with a flat viewing port window images light rays that have been refracted

twice – once at the interface between water and the viewing port, and again at the interface

between the viewing port and air inside of the housing. Therefore, due to these effects, typical

perspective methods for 3D reconstruction either fail or exhibit systematic errors in an under-

water setting.

This project takes an explicit physical model for underwater refraction and attempts to adapt a

structure from motion (SfM) approach to underwater 3D reconstruction. The general pipeline

for SfM is nearly the same as above water, however, the individual steps need to be adapted

accordingly. The proposed system is able to robustly match features, triangulate observations,

and estimate absolute pose. In the current state, the bundle adjustment is failing when noise is

present in the image observations.
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1 Introduction

1 Introduction

Automatic 3D reconstruction systems are an actively researched topic in computer vision. How-

ever, research in reconstruction systems in underwater settings has been neglected until recent

years. In the past decade, a wide variety of applications for underwater imaging and 3D re-

construction has arisen. Demands from environmental studies, particularly monitoring marine

ecosystems, has driven research into robust and effective methods for underwater computer vi-

sion. However, underwater computer vision has other applications in archaeology, industrial

inspection, and underwater augmented reality, for instance.

A particular area of research seeking automatic underwater reconstruction is the coral reef re-

search conducted at Disney’s Castaway Cay and Great Abaco in the Bahamas. Here, Disney’s

environmental researchers nurture damaged corals and attempt to regrow them a nursery. Dam-

aged corals are transplanted back to their original reefs once growth and health have stabilized.

Currently, coral growth is being measured manually by divers. The demand for a more efficient

and automatic approach has led to research into the potential of imaging sensors for underwater

reconstruction systems to more accurately and efficiently monitor growth of corals.

As of recent, there have been many uses for underwater imaging. These uses include indus-

trial inspection, offshore monitoring, and archaeological documentation. However, utilization

of passive sensors for 3D reconstruction underwater has been scarce. By far, the most popular

method for depth recovery underwater has been the use of active sonar systems. A common

use of sonar imaging is bathymetric mapping. Often, multibeam sonars are used in conjunction

with side-scan sonars to produce detailed views of an underwater scene. However, these systems

are typically very expensive, heavy, and require training to use. While these complex systems

can supply a detailed view of an underwater scene, it is possible to meet or exceed the level

of detail with imaging sensors underwater. This has already been seen and employed by using

cameras to create image mosaics to overlay 3D models derived from sonar bathymetry. However,

using cameras instead to create the 3D models could greatly decrease costs for underwater scene

reconstruction. The methods for 3D reconstruction in air have been rigorously developed for

years in the fields of computer vision and photogrammetry, and they now need to be adapted

to underwater scenarios.

Diving into 3D is an underwater 3D reconstruction project in collaboration with Disney Research

Zurich (DRZ) and the Photogrammetry and Remote Sensing (PRS) group at ETH Zurich. The

project was realized as an interdisciplinary project and continued as a master’s thesis within

the scope of the Geomatics Engineering master’s degree program at ETHZ. The project uses a

small fisheye stereo camera unit and investigates solutions to incorporate fisheye and underwa-

ter refraction models to attempt to reconstruct 3D scenes in a controlled underwater setting.

The work completed in the interdisciplinary project includes a familiarization with theory and

applications of underwater imaging, experimental setups for underwater acquisition, and most

importantly, a calibration technique for both the fisheye stereo camera unit and the underwater

camera housing.

Underwater Stereo 3D Reconstruction 1



1 Introduction

This project takes the work completed during the interdisciplinary project and attempts to

adapt 3D reconstruction techniques to underwater scenarios. The main purpose of this project

is to adapt the well-known structure-from-motion (SfM) technique that recovers 3D structure

of a scene from 2D images to an underwater scenario. Adaptation of a typical SfM algorithm is

done by modifying the technique to include a model for refraction.

This report begins with a theoretical background of camera models, underwater imaging, and

structure from motion in Chapter 2. Then, the steps and procedures undergone during the

project are described in the Chapter 3. Next, results of the proposed system are presented

and discussed in Chapter 4. Lastly, a conclusion of the the system and suggestions for further

improvement and future work are provided in Chapter 5.

Underwater Stereo 3D Reconstruction 2





2 Theoretical Background

2 Theoretical Background

As stated previously, this project attempts to adapt conventional camera models and 3D recon-

struction techniques to an underwater setting. This chapter underlines the theory needed to

understand the techniques used from both above water and below water settings. The chapter

begins with a section on the camera models related and used in this project, followed by theory

on refraction, and lastly, a section on structure-from-motion, the 3D reconstruction technique

used in this project.

2.1 Camera Models

2.1.1 Pinhole Camera Model

Most consumer cameras used in photogrammetry and computer vision are modeled with a central

projection model – one such that incoming rays converge at a single projection center, which is

the camera center. The most basic model of this form is called the pinhole camera model. In

the pinhole model, there exists a plane at Z = f , where f is the focal length of the camera, such

that a 3D point in the world coordinate frame X = (X,Y, Z)> can be mapped to this plane by

(Hartley and Zisserman, 2004)

(X,Y, Z)> 7→ (f
X

Z
, f
Y

Z
)> (2.1)

where the map is from 3D Euclidian world space to 2D Euclidian image space. This mapping is

visualized in Figure 2.1.

This model assumes that the camera sensor is perfect. This is almost never the case and as such,

there are offsets to the principal point (center of image coordinate system) (x0, y0), deviations in

scale due to non-square pixels (αx, αy), and potentially a skew parameter s. If these parameters

are known or can be found, we can define a calibration matrix K

K =

αx s x0
0 αy y0
0 0 1

 (2.2)

Further, a camera is typically not at the origin of the world coordinate frame. Therefore, a

transformation from the world coordinate frame to the camera coordinate frame needs to be

applied. This transformation can be represented by a 3× 3 rotation matrix R and the location

of the camera center in the world coordinate frame C. The transformation from world coordinate

frame can be applied by

Xcam =

[
R −RC

0 1

]
X (2.3)

where X = (X,Y, Z)> is a point in the world coordinate frame represented in homogeneous

coordinates and Xcam is the point in the camera coordinate frame represented in homogeneous

Underwater Stereo 3D Reconstruction 4



2 Theoretical Background

Figure 2.1: The pinhole camera model. The left diagram shows the model from a 3D perspective. The

right diagram shows the cross section of the model and highlights the relationship between the focal

length and the projection of a 3D point into the 2D image plane. (Image source: Hartley and Zisserman

(2004))

coordinates.

Finally, joining these together, a camera P can be defined as

λ x = KR
[
I | −C

]
= PX (2.4)

where P is the camera projection matrix that projects a 3D point in the world coordinate frame

into the camera’s 2D image coordinate frame up to scale a λ.

Typically there are additional distortions due to lens defects, e.g. barrel distortion. A fisheye

lens utilized significant barrel distortion to map wide-angle views of a scene to a 2D image. In

this project, a fisheye lens is used and modeled using the method by Kannala and Brandt (2006).

Further details on fisheye lenses and the model used to acccount for fisheye distortion can be

found in Cotugno et al. (2016).

Together, the pinhole camera model with the calibration matrix, Euclidian transformation, and

distortion corrections will be referred to as a perspective camera.

2.1.2 General Camera Model

Recent research has led to the realization that there are limitations to the perspective camera

model. Variations of camera types and camera systems have become more popular. These in-

clude, for instance, catadiotropic cameras, camera clusters of a single or multiple camera types,

and compound camera systems. A particularly popular case is the autonomous vehicle that

has a multi-camera system that needs to be related to each other in some non-central center of

projection fashion.

Thus, to deal with this, Grossberg and Nayar (2001) developed the general camera model to

deal with arbitrary imaging systems. The main idea is that all imaging systems need to have a

mapping from incoming scene rays to photo-sensitive elements. Essentially the smallest element

Underwater Stereo 3D Reconstruction 5



2 Theoretical Background

Figure 2. (Top) The generalized imaging model [13] ex-
presses how each pixel samples the light-field. This sam-
pling is assumed to be centered around a ray starting at a
point X,Y,Z, with a direction parameterized by(φ, θ), rel-
ative to a coordinate system attached to the camera. The
simplified model captures only the direction of the ray, pa-
rameterized by its Plücker vectorsq, q′.

lines [19].
The “generalized camera model” [13] is briefly intro-

duced in Section 2.1, and encompasses the imaging geom-
etry of all the camera designs discussed above. The main
contribution of this paper is to express a multi-camera sys-
tem in this framework and then to derive the structure from
motion constraint equations for this model. The differen-
tial structure from motion constraints give an error function
which defines a minimization problem for motion estima-
tion (summarized in Section 3). Considering the Fisher In-
formation Matrix of this error function makes it possible to
give quantitativecomparisons of different camera designs
in terms of their ability to estimate ego-motion (Section 4).

2 Background

2.1 Generalized Camera Model

The generalized camera model was introduced as a tool
to unify the analysis and description of the widely diverg-
ing sets of new camera designs. This model abstracts away
from exactly what path light takes as it passes through the
lenses and mirrors of an arbitrary imaging system. Instead,
it identifies each pixel with the region of space that affects
that sensor. A reasonable model of this region of space is
a cone emanating from some point. A complete definition
of the imaging model has been defined in terms of “rax-
els” [13], (see Figure 2). An image taken by a generalized
camera is defined as the set of raxel measurements captured
by the system.

