
ETH - Swiss Federal Institute of Technology Zurich

Master thesis

A Shared Deep Feature Embedding

of Sentinel-1 and Sentinel-2 for

Building Detection

Arno Rüegg
arrueegg@student.ethz.ch

18-914-788

Professorship
Prof. Dr. Konrad Schindler

supervised by
Nando Metzger
Olivier Dietrich

Dr. Anton Obukhov

Zurich, 3th July 2023



Abstract

This thesis tackles the challenge of accurate building segmentation in single-domain re-
mote sensing data, where existing methods relying on data fusion techniques with multiple
sources may be impractical. We propose a combined training procedure that leverages
both domains during training and enhances single domain inference at prediction time. To
improve the performance of single-domain segmentation, we evaluate various loss func-
tions for consistency between the sources. Based on the evaluation, we introduce two
innovative approaches: the Discriminator and Input Augmentation. The Discriminator
approach incorporates a Discriminator network with a gradient reversal layer, replacing
the traditional consistency loss function. This integration enhances the similarity between
the source domains, leading to improved segmentation results. On the other hand, the
Input Augmentation approach augments the input data with additional features extracted
from the variational autoencoder of the Stable Diffusion framework. This augmentation
enriches the representation of the input data, enabling the network to capture more com-
prehensive spatial information. In our experimental evaluation, we demonstrate that both
the Discriminator and Input Augmentation approaches yield slight metric improvements
in terms of accuracy and precision. However, the visual analysis of the prediction maps
reveals significant enhancements in the case of similarity between the source domains.
The predicted segmentations exhibit a higher level of detail and better alignment with
ground truth annotations. Our research enables more frequent and accurate building
segmentations, particularly in scenarios with limited data availability.
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1 Introduction

The reliable and accurate segmentation of buildings plays a crucial role in various appli-
cations, such as urban planning, disaster management, and population estimation. The
availability of high-resolution satellite imagery from sources like Sentinel-1 and Sentinel-2
has revolutionized the field of remote sensing, providing a wealth of data for building seg-
mentation. However, existing approaches often rely on data fusion techniques, combining
information from Sentinel 1 and 2 during the training phase. This raises a significant
challenge when it comes to inferring segmentations, when only one source modality (also
called domain) is available at inference time, limiting their practical applicability. (Hafner,
2022, p.3-4)

In this master’s thesis, we aim to address this challenge by investigating the possibility
of improving single domain inference for building segmentation, thereby advancing upon
the existing research presented in the paper "Unsupervised domain adaptation for global
urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data" by Hafner, Ban, and
Nascetti. While they primarily focus on data fusion approaches that leverage information
from both Sentinel-1 and Sentinel-2 domains separately, our research aims to explore
methods that allow for accurate segmentations even when only one domain is available
at inference time.

The motivation behind our research stems from the need for more frequent segmentations,
especially in scenarios where access to data from both domains may be limited or imprac-
tical. This need is particularly evident in regions affected by conflicts or wars, where
monitoring building damage in a timely manner is of utmost importance. By developing
a combined training procedure that benefits from both domains during the training phase
and enhances the metrics for single domain inference at the time of prediction, we aim to
overcome this limitation.

Our methodology builds upon the foundation laid by Hafner, Ban, and Nascetti and
introduces modifications to the existing pipeline. Specifically, we adjust the pipeline to
accommodate the scenario of single domain inference. To better model the complexity
of the task and encourage similarity in the extracted features, we replace the consistency
loss function with a Discriminator network and a gradient reversal layer.

The goal of this research are improved building segmentations, even in situations where
only one domain is available for prediction. This advancement allows for more frequent
and reliable monitoring of building damages in war-torn regions. Moreover, the avail-
ability of accurate and timely segmentations can have broader implications, including
applications such as population estimations in remote areas and urban planning.

The thesis is structured as follows: section 2 provides a comprehensive review of related
work in the field of building segmentation and domain adaptation techniques. In section 3,
we present the dataset used in our project and outline the data processing steps involved.
In section 4 the theoretical basics used in the project are explained before section 5 details
the methodology employed, describing the adjustments made to the pipeline and the
introduction of the Discriminator network with a gradient reversal layer. In section 6, we
present the results of our experiments and analyze their implications. Finally, section 7
offers a conclusion of the findings, highlighting the significance of our research and its
potential applications.

1
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In conclusion, this master’s thesis aims to enhance building segmentations by improving
single domain inference, specifically targeting scenarios where only one domain is available
at inference time. By leveraging the benefits of both domains during the training phase, we
anticipate achieving more frequent and accurate segmentations, thereby enabling various
applications such as damage monitoring in war regions and population estimations in
remote areas.

2
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2 Related Work

In this chapter, we provide a description of the publications that form the foundation for
this work. While the segmentation of built-up areas is not a novel subject, significant
advancements have been made by other researchers in this field. The primary focus of
this thesis is the utilization of combined Sentinel-1 and Sentinel-2 data during the training
process, allowing for predictions when both or even when only one of these satellite sources
are available. Notably, Hafner, Ban, and Nascetti have conducted notable research in
this specific direction through their paper titled "Unsupervised domain adaptation for
global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data." Their objective
was to develop an innovative and enhanced domain adaptation solution for built-up area
segmentation, leveraging the potential of Sentinel-1 and Sentinel-2 data. Due to the close
alignment of their work with the topic of this thesis, their research serves as a baseline
for our project.

2.1 Unsupervised domain adaptation for global urban extrac-

tion using Sentinel-1 SAR and Sentinel-2 MSI data

The baseline paper, titled "Unsupervised Domain Adaptation for Global Urban Extraction
using Sentinel-1 SAR and Sentinel-2 MSI data", addresses the challenges of mapping built-
up areas on a global scale using Earth Observation (EO) data from the Sentinel-1 SAR
and Sentinel-2 MSI missions. The paper acknowledges that previous urban mapping
efforts relied on fully supervised training or assumed satisfactory generalization across
different regions, both of which have limitations. To overcome these shortcomings, Hafner,
Ban, and Nascetti propose a novel approach that leverages Semi-Supervised Learning
(SSL) algorithms and Domain Adaptation (DA) techniques. This approach is refereed as
"Fusion-DA" in the following.

The proposed methodology involves training Convolutional Neural Networks (CNNs) sep-
arately on the SAR and optical images using SSL. Two identical sub-networks are incorpo-
rated into the model for built-up area segmentation, with the assumption that consistent
segmentation should be achieved across data modalities. To encourage consistency, an
unsupervised loss penalizes inconsistent segmentation results from the two sub-networks.
This approach effectively utilizes the complementary information from SAR and optical
data for improved generalization.

Experimental evaluations were conducted on a test set consisting of sixty representative
sites worldwide as described in section 3. The results demonstrate the effectiveness of
the proposed DA approach, achieving strong improvements in F1 score compared to fully
supervised learning from individual data modalities and their fusion at the input level
using the same LU-Net as for the Fusion-DA approach (see tab. 1). Furthermore, a
comparison with state-of-the-art products, GHS-BUILT-S2 and WSF 2019, revealed that
the proposed model can produce built-up area maps of comparable or even better quality.
(Hafner, Ban, & Nascetti, 2022b)

3
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F1 score Precision Recall IoU

Val. Test Val. Test Val. Test Val. Test

SAR 0.664 0.574 0.664 0.570 0.664 0.579 0.497 0.403
Optical 0.739 0.580 0.727 0.699 0.752 0.496 0.586 0.409
Fusion 0.774 0.651 0.745 0.712 0.805 0.599 0.631 0.482
Fusion-DA 0.764 0.694 0.691 0.661 0.855 0.730 0.618 0.531

Table 1: All metrics of SSL domain adaptation approach by Hafner, Ban, and Nascetti
compared to fully supervised single data modalities and input level fusion.

The findings highlight the potential of multi-modal DA to generate easily updateable
global human settlement maps, providing accurate and up-to-date information to support
sustainable urban development efforts.

In the baseline paper by Hafner et al., a comprehensive comparison between the pre-
dictions obtained from the SAR and optical data only at inference using their domain
adaptation approach was not conducted. This omission is noteworthy because such a
comparison would have been highly informative, particularly for situations where only
one satellite sensor is available for inference. It would have been interesting to evaluate
the performance of SAR and optical predictions individually and assess their suitability
for standalone use, allowing for more frequent predictions. By examining the differences
between SAR and optical outputs, it becomes evident that there are considerable dispari-
ties, especially when visually inspecting the predictions. SAR predictions tend to exhibit
more blurriness in their structural details compared to the predictions derived from optical
data.

Given the significant differences observed between the SAR and optical predictions in
terms of visual quality and structural clarity, it becomes imperative to address this re-
search gap. While the baseline paper focuses on domain adaptation and consistency
regularization to align the predictions from both modalities, the achieved similarity falls
short of expectations. Consequently, there is a clear motivation to explore alternative loss
functions or methodologies to enhance the consistency and similarity between SAR and
optical predictions. One potential approach that could be considered is incorporating a
pixelwise domain Discriminator, similar to the one employed later in our approach. By
integrating such a Discriminator or exploring different loss functions, it may be possible
to improve the visual quality and structural coherence of SAR predictions, aligning them
more closely with the optical predictions.

