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Abstract

This thesis tackles the problem of urban point cloud filtering through a supervised outlier

detection approach based on machine learning techniques. The core of the implemented

algorithm is a random forest classifier that infers a binary label (inlier or outlier) for each

3D point of a raw, unfiltered point cloud. The filtered point cloud is obtained by remov-

ing all 3D points predicted as outliers. The features used for classification are adapted

from unsupervised outlier detection methods and state-of-the-art approaches for 3D scene

analysis. Two approaches are investigated to train the random forest classifier. In the

first non-semantic approach, the features are extracted without considering the seman-

tic interpretation of the 3D points. Thus, the trained model approximates the average

behavior of inliers and outliers across different semantic classes. In the second semantic

approach, the semantic interpretation of the 3D points is incorporated into the learning

process. The classifier is trained for each semantic class (building facades, roof, ground,

and vegetation) individually by restricting the training data set to 3D points of a single

semantic class. This procedure results in four classification models, where each model is

dedicated to distinguishing between inliers and outliers of the respective semantic class.

The performance of the two filtering approaches is evaluated on the data set of Enschede.

The results confirm the underlying assumption of the semantic point cloud filtering ap-

proach of class-specific inlier and outlier distributions and show the advantage of using a

classification model that is tailored to detect outliers of a particular semantic class. The

semantic filtering approach is able to remove isolated building and roof points. Further,

building facades and vegetation are much better preserved than in the non-semantic

filtering approach.
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1 Introduction

The automated analysis, interpretation, and geometric 3D reconstruction of real-world

environments are long-standing fields of research in computer vision and photogramme-

try. Contemporary research focuses on the reconstruction of large-scale urban scenes.

3D city models are required in various applications that go beyond simple visualization.

Typical applications include 3D urban design, emergency planning, localization-based ser-

vices, environmental risk simulations, and the preservation of cultural heritage. Further,

high-accuracy 3D city models are used in the movie and entertainment industry, as well

as for virtual reality applications. Traditionally, the 3D geometry of urban scenes is ac-

quired using active measurement techniques such as LiDAR1. However, owing to recent

advances in the development of multi-view stereo methods and imaging sensors, passive

image-based measurement techniques have emerged as a competitive alternative to active

measurement techniques. First, the data acquisition process using image-based techniques

is straightforward and relatively cheap and requires only standard imaging hardware like

a consumer digital camera. Secondly, image-based techniques record color information,

which can be used to enrich the reconstructed geometric 3D model of the captured scene

with additional semantic information such as photo-realistic texture. Recent studies (Häne

et al., 2013; Bláha et al., 2016) exploit images to simultaneously reconstruct and segment

3D models into semantically meaningful entities such as building facades, roofs, streets,

and vegetation.

Urban point clouds obtained from aerial images inevitably comprise a considerable amount

of noise and outliers. Noise and outliers pose significant challenges to surface reconstruc-

tion algorithms and other 3D point cloud processing operations. Conventional meshing

techniques fail in the presence of severe noise and outliers and require substantial manual

post-processing. Volumetric 3D reconstruction approaches involve strong regularizers or

visibility constraints in order to cope with outliers. Therefore, noise reduction and outlier

removal techniques are a vital component in the processing pipeline of point clouds and

1 Light Detection And Ranging
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2 1 Introduction

serve as a pre-processing step prior to sophisticated modeling operations such as surface

reconstruction.

1.1 Objective of the Thesis

The aim of this thesis is to develop and implement a point cloud filtering algorithm to

automatically reduce the amount of noise and outliers in large-scale urban point cloud

data sets derived from aerial images. The thesis pursues two approaches to point cloud

filtering based on machine learning techniques. The first approach explores the potential

of using solely geometric information given by the 3D coordinates of the points. The sec-

ond approach investigates solutions to incorporate semantic information into the filtering

process.

1.2 Structure of the Thesis

The thesis is organized as follows: Chapter 2 provides a general introduction to the topic

of point cloud filtering and summarizes previous approaches. Chapter 3 is devoted to the

theoretical foundations with emphasis on the basic concepts and principles used in outlier

detection. Chapter 4 presents the methodological approach employed in this thesis. In

more detail, Section 4.1 introduces the central idea upon which the proposed point cloud

filtering algorithm, outlined in Section 4.2, is based. The main components of the proposed

point cloud filtering algorithm are elaborated on in Section 4.3 to Section 4.4. The data

used for evaluation is described in Section 4.6. Experimental results are then presented and

discussed in Chapter 5 and Chapter 6, respectively. Eventually, the thesis is summarized

in Chapter 7 and a conclusion is drawn.



2 Related Work

The automatic detection and elimination of noise and outliers in point cloud data sets

is a long-standing field of research and is still not solved completely as underlined in re-

cent studies (Cheng and Lau, 2017). Over the years, a vast amount of methods has been

proposed, particularly in the context of surface reconstruction from point clouds. The

seminal moving least squares (MLS) method of Levin (2004) reduces noise in point clouds

implicitly by projecting the points onto a locally fitted low-degree bivariate polynomial.

Several variants of the traditional MLS approach have been developed, mainly to reduce

the filtering effect near sharp features and to handle sparse sampling and outliers. The

modifications are based on an iterative refitting scheme to model locally piecewise smooth

surfaces (Fleishman et al., 2005), adjust the polynomial fitting procedure (Guennebaud

and Gross, 2007), introduce a parameterization-free projection operator (Lipman et al.,

2007) or express the MLS procedure as a kernel regression process including robust statis-

tics (Öztireli et al., 2009; Öztireli , 2015). Further point cloud filtering approaches are

inspired by filtering techniques used in image processing (Deschaud and Goulette, 2010;

Digne, 2012), are founded on concepts developed in the field of differential geometry (Ma

and Cripps, 2011) and spectral analysis (Öztireli et al., 2010) or perform statistical anal-

ysis and hypothesis testing (Rusu et al., 2008).

Most of these point cloud filtering techniques are dedicated to applications in indus-

trial metrology and hence, can only handle point clouds with a low level of noise and

a small proportion of outliers. Furthermore, they are incapable of detecting clustered

outliers and cannot cope with varying point densities. While these limitations are gen-

erally extraneous for point clouds acquired with a laser or structured light scanner, they

are significant for point clouds generated by image-based 3D reconstruction techniques.

Therefore, image-based methods commonly incorporate the filtering procedure into the

depth map estimation stage and do not filter point clouds directly. Common approaches

use an optimization procedure in the depth map computation (Goesele et al., 2007) or

evaluate geometric consistency (Furukawa and Ponce, 2010) and photometric consistency

(Wolff et al., 2016) between the input views. A learning-based approach for reducing noise

in fused depth maps has recently been proposed by Riegler et al. (2017).

3



4 2 Related Work

Thus far, unsupervised outlier detection approaches have been barely used for point cloud

filtering. Initial attempts have been carried out by Sotoodeh (2006), who deployed the

local outlier factor introduced by Breunig et al. (2000) as a criterion to detect outliers in

laser scans. Another approach based on the mean-shift clustering algorithm is proposed

in Schall et al. (2005).



3 Theoretical Foundations:

Outlier Detection

This chapter summarizes the basic concepts and principles used in outlier detection and

outlines previous works. Special emphasis is put on unsupervised approaches, which pro-

vide the basis for the proposed point cloud filtering algorithm. It is assumed that the reader

is familiar with the principles of supervised learning and classification ensemble methods.

Among other publications, a thorough coverage of these topics is given in Bishop (2006)

and Hastie et al. (2009).