A raxel defines how a pixel samples the scene. This sam-
pling is assumed to be centered around a ray starting at a
point X,Y,Z, with a direction parameterized by(φ, θ). This
pixel captures light from a cone around that ray, whose as-
pect ratio and orientation is given by(fa, fb,Υ). The light
intensity captured may also be attenuated, these radiometric
quantities may differ for every pixel.

For the geometric analysis of multiple images, we sim-
plify this calibration so that it only includes the definition of
the ray that the pixel samples. This gives a simpler calibra-
tion problem which requires determining, for each pixel, the
Plücker vectors of the sampled line. Since Plücker vectors
are required for the mathematical analysis presented later,
the following section gives a brief introduction.

2.2 Plücker Vectors

In order to describe the line in space that each pixel sam-
ples in this more general camera setting, we need a mech-
anism to describe arbitrary lines in space. There are many
parameterizations of lines, but Plücker vectors [18] give a
convenient mechanism for the types of transformations that
are required. The Plücker vectors of a line are a pair of 3-
vectors:q, q′, named the direction vector and moment vec-
tor. q is a vector of any length in the direction of the line.
Then,q′ = q × P , for any point P on the line. There are
two constraints that this pair of vectors must satisfy. First,
q · q′ = 0, and second, the remaining five parameters are
homogeneous, their overall scale does not affect which line
they describe. It is often convenient to force the direction
vector to be a unit vector, which defines a scale for the ho-
mogeneous parameters.

The set of all points that lie on a line with these Plücker
vectors is given by:

(q × q′) + αq,∀α ∈ R. (1)

If q is a unit vector, the point(q× q′) is the point on the line
closest to the origin andα is the (signed) distance from that
point.

2.3 Plücker Vectors of a Multi-Camera System

A pinhole camera whose nodal point is at the origin sam-
ples a pencil of rays incident on the origin. If the calibration
matrixK maps image coordinates to coordinates on the nor-
malized image plane, a pixel(x, y) samples along a ray with
Plücker vector〈K〈x, y, 1〉>, 0〉. The moment vector of the
Plucker ray is zero because the point(0, 0, 0) is on the ray.

A camera not at the origin has an internal calibration ma-
trix K, and a rotationR, and a translationT which trans-
form points from the camera coordinate system to the fidu-
cial coordinate system. In this case, the ray sampled by
a particular pixel on the camera a direction vectorq =

2

Figure 2.2: The top image shows the general camera model from Grossberg and Nayar (2001) which

includes a space sampled in a direction centered at the ray. The bottom image shows the simplified

model by Pless (2003) which only uses the ray and its direction parameterized as a Plücker line. (Image

source: Pless (2003))

in the imaging system is a virtual element that measures the direction and radiometric response

of an incoming light ray. These virtual elements are called “raxels”.

Later, Pless (2003) takes the general camera model and extends the model, using it to estimate

motion of an imaging system. Pless first simplifies the raxel model to the ray that a given pixel

samples in space. The differences between the simplification by Pless (2003) and Grossberg and

Nayar (2001) can be seen in Figure 2.2. This model will be referred to as the Pless Model.

The Pless model uses Plücker coordinates to describe an arbitrary line in space that a pixel

samples. Plücker coordinates are a parameterization of lines in projective 3-space. Plücker

coordinates are advantagous because they provide convenient methods for common transforma-

tions and projections performed in computer vision. The Plücker coordinates representation of

a line is a 6-vector that is broken into to two 3-vectors. The first 3-vector is the direction of the

line q, and the second 3-vector is the moment of the line q′. If a point on the line X and a ray

in the direction of the line q are known, then the Plücker coordinates of the line can be formed

as follows (Pless, 2003)

L =

(
q

q× X

)
=

(
q

q′

)
(2.5)

Underwater Stereo 3D Reconstruction 6
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Figure 2.3: An example of the axial camera model with a single camera. Rays of points on a planar cali-

bration board intersect the axis of the axial camera. (Image adapted from source: Sturm and Ramalingam

(2004a))

2.3. Summary

a) b) c) d) e)

Figure 2.6. Camera types by ray geometry. a) single-view-point perspective camera,
b) locally central, axial camera, c) axial camera, d) locally central, general camera,
e) general camera.

a) Perspective camera with a single view point in which all rays intersect
(SVP camera)

b) Locally central, axial camera, a general camera comprised of a rig of
several perspective cameras, where all centers of projection lie on a
common axis (nSVP camera).

c) Axial camera, a more general camera where all rays intersect a common
axis (nSVP camera).

d) Locally central, general camera, a rig made of more than two perspective
cameras, where the centers of projection do not lie on a common axis
(nSVP camera).

e) General camera, the most general model, where no assumptions are
made for the light rays (nSVP camera).

2.3 Summary

In this chapter, projective geometry with Plücker Lines and coordinate
system transformations has been introduced briefly as a perquisite to
understand image formation. In a more detailed discussion, different
models for image formation, the pinhole camera model, the perspective
camera, but also more general camera models that do no fulfill the single
view point assumption were introduced and classified. All of the explained
concepts are valid for cameras used in air. However, the remainder of

21

Figure 2.4: From left to right: The perspective camera. An array of perspective cameras modeled as an

axial camera. A single axial camera. An array of cameras modeled as a general camera. A single general

camera. (Image adapted from source: Jordt (2014))

where L is the line in Plücker coordinates. The vector q can be of any magnitude. Thus, in the

Pless model, imaging can be modeled if, for each pixel, a point and the direction of the line the

pixel samples is known or can be found.

2.1.3 Axial Camera Model

While the perspective camera model and the general/Pless model show opposite sides of the

spectrum with regard to assumptions of the imaging system, there exists other intermediate

models. One of which is called the axial camera model. The axial camera is also a non-central

camera model. However, the axial camera model contains the constraint that there exists an

axis such that all incoming rays into the camera intersect. This model can be applied to a single

non-central camera or a stereo system of two perspective cameras. An example of these two

can be seen in Figure 2.3. This model and a calibration procedure based on the model were

developed in the paper Sturm and Ramalingam (2004a).

To summarize the differences between the camera models described in this section, a visualization

of the different types of rays in the models can be seen in Figure 2.4.
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2.2 Underwater Imaging

When submerging a camera underwater, many assumptions used above water are not valid un-

derwater. There are geometric and radiometric effects that occur underwater that need to be

accounted for. In addition, a camera typically needs to be enclosed in a protective housing in

order to prevent damage to the camera. A housing usually has some sort of viewing port for

the light rays to enter the housing and into the camera center. This viewing port can also cause

geometric effects on the incoming rays. This section focuses on the theory behind underwater

imaging and how to model its effects.

Different media have different refractive indicies. The refractive index of a medium describes

how light propogates through it with respect to light in a vacuum. The refractive index of a

medium can be calculated by

n =
c

v
(2.6)

where n is the refractive index, c is the speed of light in a vacuum, and v is the phase velocity

of light through the medium in question.

When light propagates from one medium to another, it is bent or refracted at the optical interface

between the two media. The amount refracted is dependent on the refractive indices of the two

media. This phenomena is illustrated by Snell’s Law which describes the change in propagation

direction from one media to another by

sin (θi+1) =
µi
µi+1

· sin (θi) (2.7)

where θi is the angle of incidence of the incoming ray from medium i with refractive index µi
and θi+1 is the refraction of the ray after crossing the interface into medium i+1 with refractive

index µi+1. The angle of incidence and the refraction are measured with respect to the normal

of the interface. This effect is visualized in Figure 2.5

According to these established principles, a camera placed inside of a protective housing with a

window port of some material (typically acrylic or glass) will image rays that have been refracted

twice: once at the interface between water and the port outside of the housing, and again at

the interface between air and the port inside of the housing. These geometric effects need to be

accounted for in order to accurately model viewing geometry to estimate 3D structure of a scene.

An underwater camera housing can utilize different types of viewing ports. Two of the most

common types of ports are the flat port and the dome viewing port. Figure 2.6 shows the

two different types of ports and the refraction that occurs in each. As can be established from

Equation 2.7, any incoming ray with a non-zero incidence angle is refracted. In the case of a

flat shaped port, refraction occurs twice – once at each interface.
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Figure 2.5: Diagram showing refraction at the optical interface as a light ray propagates through a

medium change. (Image source: WikiCommons (2015))

In contrast, in the case of a dome port in Figure 2.6b, rays enter the port normal to the refractive

interface. Therefore, no refraction occurs. However, this concept is theoretical. For this to work

in practice, the camera center needs to be perfectly aligned with the dome center and the dome

must be perfectly spherical. Of course, this is usually not the case. Dome ports usually exhibit

some deviations from a perfect sphere due to imprecise machining, and maintaining the camera

at the center of the dome is a practical burden. Further, good quality dome ports are particu-

larly expensive due to the precise machining needed for manufacturing. Thus, dome ports are

not the best practical choice for a low-cost underwater 3D reconstruction system, especially if

refraction in a flat port can be modeled.

In addition to the geometric effects, there are radiometric distortion effects that occur under-

water. Photons underwater collide with water molecules and cause absorption and scattering

of photons (Jordt, 2014). These effects are wavelength dependent and therefore have an effect

on color and intensity of an underwater image. However, in this project, radiometric effects are

not considered.

2.2.1 Accounting for Refraction

There have been different methods in the literature to account for the geometric effects of re-

fraction on viewing geometry. In general, three different techniques have been used to account

for refraction in underwater imaging.