In summary, the baseline paper by Hafner et al. does not provide a direct comparison be-
tween the predictions obtained from SAR and optical data using their domain adaptation
approach. This comparison would have been valuable for scenarios where only one satellite
sensor is available, enabling more frequent predictions. Moreover, the differences observed
between SAR and optical outputs, particularly the blurry structural details in SAR pre-
dictions, necessitate further investigation. Therefore, this research seeks to address this
gap by exploring alternative loss functions or incorporating a pixelwise Discriminator to
improve the consistency and similarity between SAR and optical predictions. The subse-
quent sections will delve into the methodology and findings of our approach, which aims to
enhance the visual quality and coherence of SAR predictions, ultimately bridging the gap
between SAR and optical-based urban mapping techniques. (Hafner, Ban, & Nascetti,
2022b)

4
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2.2 Building Mapping with Sentinel-1 and Sentinel-2

Earth Observation data, such as Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-
2 MultiSpectral Instrument (MSI) missions, have provided valuable resources for large-
scale urban mapping. SAR data, in particular, has been used in fully automatic building
segmentation, leveraging the high backscattering from double-bounce effects of buildings
(Chini, Pelich, Hostache, Matgen, & Lopez-Martinez, 2018). For example, the Global
Urban Footprint (GUF) was derived from TerraSAR-X and TanDEM-X SAR images,
accurately mapping global human settlement at 12 m resolution (Esch et al., 2017). More
recent studies have demonstrated the potential of Sentinel-1 SAR data for global urban
mapping, achieving high agreement with GUF, although Sentinel-1 only has a resolution
of 20m (Chini et al., 2018). On the other hand, optical sensors like Sentinel-2 MSI
provide information on surface reflectance characteristics, allowing for the detection of
urban areas. (Hafner, Ban, & Nascetti, 2022b)

To harness the complementary information from SAR and optical data, sensor fusion
techniques have been explored for improved urban mapping. These techniques aim to
combine features extracted from different data modalities to enhance mapping capabili-
ties. This is known as input-level fusion, where features from SAR and optical data are
combined before inputting them into traditional ML classifiers. This improves the results
of building mapping already significantly as it can learn from more input data and benefit
from the sensor-specific advantages of both sensors (shown in tab. 1). In our method and
in the Fusion-DA approach the SAR and optical data does not get fused on the input-
level, but both sources have their own feature extractor and afterwards a consistency loss
is introduced to generate similar prediction maps for both source domains. (Hafner, Ban,
& Nascetti, 2022b)

5
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3 Datasets

The dataset for this project is the same as the dataset by Hafner, Ban, and Nascetti
for their paper on "Unsupervised domain adaptation for global urban extraction using
Sentinel-1 SAR and Sentinel-2 MSI data". This dataset with exactly the same processing
steps as described in the following has been used for all methods and tests provided in
this thesis.
The entire dataset can be accessed at https://doi.org/10.5281/zenodo.6914898. It
encompasses satellite images acquired from Sentinel-1 SAR (VV + VH band) and Sentinel-
2 MSI (10 spectral bands). These images represent 96 training and validation sites, as
well as an additional 60 test sites located in various cities worldwide. Building labels
obtained from Microsoft’s open-access building footprints are available for 30 training
and validation sites, limited to the United States, Canada, and Australia. The remaining
66 training sites outside of these countries do not have labels but can still be utilized for
semi-supervised learning. All 60 test sites in the dataset have manually labeled building
footprints sourced from the SpaceNet7 dataset. (Hafner, Ban, & Nascetti, 2022a) The
locations of training, validation and test sites are displayed in figures 1 and 2.

Figure 1: Overview of locations for training and validation sites. (modified from (Hafner,
Ban, & Nascetti, 2022b))

6
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Figure 2: Overview of locations for test sites. (modified from (Hafner, Ban, & Nascetti,
2022b))

The preprocessing steps for all data sources are shown in figure 3, where all operations
are visualized.

Figure 3: Overview of the preprocessing operations for Sentinel 1 and 2, Microsoft building
footprints and SpaceNet7 building footprints. (Hafner, Ban, & Nascetti, 2022b, p.3)

3.1 Sentinel 1

The Sentinel 1 mission, which is part of Copernicus, utilizes the C band to gather informa-
tion with a ground resolution of 20m. The mission’s capabilities allow for the distinction
of two channels: HH + HV and VV + VH, based on different polarizations. To pro-
cess the acquired images, Ground Range Detection was employed followed by further
preprocessing using Google Earth Engine (GEE) (Gorelick et al., 2017). This preprocess-
ing entailed various steps, including thermal noise removal, radiometric calibration, and
terrain correction.

7
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It was subsequently applied time filtering to the images for each region of interest, and
only the orbits with better data availability were selected. This selection was crucial due
to the significant impact of the signal’s incidence angle on backscattering for buildings.
Since multiple observations were available for most regions as a result of temporal filtering,
a proven method of reducing speckle noise was adopted by taking the mean value per 20m
ground resolution pixel (Chini et al., 2018, p.5). This approach not only minimized noise
but also ensured the inclusion of useful information.

To facilitate analysis, the signal was converted to decibels using a logarithmic scale. Then,
the noise was eliminated by applying a mask that excluded all values below -25dB. The
remaining values ranged between [-25,0] before being normalized to the interval [0,1].
These preprocessed images were subsequently utilized for training, validation, and test
sites (Hafner, Ban, & Nascetti, 2022b).

3.2 Sentinel 2

Sentinel 2, like Sentinel 1, is part of ESA’s Copernicus program. It collects data in
13 spectral bands provided at different processing levels (ESA, 2023). For this thesis,
processing level 1C was chosen due to its global availability shortly after acquisition and
because it is already geometrically corrected on the cartographic map. The 13 spectral
bands include RGB channels (Band 2, 3, 4), Visible and Near Infrared channels (Band
5, 6, 7, 8, 8a), and Short Wave Infrared channels (Band 11, 12). Only the channels
with ground resolutions of 10m and 20m are utilized for further processing, as the 60m
resolution channels contain atmospheric information not considered relevant for building
segmentation.

Band Resolution Central Wavelength Description

B1 60 m 443 nm Ultra Blue (Coastal and Aerosol)
B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B5 20 m 705 nm Visible and Near Infrared (VNIR)
B6 20 m 740 nm Visible and Near Infrared (VNIR)
B7 20 m 783 nm Visible and Near Infrared (VNIR)
B8 10 m 842 nm Visible and Near Infrared (VNIR)
B8a 20 m 865 nm Visible and Near Infrared (VNIR)
B9 60 m 940 nm Short Wave Infrared (SWIR)
B10 60 m 1375 nm Short Wave Infrared (SWIR)
B11 20 m 1610 nm Short Wave Infrared (SWIR)
B12 20 m 2190 nm Short Wave Infrared (SWIR)

Table 2: Sentinel 2 bands with resolution, Central Wavelength and Description (GIS-
Geography, 2022)

The Sentinel 2 data undergoes additional preprocessing, including temporal and spatial
filtering similar to the Sentinel 1 images. Since Sentinel 2 observations are susceptible
to weather conditions, a cloud masking technique based on the Sentinel Hub’s cloud
detector is applied (Sentinel-Hub, 2023). Pixels with a cloud probability higher than

8
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80% are masked, and for the remaining pixels, the median value from all recordings is
used to generate the final image. Lastly, the data is normalized to a range of [0, 1]. Like
the Sentinel 1 images, also the Sentinel 2 images were subsequently utilized for training,
validation, and test sites. (Hafner, Ban, & Nascetti, 2022b)

3.3 Microsoft building footprints

For training and validation the Microsoft building footprints were used because they were
available before 2021 for the United States, Canada and Australia only. Microsoft used a
two step process to derive the building footprints from aerial images. First, they performed
a semantic segmentation to recognize building pixels with a deep neural network. Second,
they converted building pixel blobs to polygons, which were then published as GeoJSON.
In table 3 are all the metrics for the three regions shown. (Microsoft, 2023)

Region Precision Recall IoU

USA 98.5% 92.4% 0.86
Canada 98.7% 72.3% 0.76
Australia 98.6% 65.0% 0.79

Table 3: Evaluation metrics for all regions of Microsoft building footprints (Microsoft,
2023)

For the training and validation set, these building footprint polygons were transfered to
GEE. The polygons which are located inside one of the labeled training or validation sites
are rasterized with a resolution of 10m that they fit to the sentinel 1 & 2 raster cells.
Due to the temporal difference between the Sentinel images and the Microsoft building
footprints it is possible that they not reach the metric values stated in table 3 in the final
dataset.