3.1 Objective of Outlier Detection

Outlier detection refers to the process of identifying patterns in data that do not com-

ply with the general or expected behavior of the data. These patterns are referred to

as anomalies or outliers, two terms that are used interchangeably. Outliers can be very

different in nature, and the exact definition depends on the target application and the un-

derlying assumptions regarding the data structure and the data generating process. The

reasons why outliers might arise in a data set are manifold. Typical sources are human

or instrumental errors, errors in the measurement process, and natural variations or un-

expected changes in the behavior of a system. In practice, data sets are usually impaired

by multiple types of outliers (Section 3.2), and it is subject to the application whether

a particular type of outlier is of interest or not. For example, the detection of noise and

outliers is an essential step in many applications to generate a cleaner data set for further

processing. In this case, outliers are not relevant in the first place and are detected only

to ease processing of the remaining data. In contrast, other applications are interested in

outliers itself, for example by detecting previously unobserved and unusual patterns in the

data. This type of outlier detection is also known as novelty detection and is commonly

used in the context of monitoring or in early warning systems.

5



6 3 Theoretical Foundations

3.2 Types of Outliers

The nature of the outliers is one of the key aspects that needs to be considered when

designing an outlier detection algorithm. According to Chandola et al. (2009), outliers

can be classified into the following three main categories:

� point outlier: a single data instance that deviates significantly from the remaining

data set

� collective outlier: a group or sequence of data instances that deviates significantly

from the remaining data set, even though the individual data instances may not be

anomalous

� contextual outliers: a single data instance that is only anomalous in a specific con-

text (e.g ., spatial or temporal context)

Point outliers typically occur in point cloud data sets that are derived from image-based

3D reconstruction techniques. They are induced by image imperfections (e.g ., lens dis-

tortion or sensor noise), matching ambiguities, and uncertainties or errors in the camera

calibration as well as in the camera pose and depth map estimation procedure. In contrast,

collective and contextual outliers are not present in point cloud data sets and hence, are

not expounded any further in this thesis. For a more detailed treatment of these types of

outliers, reference is left to Chandola et al. (2009).

Point outliers can be further subdivided into global and local outliers. A global outlier is

a single data instance that deviates significantly from the entire data set. Conversely, a

single data instance is considered as a local outlier if it differs markedly from other data

instances within its vicinity. This notion of global and local outliers is exemplified by

Figure 3.1. P1 and P2 can be easily detected as global outliers, as these data instances

exhibit a considerable distance to the remaining data instances. From a global perspec-

tive, P3 would be classified as a normal data instance due to its proximity to cluster C2.

However, when examined locally, P3 appears to be a local outlier because its distance to

cluster C2 is relatively large compared to the spacing between the data instances of cluster

C2. In comparison, data instance P4 should be considered as normal, although its distance

to the nearest cluster C1 is roughly the same as the distance between P3 and C2. Lastly,

the data instances forming cluster C3 can be classified as either global outliers or as a

small regular cluster. It depends on the application whether such micro clusters need to

be detected as anomalous or not.
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Figure 3.1: Illustration1 of the different types of point outliers by means of a two-dimensional

synthetic data set. The data set encompasses three clusters C1, C2, and C3 of normal data

instances, two global point outliers P1 and P2, and one local point outlier P3. Unlike P3, the data

instance P4 is normal and belongs to cluster C1.

The most widely used point outlier detection methods fail to capture both global and local

outliers. Methods tailored to detect local outliers may be able to identify global outliers

as well, provided that global outliers are sparsely distributed and do not form a micro

cluster. However, methods tailored to detect global outliers cannot be applied to detect

local outliers (as illustrated in Figure 3.1). In general, it is more challenging to detect local

outliers than global outliers. First, the definition of locality is a non-trivial task, especially

if the data exhibits clusters of varying densities. Secondly, the statistical properties of a

data instance are strongly affected if its spatial support includes nearby outliers or normal

data instances of different distributions.

1 modified figure after Goldstein and Uchida (2016)
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3.3 Output of an Outlier Detection Algorithm

Outlier detection algorithms report either a binary label or an outlier score for each data

instance:

� binary label: the label associated with a data instance indicates whether that in-

stance is considered as an outlier or as normal

� outlier score: the outlier score associated with a data instance quantifies the degree

to which that instance is considered as an outlier

As opposed to binary labels, outlier scores are more informative and allow for a ranking and

an immediate uncertainty assessment of the detected outliers. Nevertheless, many prac-

tical applications require a binary label rather than an outlier score for decision making.

Therefore, outlier scores are often converted into binary labels by imposing an adequately

chosen threshold on the outlier scores.

3.4 Principles of Outlier Detection

Three fundamental approaches have emerged to tackle the problem of outlier detection.

Supervised outlier detection methods employ an ordinary classifier to learn a model of both

the anomalous and normal behavior of the data. This approach requires the availability

of a training data set where each data instance is labeled as either normal or anomalous.

Although supervised approaches have been proven to be effective for many classification

tasks, supervised outlier detection approaches are difficult to realize in practice. First, it

is demanding and often prohibitively expensive to obtain an accurate and representative

training data set which comprises both normal and anomalous data instances. Secondly,

the anomalous nature of the data is typically unknown in advance or cannot be fully enu-

merated. Thirdly, the anomalous behavior of the data can be dynamic in nature. This

property implies that a supervised outlier detection method is generally incapable of iden-

tifying new types of outliers that were not part of the training data set.

Semi-supervised outlier detection methods are applied if the available anomalous data

instances are unlikely to represent the various peculiarities of anomalous data behavior or

if the training data set consists of normal data instances only. In general, semi-supervised

techniques learn a discriminative model representing the normal behavior of the data by

using one-class classification algorithms such as one-class support vector machines (Rätsch

et al., 2002; Amer et al.) or one-class kernel Fisher discriminant analysis (Roth, 2004).
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Any data instance that deviates significantly from the trained model is then reported as

an outlier.

Lastly, unsupervised outlier detection methods cope without prior knowledge of the data

and hence, do not require a labeled training data set. Instead, outliers are identified di-

rectly by exploiting the inherent properties of the data. In the following section, unsuper-

vised outlier detection methods are presented in more detail with emphasis on proximity-

based methods.

3.5 Unsupervised Outlier Detection

Unsupervised outlier detection algorithms can be subdivided into three main approaches:

(1) statistical-based approaches, (2) clustering-based approaches, and (3) proximity-based

approaches. Statistical-based outlier detection algorithms assume that the data is gener-

ated by a stochastic process and typically fit a closed-form probability distribution to the

data. Any data instance that is unlikely to be generated from the estimated stochastic

process according to some test statistic is then reported as an outlier (Barnett and Lewis,

1974; Eskin, 2000). Non-parametric statistical-based methods do not impose a particular

functional form of the statistical model. Instead, the underlying probability distribution is

inferred directly from the data by using for example kernel density estimation techniques

(Latecki et al., 2007). Clustering-based outlier detection algorithms such as He et al.

(2003) and Yu et al. (2002) partition the data into a predefined number of clusters. In

this case, outliers correspond to data instances that are assigned to small and remote clus-

ters or to data instances that are far away from their associated cluster center. Finally,

proximity-based outlier detection algorithms are based on the natural assumption that

point outliers are sparsely populated. Thus, proximity-based outlier detection algorithms

use either the concept of nearest neighbor distances or the relative density to quantify the

outlier score of each data instance. A core advantage of this approach is that it does not

rely on any a priori knowledge concerning the distribution of the data, as is the case with

statistical-based any many clustering-based methods.