First, the perspective camera model can be be used although it has been shown that it is invalid

underwater and there exists a systematic model error (Sedlazeck and Koch, 2012). Some meth-

ods calibrate a perspective camera above and below water to examine how much of the error is

absorbed in the camera parameters, and adapt the focal length and distortion parameters (Fryer
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waterair       glass

camera

(a)

waterglass
air

camera

(b)

Figure 2.6: Refraction effects with respect to a (a) flat port and (b) a perfectly dome-shaped port. Rays

are illustrated as follows: rays in water are in green, rays in between the port material are in red, and rays

in air into the camera are in blue. The dashed green lines shown in (a) illustrate the path the incoming

rays from water without considering refraction. (Image source: Cotugno et al. (2016))

and Fraser, 1986; Lavest et al., 2000) accordingly. Bryant et al. (2000) uses underwater calibra-

tion images of a checkerboard and adds a coefficient for radial distortion.

Second, the general or axial camera models can be used. In this case, refraction can be explicitly

modeled as opposed to the previous case. In the same paper as formulating the general camera

model, Grossberg and Nayar (2001) also proposes a calibration system and states that general

cameras are defined by their caustics. The caustic of an imaging sensor is the surface such that

the set of all camera rays are tangent. A paper by Sturm and Ramalingam (2004b) extends this

work by making calibration more generic by using three or more images of calibration objects

where viewing positions are unknown. The camera used here is only described by its viewing

rays. In Ramalingam et al. (2006), a generic structure-from-motion algorithm is introduced

based on the work from Sturm and Ramalingam (2004b) where rays are clustered to approxi-

mate perspective cameras. These ray clusters are used to synthesize a perspective camera plane.

This is a general concept that of synthesized perspective cameras used in Ramalingam et al.

(2006), other papers, and particularly in this project, will be referred to as a virtual camera.

Lastly, Mouragnon et al. (2009) introduces a complete 3D reconstruction system that uses a

catadiotropic camera where each raxel is known from calibration.

Thirdly, an explicit, physical model for refraction can be used. Using a general camera model to

account for refraction relies on having independent arbitrary perspective centers and directions

for each ray, which increases complexity of the problem (Jordt, 2014). Thus, creating a physical

model for refraction in the camera housing can reduce complexity and make calibration and 3D

reconstruction less difficult. One of the earliest methods of forming a physical refraction model

is Treibitz et al. (2008). Treibitz et al. make the significant assumption that the viewing port of

the underwater housing is very thin. Therefore, the effect of refraction is approximated by only

having one refraction interface – an air-water refractive interface. In addition, they assume that
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the viewing port is orthogonal to the optical axis of the camera. In Li et al. (1997), a complete

physical model is developed using a photogrammetric approach. Rays are optically traced and

a stereo-rig is used to triangulate the traced rays in water. Sedlazeck and Koch (2011) also

introduces a complete physical model with no assumptions on inclination angle between the

viewing port normal and the camera optical axis. Further, they explicitly model the thickness

of the view port as well as the distance from the camera center to each of the interfaces. They

provide a virtual camera error function for calibration similar to Sturm and Ramalingam (2004b)

except compute a virtual perspective camera for each pixel. Transformation for each pixel into

the virtual camera requires solving a costly computation for a caustic point for each virtual

camera. However, this computation is still more efficient than solving a non-linear optimization

for forward projection for the reprojection error.

The paper by Agrawal et al. (2012) analyzes refractive geometry with up to n layers of successive

parallel refraction. Their work has significant value in the field of underwater imaging. One

of the most important findings of the paper is that a perspective camera behind a n refractive

planes corresponds to an axial camera. The axis of the axial camera is a line that is parallel

to the normal of the refractive planes (interfaces) and goes through the camera’s perspective

center. The main constraint of this theory is that the successive refractive planes should be

parallel. However, the orientation of the camera does not need to be fronto-parallel which al-

lows for cheaper, consumer-grade equipment. Agrawal et al. (2012) provide a calibration routine

that only requires the intrinsics of the camera and coordinates of the 2D-3D correspondences of

an imaged calibration board in both the image and world coordinate frame to be known. The

calibration provides estimates for the interface normal, distance to each interface, and poten-

tially the indices of refraction if they are unknown. Further, they introduce a novel method for

analytical forward projection. Forward projection differs on the number of refractive planes and

the indices of refraction of the first and last media. In the case of standard underwater imaging,

there are two refractive planes and the first and last indices of refraction differ. In this case, it

is shown that forward projection of a 3D point into the image can be found by solving a 12th

degree polynomial. While this can be expensive, it is still much more efficient than previous

forward projection techniques that required non-linear optimization.

The work produced by Agrawal et al. (2012) was then integrated into the previous work by Anne

Jordt/Sedlazeck et al. (Sedlazeck and Koch, 2011, 2012). The realization that the refractive

camera is an axial camera allowed for computation of the virtual camera based on the axial

camera axis rather than solving for a caustic at each pixel. This greatly increased efficiency and

decreased complexity of the problem. Jordt/Sedlazeck et al. then continued their work with the

new refractive geometry insights (Jordt-Sedlazeck and Koch, 2012, 2013; Jordt-Sedlazeck et al.,

2013), finally culminating in a complete underwater 3D reconstruction pipeline in Jordt et al.

(2016). The pipeline includes underwater refractive calibration, structure-from-motion, bundle

adjustment, and dense 3D reconstruction via a plane-sweep method.

In this project, the refraction model and 3D reconstruction methods proposed build on the

insights developed from Agrawal et al. (2012) and Jordt et al. (2016).
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master camera

d0 d1

ñ 

µa µg µw

slave camera

P
R0, t0

A

Figure 2.7: The proposed refraction model for a stereo-rig with a flat viewing port. Illustrated are light

rays in water (green); light rays in the viewing port material (red); light rays in air entering the camera

(blue); relative orientation between the two cameras R0, t0; the parameters of the camera housing. An

exemplary 3D point seen in both cameras is shown as P. (Image source: Cotugno et al. (2016))

2.2.2 Refraction Model

In this work, a stereo-camera is used inside of a housing with a flat viewing port. The refraction

model proposed here requires two calibrations. The first calibration is in air for the intrinsics of

the cameras and the relative pose between the two. The second is underwater for the parameters

of the housing that allows for explicit modeling of refraction. The model will be explained in

detail in this section.

The following parameters are used to entirely account for refraction in the proposed system:

• The normal ñ. The normal is in the local coordinate frame of the master camera.

• The distance from the camera center of the master camera to the first (inner) refractive

interface d0 measured in the direction of ñ.

• The thickness d1 of the viewing port.

• The indicies of refraction for air µa, glass µg, and water µw.

The auxiliary parameter A is the axis of the axial camera a the master camera location. It is

parallel to the normal ñ and passes through the camera center of the master camera. All of

these parameters with the addition of the relative transformation parameters between cameras

in the stereo-rig can be seen in Figure 2.7.
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Ray Tracing

Using the physical model parameters listed above, the ray for any pixel can be traced from

the camera to a ray in water, explicitly taking into account refraction. Ray tracing for the

underwater housing rig follows Snell’s Law shown in Equation 2.7. Beginning from a ray in air

can be back projected from its pixel coordinate in homogeneous representation x = (x, y, 1)>

by (Hartley and Zisserman, 2004)

X̃a =
K−1x
‖K−1x‖2

(2.8)

where X̃a is the normalized ray in air inside of the housing and K is the calibration matrix.

The formula in Equation 2.8 is the typical case for a perspective camera. However, in this case

of this project where a fisheye lens is used, the generic fisheye model by Kannala and Brandt

(2006) is used to back project a pixel to its ray in air.

Once this ray is known, the housing parameters can be used to trace this ray into the next

medium. This procedure can be done using (Agrawal et al., 2012)

X̃g =
µa
µg
· X̃a +

−µaX̃>a ñ−
√
µ2a

(
X̃>a ñ

)2
−
(
µ2a − µ2g

)
X̃>a X̃a

µg
· ñ (2.9)

where X̃g is the ray traced into the glass port. The ray should be normalized by X̃g =
X̃g

‖X̃g‖2
.

The formula in Equation 2.9 can be used to continue tracing a pixel’s ray to its ray in water

X̃w, while changing the previous rays and indices of refraction accordingly.

In addition to rays in each medium, the intersection of the rays with each refractive interface can

be determined. The most important of the two intersections is the last and thus the equation

for which is displayed in Equation 2.10 (Agrawal et al., 2012).

Xs =
d0

X̃>a ñ
X̃a +

d1

X̃>g ñ
X̃g (2.10)

The outer intersection point is labeled Xs because it is considered the starting point of the ray

in water. This is an important note because throughout the course of this project, image points

x are often represented by their point on the outer interface and traced ray in water
(
Xs, X̃w

)
.

Another important note is that these point-ray representations of image points are in the coor-

dinate frame of the camera (master or slave). If needed, they can be transformed into the world

coordinate frame by

WCXs = RCCXs + C WCX̃w = RCCX̃w (2.11)

where
(
WCXs,

WC X̃w

)
and

(
CCXs,

CC X̃w

)
are the point-ray representations in the world co-

ordinate frame and the camera coordinate frame respectively. R and C are the rotation and
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96 A. Jordt et al. / Methods in Oceanography 15–16 (2016) 90–113

Fig. 4. Depicted in on the left is the plane of refraction (POR) for the green point shown in Fig. 2, containing all ray segments and
the interface normal ñ. Depicted on the right is the Flat Refractive Constraint (FRC), where a ray segment inwater is transformed
into the local camera coordinates and compared to the local ray in water. The FRC states that the angle α should be zero. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. For a 2D image position, the corresponding ray in water is intersected with the axis defined by center of projection
and interface normal (blue line). This intersection defines the virtual camera center (green). The virtual camera’s optical axis
is defined by the interface normal. Consequently, for a 3D–2D correspondence, the 3D point can be projected into the virtual
camera perspectively and the 2D point can be transformed into the virtual camera, thus defining a reprojection error that can
be computed efficiently. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

into the image, the difference of the projected point to the observation is called reprojection error
in the literature. Since refraction makes projecting 3D points directly into the image prohibitively
expensive, the problem is reformulated such that the 2D observation is backprojected onto the outer
glass interface. This removes the need for considering any further refractions in the objective function
and simple linear projections can be used as in air.