3.4 SpaceNet 7 building footprints

For the test dataset the labels were taken from SpaceNet 7, as it is a very large dataset
with manually annotated building footprints. It consists of 101 fast growing sites for which
monthly imagery is available for a median period of 24 months between 2017 and 2020.
(Van Etten et al., 2021)
After a spatial disjoint from training and validation sites to prevent any overlap, the
remaining 60 sites were taken for the test dataset. The selected timestamp of the test
images depend mainly on the fact that the observations had to be cloud free, allowing
an accurate mapping of all buildings. The data preprocessing follows the same work flow
as for the Microsoft building footprints and is also converted to a raster map with 10m
resolution. (Hafner, Ban, & Nascetti, 2022b)

9
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3.5 Dataset overview

The final dataset consists of a training, validation and test dataset, where the labels for
the training and validation set are derived from Microsoft building footprints and the
test set labels from manually annotated SpaceNet 7 building footprints. This dataset
equals the dataset used by Hafner, Ban, and Nascetti. All datasets include Sentinel 1 & 2
images with a timestamp as close as possible to the corresponding labels. In figure 4 the
sizes of the training and validation set are displayed. The labeled training set includes
roughly 1.32 billion pixels, covering an area of over 132,000 square kilometers. Around
11% of this area represents Built-Up Area. Comparatively, the unlabeled training set
is larger than the labeled one, encompassing about 1.79 billion pixels and covering over
179,000 square kilometers. As for the validation set, it is considerably smaller, it consists
of approximately 222 million pixels, covering more than 22,000 square kilometers, with
approximately 10% of that area representing Built-Up Area. The test set includes 11.1
million pixels and covers a total area of 1,112 square kilometers, whereas 15% of the pixels
are denoted as buildings.

Figure 4: Pixel distribution for training, validation and test set on top and separate test
set on bottom with different scaling. (modified from Hafner, Ban, and Nascetti)

10
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4 Theoretical Background

The theoretical background chapter of this master thesis provides a foundation of key
concepts and techniques crucial to the research of the thesis. This chapter focuses on semi-
supervised learning, U-Net architecture, Discriminator models, Gradient Reversal layer,
and evaluation metrics. By exploring these topics, we establish a strong understanding
of the theoretical underpinnings that form the basis of our work.

4.1 U-Net

U-Net is a widely used deep-learning architecture for semantic segmentation, initially de-
veloped for medical images. It has shown remarkable success in various fields, including
satellite images and handwritten characters. Semantic segmentation involves assigning a
class to each pixel in an image, and U-Net was specifically designed for this task. The
architecture consists of an encoder, decoder, and skip connections, which enable accu-
rate segmentations with limited data. The network architecture from the original paper
is shown in figure 5 and shows the encoder on the left and the decoder on the right.
(O’Sullivan, 2023) (Ronneberger et al., 2015)

Figure 5: U-Net architecture with encoder and decoder. (Ronneberger et al., 2015)

The encoder plays a crucial role in creating a compact representation of the input im-
age, extracting important features through convolutional and pooling layers. However,
this representation lacks information about the location of the features, which is essential
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for segmentation. To address this, the decoder reconstructs an image from the compact
representation using deconvolution layers. It increases the dimensionality of the image,
allowing for accurate reconstruction. (O’Sullivan, 2023)
However, the decoder alone cannot retain the location information without a significant
amount of training data. An important innovation of U-Net lies in its use of skip connec-
tions, which connect the encoder and decoder. These connections pass feature information
from earlier convolutional layers to the deconvolutional layers while preserving the location
information. This is achieved by concatenating the corresponding layers and performing
convolution on the concatenated tensor. (Ronneberger et al., 2015)
By combining feature extraction and feature localization, U-Net enhances the perfor-
mance of semantic models and reduces the data required for training. Skip connections
enable the network to effectively learn from limited training images and produce accurate
segmentations. (O’Sullivan, 2023)

4.2 Discriminator

The discriminator network has first been described in 2014 by Goodfellow et al. in their
paper on "Generative Adversarial Nets". In that, they introduced the concept of generative
adversarial networks (GANs), which consist of a generator network and a discriminator
network engaged in a game-theoretic framework as shown in figure 6.

Figure 6: Typical GAN architecture including a discriminator. (Vint et al., 2021)

The goal of the generator in a GAN is to generate realistic samples, such as images or
texts, that resemble the training data. The generator takes random noise or latent vectors
as input and tries to generate output samples that are indistinguishable from real data.
On the other hand, the goal of the discriminator is to accurately classify and distinguish
between real samples from the training data and the generated samples produced by
the generator. The discriminator is trained to improve its ability to correctly identify
whether a given sample is real or generated. The optimum is reached when the generator
approximates the training data distribution well and the discriminator accuracy is 1/2 and
therefore cannot distinguish anymore between real and fake. (Goodfellow et al., 2014)
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The discriminator is used to distinguish between to classes (real and fake in the example
above), in a classification manner for entire images. It can also be changed to a U-Net
like architecture to do this classification on pixel level. It is expected to be more robust,
since not the entire segmentation of an image has the same quality. This allows to locate
areas which cause a high loss for the discriminator and apply the corrections on specific
features. (Cai et al., 2022; Souly, Spampinato, & Shah, 2017)

4.3 Gradient reversal layer

In the paper "Unsupervised Domain Adaptation by Backpropagation" by Ganin and Lem-
pitsky the authors propose a method for unsupervised domain adaptation, aiming to adapt
a model trained on a source domain to perform well on a target domain without relying
on labeled target data. The proposed framework utilizes a domain classifier and a feature
extractor to learn domain-invariant representations (see fig. 7). (Ganin & Lempitsky,
2015)
The feature extractor, responsible for extracting relevant features from input data, com-
monly employs a siamese architecture where two identical feature encoders share weights.
This architectural choice encourages the feature extractor to learn representations that
capture the underlying structure and semantics of the data, rather than being influenced
by domain-specific characteristics.
To achieve domain-agnostic feature representations, the authors introduce a domain con-
fusion objective. A domain classifier, another neural network, predicts the domain label
(source or target) given the extracted features. The goal is to generate feature represen-
tations that do not contain information distinguishing between the domains.
To enforce domain invariance, a Gradient Reversal Layer (GRL) is introduced. Placed
between the feature extractor and the domain classifier as shown in figure 7. The GRL re-
verses gradients during backpropagation, negating the gradient signal typically provided
by the domain classifier to the feature extractor. By confusing the feature extractor,
the GRL encourages the learning of domain-invariant representations. This mechanism
aligns the feature distributions across domains, reducing the influence of domain-specific
information. (Bolte et al., 2019; Ganin & Lempitsky, 2015)

Figure 7: Network architecture with feature extractor (green), domain classifier (pink),
label predictor (blue) and gradient reversal layer. (Ganin & Lempitsky, 2015)
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During training, the feature extractor aims to generate representations that confuse the
domain classifier, while the domain classifier attempts to correctly classify the domains.
By jointly optimizing the feature extractor and the domain classifier, the model learns to
extract features that are invariant across domains, enabling effective adaptation to the
target domain even with limited or no labeled target data. (Ganin & Lempitsky, 2015)

4.4 Semi-supervised learning

In remote sensing, where obtaining labeled data can be difficult and expensive, semi-
supervised learning has become an increasingly popular approach to improve the accuracy
of classification and segmentation tasks. Semi-supervised learning is a type of machine
learning that uses both labeled and unlabeled data to train models. Obtaining labeled
data in remote sensing can be challenging due to the high cost and time required for
manual annotation. Semi-supervised learning can leverage the large amounts of unlabeled
data available to improve the performance of models trained on limited labeled data.
(Z. Chen et al., 2020; Li, Zhang, Li, & Ye, 2023)

One possible approach is called consistency regularization, that is a technique that lever-
ages unlabeled data by applying strong augmentations to create multiple versions of the
data. The objective is to ensure that these augmented samples produce consistent predic-
tions, regardless of their specific augmentation. In a similar manner, multi-modal data,
like Sentinel-1 and Sentinel-2 data from the same location, can be utilized to simulate these
augmentations, aiming to achieve consistent prediction outputs. The different modalities
serve as real-world perturbations, as they are called in the Paper by Hafner, Ban, and
Nascetti. (Hafner, Ban, & Nascetti, 2022b; Oliver, Odena, Raffel, Cubuk, & Goodfellow,
2018)

4.5 Metrics

In the field of semantic segmentation, several metrics are commonly used to evaluate the
performance and accuracy of segmentation algorithms. This chapter discusses some of
the key metrics employed in the assessment of semantic segmentation models.

4.5.1 Precision

Precision is a metric that measures the proportion of correctly identified positive pre-
dictions out of all positive predictions made by the model. In the context of semantic
segmentation, precision indicates the accuracy of the model in correctly classifying pixels
belonging to the target class. A high precision value indicates a low rate of false positive
predictions.

The precision is calculated as follows:

Precision = True Positive
True Positive + False Positive
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4.5.2 Recall

Recall, also known as sensitivity or true positive rate, measures the proportion of correctly
identified positive predictions out of all ground truth positive instances. In semantic
segmentation, recall evaluates the model’s ability to accurately detect and capture all
pixels belonging to the target class. A high recall value indicates a low rate of false
negatives.