3.5.1 Distance-Based Methods

Distance-based outlier detection methods were originally introduced by Knorr and Ng

(1998). Thought to find global outliers (Section 3.2), these methods use the k-nearest

neighborhood of a data instance to compute its outlier score. Typically, the outlier score

of a data instance is constituted by the distance to its k-nearest neighbor (Ramaswamy
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et al., 2000) or by the average distance to all other data instances within the k-nearest

neighborhood (Angiulli and Pizzuti , 2002). Consequently, the outlier score of a global

outlier is much larger than the outlier score of a normal data instance.

3.5.2 Density-Based Methods

Density-based outlier detection methods are designed to identify local outliers (Section 3.2).

The methods are based on the assumption that local outliers are located in areas of rela-

tively low density compared to their k-nearest neighbors. In the seminal work of Breunig

et al. (2000), the outlier score of a data instance is computed as the ratio of the average

local density of the k-nearest neighbors to the local density of the data instance itself. Ac-

cording to this outlier score formulation, local outliers are associated with a higher outlier

score than normal data instances since local outliers tend to have a lower local density

than their neighbors. Several extensions of this basic approach have been proposed, mainly

to improve the density estimation procedure for linearly distributed data sets (Jin et al.,

2006) and to better handle regions of different densities that are not clearly separated

(Tang et al., 2002).

3.6 Evaluation of Supervised Outlier Detection Methods

Recall from Section 3.3 that most outlier detection algorithms output a binary label for

each data instance rather than an outlier score. The conversion from outlier scores to

binary labels is achieved by imposing a threshold on the outlier scores. Without loss of

generality, it can be assumed that an outlier receives label 1 (i.e., positive class), whereas

a normal data instance is associated with label 0 (i.e., negative class). In the supervised

outlier detection setting, the true label of each test instance is known. Thus, it is possible

to apply the same techniques as in information retrieval and supervised classification to

assess the performance of a supervised outlier detection algorithm. Or to put it differently,

a supervised outlier detection algorithm is equivalent to a binary classification scheme.

The predicted label of a test instance is either consistent with the true label (i.e., ground

truth label) or just the opposite. In the first case, the test instance is correctly determined

as normal (true negative, TN ) or as an outlier (true positive, TP), respectively. In the

latter case, the test instance is either incorrectly reported as normal (false negative, FN )

or wrongly detected as an outlier (false positive, FP). These four possible outcomes are

evaluated for each test instance and summarized by the confusion matrix, as shown in

Table 3.1.
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Table 3.1: Confusion matrix summarizing the performance of a supervised outlier detection algo-

rithm on a given test data set.

  Predicted Label 

 
 1 (positive) 0 (negative) 

Ground  
Truth 
Label 

1 (positive) # of True Positives (TP) # of False Negatives (FN)
Type II Error 

0 (negative) # of False Positives (FP)
Type I Error # of True Negatives (TN) 

 

Several standard quality metrics can be inferred directly from the confusion matrix and

are defined as follows:

accuracy =
TP + TN

TP + FN + FP + TN
(3.1a)

precision =
TP

TP + FP
(3.1b)

recall =
TP

TP + FN
(3.1c)

F1-score = 2 · precision · recall

precision + recall
(3.1d)

The accuracy measure is the most basic metric to assess the performance of a classifier

and describes the fraction of all test instances whose predicted label is consistent with the

ground truth label. However, in the context of supervised outlier detection, the accuracy

measure may not be a reliable quality metric, in particular if the evaluated data set is

imbalanced (i.e., outliers are relatively rare compared to normal data instances). The two

quality metrics precision and recall allow for a more in-depth analysis of the performance of

a supervised outlier detection algorithm. The precision measure is defined as the number

of correctly reported outliers divided by the total number of reported outliers and hence,

indicates the fraction of reported outliers that are outliers in reality (i.e., a measure of

correctness). The recall measure is defined as the number of correctly reported outliers

divided by the total number of outliers in the evaluated data set and hence, specifies the

fraction of actual outliers that are detected by the algorithm (i.e., a measure of complete-

ness). Lastly, the F1-score is defined as the harmonic mean of precision and recall. A high

F1-score implies a high value of both precision and recall. Thus, the higher the F1-score,

the better is the effectiveness of the algorithm to detect outliers.





4 Methodology

This chapter presents the methodological approach employed in this thesis. The chapter

assumes prior knowledge in machine learning (Bishop, 2006; Hastie et al., 2009), 3D scene

analysis (Chehata et al., 2009; Weinmann et al., 2013), and outlier detection (Chapter 3).

It is organized as follows: Section 4.1 introduces the central idea upon which the proposed

point cloud filtering algorithm, outlined in Section 4.2, is based. The feature extraction

process is detailed in Section 4.3. The classification model and further implementation

details are elaborated on in Section 4.4 and Section 4.5, respectively. Finally, the data

used to evaluate the proposed point cloud filtering framework is described in Section 4.6.

4.1 Approach

Urban point clouds deduced from nadir and oblique aerial images inevitably comprise a

considerable amount of noise and outliers. The purpose of point cloud filtering is to reduce

noise and to suppress outliers while preserving the underlying structure of the captured

scene. This thesis tackles the problem of point cloud filtering through an approach based

on supervised outlier detection (Section 3.4). Specifically, a supervised binary classification

scheme is developed to assign each 3D point of a raw, unfiltered point cloud to one of the

following two categories:

� 3D points assigned to the inlier point category are assumed to be located close to

the underlying surface of the captured scene.

� 3D points assigned to the outlier point category are considered as either global or

local outliers (Section 3.2). Global outliers are caused by systematic deviations or

gross errors in the point cloud generation process (e.g ., matching errors or inadequate

camera calibration), whereas local outliers are induced by random deviations and

uncertainties in the camera pose and depth map estimation procedure (e.g ., depth

quantization).

Ultimately, the filtered point cloud is derived by discarding all 3D points that are predicted

as outliers.

13



14 4 Methodology

The decision whether a 3D point is deemed as an inlier or an outlier is primarily dependent

on the local point distribution given by the 3D points within its vicinity. The point neigh-

borhood of inliers can be characterized by well-defined point distributions, even though

the sampling density may vary locally due to the texture of the scene and the spatial

configuration of the recorded images. In the context of urban scenes, these local point

distributions display mainly planar (e.g ., ground, building facades, and roofs) or spherical

(e.g ., vegetation) patterns. In contrast to these characteristic structures, the point neigh-

borhood of global outliers is typically sparse and does not exhibit a distinct geometric

layout of the points. Lastly, the point neighborhood of local outliers is more structured

than the point neighborhood of global outliers, but local outliers are salient as they deviate

from the main pattern in their vicinity.

The characteristic point distribution of inliers and outliers is not only an intrinsic property

of urban point clouds in general but rather varies across different semantic classes of urban

scenes. In particular, point cloud regions representing building roofs or ground commonly

exhibit a low level of noise, as these scene structures are well captured by nadir and oblique

aerial images. However, these point cloud regions may be incomplete and show a varying

point density due to the low or missing texture of the underlying scene. Point cloud regions

representing vegetated areas are typically densely sampled but are impaired by a consid-

erable level of noise due to the repetitive texture of the underlying scene. Finally, vertical

scene structures like building facades are poorly approximated for several reasons. First,

building facades have often repeated textures and surface areas (e.g ., windows) corrupted

by specular reflections – two properties which complicate the image matching procedure

within the structure-from-motion pipeline. Mismatches between different views cause er-

rors in the estimated camera poses, which in turn increase the noise of the back-projected

image pixels. Secondly, the orientation of building facades with respect to the viewing

direction of the camera poses additional challenges to the image matching and depth map

estimation procedure (e.g ., invalid assumption of fronto-parallel surfaces).