Instead of using the reprojection error, we propose a different, non-linear error function that
defines a virtual camera for each 2D observation, into which the corresponding 3D point can be
projected perspectively (see Fig. 5). The basic idea is similar to the idea in Ramalingam et al. (2006),
however, here the virtual camera is defined for each pixel and computes an exact error. An earlier
version described in Sedlazeck and Koch (2011) required long computation times due to the need to
compute a caustic point for each virtual camera. Here instead, we propose using the axis defined by
center of projection and interface normal, which is intersected by each ray in water (Agrawal et al.,

X

Figure 2.8: The plane of refraction constraint theorized by Agrawal et al. (2012). All rays X̃a, X̃g, and

X̃w and the interface normal ñ exist in the same plane. (Image adapted from: Jordt et al. (2016))

translation from camera coordinate system into the world coordinate system .

Forward Projection

In earlier studies (Sedlazeck and Koch, 2012) forward projection of a 3D point into the image

was solved numerically using an optimization scheme for the two intersection points of the re-

fractive interfaces. This optimization scheme was exceedingly costly and would have made any

reconstruction system too long for any realistic application.

However, in Agrawal et al. (2012) additional useful characteristics of the refractive camera be-

sides the ones already discussed were found. The most important in regard to forward projection

is what they called the plane of refraction (POR) constraint. The POR constraint says that all

traced, refracted rays sampled by a pixel lie in the a common plane as the axial camera axis

A. Further, all PORs intersect the axis A, shown in Figure 2.7. This theory is visualized in

Figure 2.8 and the equation for the constraint is shown in Equation 2.12 (Jordt et al., 2016).(
R>WCX− R>C

)> (
ñ×CC X̃w

)
= 0 (2.12)

Equation 2.12 shows that a 3D point in the world coordinate system WCX transformed into

the camera coordinate system lies within the POR. This development is used in Agrawal et al.
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Figure 2.9: A general pipeline for sequential SfM. (Image source: Jordt et al. (2016))

(2012) to contrain forward projection of a 3D point into the camera to be on the POR. The

paper shows that if the first and last indices of refraction differ – which is the case here (µa 6= µw)

– then the image coordinates of a 3D point forward projected into the image can be known by

solving a 12th degree polynomial.

This development significantly increases efficiency of forward projection. Although, in the scope

of a SfM system, particularly in bundle adjustment where image observations can be up to

hundreds of thousands of observations (depending on the scene), solving a 12th degree polynomial

for each point is still costly.

2.3 Structure-from-motion

In general, structure-from-motion (SfM)is a technique to estimate 3D structure of a scene given

an input of 2D images of the scene. Typically, the input images can be sequential, which can

give prior knowledge to the method, though there are variations for unordered images. The

output of SfM is usually the poses of each camera in the 3D scene and a sparse point cloud of

the scene. The output from SfM can be used as input into a dense 3D reconstruction system to

create a final, dense 3D model of the scene.

As mentioned, there are different variations of SfM. In this project, the sequential approach is

used. This is because images are taken in a a video sequence of the scene. The general pipeline

for SfM will be outlined here and can be seen in Figure 2.9.

Consider the case of a calibrated perspective camera that takes a sequential set of images of a

scene. The first camera is considered at the origin of the world coordinate frame. First, the

initial image (j = 1) is input into the system and features are detected and described. Then,

the second image (j = 2) input into the system and features are detected and described. Then,

the features from image j = 2 are matched to the features from image j = 1 to obtain 2D-2D

feature correspondences.

With the knowledge of epipolar geometry (see Figure 2.10) and a set of 2D-2D correspondences,

the essential matrix of a calibrated camera (known intrinsics) can be estimated in a RANSAC

framework. The essential matrix has 3D structure information encoded. Decomposing the

essential matrix reveals the relative pose of the second camera with respect to the first. This
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240 9 Epipolar Geometry and the Fundamental Matrix
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Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and
C′ and image planes. The camera centres, 3-space point X, and its images x and x′ lie in a common
plane π. (b) An image point x back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line l′ in the second view. The 3-space point X which projects to x must
lie on this ray, so the image of X in the second view must lie on l′.
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and e′. Any plane π containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines l and l′. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know only x, we may ask how the corresponding point x′ is
constrained. The plane π is determined by the baseline and the ray defined by x. From
above we know that the ray corresponding to the (unknown) point x′ lies in π, hence
the point x′ lies on the line of intersection l′ of π with the second image plane. This line
l′ is the image in the second view of the ray back-projected from x. It is the epipolar
line corresponding to x. In terms of a stereo correspondence algorithm the benefit is
that the search for the point corresponding to x need not cover the entire image plane
but can be restricted to the line l′.

The geometric entities involved in epipolar geometry are illustrated in figure 9.2.
The terminology is

• The epipole is the point of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipole is the image in one view

Figure 2.10: Given two cameras C and C′ and matching features x and x′ in each image respectively,

the epipolar geometry is depicted above. The ray sampled by the point x corresponds to a line l′ in C′

that passes through the epipole e′. (Image source: Hartley and Zisserman (2004))

gives inital 3D structure to the scene. With this knowledge, features can be back projected and

triangulated to obtain 2D-3D correspondences.

Once initial 3D structure has been developed, the subsequent images (j > 2) can be iteratively

added to the scene. In each iteration, features are detected, described, and matched to the pre-

vious features of prior images. This gives 2D-3D correspondences to the features in the current

image. Using these correspondences, the camera projection matrix can be estimated, also within

a RANSAC framework. This is called the absolute pose, as it is the pose of the camera relative

to the scene. New points can be triangulated to add 3D points to the scene. Lastly, a bun-

dle adjustment is used to jointly optimize the 3D points and the poses of all cameras in the scene.

This general framework is adapted to an underwater setting. While there are some fundamental

differences for some of the steps, the general framework is the same. Most importantly, standard

epipolar geometry becomes invalid in the refractive camera model. Rays in water sampled by a

image points in one image do not correspond to lines in the corresponding image, but rather a

curves. Instead, the generalized epipolar constraint proposed by Pless (2003) is used. Further,

a different method for absolute pose requires a new technique to deal with refraction. These

methods are described in further detail in Chapter 3.
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3 Methodology

This section outlines the methods used for the SfM pipeline in this project. The general pipeline

for the proposed underwater SfM scheme can be seen in Figure 3.1.

Above Water
R, t, intrinsics, distortion

Below Water
d, ෤nC

A
L

IB
R

A
T

IO
N Input Stereopair 

i = 1…N

SURF Features

Feature Matching Triangulation

Absolute Pose 

Estimation

Triangulation

Bundle Adjustment

If i < 2

If i ≥ 2

General Underwater SfM Pipeline

Figure 3.1: The general underwater SfM pipeline. Calibration formulation was done in previous work

(Cotugno et al., 2016) and is shown in green. All other modules are formulated and implemented in this

work.
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Figure 3.2: The DUO MLX within the custom built housing.

The general pipeline is similar to the one in Figure 2.9. However, in this project, a stereo cam-

era is used. After calibration, the relative pose between the two cameras within a stereopair is

known. This information is exploited in this project to effectively eliminate the relative pose

estimation module. Therefore, in the first iteration, features are detected and matched within

the stereopair and triangulated to obtain initial 2D-3D correspondences. On the next iteration,

absolute pose can be estimated with these correspondences. Lastly, because the relative pose

within a stereopair is known, the scale of the scene is fixed by the known baseline within the

stereopair.

The entire software is implemented in MATLAB and uses many MATLAB toolboxes.

3.1 Equipment & Setup

This project uses a DUO MLX stereo camera sensor from DUO3D. The sensor’s dimensions are

52 × 25 × 13 mm with a 30 mm baseline, making the camera very compact. The maximum

resolution of the sensor is 752 × 480 and the sensor images in grayscale. The housing for the

camera is custom built with a thin acrylic flat viewing port. The viewing port has a thickness

of approximately 3.8 mm. The camera within the housing port can be seen in Figure 3.2. The

camera is interfaced via a USB port and through Robot Operating System (ROS) middleware.

The calibration is performed in two stages using the procedure developed in Cotugno et al.

(2016). First, an in-air calibration is performed to obtain the camera intrinsics and the relative

transformation parameters from the master camera to the slave camera. In-air calibration is

performed using Kalibr (Furgale et al., 2013), a calibration toolbox for multi-camera rigs. An

april grid (Olson, 2011) is used for the calibration board. Once calibrated in air, the camera

is placed in the housing and calibrated underwater to obtain the housing parameters (see:

Section 2.2.2). The refractive indices are assumed to be known and fixed. The refractive indices

are obtained from Polyanskiy (2008). The values are µa = 1, µg = 1.49, µw = 1.33 for air,
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Figure 3.3: This image shows an example of incorrect feature matches within a stereopair. The incorrect

matches are those that cross the otherwise straight lines.

acrylic, and fresh water, respectively. Further information on the calibration procedure can be

found in Cotugno et al. (2016).