The recall is calculated as follows:

Recall = True Positive
True Positive + False Negative

4.5.3 F1 score

The F1 score combines precision and recall into a single metric, providing a balanced
assessment of the model’s performance. It is calculated as the harmonic mean of precision
and recall, giving equal weight to both metrics. The F1 score is particularly useful when
there is an imbalance between positive and negative instances in the dataset.

The F1 score is calculated as follows:

F1 score = 2 × Precision × Recall
Precision + Recall

4.5.4 Intersection over Union

Intersection over Union (IoU), also referred to as the Jaccard index, quantifies the overlap
between the predicted segmentation and the ground truth. It is calculated as the ratio of
the intersection of the predicted and ground truth regions to their union. IoU measures
the accuracy of the model in localizing and delineating the target class.

The IoU is calculated as follows:

IoU = True Positive
True Positive + False Positive + False Negative

4.5.5 Structural Similarity Index Measure

The Structural Similarity Index Measure (SSIM) assesses the similarity between two im-
ages, considering various aspects such as luminance, contrast, and structure. In semantic
segmentation, SSIM can be used to evaluate the perceptual quality and visual similarity
between the predicted segmentation and the ground truth. It provides a comprehensive
measure of the model’s ability to preserve structural information during the segmentation
process.
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The SSIM is calculated as follows:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

where:

• x and y are the input images

• µx and µy are the means of x and y

• σx and σy are the standard deviations of x and y

• σxy is the covariance between x and y

• C1 and C2 are constants to stabilize the division.
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5 Methodology

In this chapter, we present the methodology employed for accurate building segmentation
using Sentinel-1 SAR and Sentinel-2 MSI data. The workflow is based upon the paper
"Unsupervised domain adaptation for global urban extraction using Sentinel-1 SAR and
Sentinel-2 MSI data", as they already researched a similar direction. After modifying the
Fusion-DA code including different loss functions, we replaced it with a Discriminator and
decided to develop a new pipeline. By integrating the Discriminator into the segmenta-
tion process, we aimed to improve the model’s performance, F1-score, and segmentation
structure. Throughout this chapter, we provide an overview of the revised methodology,
including data preprocessing, model architectures and training setup.

5.1 Baseline "Fusion-DA"

The goal of this project is to make good predictions for built-up areas based on Sentinel-1
and Sentinel-2 data, even when only one modality is available. In the paper ”Unsupervised
domain adaptation for global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI
data" by Hafner, Ban, and Nascetti a similar goal has been explored, which provides a
useful baseline architecture for our goal as well refereed as "Fusion-DA" in the following.
This architecture will be explained in the following and the results of this baseline are
provided along the results of our approach in section 6.

The overall architecture consists of a Dual Stream U-Net as proposed in Hafner, Nascetti,
et al. (2022) and shown in figure 8. This includes two feature encoder streams, one for
Sentinel-1 and one for Sentinel-2 data (xsar and xopt), which are referred as lightweight-U-
Nets (LU-Net). After extracting the features the samples with labels get concatenated and
passed trough a last convolutional layer followed by a sigmoid activation (referred as Out),
which reduces the features to a single channel that indicates the pixel-wise probability
for built-up area. This gives predictions for the fusion, sar and optical stream (pfus, psar

and popt), that are then used to calculate the supervised loss. The unlabeled data get
directly passed trough the Out block and is then used to calculate the consistency loss,
which should lead to similar encodings by the SAR and optical stream.

The LU-Net retains the fundamental structure of the original U-Net, consisting of a
contracting path (left side) with downsampling blocks and an expansive path (right side)
with upsampling blocks. The number of downsampling and upsampling blocks, also known
as network depth, plays a crucial role in the complexity and performance of the model.
While the original U-Net with a depth of 4 has around 30 million trainable parameters,
the LU-Net only has depth 2 and therefore approximately 1 million trainable parameters.
This reduction in depth not only helps in reducing model complexity but also reduces the
receptive filed, limits overfitting and enhances computational efficiency. (Hafner, Ban, &
Nascetti, 2022b)

The architecture of LU-Net is illustrated in figure 9. Similar to the original U-Net, the
LU-Net comprises a contracting path and an expansive path. Each downsampling step
in the contracting path involves a sequence of operations, including a 3 × 3 convolu-
tion (Conv) with padding, batch normalization (BatchNorm), and rectified linear unit
activation function (ReLU). The downsampling is performed by a 2 × 2 max pooling
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Figure 8: Network architecture with Dual Stream U-Net (Hafner, Ban, & Nascetti, 2022b;
Hafner, Nascetti, et al., 2022)

(MaxPool) operation. With each downsampling step, the number of feature channels is
doubled, starting from 64 channels, and the size of the feature maps is halved.
The LU-Net consists of two downsampling steps in the contracting path and two up-
sampling steps in the expansive path. The upsampling steps reverse the operations of
downsampling by doubling the size of the feature maps and halving the number of chan-
nels. This is achieved using a 2 × 2 transpose convolution operation followed by the
same operation triplet utilized in downsampling steps. Additionally, skip connections are
incorporated to directly transmit feature maps from the contracting path to correspond-
ing steps in the expansive path. Ultimately, the feature map reaches the original size of
the input image and contains 64 channels. A 1 × 1 convolution followed by the sigmoid
activation function is applied to convert this feature map into a single-channel output
representing the probability of built-up areas (reffered as Out in figure 8). (Hafner, Ban,
& Nascetti, 2022b)

Figure 9: LU-Net architecture with width/height (left) and number of channels (top) for
each step (Hafner, Ban, & Nascetti, 2022b)
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As one can see already in figure 8 the Fusion-DA approach involves a data path in the
pipeline for the labeled and unlabeled data separately. This means the training procedure
is based on semi-supervised learning (SSL), namely on a consistency regularization as it is
explained in section 4.4. The core idea is to minimize the discrepancy between the model
outputs for different augmented versions of the same unlabeled sample. In the Fusion-DA,
the hypothesis is that the distinct yet complementary urban information present in SAR
and optical data can be effectively utilized for domain adaptation through the principle
of consistency regularization. Hence, Sentinel 1 and Sentinel 2 observations of the same
location are referred as the strong augmentations of the same sample.

From pfus, psar, popt and the ground truth (y) the supervised loss and the consistency
loss is calculated with the Power Jaccard loss (PJL) (Duque-Arias et al., 2021), which is
defined as follows:

LpJacc(p, y, c) = 1 − (p · y) + ε

(pc + yc − p · y) + ε

where:

• y represents the ground truth binary mask

• p represents the predicted binary mask

• c is a constant parameter

• ε is a small value added for numerical stability (to avoid division by zero)

The total loss is then calculated as:

Ltotal = Lsupervised + φ · Lconsistency

Lsupervised = LpJacc(pfus, y, 2) + LpJacc(psar, y, 2) + LpJacc(popt, y, 2)
Lconsistency = LpJacc(psar, popt, 2)

The proposed unsupervised domain adaptation approach, with the combination of con-
sistency regularization and multi-modal data, aims to bridge the gap between the source
and target domains, enabling the model to generalize well to the target domain without
requiring labeled data. By exploiting the complementary information in SAR and optical
data, the model can effectively adapt to the characteristics of the target domain, resulting
in improved performance for the urban area segmentation task. (Hafner, Ban, & Nascetti,
2022b)

5.2 Loss functions

In the original setup proposed by Hafner, Ban, and Nascetti, the predictions based on a
single modality exhibit noticeable differences in terms of F1-score and visual appearance
when comparing samples. These dissimilarities arise due to the inherent characteristics
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of the SAR and optical streams within the network, which ideally should produce highly
similar features. To encourage such similarity, a Consistency Loss is employed, calculated
using the Power Jaccard loss. However, the obtained results are not satisfactory, neces-
sitating the exploration of alternative loss functions or weighting schemes that promote
the generation of more similar features by the LU-Nets.

Initially, we tried to enhance the importance of the consistency loss by increasing it’s
weighting, aiming to encourage the network to generate more similar features. However,
this approach was found to be unsuccessful. Increasing the weight of the consistency loss
did not have a notable impact on performance. In fact, beyond a certain point, when
the weight became too high, the model’s efficiency in learning decreased. Surprisingly,
instead of becoming more similar, the feature outputs actually became more dissimilar
compared to using a weight of 0.5. As an alternative, various similarity loss functions
were tested to replace the Power Jaccard loss. These alternative functions included the
Binary Cross Entropy loss, Contrastive loss, Maximum Mean Discrepancy (MMD) loss,
L1 loss, and L2 loss, which are described in detail in the following.

5.2.1 Binary Cross Entropy Loss

Binary Cross Entropy (BCE) loss, also known as the log loss, is a commonly used loss
function for binary classification tasks. It measures the dissimilarity between predicted
and target binary values. BCE loss is particularly suitable for similarity-based tasks
when the goal is to determine the similarity or dissimilarity between two instances. By
minimizing the BCE loss, the network learns to assign higher probabilities to similar
instances and lower probabilities to dissimilar instances.