In this thesis, two approaches are pursued for supervised outlier detection in urban point

clouds. In the first approach, a discriminative model is trained to distinguish between

the local point distribution of inliers and outliers, without considering the semantic inter-

pretation of the 3D points. Hence, the trained model approximates the average behavior

of inliers and outliers across different semantic classes. The approach is used as a base-

line method and is hereinafter referred to as the non-semantic approach. The second

approach, called the semantic approach, postulates that the local point distribution of

inliers and outliers is specific to each of the semantic classes (building facades, roof, ground,

and vegetation) as described above. Hence, a discriminative model is trained for each of
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the semantic classes individually to better adapt to the inherent inlier and outlier charac-

teristics of each semantic class.

4.2 Point Cloud Filtering Framework

This section summarizes the implemented workflow of the non-semantic and semantic

point cloud filtering approach. Conceptually, both approaches are equivalent to any super-

vised classification scheme commonly used in machine learning and pattern recognition.

Consequently, the conventional procedure for training, validation, and testing of the clas-

sification model is applied and is not presented in detail in this thesis. For a more detailed

treatment of the general principles, the reader is referred to standard textbooks such as

Bishop (2006).

4.2.1 Approach I: non-semantic

Figure 4.1 depicts a visual representation of the non-semantic point cloud filtering ap-

proach and its main components. The approach is based on a supervised binary classifica-

tion scheme. Therefore, the general workflow decomposes into two subsequent processing

stages. In the first stage (Figure 4.1a), a discriminative model is trained to learn the

average behavior of inliers and outliers in urban point cloud data sets. In the second stage

(Figure 4.1b), the learned classification model is applied to a new point cloud data set that

has not been used during the training stage. For each 3D point of this point cloud data

set, the learned model outputs a binary label indicating whether the respective 3D point

is predicted as an inlier or an outlier. Eventually, the filtered point cloud is derived by

assembling all 3D points that are predicted as inliers.

In the remainder of this section, the main building blocks of both processing stages are

discussed in greater detail.

Training of the Classification Model

The input to the learning algorithm (Figure 4.1a) is a raw, unfiltered point cloud data

set composed of n̄ 3D points Pi ∈ R3, i ∈ {1, ..., n̄}. For each 3D point Pi, a set of

features is extracted using the spatial information given by the 3D points within its local

point neighborhood. Additionally, a ground truth label is assigned to each 3D point Pi to

indicate whether the point is an inlier or an outlier. The extracted features and ground

truth labels are then supplied to an ordinary binary classifier that learns highly non-linear
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Figure 4.1: Workflow of the non-semantic point cloud filtering approach. (a) Training of the

non-semantic classification model. (b) Application of the non-semantic classification model.

A threshold t is imposed on the outlier score p to convert the predicted outlier probability of a

3D point into a binary label.

decision boundaries to separate inliers and outliers based on the established feature rep-

resentation of the 3D points. Therefore, the effectiveness of this approach to distinguish

between inliers and outliers is primarily dependent on the features that are passed to the

classifier. In this thesis, a variety of techniques is exploited for feature engineering. On

the one hand, features commonly used in state-of-the-art approaches for point cloud clas-

sification are deployed (Chehata et al., 2009; Weinmann et al., 2013). On the other hand,

features used in unsupervised outlier detection methods are embedded in the developed

binary classification framework to describe the sparsity of local point neighborhoods. A

detailed description of the implemented features is provided in Section 4.3.

Application of the Classification Model

Figure 4.1b summarizes the procedure to filter raw point cloud data sets using the non-

semantic point cloud filtering approach. For each 3D point of the data set to be filtered,

the same features are extracted as were used to train the non-semantic classification

model. Based on this feature representation, the trained model predicts for each 3D point

its conditional probability of being an outlier given the local scene structure within its

proximity. This conditional probability, denoted as outlier score p in Figure 4.1b, is then

converted into a binary label by imposing a threshold t on the outlier score. In the

implementation, the threshold t is set to 50%. In other words, a 3D point is predicted as
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an outlier, if its outlier score is greater or equal to 50%. A 3D point is predicted as an

inlier if its outlier score is below 50%.

4.2.2 Approach II: semantic

The general principle of the developed semantic point cloud filtering approach is equiva-

lent to the non-semantic approach (Section 4.2.1) and hence, encompasses the same

elementary processing steps. The fundamental difference to the non-semantic approach

is that additional semantic information is exploited to train multiple classification models,

where each model is tailored to a specific semantic class (building facades, roof, ground,

and vegetation, respectively).

Training of the Classification Model

In anology to the non-semantic approach, the input to the learning algorithm (Figure 4.2)

is a raw, unfiltered point cloud data set composed of ñ 3D points Pi ∈ R3, i ∈ {1, ..., ñ}. In

addition to the 3D coordinates of each point Pi, the log-likelihoods for all four semantic

classes are known. The maximal log-likelihood of each 3D point Pi is then used as a

criterion to separate the training data into four subsets, where each subset is restricted to

3D points whose maximal log-likelihood corresponds to the same semantic class.

As illustrated in Figure 4.2, each of the four point cloud subsets is used as a new training

data set to learn the characteristic behavior of inliers and outliers of the respective semantic

class. To train each model, the same procedure as in the non-semantic approach is

employed (Section 4.2.1). This procedure results in four semantic classification models,

where each model is dedicated to distinguishing between inliers and outliers of a specific

semantic class.

Application of the Semantic Classification Models

The same procedure as in the non-semantic approach (Figure 4.1b) is followed to filter

raw point cloud data sets using the semantic point cloud filtering approach. The only

modification to be made addresses the classification model that is applied to infer the

outlier score of a 3D point (or its predicted label, respectively). For instance, if the maxi-

mal log-likelihood of a 3D point corresponds to the ground class, the ground classification

model is applied to determine whether the point is an inlier or an outlier ground point.

The same rationale is pursued for the other three semantic classes.
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Figure 4.2: Workflow of the semantic point cloud filtering approach (training stage).

4.3 Feature Extraction

This section provides an overview of the implemented features that are used in both the

non-semantic and semantic point cloud filtering approach (Section 4.2). The input to

the feature extraction algorithm is a raw, unfiltered point cloud data set composed of n

3D points Pi ∈ R3, i ∈ {1, ..., n}. For each 3D point Pi, 24 features are computed using the

spatial information given by the 3D points within its local neighborhood. The features

are adapted from unsupervised outlier detection methods or are derived from methods

dedicated to urban 3D point cloud classification and 3D scene analysis. For an in-depth

coverage of the features presented in this section, the reader is referred to the respective

original work.

4.3.1 Neighborhood Selection

The local neighborhood Ni of a 3D point Pi is defined as the smallest sphere centered

at Pi that encompasses the k ∈ N closest 3D points to Pi with respect to the Euclidean
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distance in 3D space. 3D points that are located at the same distance to Pi as its k-nearest

neighbor are included in Ni as well. Consequently, the number of neighbors included in a

local point neighborhood may vary among the 3D points but has a lower limit of at least

k neighbors. Note that the 3D point Pi is excluded from its local point neighborhood Ni.