3.2 Feature Detection & Matching

The process for detecting and matching features is described in this section. The basis for many

3D reconstruction techniques, especially SfM is finding matching feature points across images.

These feature correspondences are used to estimate the 3D structure of the scene. Therefore,

accuracy and robustness of feature detection and description are critical. In particular, with

an image sequence of a moving camera (or camera rig), features should be invariant to scale,

orientation, and illumination changes.

Two of the most popular methods of this type are the scale-invariant feature transform (SIFT)

(Lowe, 1999) and the speeded up robust features (SURF) (Bay et al., 2008). Both methods

detect features and describe them and are quite similar in methodology. However, only SURF

is implemented in MATLAB and therefore is used as the feature detector and descriptor in this

project.

When the first stereopair is input into the system, SURF features are detected in both im-

ages. These features are then matched using the MATLAB Computer Vision Toolbox feature

matching function. Due to underwater conditions (scarce illumination, particles in the water,

no background texture), less features are detected than a standard in air image. In addition,

features are described and matched less accurately. Therefore, matching typically returns a

limited amount of matches between a stereopair than would be in-air. The standard range of

matches seen in the test are between 35 - 100 depending on the view of the scene.

Further, matching often produces incorrect matches. This occurs in-air as well. Because these

matches are used to triangulate 3D points, and later to estimate pose of the subsequent stere-

opairs, it is important that incorrect matches are removed. An example of incorrect matches

can be seen in Figure 3.3.
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5.1. Structure-from-Motion

glass interface

image plane

C C1

ray in water

rays in air

Figure 5.4. Generalized epipolar geometry with (quartic) epipolar curve in under-
water case (after [Maa92]).

lines in the second image, an approach described by Pless [Ple03] utilizes
the intersection between Plücker lines corresponding to the rays in water
computed for both corresponding image points. The preceding chapters
already showed, that for a given point x = (x, y) P R2 in one image, the
Plücker line can be determined if the intrinsic parameters and the housing
parameters are known. Let Lk = (X̃wk , Mk) and L1k = (X̃1wk , M1

k) be the
Plücker lines for two image points of the kth correspondence, with X̃wk

denoting the line’s direction in water and Mk = X̃wk � Xsk denoting the
line’s moment. Note that both lines are still in the local camera coordinate
system. As in case of perspective epipolar geometry, the first camera is
assumed to be in the world coordinate system origin.

In order to determine the relative camera pose of the second camera,
R and C need to be determined, such that the line in the second local
camera coordinate system is transformed into the world coordinate system
[Ple03]:

L1
wc
k = (RX̃1wk , RM1

k � [C]� RX̃1wk ) (5.1.9)

99

Figure 3.4: Generalized epipolar geometry illustrated with a refractive camera. Corresponding Plücker

lines intersect. The figure also shows that in the refractive camera case, a point and its corresponding ray

correspond to an epipolar curve as opposed to an epipolar line in the perspective case. (Image source:

Jordt (2014))

Typically, in a stereo rig in-air, images can be rectified such that epipolar lines are horizontal

(see Figure 2.10). Feature matching can then be done by searching horizontally along the corre-

sponding image. Further, in the case of a monocular camera, feature matches can be evaluated

based on the distance of the feature to the epipolar line in the corresponding image (distance

from x′ to l′ in Figure 2.10). However, in an underwater refractive camera, standard epipolar

geometry is invalid.

In the general camera model proposed by Pless (2003) and described in Section 2.1.2, a gen-

eralized essential matrix is formed by Pless that can be used to describe geometry between

two general cameras. The generalized essential matrix is used to form the generalized epipolar

constraint (GEC). This constraint is based on the theory that the Plücker lines sampled by cor-

responding features in two images intersect. The equation for the epipolar constraint is shown

in Equation 3.4. The theory behind the GEC is visualized in Figure 3.4. This theory can be

adapted to the case here with a refractive camera.

For instance, take a pair of matching features x and x′ from the master camera and slave camera

of a stereopair, respectively. Back projecting these features into their respective points on the

outer interface and the rays in water gives
(
Xs, X̃w

)
and

(
X′s, X̃

′
w

)
. Transforming the point-ray

representation into Plücker coordinates gives
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L =

(
X̃w

X̃w ×Xs

)
=

(
X̃w

M

)
L′ =

(
X̃′w

X̃′w ×X′s

)
=

(
X̃′w
M′

)
(3.1)

.

The GEC constraint states that corresponding Plücker lines should intersect. To relate the two,

they need to be within the same coordinate frame. If the the Plücker line from x is in the world

coordinate frame, the Plücker line from x′ should be transformed into the world coordinate

system by (Pless, 2003)

WCL′ =

(
RX̃′w

RM′ − [C]×RX̃′w

)
(3.2)

where R is the rotation into the world coordinate frame and [C]× is the skew-symmetric matrix

representation of the translation into the world coordinate frame.

Once transformed, the intersection between the two Plücker lines can be determined by (Jordt,

2014)

X̃>w
WCM′ + M>WCX̃′w = 0 (3.3)

These two equations together form the GEC equation (Jordt, 2014)

0 = L>
(
− [C]×R R

R 03×3

)
︸ ︷︷ ︸

EGEC

L′ (3.4)

where the matrix EGEC is the generalized essential matrix described previously.

In the case of this project, a calibrated stereo rig is used. Therefore, the relative pose between

the two cameras (R and C) is known and fixed. This provides a fixed EGEC for the stereo rig.

The EGEC is then used to remove matches that score above an empirically determined threshold.

The threshold used is 5E − 4. However, the threshold can be adjusted accordingly.

3.3 Triangulation

Once correct matches within a stereopair have been determined, they can be triangulated to

obtain 3D points in the scene.

In the first iteration of the pipeline, triangulation is only performed using the images of the

stereopair. Therefore, for each feature correspondence, only two rays are used to estimate the

feature point. However, when more views are added that also contain the same feature corre-

spondence, the rays from the new views can be used as well to estimate the 3D point. Often,

more views of a 3D point leads to a better estimate of the 3D point.
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Triangulation can be formed based on the following constraint

X = Xsi + κiX̃wi, κi ∈ R (3.5)

where X is the 3D point associated to a feature point in the ith view represented by its point-ray

pair
(
Xsi , X̃wi

)
and κi is the distance from the outer surface point to the 3D point along the ray.

Using this constraint, the formula used to triangulate a 3D point can be formed. The equation

is a linear least-squares equation to find the optimal 3D point estimate that fits the rays. The

least-squares equation used can be seen in Equation 3.6 (Jordt, 2014).

ε = min︸︷︷︸
X,κ1,...,κn

N∑
i=1

|Xsi + κiX̃wi −X|2 (3.6)

The problem in Equation 3.6 can be solved by stacking a linear system of equations Ax = b in

the fashion


1 −X̃w1 0 · · · 0
... 0 −X̃w2 0

...
... 0

. . .

1 0 · · · −X̃wN


︸ ︷︷ ︸

A


X

κ1
κ2
...

κN


︸ ︷︷ ︸

x

=


Xs1

Xs2
...

XsN


︸ ︷︷ ︸

b

(3.7)

where x is the vector of unknowns and b is the vector of observations. In this case, the additional

unknowns κi are auxiliary unknowns and not used further in the SfM pipeline.

The system of equations is solved in MATLAB using the backslash operator. The solution is

then in the form of x = A\b.

3.4 Absolute Pose Estimation

Once 2D-3D correspondences have been determined within the first stereopair via triangulation,

the next stereopair can be input to add to the scene structure. Absolute pose estimation in-

volves estimating the pose of a camera relative to an established 3D representation of a scene.

Since the scene has been established with the master camera of the first stereo pair at the scene

origin, with a second camera (slave camera) and some initial 3D triangulated points, there exists

enough information to estimate the pose of the next stereopair. The pose of the camera consists

of 6 degrees of freedom (DOF): 3 for the rotation, and 3 for the translation.

The absolute pose problem is also known as the PnP (perspective-n-point) problem in the per-

spective case. There are many well-known solutions to solving the problem. Minimal solvers

for the the problem are the case where only 3 points are needed (called the P3P problem).
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Spatial ordering

Camera 1 Camera 3

images, 2D feature 
correspondences

Camera 2

3D from images

Figure 3.5: Example of persepctive triangulation from N = 3 views. In the refractive case, the point-ray

representation of each pixel is used to triangulate a 3D point. (Image source: Geiger (2016))

Well-known solutions are in Fischler and Bolles (1981) and Kneip et al. (2011).

In the case of a general camera, the problem is known as the gPnP (general PnP ) problem.

Minimal solutions for this problem using 3 points can be found in Nistér (2004) and Lee et al.

(2016). There exists little literature on absolute pose for a refractive camera other than Haner

and Åström (2015), where only one refractive plane is used. Other solutions, including an itera-

tive solution and a solution based off the process used for calibration in Agrawal et al. (2012) can

be found in Jordt (2014). Additionally, an analysis of multiple different methods was performed

in Jordt (2014). The conclusion of the analysis was that the methods by Nistér (2004) and the

adaptation of Agrawal et al. (2012) were – while minimal in the case of Nister – very sensitive

to noise.

Thus Jordt (2014) proposes to use an iterative approach to solve for the absolute pose based on

known 2D-3D correspondences. The iterative approach requires c ≥ 3 correspondences. How-

ever, due to noise in image observations, c = 7 correspondences are used (Jordt et al., 2016).