The formula for BCE loss is given by:

LBCE = − 1
N

N∑
i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi))

where yi represents the binary target value (0 or 1), ŷi represents the predicted probability,
and N is the total number of instances. (Godoy, 2022)

5.2.2 Intersection over Union Loss

Intersection over Union (IoU) loss is a commonly used loss function in object detection
and segmentation tasks. It measures the overlap between predicted and target bounding
boxes or masks. IoU loss encourages accurate localization by penalizing low overlap.
Minimizing IoU loss improves the alignment of predicted regions with the ground truth,
leading to more precise object localization. It is often used alongside other loss functions
and enables quantitative evaluation of region matching.

The formula for IoU loss is:

LIoU = 1 − I
U = 1 − |GT ∗ Pred|

|GT + Pred − (GT ∗ Pred)|
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where the Area of Intersection (I) represents the overlapping area between the predicted
and target regions, and the Area of Union (U) represents the combined area of the pre-
dicted and target regions. GT and Pred stand for the true segmentation and for the
predicted segmentation respectively. By incorporating IoU loss into the training process,
models can be trained to produce more accurate and visually appealing object detection
or segmentation results. (van Beers, Lindström, Okafor, & Wiering, 2019)

5.2.3 Contrastive Loss

Contrastive loss is a loss function commonly used in unsupervised learning tasks. It
aims to map similar input samples to similar representations in a latent space while
pushing dissimilar samples apart. To calculate the contrastive loss, the cosine distances
between the positive example and negative examples are computed. The cosine distance
measures the angle between vectors, where similar vectors have larger values closer to 1
and dissimilar vectors have values closer to 0 or negative values. The distances are treated
as prediction probabilities and passed through a softmax function, which normalizes the
values to a range of 0 to 1. The softmax output represents the probabilities of the positive
and negative examples being similar.

The contrastive loss function is similar to the softmax function with the addition of
the cosine similarity and a temperature parameter. The numerator of the loss function
consists of the cosine distance of the positive example, while the denominator includes
the cosine distances from the negative examples. The loss is computed by taking the
negative logarithm of the positive example’s softmax probability divided by the sum of
all softmax probabilities. The aim is to minimize the loss, making the similar examples
have probabilities close to 1 and dissimilar examples have probabilities close to 0.

The formula for Contrastive Loss is given by:

Lcontrastive = − log exp(sim(zi, zj)/τ)∑2N
k=1 1[k ̸=i] exp(sim(zi, zj)/τ)

where sim(u, v) equals the cosine similarity which is calculated as follows in a batch of N
Sentinel-1 and Sentinel-2 pairs.

sim(u, v) = uT v

∥u∥ ∥v∥

Contrastive loss is a powerful tool for various unsupervised learning tasks. It enables
the creation of meaningful representations in a latent space by encouraging similarity for
positive examples and dissimilarity for negative examples. By optimizing the siamese net-
work with contrastive loss, impressive results have been achieved in papers like SimCLR.
(T. Chen, Kornblith, Norouzi, & Hinton, 2020; Williams, 2023)

In this project positive samples are represented by Sentinel-1 and Sentinel-2 images of
the same area, whereas negative samples are images from different locations. This means
in one batch with 8 samples from Sentinel-1 and Sentinel-2 each, there were 8 positive
pairs and 56 negative pairs, if each Sentinel-1 image can be combined with all Sentinel-2
images of the batch.
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5.2.4 Maximum Mean Discrepancy Loss

Maximum Mean Discrepancy (MMD) Loss is a kernel-based statistical measure that quan-
tifies the discrepancy between two probability distributions. In the context of deep learn-
ing, MMD loss can be used as a regularization term or a similarity metric. By minimizing
the MMD loss, the network is encouraged to generate feature representations that are
statistically similar across different modalities or domains. MMD loss is advantageous as
it does not rely on explicit class labels and can capture higher-order statistics of the data
distribution.

The MMD loss can be computed using the RBF kernel, which measures the similarity
between two feature vectors based on their Euclidean distance in the feature space. By
incorporating the RBF kernel within the MMD framework, we can effectively quantify
the dissimilarity between the embeddings.

In the case of Sentinel-1 (X) and Sentinel-2 (Y) feature embeddings with one-to-one
correspondence, the MMD loss with the RBF kernel is expressed as:

LMMD(X, Y ) =

∥∥∥∥∥∥ 1
n2

x

nx∑
i=1

nx∑
j=1

k(xi, xj) − 2
nxny

nx∑
i=1

ny∑
j=1

k(xi, yj) + 1
n2

y

ny∑
i=1

ny∑
j=1

k(yi, yj)

∥∥∥∥∥∥
2

Here, nx and ny represent the number of feature embeddings in sets X and Y, respectively.
The RBF kernel function k between xi from set X and yj from set Y is given by:

k(xi, yj) = exp
(
−γ∥xi − yj∥2

)
where γ is the bandwidth parameter of the RBF kernel.

Minimizing the MMD loss encourages similarity between Sentinel-1 and Sentinel-2 feature
embeddings from the same geographic location, while preserving dissimilarity between
embeddings from different locations. (Gretton, Borgwardt, Rasch, Schölkopf, & Smola,
2012, p.728-729)

5.2.5 Mean Absolute Error Loss

L1 loss, also known as the mean absolute error (MAE) loss, calculates the absolute differ-
ences between predicted and target values. It promotes sparsity in the learned features by
penalizing large deviations from the ground truth. MAE loss is less sensitive to outliers
compared to other loss functions like mean squared error (MSE) loss, making it suitable
for scenarios where robustness against outliers is important.

The formula for MAE loss is given by:

LMAE = 1
N

N∑
i=1

|yi − ŷi|
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where yi represents the target value, ŷi represents the predicted value, and N is the total
number of instances. (Seif, 2022)

5.2.6 Mean Squared Error Loss

L2 loss, also known as the mean squared error (MSE) loss, calculates the squared differ-
ences between predicted and target values. It penalizes larger errors more severely than
MAE loss and encourages the network to converge towards the mean of the target values.
MSE loss is widely used in various regression tasks and often leads to smoother and more
distributed feature representations.

The formula for MSE loss is given by:

LL2 = 1
N

N∑
i=1

(yi − ŷi)2

where yi represents the target value, ŷi represents the predicted value, and N is the total
number of instances. (Seif, 2022)

5.3 Proposed network with the Discriminator

As in section 6 described the approaches described above did not improve the performance
metrics significantly. Therefore the consistency loss is entirely replaced by a Discriminator
network, as it is expected to outperform the loss functions, as it can learn the important
metrics to produce similar features itself. The proposed architecture is displayed in fig-
ure 10 and is refereed as "Discriminator approach" troughout this thesis.

Figure 10: Proposed network architecture for multi model building segmentation with
discriminator for similar feature embeddings of Sentinel-1 and Sentinel-2 data. (own
illustration)

The LU-Nets employed in this study are equivalent to those utilized by Hafner, Ban, and
Nascetti in their network, ensuring improved comparability (see fig. 9).
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However, there are several additional modifications compared to the Fusion-DA that con-
tribute to the stability and effectiveness of the training process. Notably, a learning
rate scheduler is incorporated into the network architecture. This scheduler dynamically
adjusts the learning rate during training, gradually reducing it towards the end of the
training process. This technique helps us to stabilize the learning process and prevent
abrupt changes that hinder convergence. Furthermore, another significant distinction is
the utilization of a different data sampler in the training process. Unlike the Fusion-DA
approach, where batches are randomly sampled from the entire dataset, this study em-
ploys a data sampler that includes an equal proportion of labeled and unlabeled data in
each batch. This approach aims to enhance training stability by providing a balanced
representation of both labeled and unlabeled samples during the learning process.

Concerning the general pipeline of our approach, the supervised loss is calculated in the
same manner as in the Fusion-DA. Regarding the unsupervised loss, our approach differs
from the Fusion-DA. While the Fusion-DA only utilizes unlabeled data, our method passes
all samples through the pipeline, effectively doubling the amount of data used to calculate
the consistency loss at each step.

As previously mentioned, the consistency loss function is replaced in our approach with
a discriminator network, which is expected to yield superior results compared to a sim-
ple metric loss function. Additionally, rather than using prediction maps, we employ
the entire feature embedding from the LU-Nets as input for the discriminator. The pri-
mary objective of the discriminator is to distinguish the data source modality based on
the feature embedding. By training a robust discriminator, the LU-Nets are forced to
generate similar feature embeddings regardless of the data source, thereby confusing the
discriminator. To enable this, a gradient reversal layer (GRL) is employed during back-
propagation, which multiplies all gradients by -1. This encourages the feature embeddings
to become more similar, making it challenging for the discriminator to distinguish the do-
main of origin, while simultaneously improving the discriminator’s performance through
optimization of the consistency loss. The optimum discriminator accuracy is attained at
0.5, indicating a scenario where the feature embeddings are indistinguishably similar, such
that the discriminator is unable to accurately classify the region of origin (Goodfellow et
al., 2014). At this point, the discriminator’s predictive capability is equivalent to random
guessing, with no meaningful differentiation between domains based on the given feature
embeddings.