Following recent trends in 3D scene understanding and classification (Brodu and Lague,

2012), the features are extracted at multiple scales by varying the size k of the local point

neighborhood. The rationale behind this approach is threefold: First, it avoids using

heuristic or empiric knowledge on the scene to select the scale parameter k. Secondly,

the optimal scale parameter k depends heavily on the local point density and the local

3D structure of the scene, and may thus not be identical for each local 3D point neighbor-

hood. In particular, it is presumed that the optimal neighborhood size of both inliers and

local outliers is smaller than of global outliers. Lastly, the feature extraction at multiple

scales presents additional information of how the local 3D structure behaves across scales,

which in turn may support the discrimination between inliers and outliers. Specifically, it

is assumed that the local 3D structure of inliers and possibly of local outliers is stable over

a range of scales, whereas the local 3D structure of global outliers alters with varying scale.

4.3.2 Feature Definition

24 features are extracted for each 3D point Pi ∈ R3. The features investigated in this

thesis can be grouped into the following five categories:

� density-based features

� 3D eigenvalue-based features

� local plane-based features

� height-based features

� 2D features

The density-based features are adapted from proximity-based methods used in unsuper-

vised outlier detection. Recall from Section 3.5 that proximity-based methods use either

the concept of nearest neighbor distances or the relative density to describe the sparsity of

a local point neighborhood. Both concepts are covered by the implemented density-based

features without clear differentiation between distance-based and density-based methods.

The features of the other four categories are adapted from state-of-the-art approaches for

point cloud classification and 3D scene analysis. In the remainder of this section, all fea-

ture categories are presented in more detail.
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Density-based features

To describe the sparsity of the local point neighborhood Ni of a 3D point Pi, the following

features are extracted:

� kNN: the Euclidean distance of the 3D point Pi to its k-nearest neighbor (Ramaswamy

et al., 2000), which corresponds to the radius of the local point neighborhood Ni:

kNN(Pi) := max
Pj∈Ni

‖Pi − Pj‖ (4.1)

where ‖·‖ denotes the Euclidean distance in R3.

� kNNavg: the average Euclidean distance of the 3D point Pi to all other 3D points

within its local point neighborhood Ni (Angiulli and Pizzuti , 2002):

kNNavg(Pi) :=
1

|Ni|
∑

Pj∈Ni

‖Pi − Pj‖ (4.2)

where |Ni| denotes the cardinality of the local point neighborhood Ni.

� ldof (local distance-based outlier factor): the relative Euclidean distance of the

3D point Pi to the 3D points within its local point neighborhood Ni (Zhang et al.,

2009):

dPi
=

1

|Ni|
∑

Pj∈Ni

‖Pi − Pj‖ = kNNavg(Pi) (4.3a)

DPi
=

1

|Ni| · (|Ni| − 1)

∑
Pj ,Pm∈Ni,j 6=m

‖Pj − Pm‖ (4.3b)

ldof(Pi) :=
dPi

DPi

(4.3c)

where dPi
denotes the average Euclidean distance of Pi to the points in Ni and DPi

the average Euclidean distance among the points in Ni. It is not hard to see that

the ldof feature is significantly larger than one if the points in Ni are clustered

but spatially separated from the point Pi (i.e., dPi
� DPi

). In contrast, the ldof

feature is approximately equal to one if the points in Ni are uniformly distributed

(i.e., dPi
≈ DPi

).
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� lrd (local reachability density): the local density of the point neighborhood Ni,
approximated by the local reachability density according to Breunig et al. (2000):

lrd(Pi) :=

 1

|Ni|
∑

Pj∈Ni

d̃(Pi,Pj)

−1 (4.4)

where d̃(Pi,Pj) denotes the reachability distance of the 3D point Pi with respect to

one of its neighbors Pj ∈ Ni and is defined as follows:

d̃(Pi,Pj) := max {kNN(Pj), ‖Pi − Pj‖} (4.5)

Thus, the reachability distance of the 3D point Pi with respect to one of its neighbors

Pj ∈ Ni corresponds to the true Euclidean distance between the two points but is

at least as large as the neighborhood size of Pj . The lower limit on the reachability

distance reduces possibly statistical fluctuations of d̃(Pi,Pj) for different neighbors

Pj ∈ Ni close to Pi and hence, improves the stability of the lrd feature under varying

neighborhood sizes or across different regions of a point cloud data set. The local

reachability density lrd of the 3D point Pi is defined as the inverse of the average

reachability distances of all points included in its local point neighborhood Ni.

� lof (local outlier factor): the average local reachability density of the points included

inNi divided by the local reachability density of the 3D point Pi itself (Breunig et al.,

2000):

lof(Pi) :=
1

|Ni|
∑

Pj∈Ni

lrd(Pj)

lrd(Pi)
=

(∑
Pj∈Ni

lrd(Pj)

|Ni|

)
/ lrd(Pi) (4.6)

The lower the local point density of Pi, or the higher the local point densities of the

k-nearest neighbors of Pi, the larger is the lof feature associated with Pi (i.e., Pi

is more likely to be an outlier). The lof feature of Pi is approximately equal to one

if its local point density is comparable to the local point densities of its k-nearest

neighbors. Lastly, the lof feature of Pi is smaller than one if its local point density

is significantly higher than the local point densities of its k-nearest neighbors (i.e.,

Pi is more likely to be an inlier).
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� abod (angle-based outlier factor): the variance over the angles between the difference

vectors of Pi to all pairs of points included in its local point neighborhoodNi (Kriegel

et al., 2008):

abod(Pi) := VarPj ,Pm∈Ni,j 6=m

[
arccos

(
〈 (Pj − Pi), (Pm − Pi) 〉
‖Pj − Pi‖ · ‖Pm − Pi‖

)]
(4.7)

where 〈·〉 represents the scalar product. Intuitively, points Pi that are located within

a cluster of points exhibit a wide range of angles between different pairs of points

and hence, are associated with a large value of the abod feature. In contrast, (local)

outlier points Pi are likely to be associated with a lower value of the abod feature,

as the points within their local point neighborhood tend to be clustered in a certain

direction.

3D eigenvalue-based features

Following the work of Weinmann et al. (2013), a variety of geometric features are ex-

tracted to describe the spatial distribution of the points that are included in the local

point neighborhood Ni of a 3D point Pi. The features are derived from the eigenvalues

λ1, λ2, λ3 ∈ R of the 3D structure tensor1 with λ1 ≥ λ2 ≥ λ3 ≥ 0 and are defined as follows:

linearity: Lλ =
λ1 − λ2
λ1

(4.8a)

planarity: Pλ =
λ2 − λ3
λ1

(4.8b)

sphericity: Sλ =
λ3
λ1

(4.8c)

omnivariance: Oλ = 3
√
λ1λ2λ3 (4.8d)

anisotropy: Aλ =
λ1 − λ3
λ1

(4.8e)

eigentropy: Eλ = −
3∑
i=1

λi ln(λi) (4.8f)

sum of eigenvalues: Σλ = λ1 + λ2 + λ3 (4.8g)

surface variation: Cλ =
λ3

λ1 + λ2 + λ3
(4.8h)

1 definition: 1
|Ni|+1

∑
Pj∈{Ni,Pi}

(
Pj − P̄

) (
Pj − P̄

)T
, where P̄ denotes the center of gravity of {Ni,Pi}
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Local plane-based features

The local plane-based features describe the planarity of the local point neighborhood Ni
of a 3D point Pi as well as the variation of the point normals included in Ni. Given the

local plane of the point neighborhood Ni, the following features are extracted (Chehata

et al., 2009):

� distance of the 3D point Pi to the local plane

� standard deviation of the point-to-plane distances (computed for all points included

in Ni)

� weighted sum2 of the point-to-plane distances (computed for all points included

in Ni)

� deviation angle of the plane normal from the vertical direction

� variance of the deviation angles (computed for all points included in Ni)

The local plane of Ni is estimated using the MSAC algorithm (Torr and Zisserman, 2000),

a variant of the well-known RANSAC algorithm proposed by Fischler and Bolles (1981).