This iterative solution is used within a RANSAC framework to obtain an initial solution and

remove outliers. Lastly, the initial solution obtained within the RANSAC framework is non-

linearly optimized in a Levenberg-Marquardt optimization scheme.

This method was attempted for this system. However, in the case where very few correspon-

dences exits, this solution was not providing an accurate enough initial solutions for Levenberg-

Marquardt. Thus, a new solution is proposed.
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Figure 3.6: An example of 3D-3D correspondences. The first stereopair, considered at the origin of the

world coordinate frame, has triangulated points to obtain 3D points in the world coordinate frame, shown

in blue. The next stereopair triangulates matches to the previous stereopair to obtain matches in the

local coordinate frame, shown in red. The difference between world coordinate frame and local camera

frame is exaggerated for effect.

3.5 Initial Solution

The new solution again exploits the stereopair configuration used in this project. Because

relative pose within a stereopair is known, local camera coordinate frame 3D points can be tri-

angulated within any stereopair view. Therefore, when adding the next stereopair to the scene,

features matched to the scene can be triangulated within the new stereopair to obtain local

camera coordinate frame 3D points. These 3D points correspond to 3D points already within

the world coordinate frame of the scene. These correspondences will be referred to as 3D-3D

correspondences. This concept is illustrated in Figure 3.6.

Once 3D-3D correspondences have been established, they can be used to estimate the transfor-

mation parameters between the two point sets. This transformation is then pose of the new

stereopair in the scene. Solving for the transformation is essentially a point cloud registration
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problem. In Lorusso et al. (1995) four different methods for solving transformation parameters

between two 3D point sets are analyzed: using singular value decomposition (SVD), using or-

thonomral matrices, using unit quaternions, and using dual quaternions. They conclude that

using the SVD method, further described in Umeyama (1991), provides the best overall accuracy

and stability. Therefore, this method is used in this project.

The SVD method finds the transformation parameters based on the similarity of the 3D-3D

correspondences when translated to their centroids. The method is described as follows. First,

the centroid for each 3D point set X1 and X2 is computed by

X =
1

N

N∑
i=1

Xi (3.8)

.

where N is the number of corresponding points. The points are then translated to its centroid

by

X̃ = X−X (3.9)

.

Next, the correlation between the two translated point sets X̃1 and X̃2 is computed by

H =
1

N
X̃2X̃

>
2 (3.10)

.

The 3× 3 matrix H is then decomposed using SVD to obtain

SVD(H) = UΛV> (3.11)

where the optimal rotation can be extracted by

R̂ = UV (3.12)

However, it is possible that, in the case of planar data sets or large noise, a reflection can be

found as opposed to a rotation matrix. A reflection occurs when det(R̂) = −1. To deal with

this, Umeyama (1991) sets the third column of V negative. Thus, the optimal rotation is then

found by

R̂ = U

1 0 0

0 1 0

0 0 −1

V (3.13)

Finally, the optimal translation can be found by
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t̂ = X2 − R̂X1 (3.14)

This method provides the initial of the absolute pose of the new stereopair. However, there are

often outliers in matched features across stereopairs. To deal with this, this method is wrapped in

a RANSAC framework to remove outliers and to find the best-fitting transformation parameters.

RANSAC requires an evaluation function of the model fit within each RANSAC iteration to

provide the best solution. Typically this function is the reprojection error. However, as has

already been discussed, the projection of a 3D point into the image plane involves solving a 12th

degree polynomial. This inefficiency would make RANSAC, the subsequent optimization, and

especially bundle adjustment very costly. Thus, a different error function should be sought.

In Jordt (2014) two error functions are proposed, the virtual camera error (briefly mentioned

previously) and the angular error. The virtual camera error finds a perspective camera for each

pixel to compute the error in. The angular error is the error between a ray from the corresponding

point on the outer interface Xs to a 3D point transformed into the local coordinate frame, and

the corresponding point’s ray in water X̃w. Jordt (2014) concludes that the virtual camera error

performs the best. Therefore, the virtual camera error is used throughout this project, and will

be described in further detail.

3.5.1 Virtual Camera Error

As stated previously, the virtual camera error uses the concept of creating a virtual perspective

camera at every pixel. This allows for a computationally efficient perspective projection of 3D

points into the virtual camera where the error can be evaluated, analogous to the reprojection

error. This section will go into detail in how the virtual camera is defined and how the error

can be computed.

The virtual camera can be formed for any pixel if the housing parameters (see: Section 2.2.2)

are known. The virtual optical axis is parallel to the interface normal ñ and goes through the

real camera center. Therefore, the virtual image plane is parallel to the refractive interface. The

concept of the virtual camera can be seen in Figure 3.7.

To transform into the virtual camera, a rotation and translation need to be formed. The rotation

Rv is defined by a rotation axis and a rotation angle. The rotation axis is computed by using

Equation 3.15a. It is the cross product between the interface normal and the real optical axis.

The rotation angle is formed using Equation 3.15b. It is the dot product between the interface

normal and the real optical axis.

Rvaxis = ñ×

0

0

1

 (3.15a)
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5.1. Structure-from-Motion
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ñ

Figure 5.6. Virtual camera definition. The virtual camera center Cv can be found
by intersecting the ray in water with the line defined by the camera’s center of
projection and the interface normal. The rotation Rv is defined by the interface
normal. Note that a 3D point X can be projected in the resulting virtual camera
perspectively.

corresponding to the 2D image point, the computation of which was
expensive. The insight of the flat port camera being an axial camera
eliminates the need to compute the caustic point. The intersection
with the axis defined by the camera’s center of projection and interface
normal can be computed much more efficiently. In addition, a fixed
virtual focal length is used, eliminating the strong correlation between
interface distance and error that was a problem in [SK11a]. Note that
the use of the virtual camera error function allows to compute analytic
derivatives of the error function in the direction of the parameters, an
advantage compared to the reprojection error and the former version
based on caustic points as virtual camera centers.

107

Figure 3.7: Illustration of the virtual camera. (Adapted from: Jordt et al. (2016))

Rvθ = arccos ñ ·

0

0

1

 (3.15b)

The center of the virtual camera Cv is the intersection of the incoming ray from water and the

virtual camera axis.

Once the virtual camera transformation parameters have been defined, the error can be com-

puted. A 2D-3D correspondence must be known to compute the error. Both the 2D image point

and 3D world coordinate frame correspondence must be transformed into the virtual camera.

This procedure is outlined as follows.

First, the 3D world point is transformed into the local coordinate frame of the camera.

CCX = R>WCX− R>C (3.16)

Then, the 3D point in the camera coordinate system is transformed into the virtual coordinate

system by

Xv = R>v
CCX− R>v C (3.17)

where Xv is the 3D point represented in the virtual coordinate system.
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Similarly, the image observation must be transformed into the virtual coordinate frame. The

image observation is first back projected to its point-ray representation
(
Xs, X̃w

)
. This is

already in the camera coordinate system, so no intermediate transformation is necessary. The

point on the outer interface is used as the image point representation and transformed into the

virtual coordinate system by

Xvs = R>v Xs − R>v C (3.18)

where Xvs is the image observation representation in the virtual coordinate system.

The error can be computed once both points of the 2D-3D correspondence has been transformed

into the virtual coordinate frame. To compute the error, both points are perspectively projected

into the virtual image plane. As seen in Equation 2.1, perspective projection requires a known

focal length. The focal length of the virtual camera is the distance from the camera optical

center to the outer interface computed as

fv = d0 + d1 (3.19)

where d0 and d1 are defined in Section 2.2.2 and fv is the virtual focal length. Thus the virtual

camera error is computed by (Jordt, 2014)

gv =

fvXvX
XvZ
− fvXvsX

XvsZ

fv
XvY
XvZ
− fvXvsY

XvsZ

 (3.20)

where the subscripts X,Y, Z refer to the coordinate in each dimension and gv is the vector of

error in the virtual camera.

Lastly, the total error for k correspondences can be computed by Equation 3.21.

Ev =
K∑
k=1

‖gvk‖ (3.21)

There are two main advantages to using the virtual camera error. First, the error computation

is efficient as it only requires three Euclidian transformations and two perspective projections.

This is much more efficient than solving a 12th degree polynomial for each 3D point. Second,

many of the values can be precomputed prior to optimization or to RANSAC. Since only the

housing parameters and the image observations are needed, the virtual coordinate system trans-

formation (Rv,Cv) and the image coordinate in the virtual image plane Xvs can be precomputed.

Once the initial solution has been solved for and inliers have been determined within the

RANSAC (Fischler and Bolles, 1981) framework, the solution is optimized within a non-linear

Levenberg-Marquardt optimization scheme using all of the inliers. This optimization is done to

combat with the typical noise levels of image observations in underwater images. Thus, initial
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solutions are optimized such that they are more accurate when input into the bundle adjustment.

Optimization is done using the lsqnonlin MATLAB function.

3.6 Bundle Adjustment

Bundle adjustment jointly optimizes all poses and 3D points of a scene. It is a non-linear op-

timization problem, typically solved using the Levenberg-Marquardt algorithm. This section

describes how bundle adjusment is formed in this work.

As stated in the previous section, the reprojection error is very inefficient to optimize over. This

is particularly true in bundle adjustment where all 3D points and poses are optimized. Thus, the

virtual camera error is used as the objective function for the Levenberg-Marquardt optimization.