The discriminator network was designed to make pixelwise decisions for the origin do-
main, rather than relying on global decisions for the entire image. This approach aimed
to prevent misclassifications based on small, local features and therefore improve the ac-
curacy of domain differentiation. By focusing on individual pixels, the network aimed
to provide more precise and reliable results, considering the discriminative power. This
design choice aimed to enhance the overall performance of the discriminator network in
domain classification tasks. It enables the network to apply gradients precisely where
dissimilarities in the feature embeddings allowed the discriminator to distinguish between
domains.

In figure 11 the discriminator architecture used is depicted. Many different architectures
have been tested with various depths and as it is also shown in the implementation of the
GRL that a small discriminator network is sufficient. (Fungtion, n.d.; Ganin & Lempitsky,
2015)
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Figure 11: Discriminator network with width/height (left) and number of channels (top)
for each step. (own illustration)

The discriminator network architecture employed in this thesis consists of convolutional
layers with a kernel size of 3 and stride 2, facilitating feature downsampling on the encoder
side. These layers are accompanied by the rectified linear unit (ReLU) activation function
to enhance non-linearity in the network. On the decoder side, transpose convolutions with
kernel size 3 and stride 2 as well, similar to those utilized in the LU-Net architecture, are
employed to upsample the features back to their original input size.

Additionally, skip connections are incorporated into the network design. These connec-
tions serve the purpose of including information from the original input on the decoder
side, enabling the network to leverage both high-level and low-level features for more
accurate domain classification. By combining information from multiple levels of abstrac-
tion, the network gains a more comprehensive understanding of the input data, leading
to improved performance.

Furthermore, the final step in the network architecture involves applying a sigmoid acti-
vation function to obtain probability-like values for each pixel. This allows the network
to produce output indicating the origin domain for each pixel, providing a measure of
confidence in the domain classification.

It is worth noting that the receptive field of this network is limited to 18 pixels. This de-
liberate choice ensures that the network focuses on a localized area, disregarding artifacts
or influences from distant regions. By confining the receptive field to a small area relative
to the image size, the network avoids potential biases caused by irrelevant information
and maintains the ability to make accurate domain distinctions.

Numerous network architectures were systematically evaluated to explore their potential
for domain classification. These architectures varied in depth, ranging from 1 to 4 layers,
thereby influencing the receptive field of the network (ranging from 7x7 up to 270x270
pixels). Additionally, the LU-Net architecture, depicted in figure 9, was also tested at
multiple depths. However, none of these alternative architectures demonstrated note-
worthy improvements in performance compared to the selected architecture illustrated in
figure 11, which delivered the best results considering the evaluation metrics, losses and
discriminator accuracies.
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The ground truth labels for the discriminator were generated as tensors of the same size
as the input images. These tensors were filled with ones or zeros, depending on the
corresponding domain of the image, establishing a binary classification task. To calculate
the discriminator loss, the Binary Cross Entropy (BCE) loss with logits was employed.
This loss function measures the dissimilarity between the predicted probabilities and the
ground truth labels.

5.4 Input Augmentation

As an alternative approach to enhance the built-up area segmentation network proposed
by Hafner, Ban, and Nascetti, an attempt was made to augment the training process by
incorporating Stable Diffusion feature embeddings into the network’s input (Rombach,
Blattmann, Lorenz, Esser, & Ommer, 2022).

The stable diffusion model is based on the concept of diffusion, which involves two funda-
mental steps. The first step is the forward diffusion process, where noise is incrementally
added to an image. The second step is the reverse diffusion process, represented by a
denoising U-Net, which aims to predict and subtract the noise from the original input.

Once this U-Net is trained, it can generate images by taking pure noise as input and
attempting to denoise it, similar to the training phase. This step can be iterated multiple
times using the output from the previous iteration until a final noise-free image is obtained.
However, this process becomes computationally intensive when numerous iterations are
required or when dealing with large images. To address this, the same procedure can be
applied in the latent space of the image, known as the "Latent Diffusion Model" (LDM),
or in this case, referred to as stable diffusion. To enable this, a variational autoencoder
(VAE) is trained to compress the images into a meaningful latent space (Steins, 2023). In
this study, the employed VAE compresses RGB images of size 512x512 into latent spaces
of size [4x64x64], preserving the information with a compression factor of 48 (Wong,
2023).

Additionally, the stable diffusion models can generate images from textual inputs. To
facilitate this capability, the internal diffusion model of stable diffusion can incorporate
conditions in the form of segmentations, other images, or text. While this feature holds
great importance and fascination for various applications and individuals, it is not the
focus of this thesis (Rombach et al., 2022; Steins, 2023).

To improve the built-up area segmentation, only the feature embeddings extracted by the
VAE from the stable diffusion model are utilized, disregarding the entire stable diffusion
framework. Since the VAE must effectively enable the diffusion process in the latent
space, the extracted features are expected to represent the most significant structures in
the image. By incorporating these features, it becomes easier for the LU-Nets used in the
Fusion-DA approach to extract the relevant features for the segmentation task, as they
do not need to learn all the structures from scratch.

Given that the VAE is trained to extract features from RGB images with three channels,
while the Sentinel-1 and Sentinel-2 images have two and ten channels, respectively, each
channel is separately passed through the VAE by replicating it three times along the chan-
nel axis. The VAE used, was taken from the stable diffusion model v2.1 base (Rombach
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et al., 2022). During the training process, when the images are loaded, the [4x64x64]
latent spaces are upsampled to match the size of the original inputs and concatenated
with them. The impact of these additional inputs is shown in section 6 and this setup is
refereed as "Input Augmentation approach".
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6 Results and Discussion

In this chapter, we will share the results of all the experiments conducted in this thesis.
This includes testing different loss functions, measuring the effectiveness of the Discrimina-
tor and Input Augmentation approach using metrics, and providing visual representations
of the predictions. Despite using the exact same code provided on Github by Hafner, Ban,
and Nascetti, we were not able to reproduce the exact same metric values as shown in
their paper. Therefore in the following all results for the Fusion-DA are based on the
reproduced runs to enable a better comparability of the test cases. Overall the metrics of
the test set have a very high variance and therefore the following results are all based on
the metrics of the last epoch. This does not mean the models did not converge, because
they did according to the training and validation metrics. There are multiple reasons,
which can cause the difference between validation and test metrics. First, the size of
the test set is much smaller than the training and validation set, also the test set was
not generated in the same manner. Further, the test set covers locations, which are not
included in the training set due to the original goal of domain adaptation by Hafner, Ban,
and Nascetti.

6.1 Loss functions

In sections 5.1 and 5.2 different loss functions for the Fusion-DA approach have been
described and tested. The results for all loss functions are shown in tables 4 to 6 for the
validation and test set.

In table 4 the metrics for the output segmentations based on Sentinel-1 and Sentinel-2 are
shown. One can see that the IoU loss outperforms the other loss functions for most of the
metrics. For example the F1-score which combines recall and precision in one metric and
therefore is concerned as the most important indicator followed by IoU, outperforms PJL
and contrastive loss by 3% on the test set. On the other hand for the validation set the
F1-score and the IoU are almost equal, and since the validation set give a better indicator
for the methodology used, as the variance is much smaller, the different loss functions are
not concerned to work significantly better than PJL. Also if one looks at the second to
last epoch on the test set, PJL would have performed best for F1-score and IoU instead
of the IoU loss.

Fusion from F1 score Precision Recall IoU SSIM

Fusion-DA Val. Test Val. Test Val. Test Val. Test Val. Test

PJL 0.768 0.634 0.801 0.747 0.738 0.551 0.623 0.464 0.726 0.544
Contrastive 0.768 0.638 0.818 0.717 0.724 0.574 0.623 0.468 0.723 0.558
MMD 0.771 0.606 0.812 0.741 0.735 0.513 0.628 0.435 0.723 0.548
BCE 0.768 0.515 0.812 0.750 0.729 0.392 0.624 0.347 0.718 0.534
IoU 0.767 0.667 0.836 0.709 0.708 0.630 0.621 0.500 0.733 0.584

L1 0.766 0.622 0.826 0.726 0.714 0.545 0.621 0.452 0.710 0.544
L2 0.766 0.609 0.809 0.735 0.727 0.519 0.621 0.437 0.696 0.497

Table 4: Comparison for multiple consistency loss functions evaluated on the fusion data
of validation and test set.
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In the scenario where only Sentinel-2 data is available during inference, the resulting
metrics are shown in table 5. It can be observed that for the crucial metrics of F1-
score and IoU, both PJL and contrastive loss yield the best performance. While the
improvements of contrastive loss for the validation set are relatively minor (below 1%),
PJL achieves the highest scores for the test set. Compared to table 4, when Sentinel-1
and Sentinel-2 data is available, the IoU loss does not achieve competing results to PJL.
Overall, PJL demonstrates superior performance compared to all the other tested loss
functions.