Height-based features

For each 3D point Pi, the following height features are extracted:

� maximal height difference betweeen any two points included in Ni

� height variance of the points included in Ni

2D features

Given the 2D projection of the points included in Ni onto a horizontally oriented plane

(i.e., the XY -plane), the following 2D features are extracted (Weinmann et al., 2013):

� radius of the local 2D neighborhood

� sum and ratio of the 2D eigenvalues, which are derived from the 2D structure tensor

of the local 2D neighborhood

2 corresponds to Equation 5 in Chehata et al. (2009)
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4.4 Training of the Classification Model

For both the non-semantic and semantic point cloud filtering approach, a random forest

classifier (Breiman, 2001) is trained using the complete feature set as described in Sec-

tion 4.3. The random forest classifier is an ensemble learning method based on decision

trees. It has been shown to yield good results for many point cloud classification tasks

(Chehata et al., 2009; Weinmann et al., 2015), runs efficiently on large data sets and can

cope with redundant features. The optimal hyperparameters of the random forest classi-

fier are determined by using a 5-fold cross-validation procedure (Appendix A.1).

Class imbalance is a fundamental problem in supervised outlier detection and implies

that significantly fewer outlier points are available for training than inlier points. If this

issue is not taken into account during the training stage, the learned classification model

will have a strong bias towards the inlier data class. In general, several approaches are

conceivable to handle imbalanced training data sets. In this thesis, the pragmatic ap-

proach of adaptive re-sampling is chosen: the training data set is downsampled such that

inlier and outlier points are equally represented in the training data set.

4.5 Implementation Details

Both the non-semantic and semantic point cloud filtering framework (Section 4.2) are

fully implemented in Matlab. Initial tests showed that the random forest classifier pro-

vided in the Matlab toolbox is incapable of processing large data sets. Furthermore,

the hyperparameters of the random forest classifier cannot be accessed or modified easily.

Because of these limitations, the ETH Random Forest Template Library3 is incorporated

into the implemented point cloud filtering routine. The ETH Random Forest Template

Library is written in C++ and hence, is ideally suited to process large data sets. Beyond a

considerable decrease in computation time, it further enables to manually set the hyper-

parameters of the classification model.

3 available at: http://www.prs.igp.ethz.ch/research/Source_code_and_datasets.html

(accessed: 06.04.2017)

http://www.prs.igp.ethz.ch/research/Source_code_and_datasets.html
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4.6 Evaluation

The developed point cloud filtering framework (Section 4.2) is evaluated on a real-world

data set from the city of Enschede, Netherlands. The data set4 comprises 497 aerial im-

ages acquired in the Maltese cross configuration, i.e. five images were recorded at each

camera position (one nadir image and four oblique views to the north, south, east, and

west). A plane sweeping algorithm using semi-global matching as smoothness prior is

applied to estimate per-view depth maps. Given the depth information at each pixel,

a point cloud is obtained by back-projecting each pixel into 3D space.5 Furthermore, a

multi-class boosting classifier is employed to predict the per-pixel log-likelihoods for the

four considered semantic classes (building facades, roof, ground, and vegetation). The

predicted per-pixel log-likelihoods are then assigned to the back-projected 3D points to

generate a semantically annotated point cloud. For further details, the reader is referred

to Bláha et al. (2016) and its supplementary material.

4.6.1 Training and Test Data

The point cloud data set derived from the aerial images of the city of Enschede is par-

titioned into two geographically separated regions. The first region encompasses 80% of

the data and is used for training and validation. The second region is used for testing and

is composed of about 1.2 million of points (approximately 7% of the data). Recall from

Section 4.4 that the inliers and outliers of the training data set need to be re-balanced

to alleviate a detrimental effect on the training process. Class re-balancing is performed

after the feature extraction process through class-adaptive downsampling of the extracted

feature vectors (i.e., the features of a 3D point are computed using all points within its

local point neighborhood). In total, 2.5 millions of training samples were used to train

the non-semantic classification model (Section 4.2.1), while 1 million of training samples

were used to train each of the four semantic classification models (Section 4.2.2).

4.6.2 Ground Truth Labeling

A major shortcoming of the Enschede data set is the lack of ground truth, i.e. the actual

segmentation of the point cloud into inliers and outliers is unknown. To obtain a ground

truth labeling for training and to quantitatively assess the plausibility of the filtered test

4 Slagboom en Peeters Aerial Survey. http://www.slagboomenpeeters.com/3d.htm

5 For practical reasons, only 3% of the pixels (per view) are back-projected into 3D space. The resulting

point cloud consists of about 16.5 million of points.

http://www.slagboomenpeeters.com/3d.htm
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(a)

(b)

(c)

Figure 4.3: Test data set of Enschede. The colors indicate building facades (red), ground (gray),

vegetation (green), and roof (yellow). (a) Magnification of the semantic 3D model created by Bláha

et al. (2016). (b) Raw, unfiltered test data set. (c) Ground truth inlier points of the test data set.
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data set, the semantic 3D model of Enschede (Bláha et al. (2016), see Figure 4.3a) is taken

as a reference, knowing that this model may not reflect reality perfectly well and may lead

to erroneous ground truth labels. The following procedure is performed to infer a ground

truth label for each 3D point of the Enschede data set:

� Approach I, non-semantic: The shortest distance of a 3D point to the semantic

3D model is compared against a manually chosen threshold. If the point-to-mesh

distance is below the threshold, the point is declared as an inlier (Figure 4.3c). A

3D point whose point-to-mesh distance exceeds the threshold is determined as an

outlier.

� Approach II, semantic: In analogy to approach I, the point-to-mesh distance of

a 3D point is thresholded using the same manually chosen threshold. Unlike ap-

proach I, the computation of the point-to-mesh distance is restricted to a single

semantic mesh (e.g ., for a ground point, its distance to the ground mesh is used as

a criterion for thresholding).

The threshold imposed on the point-to-mesh distances is experimentally determined

through visual inspection. For both approaches, a two-sided threshold of 0.008 (given

in scene units) is used, which corresponds to approximately 0.7 meters.6

6 The conversion factor from scene units to meters is estimated by measuring multiple distances in the

Enschede data set and in Google Earth.





5 Results

This chapter presents the performance assessment of the implemented non-semantic and

semantic point cloud filtering approach. The two approaches are evaluated on the same

test data set representing the city center of Enschede (see Figure 4.3b on page 26). To

quantitatively verify the quality of the results, the following four metrics (Section 3.6) are

used:

(i) precision (measure of correctness): percentage of predicted outliers that truly turn

out to be outliers according to the ground truth labeling

(ii) recall (measure of completeness): percentage of true outliers that have been predicted

as outliers

(iii) F1-score: harmonic mean of precision and recall

(iv) commission error1 (type I error): percentage of true inliers that have been incorrectly

predicted as outliers

Note that two different strategies were pursued to generate the ground truth labels of the

non-semantic and of the semantic point cloud filtering approach (Section 4.6.2). Conse-

quently, the quantitative results presented in Section 5.2 need to be compared with caution,

as the ground truth labels are not necessarily the same for both filtering approaches. A

qualitative comparison of the two filtering approaches is provided in Section 5.3.