The unknowns of the optimization are the 3D points and the rig poses. The observations are

the image points. The vector of unknowns is then

x =
[
X1, · · · , XK , R1 C1, · · · , RN CN

]>
(3.22)

where Xk, k = {1, ...,K} are the K 3D points, and (Ri,Ci), i = {1, ..., N} are the N rig poses.

Rig poses are estimated and optimized based on the pose of the master camera. Errors in the

slave camera are computed using the known relative pose from the master to slave camera.

Therefore all unknowns are encoded in the 3D point in the virtual camera coordinate frame, Xv

(see: Equation 3.17).

A rotation matrix has 9 parameters, but only 3 degrees of freedom (DOF). Therefore, to min-

imize the parameters to be optimized, a reparameterization is performed. Rotations are often

parameterized using Euler angles. Euler angles are convenient but suffer from ambiquities as a

rotation can be represented in more than one way (Terzakis et al., 2014). Quaternions are often

used as a more robust parameterization of rotations. However, quaternions must be constrained

to unit length during optimization to represent a true rotation. Thus, to avoid using Lagrangian

multipliers for the unit length constraint of quaternions, an axis-angle parameterization is used.

The axis-angle representation of a rotation is a 3-vector where the normalized vector is the

axis to be rotated about and the norm of the vector is magnitude of the rotation angle. The

axis-angle representation is a unique solution for every rotation

The known observations are the image points which are parameterized by their virtual camera

coordinates. Thus the vector of observations is the vector of virtual camera coordinates Xvski
of each k 3D point seen in rig view i.

Once formulated, bundle adjustment is performed using the lsqnonlin MATLAB function after

each new pose is estimated. While analytical derivatives for the virtual camera error function

exist, numerical derivates are used in this project.
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4 Results & Discussion

In this chapter, the results of the developed system are displayed and discussed. The chapter

begins with intermediate results from the feature matching module. Next, an explanation of

data simulation to test the remaining modules is described. Then, results of the absolute pose

estimation on the simulated data are displayed and discussed. Lastly, results are displayed and

discussed for the whole system on both simulated data and real data.

4.1 Feature Matching

This section shows the results of using the GEC to remove poor feature matches within a stere-

opair. Features are removed if the GEC error (see: Equation 3.4) of a feature matches is larger

than a defined threshold. As stated previously, the threshold used was determined empirically

and is currently set at 5E − 4.

In Figure 4.1 an example of the results of using the GEC for removing bad matches is shown.

In this specific case, all of the incorrect matches are removed.

4.2 Data Simulation

To test different parts of the system, data was simulated. Data was simulated to somewhat

resemble the real data scene consisting of a coral with a spheroid shape.

First, a sphere is sampled to create 3D world space points. As in the proposed system, the

master camera of the first stereopair is placed in the center of the world coordinate frame.

New stereopairs are added by sampling a trajectory that moves in a circular motion around the

sphere, keeping the Y axis constant. Stereopairs are sampled at approximately 6 cm, measured

from the location of the master camera center. This baseline was chosen because the stereopair

baseline is approximately 3 cm, and thus, an image is taken at approximately every 3 cm.

Then, 3D points are forward projected into each view. To do this, 3D points are first checked

if they are valid within a viewpoint. There are two validity checks for a viewpoint. First, the

angle between the viewing ray and the normal of the 3D point is computed. If the angle is

greater than 80◦ it is considered invalid. Remaining valid points are then forward projected into

each image. If the projected points are outside the dimensions of the image, they are considered

invalid.

Since the indicies of the projected 3D points are kept, then the true matches between each

image is known. The proposed system is then tested using the known true matches and their

true location within each image.

Two sets of simulated data are formed. One set with a small sphere and one with a large

sphere. In the smaller sphere, image observations are concentrated around the center of the

image. Conversely, in the larger sphere, image observations are spread throughout the image.

These two settings allow to test the system with features in a limited area in the image and how
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(a) Initial Feature Matches

(b) Feature Matches After GEC

Figure 4.1: Results after using the GEC to remove bad matches within a stereopair. Initial feature

matches shown in (a) and cleaned matches shown in (b).

it compares to when features are more thoroughly distributed in the image. The small sphere

data set will be referred to as the small set and the large sphere as the large set.

The simulated data can be seen in Figure 4.2 and the parameters of the simulated data can be

seen in Table 4.1. Further, an example of the image coverage from both simulated data sets can

be seen in Figure 4.3.

Table 4.1: Parameters of the two simualted data sets. Min distance is the minimum distance from the

camera center to a 3D point.

Radius Min Distance # of 3D Points

Small Set 5 cm 45 cm 576

Large Set 35 cm 15 cm 2401
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(a)

(b)

Figure 4.2: Simulated data sets for the small sphere (a) and large sphere (b). The sphere in the middle

are the 3D world space coordinates and each axis triple represents a camera. Blue is the Z axis, green is

the Y axis, and red is the X axis of each camera.
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(a)

(b)

Figure 4.3: Example image coverage of the simulated data sets for the small sphere (a) and large sphere

(b).
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4.3 Absolute Pose

In this section, results of absolute pose estimation are displayed and discussed. The absolute

pose estimation is tested on both the large sphere and small sphere data sets. Image observa-

tions are manipulated with 6 different levels of normal noise, σ = {0, .2, .4, .6, .8, 1}.

Each simulated data set is tested on three different methods to compute the absolute pose. First,

absolute pose is evaluated just using the initial pose estimate. Second, absolute pose estimation

is evaluated using the initial estimates from the previous method, but optimized in a Levenberg-

Marquardt optimization scheme. On the last method, the initial pose and the optimization are

wrapped in a RANSAC framework. However, in the last evaluation, outliers are added to the

image measurements. Outlier representation is 10% for both small and large sphere test sets.

In all methods, 50 tests are run and errors are averaged over all 50 tests.

4.3.1 Initial Estimate

First, results on both data sets using the initial estimate are displayed. Translation errors are

in Figure 4.4. Rotation errors are in Figure 4.5. Reprojection errors are in Figure 4.6. Addi-

tionally, errors with σ = 0 are displayed in Table 4.2.

The first thing to note are initial errors with σ = 0. In the small data set, initial errors are quite

small. In the large data set, initial errors are much larger. Typically, the case for σ = 0, errors

should be very close 0. There are a few different reasons for this. One of the main causes of the

large discrepancy between the two, and the considerable offset in the large data set, is due to

how errors are distributed over the image.

For instance, take the first stereopair with σ = 0. Triangulating matches and reprojecting them

back into the image already contains errors correlated to their location. This effect is visualized

in Figure 4.7. In the large data set where features are well distributed within the image, there

are larger errors moving away from the center. In the small data set, because most features are

clustered near the center, there is little error. These implicit errors can be due to a few different

causes. First, and most importantly, there are numerical issues involved with solving the forward

projection of 3D points into the image (see: Section 2.2.2) where a 12th degree polynomial needs

to be solved. Further, these implicit errors propagate into triangulation. Triangulation within

a stereopair is sensitive to errors within correspondences due to the narrow baseline within the

stereopair. Both errors combined contribute to these offset errors when no noise exists.

Table 4.2: Errors on both data sets when σ = 0 using the initial estimate only. Errors are in mm, degrees,

and pixels for translation, rotation, and reprojection, respectively.

Translation Rot X Rot Y Rot Z RE

Small Set 0.08 0.003 0.001 0.002 0.031

Large Set 1.67 0.330 0.010 0.330 1.67
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(a) (b)

Figure 4.4: Translation errors on the small (a) and large (b) data sets on the initial estimate.

(a) (b)

Figure 4.5: Rotation errors on the small (a) and large (b) data sets on the initial estimate.

(a) (b)

Figure 4.6: Average reprojection errors on the small (a) and large (b) data sets on the initial estimate.
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(a) (b)

Figure 4.7: Reprojection error vectors on points in the small (a) and large (b) data sets. Original points

are the blue circles and their reprojection error vectors are in red. Error vectors are scaled by 50 for

visualization.

The absolute pose estimation method used is a least-squares estimation (Umeyama, 1991).

Therefore, the initial estimate is the optimal transformation parameters between the two 3D

point sets. Since there is much less error in the small set, the method estimates a more accurate

solution when there is no noise. Conversely, the initial pose estimation on the large set has

larger errors. Therefore, the fit is less accurate.

However, pose estimation using points thoroughly distributed throughout the image is more

robust to noise in the image observation. Figures 4.4 and 4.5 show that, at σ = 1, the large

sphere data set estimates a much more accurate solution: 2.3 mm in the large set and 45 mm

in the small set. Further, the range in errors between σ = 0 and σ = 1 are much smaller in the

large sphere data set. This is in agreement with the theory that using features well distributed

throughout the image leads to better pose estimation. The reason for this is because viewing

geometry between the two stereopairs is better suited for pose estimation when matching rays

covers more of the image.

4.3.2 Optimization

The initial estimates in the previous section are then optimized over the virtual camera error

in a Levenberg-Marquardt optimization scheme. The results for the optimized absolute pose

estimates are displayed in this section. Translation errors are in Figure 4.8. Rotation errors

are in Figure 4.9. Reprojection errors are in Figure 4.10. Additionally, errors with σ = 0 are

displayed in Table 4.3.

Table 4.3: Errors on both data sets when σ = 0 with optimization. Errors are in mm, degrees, and pixels

for translation, rotation, and reprojection, respectively.