Optical from F1 score Precision Recall IoU SSIM

Fusion-DA Val. Test Val. Test Val. Test Val. Test Val. Test

PJL 0.738 0.654 0.772 0.603 0.706 0.714 0.584 0.486 0.537 0.336
Contrastive 0.744 0.589 0.777 0.702 0.714 0.508 0.592 0.418 0.704 0.563

MMD 0.633 0.499 0.815 0.415 0.515 0.627 0.463 0.333 0.144 0.081
BCE 0.723 0.312 0.712 0.704 0.734 0.201 0.566 0.185 0.623 0.389
IoU 0.728 0.629 0.815 0.515 0.659 0.808 0.573 0.459 0.723 0.556
L1 0.416 0.358 0.911 0.221 0.270 0.945 0.263 0.218 0.101 0.039
L2 0.489 0.403 0.911 0.257 0.334 0.934 0.323 0.252 0.092 0.038

Table 5: Comparison for multiple consistency loss functions evaluated on the Sentinel-2
data of validation and test set.

In the third case, where only Sentinel-1 data is available during inference, the metric
scores are presented in table 6. Notably, the IoU loss achieves favorable results for several
metrics, particularly when compared to PJL on the test set. However, for the validation
set, the IoU loss exhibits lower scores for F1-score and IoU compared to PJL. Consequently,
the IoU loss does not consistently enhance the model in a robust manner. Moreover, while
certain tested loss functions show improvement in specific metrics, they fail to deliver
across all metrics. As a result, no single loss function clearly outperforms the baseline
configuration.

SAR from F1 score Precision Recall IoU SSIM

Fusion-DA Val. Test Val. Test Val. Test Val. Test Val. Test

PJL 0.671 0.571 0.761 0.622 0.600 0.528 0.504 0.400 0.463 0.333
Contrastive 0.665 0.585 0.743 0.567 0.602 0.603 0.498 0.413 0.605 0.422
MMD 0.679 0.560 0.733 0.624 0.632 0.508 0.514 0.389 0.581 0.426
BCE 0.550 0.314 0.474 0.621 0.654 0.210 0.379 0.186 0.680 0.585

IoU 0.647 0.597 0.832 0.571 0.530 0.626 0.479 0.426 0.651 0.558
L1 0.601 0.406 0.556 0.616 0.653 0.302 0.429 0.254 0.604 0.464
L2 0.672 0.522 0.708 0.631 0.640 0.446 0.506 0.353 0.594 0.451

Table 6: Comparison for multiple consistency loss functions evaluated on the Sentinel-1
data of validation and test set.

In summary, upon examining the metrics presented in tables 4 to 6, it is evident that no
loss function exhibits a substantial improvement over PJL, as employed in the baseline
configuration. While certain loss functions demonstrate better performance on specific
metrics, it is challenging to draw a straightforward conclusion. However, it is clear that
PJL remains a valid approach that performs well across a majority of the metrics. Despite
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the potential advantages offered by alternative loss functions in certain scenarios, the
overall effectiveness and versatility of PJL make it a reliable choice for the task at hand.
Therefore, in the following the Fusion-DA approach is always referring to the configuration
with the PJL as its loss function.

6.2 Discriminator and Input Augmentation

In the following tables, the metrics for the fusion-DA baseline approach, the single/fusion
sensor approach, as well as the Discriminator- and Input Augmentation approach are
shown.

In table 7 the metrics for all four approaches when both modalities are available at in-
ference time are displayed. The first approach, referred to as Fusion only, concatenates
Sentinel-1 and Sentinel-2 data at input level. Detailed explanations of the other ap-
proaches can be found in section 5.

The Fusion-DA approach shows only partial improvements compared to Fusion only. Un-
fortunately, the results obtained by Hafner, Ban, and Nascetti, who achieved significant
metric improvements with their Fusion-DA approach, could not be replicated. The Dis-
criminator approach performs similarly to the Fusion-DA approach, with only slight dif-
ferences in the metric scores.

The most substantial improvement is observed with the incorporation of the input features
from the VAE from the stable diffusion network as additional inputs. On the validation
set, the F1-score and IoU improve significantly by 2.3% and 3.1% respectively. These
metrics also exhibit improvement on the test set, although the specific values tend to vary
strongly across epoch.

Fusion F1 score Precision Recall IoU SSIM

Val. Test Val. Test Val. Test Val. Test Val. Test

Fusion only 0.758 0.664 0.803 0.642 0.718 0.688 0.610 0.497 0.658 0.397
Fusion-DA 0.768 0.634 0.801 0.747 0.738 0.551 0.623 0.464 0.726 0.544

Discriminator 0.765 0.634 0.809 0.720 0.726 0.566 0.620 0.464 0.713 0.503
Input Aug. 0.781 0.671 0.820 0.695 0.746 0.648 0.641 0.505 0.749 0.503

Table 7: Comparison of described approaches with Sentinel-1 and Sentinel-2 data of
validation and test set.

The table below shows different measurements when only Sentinel-2 data is used for
analysis. Different methods have their own advantages. For example, the fusion-DA
approach performs the best in terms of F1-score and IoU, but it has the lowest results
in SSIM. On the other hand, the Input Augmentation approach has nearly the same
performance as Fusion-DA and also has competitive SSIM scores. The Discriminator
approach strongly improves the SSIM value, which measures the structural similarity
between the ground truth and the prediction and therefore gives an indicator of the
visual perception. On the validation set the Discriminator scores are almost as good as
in the other methods, while on the test set all scores are significantly worse. Overall,
the Input Augmentation approach is the preferred choice based on all the measurements,
although there are no significant improvements except for the SSIM.

30



ETH Master thesis 6 Results and Discussion

Optical F1 score Precision Recall IoU SSIM

Val. Test Val. Test Val. Test Val. Test Val. Test

Sent.-2 only 0.721 0.634 0.785 0.603 0.667 0.668 0.564 0.464 0.642 0.438
Fusion-DA 0.738 0.654 0.772 0.603 0.706 0.714 0.584 0.486 0.537 0.336
Discriminator 0.733 0.572 0.761 0.695 0.707 0.486 0.579 0.400 0.665 0.512

Input Aug. 0.737 0.651 0.834 0.569 0.659 0.759 0.583 0.482 0.654 0.392

Table 8: Comparison of described approaches with Sentinel-2 data of validation and test
set.

When only Sentinel-1 data is used, the overall performance across all metrics is moderate.
The F1-score and IoU values are relatively low compared to the other modalities. The
Fusion-DA approach does not improve the metrics compared to using only Sentinel-1 data.
However, there is an increase in precision while the recall is lower. On the other hand, the
Discriminator approach achieves the highest F1 score and IoU values on the validation set.
The Input Augmentation approach performs well on most of the metrics, even when it not
scores the top results in some. It achieves the highest recall out of all the methods for the
test set and the highest precision for the validation set. However, it does not significantly
improve the F1 scores due to having the lowest precision values on the test set and the
lowest recall values on the validation set by a large margin. These discrepancies between
the test and validation sets indicate that the metrics should be interpreted carefully.
Overall, based on the results, the Input Augmentation approach appears to be the most
favorable choice among the discussed methods when considering the F1 score and IoU.
However, when taking a closer look at precision and recall to understand how the F1 score
was achieved, one should consider the Discriminator approach as the best method, as it
provides more stability due to the lower discrepancies between the validation and test
metrics.

SAR F1 score Precision Recall IoU SSIM

Val. Test Val. Test Val. Test Val. Test Val. Test

Sent.-1 only 0.675 0.571 0.720 0.599 0.635 0.547 0.509 0.400 0.549 0.310
Fusion-DA 0.671 0.571 0.761 0.622 0.600 0.528 0.504 0.400 0.463 0.333

Discriminator 0.679 0.584 0.753 0.594 0.617 0.574 0.513 0.412 0.557 0.291
Input Aug. 0.675 0.611 0.821 0.528 0.573 0.726 0.509 0.440 0.541 0.304

Table 9: Comparison of described approaches with Sentinel-1 data of validation and test
set.

In conclusion the Input Augmentation approach performs best concerning all possible
metrics for all cases of data availability. The metrics are very similar for all methods
and therefore the improvements are not significant for all metrics. Therefore the results
get inspected visually with some examples from the training and test set in the following
section.
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6.3 Examples

In the following section, we present visual examples of the training and test sets, illustrat-
ing the input with RGB images and their corresponding ground truth. Additionally, we
provide four columns displaying prediction maps for built-up areas. Each row represents
one of the four methods introduced earlier: Single Sensor, Fusion-DA, Discriminator, and
Input Augmentation.
These examples demonstrate different scenarios of data availability. The first row cor-
responds to the case where both Sentinel-1 and Sentinel-2 data are available, while the
second and third rows represent cases where only one of them is present. Also each
segmentation includes a small table below, which indicate the metric values for the cor-
responding prediction.
The figures 12 and 13 showcase visualizations based on the training set for Houston, Los
Angeles, and Miami in the USA. Similarly, figures 14 and 15 depict results from the test
set, specifically locations in Egypt, Saudi Arabia, and the USA, respectively. Notably,
the scores obtained for the test set generally exhibit lower values compared to those of
the training set, as illustrated in tables 7 to 9.