5.1 Parameter Settings

Table 5.1 summarizes the parameter settings that were used to train both the non-semantic

and the four semantic classification models. Except for the threshold imposed on the out-

lier scores, the optimal parameter values were experimentally determined by maximizing

the F1-score via grid search and 5-fold cross-validation (Appendix A).

1 or equivalently: 1 − precision

29
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Table 5.1: Parameter settings that were used to train the non-semantic and the four semantic

classification models.

Parameter Value

Number of decision trees 20

Maximal depth of the trees 15

Scale parameter k (local neighborhood size) 100

Threshold on the outlier scores 50%

20 decision trees and a maximal tree depth of about 15 were found as the optimal hy-

perparameters of the random forest classifier, where the Gini index was used as splitting

criterion. For feature extraction, various single scales k and multiple scale combinations

were tested. A single neighborhood size given by the 100 closest 3D points was found as a

good compromise between computation time and classification accuracy (in terms of the

F1-score). Extracting all features over a range of scales did not improve the classification

accuracy (see Table A.1 on page 44).

5.2 Quantitative Results

The test data set used for evaluation consists of 1’222’552 points. The non-semantic

classification method predicts 43.8% of the points as outliers, whereas the semantic clas-

sification method reports 45.4% of the points as outliers. The quantitative evaluation of

both point cloud filtering approaches is provided in the next two sections. The quality

measures of the non-semantic classification method are computed for each semantic class

independently to facilitate the comparison with the semantic classification method.

5.2.1 Approach I: non-semantic

The quantitative evaluation of the non-semantic point cloud filtering approach is given in

Table 5.2. The non-semantic classification model correctly identifies between 67.50% and

75.22% of all outlier points, with the lowest recall value achieved on the building points.

The precision values range between 69.01% and 78.08%. Again, the lowest value is achieved

on the building points. The low precision values, or equivalently the high commission

errors, indicate that the non-semantic classification model cannot distinguish properly

between inliers and outliers. Approximately 20% of the filtered roof points should have



5.2 Quantitative Results 31

Table 5.2: Quantitative results of the non-semantic classification model, evaluated independently

on each of the four semantic classes.

Evaluation points Precision [%] Recall [%] F1-score [%] Commission error [%]

Building points 69.01 67.50 68.24 30.99

Ground points 74.90 75.22 75.06 25.10

Vegetation points 72.56 73.98 73.27 27.44

Roof points 78.08 74.52 76.26 21.92

been retained according to the ground truth labeling. The highest fraction of misdetected

outliers is observed for the building points and amounts to about 30%. On average, the

non-semantic classification model correctly identifies around 70% of the outliers across

all semantic classes. However, the filtering effect is rather strong as more than 25% of the

points are erroneously removed.

5.2.2 Approach II: semantic

Table 5.3 shows the quantitative evaluation of the four semantic classification models.

Most precision and recall values, as well as all F1-scores, are either of the same order of

magnitude or higher than the numbers reported for the non-semantic classification model

(Table 5.2). The most striking difference is observed for the outlier detection of building

points. Although less of the true outliers might be identified (lower recall), the fraction

of wrongly reported outliers is markedly decreased (higher precision or equivalently, lower

commission error). Similarly, the commission error achieved on the ground points and

the vegetation points is considerably lower compared to the non-semantic classification

model. The performance of the roof classification model is comparable to the performance

of the non-semantic classification model.

Table 5.3: Quantitative results of the four semantic classification models.

Evaluation points Precision [%] Recall [%] F1-score [%] Commission error [%]

Building points 84.41 57.35 68.30 15.59

Ground points 82.85 76.64 79.62 17.15

Vegetation points 89.73 67.10 76.78 10.27

Roof points 77.56 76.53 77.04 22.44
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5.3 Qualitative Comparison

Figure 5.1 depicts three detailed views of the test data set, once filtered using the non-

semantic point cloud filtering approach and once filtered using the semantic point cloud

filtering approach. As a reference, the raw, unfiltered point cloud data set is shown in

Figure 4.3b on page 26. It can be readily seen that points located in free space are

removed correctly by both point cloud filtering approaches. However, the semantically

filtered point cloud appears much denser and cleaner than the non-semantically filtered

point cloud. First, isolated building points and roof points, located close to the ground or

within vegetated areas, are correctly removed (Figure 5.1, top right). Secondly, clustered

outliers located between building fronts (Figure 5.1, bottom right) and erroneous building

points in the vicinity of roofs are successfully filtered.

Figure 5.1: Qualitative comparison of the two point cloud filtering approaches. Left: non-semantic

classification result. Right: semantic classification result.
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A further crucial difference between the non-semantic and semantic classification result

can be observed for the building points (Figure 5.1, middle row). Building facades are

either partially filtered or removed completely in the non-semantically filtered point cloud.

In the semantically filtered point cloud, building facades are much better preserved. This

observation is supported by the commission errors reported in Table 5.2 and Table 5.3,

respectively. In the non-semantic approach, about 30% of the building points are erro-

neously predicted as outliers. This value is greatly reduced in the semantic approach,

where roughly 15% of the building points are erroneously predicted as outliers. Similarly,

the reduced commission error achieved on the vegetation points is directly visible in the

semantically filtered point cloud, as vegetated areas appear much denser compared to the

non-semantically filtered point cloud.





6 Discussion

In the non-semantic point cloud filtering approach, a discriminative classification model

is trained to learn the average behavior of inliers and outliers across different semantic

classes of urban point clouds. The evaluation of the trained model shows that outliers

among roof points and ground points are detected with the highest recall (i.e., complete-

ness) and precision (i.e., correctness). The fraction of missed outliers among vegetation

points is slightly greater than the fraction of missed outliers among roof points and ground

points. This minor difference in the recall value might be caused by the uncertainty of the

ground truth labels. In particular, the threshold imposed on the point-to-mesh distances

might be chosen too strict regarding the vegetation points, leading to both lower recall

and precision. The non-semantic classification model performs poorly on the building

points. Not only are few outliers identified (low recall), but also a considerable amount

of inliers are erroneously predicted as outliers (low precision). These results indicate that

the trained non-semantic classification model is not able to separate inliers and outliers

equally well among the different semantic classes. A possible explanation is related to

the data acquisition process. The point cloud data set of Enschede is derived from aerial

images (Section 4.6). Roof, ground, and vegetated areas face the camera directly and

hence, are likely to show similar properties in the distribution of inliers and outliers. In

contrast, building facades are poorly approximated due to their orientation with respect

to the camera poses, their repeated textures, and surface parts corrupted by specular

reflections (e.g ., windows or glass facades). As a result, building points exhibit a funda-

mentally different distribution of inliers and outliers, which is only inaccurately captured

by a classification model averaged over all semantic classes.

In the semantic point cloud filtering approach, a discriminative classification model is

trained for each of the four semantic classes individually. Each semantic classification

model outperforms the non-semantic baseline method, especially in terms of precision.

The biggest improvement is observed for the building points. While the baseline method

achieves a commission error of about 30%, this value is greatly reduced by the building

classification model and amounts to roughly 15%. These results confirm the underlying

assumption of the semantic point cloud filtering approach of class-specific inlier and outlier
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distributions and clearly show the advantage of using a classification model that is tailored

to detect outliers of a specific semantic class.