Translation Rot X Rot Y Rot Z RE

Small Set 0.44 0.015 0.001 0.015 0.016

Large Set 0.95 0.041 0.046 0.061 0.44
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(a) (b)

Figure 4.8: Translation errors on the small (a) and large (b) sphere data sets with optimization.

(a) (b)

Figure 4.9: Rotation errors on the small (a) and large (b) sphere data sets with optimization.

(a) (b)

Figure 4.10: Average reprojection errors on the small (a) and large (b) sphere data sets with optimization.
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Again, looking at errors with σ = 0, there are still initial errors. In the large set, accuracy

increases slightly. However, in the small set, accuracy decreases. This could be due to the

optimization scheme converging to an incorrect local minimum. The slight decrease (.031 px to

.016 px) in reprojection error could support this claim.

Looking further over varying noise levels, Figures 4.8(b) and 4.9(b) show that optimization in-

creases accuracy when compared to the initial estimate results. This is the expected result.

When comparing the ranges of the the errors (difference from σ = 0 and σ = 1) between the

initial estimate and the optimized estimates on the large set, it appears that optimizing the

initial estimate results in a more robust solution. The same cannot be said for the small set. It

appears that the optimization algorithm fixes the Y axis and moves the other two axes to con-

verge to a solution. Thus, for bad image coverage, the optimization scheme is not robust to noise.

Lastly, as expected, reprojection error decreases in both sets. This is to be expected because

the optimization is over the virtual camera error. The most significant decrease is seen in the

σ = 0 case for the large data set where reprojection error decreases from 1.67 px to .44 px after

optimization.

4.3.3 With RANSAC

Lastly, errors are displayed with the optimized initial estimates within a RANSAC framework.

However, in this section, outliers are introduced into feature matches across the stereopair. Out-

liers are not introduced within a stereopair as they are removed using the GEC (see Section 3.2).

Table 4.4: Errors on both data sets when σ = 0 with RANSAC. Errors are in mm, degrees, and pixels

for translation, rotation, and reprojection, respectively.

Translation Rot X Rot Y Rot Z RE

Small Set 0.44 0.015 0.001 0.015 0.02

Large Set 0.95 0.041 0.046 0.061 0.44
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(a) (b)

Figure 4.11: Translation errors on the small (a) and large (b) sphere data sets with RANSAC.

(a) (b)

Figure 4.12: Rotation errors on the small (a) and large (b) sphere data sets with RANSAC.

(a) (b)

Figure 4.13: Average reprojection errors on the small (a) and large (b) sphere data sets with RANSAC.
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With σ = 0, Tables 4.3 and 4.4 show that the RANSAC framework is correctly removing

outliers as the results are the same. As noise levels increase, results are similar to results

with optimization only. The main difference here is that accuracy degrades slightly as noise

levels increase. This is to be expected because as noise levels increase, RANSAC has difficulty

distinguishing between true outliers and highly noisy data. Sometimes, too many points are

thrown out, resulting in poor geometry for pose estimation.

4.4 Structure from Motion

In this section results are displayed and discussed on the full SfM system. The system is tested

on a simulated data set and a real data set. Testing on the simulated data set is only performed

using the small sphere set. On the real data, only a qualitative analysis is available due to

unknown true structure of the scene.

It is important to note the efficiency of the system. Due to the software being implemented

in MATLAB and not currently optimized for efficiency, the system is very slow in the current

state, bottlenecked by bundle adjustment. Performing the proposed SfM system on 15 views of

a scene with approximately 500 object points takes > 4 hours. Therefore, testing and debugging

is difficult and tedious. Still, as a result of optimizing over the virtual camera error, the system

is much quicker than using the reprojection error. A test on 3 views showed an approximate 7

fold increase in processing time for bundle adjustment.

4.4.1 Simulated Results

Tests on the simulated data set were performed over 15 views of the scene. The quantitative

results on the simulated data can be seen in Figure 4.14.

The plots in Figure 4.14 show the current system is failing as new views are introduced. As noise

increases, errors in pose rapidly increase to the point of failure. Even with zero noise, there are

still large errors.

There are a few possible reasons for failure. First, there is likely still a bug in the bundle ad-

justment software. Second, the MATLAB Levenberg-Marquardt optimization function is using

numerical derivatives to compute the Jacobian matrix. Numerical derivatives can result in worse

accuracy in optimization problems when compared to analytical derivatives as they are an ap-

proximation. Lastly, it is likely that the implicit errors discussed in Section 4.3 are accumulating

as new views are added.

Qualitative visualizations of the reconstructed scene can be seen in Appendix B.

Table 4.5: SfM errors on simulated data when σ = 0. Errors are in mm, degrees, and pixels for translation,

rotation, and reprojection, respectively.

Translation Rot X Rot Y Rot Z RE

10 0.933 0.921 1.168 0.035
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(a) (b)

(c)

Figure 4.14: Results on the simulated data. Figure (a) shows the average translation errors over all poses.

Figure (b) shows the average rotation errors over all poses. Figure (c) shows the average reprojection

error.

Further, looking at the reprojection errors, it seems that the bundle adjustment is still converging

to a solution, though incorrect. This is most likely because of the bug in the bundle adjustment

code.

4.4.2 Real Data Results

Lastly, results on a real data set are displayed in this section. An exemplary sequence of 3 im-

ages in the underwater setting is displayed in Figure 4.15. The image sequence contains 18 views.

The reconstruction of the underwater scene can is visualized in Figure 4.16.

As stated previously, it is difficult to evaluate the reconstruction quantitatively due to the

true poses being unknown. However, the average reprojection error is .975 px. The system

reconstructs parts of the coral and edges of the tile below the coral, though it is possible that

these points have large errors. The underwater SfM had difficulty tracking features throughout

multiple view sequences. Often, features are only tracked in 2 or 3 stereopairs (4 or 6 images).
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(a) (b)

(c)

Figure 4.15: Exemplary underwater image sequence.

Additionally, features tracked over multiple stereopairs are extremely limited, ranging from only

10 to 30. It is possible to use sequences closer together, but the time limitation of bundle

adjustment limits the amount of overlap between images to reconstruct a scene. Large overlap

will contain many more images resulting in extremely long processing times.
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Figure 4.16: Reconstructed underwater scene.
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5 Conclusion

To meet growing demands for automatic underwater reconstruction, this project attempts to

develop an underwater structure from motion system. The work uses a compact, consumer-

grade sensor and explicitly models refraction with calibrated parameters of the camera housing.

Methods for robust underwater feature matching, triangulation, absolute pose estimation, and

bundle adjustment are implemented.

The work quantitatively analyzes the proposed methods on simulated data and qualitatively

on real underwater scene. Results show that feature matching with the generalized epipolar

constraint allows for removal of incorrect matches within a stereopair. Further, the absolute

pose estimation is tested on each step of the proposed method – the initial estimation, the ini-

tial estimation optimized using the Levenberg-Marquardt algorithm, and the optimized solution

within a RANSAC framework. Absolute pose estimation is tested on two sets of simulated data

where varying levels of noise are added to the image observations. Results show that, with good

coverage of features within the image, the absolute pose estimation method is robust to noise.

However, when features are concentrated near the center, pose estimation is less robust to noise.

Further, with outliers introduced, the pose estimation method within a RANSAC framework

robustly estimates the absolute pose with only a slight decrease in accuracy.

One of the most notable insights found from the absolute pose estimation analysis is the pres-

ence of errors when there is no noise in the image observations. There is less error in the data

set with coverage clustered near the center than when observations are distributed throughout

the image. This is due to numerical errors present when solving the 12th degree polynomial for

forward projection and also when triangulating within a stereopair. Further, the baseline within

the stereopair is narrow. Narrow angles typically lead to less geometrically accurate solutions

in triangulation.

Lastly, the full system is tested on simulated data and real data. Results on the simulated data

show that the system begins to fail as noise is added to the image observations. The cause of

failure is mainly due to three problems. First, there is likely a bug still in the bundle adjustment.

Because bundle adjustment is extremely time consuming, testing and debugging the full system

is difficult. Second, numeric derivatives for the bundle adjustment are used. Numeric derivatives

can be less accurate than analytical derivatives. Lastly, implicit errors from forward projection

and triangulation may be accumulating. The results on real data set show that it is reconstruct-

ing some parts of the scene, but quantitative evaluation is not possible as the poses are unknown.

In general, it is shown that underwater reconstruction is a complex, sensitive problem. In addi-

tion to the problems already mentioned, assumptions of known refractive indicies and effects of

temperature and pressure underwater can have small effects on modeling refraction.

With regard to future work, a first step is to fix the bundle adjustment module. Further, imple-

menting analytical derivatives can likely increase accuracy of the bundle adjustment. To increase

efficiency of the system, a C++ implementation is recommended. While using the virtual cam-
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era error greatly increased time cost of the bundle adjustment compared to using reprojection

error, the bundle adjustment is still a significant bottleneck. It would also be interesting to

estimate the housing parameters of the camera in the bundle adjustment.

Moreover, it is suggested to create an accurate ground truth data set on real world underwater

data. The purpose of this is to not only test the proposed method in this project, but for other

underwater reconstruction methods to be tested, compared, and possibly bench marked. Lastly,

it would be interesting to test the system on a non-fisheye standard perspective camera. This

would limit the complexity of the problem and it would be interesting if accuracy of results

increase.
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Appendix

B SfM Reconstruction of Simulated Data

Figure B.1: SfM results on simulated data with noise level σ = 0. Magenta points are the true rig center

locations.

Figure B.2: SfM results on simulated data with noise level σ = 1. Magenta points are the true rig center

locations.
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