The predictions for satellite observations in Houston, USA are depicted in figure 12. Ini-
tially, all methods exhibit similar performance, accurately recognizing the primary struc-
tures with only minor local variations. The provided metrics below the predictions also
indicate minimal variation among the four methods, particularly for the Fusion and SAR
segmentations. However, noticeable discrepancies emerge in the optical predictions, which
solely rely on Sentinel-2 data. Upon examining all four methods, it becomes apparent
that most metrics display consistent and comparable results, except for the Fusion-DA
approach. Although the Fusion-DA approach achieves a comparable F1-score, its SSIM
and IoU values are significantly lower. Additionally, the F1-score is influenced by distinct
Precision and Recall scores, where the Recall approaches almost one while Precision is
considerably lower in comparison. Consequently, the Fusion-DA approach detects nearly
all buildings within the patch, resulting in an excessive number of detections. This leads
to oversegmentation, and the elevated F1-scores are primarily attained by classifying re-
gions resembling buildings, resulting in a blurred segmentation that lacks the level of
detail observed in the other methods.

In figure 13 a more densely populated region situated in Los Angeles, USA is shown.
Similar to the observations made in figure 12, the metrics demonstrate minimal variation
across all methods. However, when analyzing the predictions derived from optical data,
the recurring issue of blurring becomes evident, accompanied by a corresponding impact
on the metric values. This effect is also noticeable to a lesser extent in the case of the
Input Augmentation approach. Through visual examination, the Discriminator approach
outperforms the others, because it seems to be the closest to the ground truth in all three
scenarios of data availability, as also indicated by the SSIM score.
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Figure 12: Example output segmentations for all proposed methods and data availability
cases for a training set sample located in Houston, USA
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Figure 13: Example output segmentations for all proposed methods and data availability
cases for a training set sample located in Los Angeles, USA
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The first example of the test set is shown in figure 14, where a region in Egypt is depicted
together with the corresponding prediction maps. The observations made on the training
set for figures 12 and 13 can be applied as well on the test set, where most of the metrics are
very similar, except for the blurry outputs of the optical predictions of the Fusion-DA and
Input Augmentation approach. Also very interesting to mention is, that the inclusion of
the additional input channels augmented by the VAE of the stable diffusion framework,
strongly improves the Fusion-DA segmentation of the optical data. The influence on
the SAR data is not significant, but one can see an increased blurriness for the Input
Augmentation approach as well. Overall the Discriminator performs joint best with the
Single Sensor approach, whereas the Discriminator achieves higher precision, to the cost
of lower recall, but this means that out of the detected buildings the probability that it
is indeed a building is higher. Also the Precision and Recall values are in general more
balanced for the Discriminator than for the other methods. This example also shows that
the models are able to make comparable accurate predictions even outside the source
area of the training set. Except the Fusion-DA approach, which seems to struggle with
change of surface structure in the optical data stream, which is probably not included
in the training set as it is shown in the rgb image of figure 14. On the other the SAR
data stream seems to adjust better to the varying surface, as it still achieves good metric
scores.

The last example in figure 15 shows a region in the USA, and therefore is not affected as
strongly as the example in Egypt by the shift of location, as most cities of the training
set are located in the USA as well. The main difference in this example is the generation
of the ground truth and therefore it is possible to focus more on this effect. One can see
that the metric values show a similar pattern as for the examples from the training set in
figures 12 and 13. Therefore the different ground truths seem not to have a major impact.

Overall the metrics for all methods are very similar, as also shown in tables 7 to 9. In
the examples one can see some predictions, which show that close F1-scores not automat-
ically indicate similar segmentation maps. For example in figure 15 the F1-score of the
Fusion-DA and Discriminator approach are very close for the optical data stream, but the
predictions look very different, what is also represented in precision and recall.

The Discriminator approach improves the results by visual inspection, especially for the
case when only Sentinel-2 data is available at inference. This effect has been measures by
the SSIM and is also shown in table 8, where the SSIM is improved strongly compared
to the other methods also when looking not only at a single example. Also, the Discrim-
inator network strongly improves the similarity of the prediction maps between the case
when only Sentinel-1 data is available to the case when only Sentinel-2 data is available,
compared to the PJL used in the Fusion-DA approach as a consistency loss. Therefore,
the use of a Discriminator network instead of a simple loss function definitely improved
consistency between the modalities.
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Figure 14: Example output segmentations for all proposed methods and data availability
cases for a test set sample located in Egypt
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Figure 15: Example output segmentations for all proposed methods and data availability
cases for a test set sample located in USA
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7 Conclusion

In this thesis, we explored the domain adaptation techniques for semantic segmentation
of remote sensing images using a fusion of Sentinel-1 and Sentinel-2 data, as well as both
modalities separately. We started by discussing the importance of domain adaptation
in remote sensing applications and the challenges associated with transferring knowledge
from one domain to another. Our goal was to develop a model that can effectively leverage
the complementary information provided by both Sentinel-1 and Sentinel-2 data sources,
even when only one data source is available at inference time.

In the literature review, we examined existing methods for domain adaptation in seman-
tic segmentation and identified the Fusion-DA approach proposed by Hafner, Ban, and
Nascetti as a suitable framework for our research. We analyzed the key components of
Fusion-DA and tested different loss functions in this framework, while we also imple-
mented two new strategies based on the Fusion-DA approach, namely the Discriminator
and the Input Augmentation approach.

We conducted extensive experiments to evaluate the effectiveness of different loss functions
in improving the performance of the Fusion-DA model. We compared several consistency
loss functions, including Power Jaccard loss, contrastive loss, Maximum Mean Discrepancy
loss, Binary Cross-Entropy loss, Intersection over Union loss, L1 loss and L2 loss. We
measured the performance of these loss functions on validation and test sets using various
metrics such as F1-score, precision, recall, IoU, and Structural Similarity Index (SSIM).

We observed that the choice of the loss function did not significantly influence the per-
formance of the Fusion-DA model. In the case of fusion data (Sentinel-1 and Sentinel-2),
the IoU loss outperformed other loss functions, achieving the highest F1-score and IoU
on the test set. However, PJL demonstrated competitive performance on the valida-
tion set. When only Sentinel-2 data was available during inference, PJL and contrastive
loss showed the most promising results. For the scenario where only Sentinel-1 data was
available, the IoU loss yielded favorable results in some metrics but did not consistently
improve performance across all metrics. Despite achieving improvements with certain loss
functions, no single loss function emerged as a clear winner in all cases.

In order to further improve the results, two new models were introduced, incorporating
the Discriminator and Input Augmentation approaches. The performance of these models
was evaluated based on different data availability scenarios.

For the case when both Sentinel-1 and Sentinel-2 data were available, the Input Augmen-
tation approach exhibited superior performance in terms of F1-score, IoU, and SSIM for
both the validation and test sets. This highlights the effectiveness of the Input Augmen-
tation technique in enhancing the fusion of the two data sources and achieving better
segmentation results.

When only Sentinel-2 data was present during inference, the Discriminator approach sig-
nificantly improved the SSIM metric, while the other evaluation metrics remained at a
similar level compared to the other methods on the validation set. However, the perfor-
mance on the test set was noticeably worse. Despite this, overall, the Input Augmentation
approach still outperformed other methods in this particular data availability scenario.

In the case where only Sentinel-1 data was available, all methods yielded comparable
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results for most metrics, with minor differences observed in precision and recall. Notably,
the Input Augmentation approach exhibited larger disparities between precision and recall
compared to the Discriminator approach.

Additionally, visual inspections of selected examples from the training and test sets were
conducted to assess the quality of the segmentation maps. These visualizations revealed
that pixel-based metrics may not always be sensitive enough to capture the true quality of
the segmentation. However, in terms of visual performance, the Discriminator approach
consistently achieved the best results across all three data availability scenarios, with the
most significant deviations observed when only Sentinel-2 data was used. The Fusion-DA
approach, on the other hand, tended to oversegment buildings, resulting in higher recall
but lower precision and blurry prediction maps.

Overall, the findings highlight the effectiveness of the Discriminator approach in predicting
fine-grained segmentations, what is also represented in high SSIM values especially for the
optical data stream. Considering the comprehensive evaluation of metrics, as well as the
visual assessments, the Input Augmentation approach and the Discriminator approach
are the preferred choice for improving segmentation results depending on what metrics
are most important for different usecases.

In conclusion, the Input Augmentation approach improves the metrics the most and would
be a simple and useful tool for a better feature extraction process and especially improves
segmentations for the case when only Sentinel-2 data is present at inference. Nevertheless
it is important to also have a look at the final prediction maps and when doing that,
one can see that also the Discriminator approach can be a beneficial approach, especially
when finegrained segmentations are required.

As a further step it would be interesting to evaluate this methods on other datasets. For
example the training set could be extended with ground truth data from South America,
which would be available by now. Also, averaging multiple runs and calculate mean and
variance would be very interesting to better quantify the results on the test set, which
seems to be affected by a high variance at the moment. Finally a combination of the
proposed approaches would be interesting, by using the augmented inputs from the VAE
also for the Discriminator approach, as they provide advantages in different areas and a
combination of both may lead to improved metric scores, while preserving the ability to
produce finegrained prediction maps.
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