The classification models are trained and tested using different subsets of the Enschede

data set. Therefore, the quality measures reported in Table 5.2 and Table 5.3 tend to

be too optimistic. If the classification models had been evaluated on a test data set

different from Enschede, the performance might have been worse. Nevertheless, it can

be assumed that the semantic classification models will outperform the non-semantic

baseline method on other data sets as well. Further, an inherent problem of the Enschede

data set is the lack of ground truth. Ground truth labels were manually generated using

the heuristic approach described in Section 4.6.2. As can be seen in Figure 6.1b, the

generated ground truth labels are partially contaminated by label noise, which implies

that a considerable amount of points are associated with a wrong ground truth label. The

wrong ground truth label is mainly assigned to points that are close to the ground level

but are located in the interior of buildings. Such points exhibit a small distance to the

semantic 3D model1 and hence, are determined as inliers according to the point-to-mesh

thresholding procedure. However, these errors in the generated ground truth labels do

not have a detrimental effect on the learning process, as the classification models correctly

predict such problematic points as outliers (Figure 6.1c).

(a) (b) (c)

Figure 6.1: Effect of label noise on the learning process. (a) Detailed view of the raw, unfiltered

test data set. (b) Inlier points according to the ground truth labeling. It can be observed that

points located in the interior of buildings are erroneously declared as inliers, provided that their

height is close to the ground level. (c) Semantically filtered point cloud (i.e., predicted inliers).

1 Note that the semantic 3D model of Enschede consists of closed-form surfaces.
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This thesis tackles the problem of urban point cloud filtering through a supervised outlier

detection approach based on machine learning techniques. Conceptually, the developed

and implemented point cloud filtering framework is equivalent to a binary classification

scheme that assigns each 3D point of a raw, unfiltered point cloud to one of the following

two categories: (i) 3D points predicted as outliers are assumed to be caused by gross errors

or systematic deviations in the point cloud generation process and are removed from the

raw point cloud. (ii) 3D points predicted as inliers are assumed to be located close to the

underlying surface of the captured scene and hence, constitute the filtered point cloud.

The performance of the proposed point cloud filtering approach is primarily dependent

on the features that are used to train the classification model. In this thesis, a variety of

techniques is exploited for feature engineering. On the one hand, features commonly used

in state-of-the-art approaches for point cloud classification are deployed. On the other

hand, several features used in unsupervised outlier detection are adapted and embedded

in the implemented classification framework.

The thesis uses the well-established random forest classifier (Breiman, 2001) as a clas-

sification model, knowing that better results may be achieved by methods in the field

that do not rely on hand-crafted features. Two approaches for training the random forest

classifier are investigated. In the first non-semantic approach, the features are extracted

without considering the semantic interpretation of the 3D points. Thus, the trained model

approximates the average behavior of inliers and outliers across different semantic classes.

In the second semantic approach, the semantic interpretation of the 3D points is incorpo-

rated into the learning process. The classifier is trained for each semantic class (building

facades, roof, ground, and vegetation) individually by restricting the training data set to

3D points that belong to the respective semantic class. This procedure results in four

classification models, where each model is dedicated to distinguishing between inliers and

outliers of the respective semantic class.

The two point cloud filtering approaches are evaluated on the same real-world data set from

the city of Enschede, Netherlands. The evaluation clearly shows the benefit in addition-
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ally incorporating semantic information into the learning process. In the non-semantic

filtering approach, about 25% of the points are erroneously removed. In the semantic

filtering approach, the fraction of wrongly reported outliers is markedly decreased, where

the greatest decrease is achieved on the building points (15% compared to 30%). A vi-

sual comparison of the two filtering approaches reveals that the semantically filtered point

cloud is much denser and cleaner than the non-semantically filtered point cloud. Isolated

building points and roof points are successfully removed. Moreover, building facades are

correctly preserved in the semantically filtered point cloud, while entire building fronts are

completely removed in the non-semantically filtered point cloud. These results indicate

that the distribution of inliers and outliers truly varies across the different semantic classes

and can only be modeled reliably if semantic information is included into the learning pro-

cess.

Despite the generic nature of the developed point cloud filtering algorithm, the trained

classification models cannot be applied directly to filter any type of point cloud data set.

The models reflect the average or class-specific properties of inliers and outliers inherent

in the training data and hence, are suited only to filter data sets that are similar to the

data used for training. Specifically, the learned characteristics of inliers and outliers are

directly related to the data acquisition technique (e.g ., active or passive measurement

method, sensor type, aerial or terrestrial data acquisition, flight plan, etc.) as well as the

scene structure of the captured scene. Therefore, the classification models need to be

refined or retrained in order to adapt to new types of point cloud data sets.
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A Parameter Settings

A.1 Hyperparameters of the Random Forest Classifier

The optimal hyperparameter values of the random forest classifier are found by maximizing

the F1-score via two-dimensional grid search and 5-fold cross-validation. The parameters

are optimized for the non-semantic classification model only. The four semantic classi-

fication models are trained using the same parameter settings as were used to train the

non-semantic classification model.

20 decision trees and a maximal tree depth of about 15 are found as the optimal hyperpa-

rameters of the random forest classifier (highest cross-validated F1-score, see Figure A.1).

If the trees are grown deeper than 15 levels, the trained model will fit too much to the

training data and hence, is likely to perform poorly on new data sets (lower F1-score). A

model trained with more than 20 trees reaches the same F1-score as a model trained with

20 trees. Because of runtime reasons, the number of trees is restricted to 20.

A.2 Neighborhood Selection

The scale parameter k, which defines the number of points included in a local point

neighborhood, is experimentally determined by maximizing the F1-score via 5-fold cross-

validation. The parameter is optimized for the non-semantic classification model only.

The four semantic classification models are trained using the same scale parameter k as

was used to train the non-semantic classification model.

As can be seen in Table A.1, the classification performance improves with increasing

size of the parameter k. The feature extraction at multiple scales does not support the

discrimination between inliers and outliers, as the reached performance measures are of

the same order of magnitude as the performance measures achieved using a single scale.

A scale k of 100 is considered as a good compromise between computation time and

classification accuracy since the gain in using higher scales is minimal.
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Figure A.1: Hyperparameter tuning of the non-semantic classification model. The 5-fold cross-

validated F1-score is shown as a function of the maximal tree depth and for a varying number of

decision trees.

Table A.1: Optimal neighborhood selection for feature extraction (non-semantic approach). The

5-fold cross-validated quality metrics precision, recall, and F1-score are given for several single

scales and scale combinations.

Scale parameter k Precision [%] Recall [%] F1-score [%]

50 76.58 72.93 74.67

100 77.34 75.50 76.38

200 77.92 75.59 76.71

50, 100 77.39 75.25 76.27

50, 100, 200 77.92 75.59 76.71

A.3 Threshold on the Outlier Scores

Figure A.2 depicts the 5-fold cross-validated precision-recall curve of the non-semantic

classification model. The precision-recall curves of the four semantic classification models

are displayed in Figure A.3. Note that the threshold imposed on the outlier scores is chosen

as 50% for all classification models. The threshold is not tuned as it is difficult to determine

an adequate value that is independent of heuristics.
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Figure A.2: 5-fold cross-validated precision-recall curve of the non-semantic classification model.

The AUC (area under the curve) value amounts to 84.32%.
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Figure A.3: 5-fold cross-validated precision-recall curve of the four semantic classification mod-

els. The AUC (area under the curve) values are: 81.35% (building), 89.87% (ground), 84.69%

(vegetation), and 89.50% (roof).
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